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Performance Data Repository 

§  Goal 

–  To characterize the applications on existing systems 

–  To understand the system resource usage 

•  To provide inputs for next generation system design 

§  Objective 

–  Collect performance data and store them into a relational database 

–  Uniform storage format  

•  to support queries and presentation 

•  To make comparisons cross applications or platforms 
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How to use it? 

§ Link the application with performance tool  
–  Link the profiler libraries (e.g., -lmpihpmperf or  -lpomprofperf) statically 
– Or modified version of MPI compiler (wrapper) 
– Supports MPI/Hardware counter, OpenMP profiler 

§ Run the application 

§ Query the database (optional) 
– SQL statements 
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Link the application with performance tool – MPI/HW 
counter 
§  Example: NPB-3.3-MPI BT on grotius 
§  The MPI/BGPM library is at /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/

bobmpihpm/libmpihpmperf.a 

§  /opt/ibmcmp/xlf/bg/14.1/bin/bgxlf_r -O -g  -o ../bin/bt.A.4 bt.o make_set.o 
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o define.o 
copy_faces.o rhs.o solve_subs.o x_solve.o y_solve.o z_solve.o add.o 
error.o verify.o setup_mpi.o ../common/print_results.o ../common/timers.o 
btio.o -L /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/bobmpihpm -
lmpihpmperf -L /bgsys/drivers/ppcfloor/comm/xl/lib -lmpich -lmpl -lopa -
L /bgsys/drivers/ppcfloor/comm/sys/lib -lpami -L /bgsys/drivers/ppcfloor/
spi/lib -lSPI_cnk -lrt -lstdc++ 
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Link the application with performance tool - OpenMP 

§  Example: a OpenMP toy code on grotius 
§  The OpenMP profiler library is at /gpfs/DDNgpfs1/ihchung/codes11/

hpct.db2/source/lib/libpomprofperf.a 
§  The instrumentation is done via "hooks" provided by the XL compiler 

§  /opt/ibmcmp/vac/bg/12.1/bin/bgxlc_r -O2 -g -qsmp=omp -
qsimd=noauto  -qsmp=omp  myomp.c -o myomp -L/bgsys/drivers/
ppcfloor/spi/lib  -L . -lSPI_cnk -lxlsmp_pomp -L../../lib -lpomprofperf 
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Rosetta – instruction & memory 
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Rosetta – MPI comm. 
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Status 

§  Being deployed to ANL ALCF 

§  Performance data will be output into plain-text SQL files in additional 
to original performance data files 

§  User interface is being developed 
–  Excel spreadsheet 
–  Web interface 
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Application Data Prefetching 

§ Memory performance 
– Latency: caching, prefetching 

– Bandwidth 

§  Indirect memory access 
– A(B(j)): A, B arrays, j ordered index 

– Prevalent in a wide variety of science and engineering 
applications 

– Difficult to optimize 
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IBM Blue Gene/Q L1P 

§ Level One Cache Prefetch 
– Predicts memory access patterns 

– Prefetches the data accordingly 

§ Stream prefetcher 
– Handles sequential memory access patterns 

§ List prefetcher 
– Handles non-sequential memory access patterns 

15 
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Level One Cache Prefetcher 

§  The interface between the core and the 
rest of BG/Q system 

§  Each core is paired with a L1P 

§  4K byte L1P buffer storing data from L2 

§  Prefetch line size 128 bytes, 32 lines 

§  Buffer managed by Prefetch Directory 
(PFD) 

§  Unlike cache, L1P generates load 
requests autonomously 

16 
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Stream Prefetch Engine 

§ Prefetches data from a consecutive sequence of 128-byte 
blocks 

§ Maintains up to 16 sequences (streams) per core 

§ Stream establishment 
– Automatic detection 

• Optimistic – no consecutive  memory access pattern is required 
• Confirmed (default) – requires a detection of a stream 

– Manual setup 
• Use dcbt (data cache block touch) command 
• Write to a special memory mapped I/O (MMIO) register 
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Stream Prefetch Engine - continued 

§  Stream detection table (SDT) 
–  Holds up to 16 addresses 
–  L1 miss address 

•  If there is a match – stream detected 
•  If no match – insert into table 

§  Prefetch directory (PFD) 
–  Stream established – user 

configurable depth & stream ID 

–  L1 miss address matches 
•  hit: triggers further prefetching 
•  not ready: increases prefetch depth 

t

SDT (16)

(32)
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List Prefetch Engine 
§  Prefetches data by a predefined list of addresses 

§  Data prefetched up to a user-configurable depth 

§  Tracking location of the current L1 miss in the list 

§  Memory access pattern may not repeat itself exactly 

–  Sliding window “ReadListArray” size of 8 

§  L1 miss address compared within the window 
–  Found – advances the window and further 

prefetching 

–  Not found – mismatch counter increases; too 
many mismatches then aborts 

§  Predefined list resides in main memory 
–  Can be manually controlled via APIs 

–  Can be used for analysis/debugging 
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List Prefetch Engine - continued 

§ Simple pattern compression mechanism 
– Two L1 misses fall into same L1P line 

§ List compression table (LCT) 

§ The engine can be paused/resumed 
– To exclude code segments 

§ Stop/deactivate list prefetch engine 
– List creating side: flush LCT, attach end-of-list mark 

– List prefetching side: wait last memory access 

§ One list prefetch engine per one hardware thread 
20 
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Evaluation – Basic Analysis 

§ Three loops are used 
– Only non-uniform memory accesses 

– Half uniform and half non-uniform memory accesses 

– Only uniform memory accesses 

§ Up to 4 hardware threads on same/different cores 

§ Performance metrics 
– Time (cycles) 

– Number of L1P hits 

21 
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Non-uniform Memory Accesses - Time 
§  Weak scaling workload for threads 

§  Stream prefetcher is not helpful 

§  List prefetcher with enough resource (L1P buffer) 
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Non-uniform Memory Accesses – L1P hits 

§  Stream prefetcher with optimistic policy is too aggressive when 
competing L1P buffer with list prefetcher 
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Half Uniform and Half Non-uniform Memory Accesses - Time 
§  Strong scaling workload for threads 

§  Performance further improved when both prefetchers working together 
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Uniform Memory Accesses - Time 
§  Weak scaling workload for threads 

§  List prefetcher is competitive to the stream prefetcher to achieve similar performance  
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Evaluation – Graph Algorithm 
§  An Variant of Shiloach-Vishkin 

Algorithm (SV) 
§  A representation of connectivity 

algorithms adapts the widely-
used graft-and-shortcut 
approach 

§  Complexities of O[log n] time 
and O[(m+n) log n] work under 
CRCW PRAM model 

§  Grafting components 
dominates execution time 

§  Indirect memory accesses 
§  Works reasonably well with 

small to mid size datasets 
§  One may break a big graph 

into small pieces and handles 
separately 

100K, 400K 1M, 4M 10M, 40M 
sw + opt 285 2960 30186 
sw + conf 210 2138 23201 
sw + dcbt 253 2460 26749 
list + opt 141 2299 39611 
list + conf 124 2280 44130 
list + dcbt 124 2280 44130 
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Evaluation – CG Iteration and Sparse Matrix 
§  The conjugate gradient method is 

frequently used to solve linear systems