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Performance Data Repository

= Goal
— To characterize the applications on existing systems
— To understand the system resource usage
+ To provide inputs for next generation system design
= QObjective
— Collect performance data and store them into a relational database
— Uniform storage format
 to support queries and presentation

* To make comparisons cross applications or platforms
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How to use it?

=Link the application with performance tool
— Link the profiler libraries (e.g., -Impihpmperf or -lpomprofperf) statically
— Or modified version of MP| compiler (wrapper)
— Supports MPI/Hardware counter, OpenMP profiler

= Run the application

“ Query the database (optional)

— SQL statements
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Link the application with performance tool — MPI/HW
counter

= Example: NPB-3.3-MPI BT on grotius

= The MPI/BGPM library is at /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/
bobmpihpm/libmpihpmperf.a

= [opt/ibmcmp/xIf/bg/14.1/bin/bgxIf r-O -g -0 ../bin/bt.A.4 bt.o make set.o
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o define.o
copy_faces.o rhs.o solve_subs.o x_solve.o y _solve.o z_solve.o add.o
error.o verify.o setup_mpi.o ../common/print_results.o ../common/timers.o
btio.o -L /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/bobmpihpm -
Impihpmperf -L /bgsys/drivers/ppcfloor/comm/xl/lib -Impich -Impl -lopa -
L /bgsys/drivers/ppcfloor/comm/sys/lib -lpami -L /bgsys/drivers/ppcfloor/
spi/lib -ISPI_cnk -Irt -Istdc++
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Link the application with performance tool - OpenMP

= Example: a OpenMP toy code on grotius

= The OpenMP profiler library is at /gpfs/DDNgpfs1/ihchung/codes11/
hpct.db2/source/lib/libpomprofperf.a

= The instrumentation is done via "hooks" provided by the XL compiler

= [opt/ibmcmp/vac/bg/12.1/bin/bgxlc_r -0O2 -g -gsmp=omp -
gsimd=noauto -gsmp=omp myomp.c -0 myomp -L/bgsys/drivers/
ppcfloor/spi/lib -L . -ISPI_cnk -Ixlsmp_pomp -L../../lib -lpomprofperf
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Rosetta - CPU
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Rosetta — instruction & memory
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Rosetta — MP| comm.

Rank O
Call count Datasize Time
MPI Comm P2P 217 868 700.658
Collective 7 84 0.034
total comm 700.692
total time 711.03
Rank n
Call count Data size Time
P2P 7 28 0.022
Collective 7 84 0.004
total comm 0.026
total time 711.03
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Simulation NPB D 64
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Status
= Being deployed to ANL ALCF

= Performance data will be output into plain-text SQL files in additional
to original performance data files

= User interface is being developed
— Excel spreadsheet
— Web interface
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Application Data Prefetching

= Memory performance

— Latency: caching, prefetching
— Bandwidth

= Indirect memory access
— A(B(j)): A, B arrays, j ordered index

— Prevalent in a wide variety of science and engineering
applications

— Difficult to optimize
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IBM Blue Gene/Q L1P

= Level One Cache Prefetch
— Predicts memory access patterns

— Prefetches the data accordingly

= Stream prefetcher

— Handles sequential memory access patterns

= List prefetcher

— Handles non-sequential memory access patterns
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Level One Cache Prefetcher

= The interface between the core and the el B - =
rest of BG/Q system Co.re@ R s B @;g
= Each core is paired with a L1P L ; 2 e
. Core% Llngz L2 % &)
= 4K byte L1P buffer storing data from L2 2 2 g 2
= Prefetch line size 128 bytes, 32 lines : %é’ Ny g
= Buffer managed by Prefetch Directory Cz L;F’z = — § 2
(PFD) ove | B2 Bes
Pl R-lal |28
= Unlike cache, L1P generates load
requests autonomously N o | Network
<: PCI Express
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Stream Prefetch Engine

= Prefetches data from a consecutive sequence of 128-byte
blocks

= Maintains up to 16 sequences (streams) per core

= Stream establishment

— Automatic detection

 Optimistic — no consecutive memory access pattern is required
 Confirmed (default) — requires a detection of a stream

— Manual setup

+ Use dcbt (data cache block touch) command
* Write to a special memory mapped I/O (MMIO) register

17 © 2013 IBM Corporation



| IBM Research

1
@

Stream Prefetch Engine - continued

Prefetch Address  (32)  stream ID

= Stream detection table (SDT) prvwon R Y s

stream establishment Ox1
0x2

0x3
0x4

— Holds up to 16 addresses

==~

— L1 miss address

« |f there is a match — stream detected

* If no match — insert into table gﬁ; i
= Prefetch directory (PFD) > ‘tt ;,dhft 33 : )
— Stream established — user 2251 i
configurable depth & stream ID 032 | 3 §
— L1 miss address matches g:i: 33,

* hit: triggers further prefetching
* not ready: increases prefetch depth
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List Prefetch Engine

= Prefetches data by a predefined list of addresses

Data prefetched up to a user-configurable depth

Tracking location of the current L1 miss in the list

Memory access pattern may not repeat itself exactly  match
Prefetch up to here

— Sliding window “ReadListArray” size of 8

L1 miss address compared within the window

Wow slides next to the match
— Found — advances the window and further
prefetching

R
— Not found — mismatch counter increases; too ‘More prefetch

many mismatches then aborts

Predefined list resides in main memory
— Can be manually controlled via APls

— Can be used for analysis/debugging
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List Prefetch Engine - continued

= Simple pattern compression mechanism

— Two L1 misses fall into same L1P line
= List compression table (LCT)

= The engine can be paused/resumed

— To exclude code segments

= Stop/deactivate list prefetch engine
— List creating side: flush LCT, attach end-of-list mark

— List prefetching side: wait last memory access

= One list prefetch engine per one hardware thread
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Evaluation — Basic Analysis

= Three loops are used
— Only non-uniform memory accesses
— Half uniform and half non-uniform memory accesses

— Only uniform memory accesses
= Up to 4 hardware threads on same/different cores

= Performance metrics
— Time (cycles)
— Number of L1P hits
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Non-uniform Memory Accesses - Time

= Weak scaling workload for threads

22

= Stream prefetcher is not helpful

= List prefetcher with enough resource (L1P buffer)
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Non-uniform Memory Accesses — L1P hits
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= Stream prefetcher with optimistic policy is too aggressive when
competing L1P buffer with list prefetcher
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Half Uniform and Half Non-uniform Memory Accesses - Time

= Strong scaling workload for threads

= Performance further improved when both prefetchers working together
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Uniform Memory Accesses - Time

Weak scaling workload for threads

)

= List prefetcher is competitive to the stream prefetcher to achieve similar performance
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Evaluation — Graph Algorithm

= An Variant of Shiloach-Vishkin
Algorithm (SV)

= A representation of connectivity
algorithms adapts the widely-
used graft-and-shortcut
approach

= Complexities of O[log n] time
and O[(m+n) log n] work under
CRCW PRAM model

= Grafting components
dominates execution time

= |ndirect memory accesses

= Works reasonably well with
small to mid size datasets

= One may break a big graph
into small pieces and handles
separately
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Evaluation — CG lteration and Sparse Matrix

The conjugate gradient method is
frequently used to solve linear systems

The CG method requires iteration of
sparse matrix and vector for
multiplication

Sparse matrix is represented in CSR
format (compressed sparse row);

NPB CG OpenMP 3.3 class C
CG Kernel 60% strided memory
accesses, 40% random

— Uniform: accessing matrix elements (8-
byte) and column indices (4-byte) in
CSR

— Random: accessing vector elements (8-
byte) by the column indices

— Strong scaling
Optimistic stream policy is too

aggressive when with limited resource
27
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Discussion

= With sufficient of hardware resource and time,
L1P prefetches data from L2 into L1P and
improves the performance

— Overlapping computation with data prefetching

= If data requests from L1 misses are predicted
correctly

— It reduces 2/3 of the latency

— 18 more cycles (between L1 and L1P) to be
overlapped

= The stream of prefetch list addresses go through
L2 to main memory

— The list prefetch reduces L1 cache miss penalty
at the cost of the memory bandwidth (to L2 and/
or main memory) and the storage space

— Unless heavily memory-bound application, list
prefetching should incur little overhead
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L1 6 cycles
L1P 24 cycles
L2 84 cycles

Memory 346 cycles
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Discussion - continued

= L1P buffer (4K bytes) is shared between stream and list
prefetch engines up to four hardware threads

— Competition for injecting a request into PFD (prefetch directory)

— Stream prefetch has priority when requests come at the same
time

— Competition may cause thrashing
= Size of the sliding window

— Decides mismatch of addresses allowed
— Constrained by the hardware (parallel comparison)
— May be eased by using multiple smaller lists

= List of addresses provides a channel for performance tuning

— Analysis together with hardware performance counter and
debugging registers
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Conclusion

= Performance Data Repository aims to
— Characterize the applications
— Study the hardware usage

= L1P is intended to benefit applications with performance
limited by indirect or random memory access patterns

= L1P shows effectiveness in graph-based applications and
sparse matrix solvers with sufficient hardware resource.

= List prefetcher works well with stream prefetcher

= Future work

— More intelligent control

— Coordination with other features such as massive speculative
threading
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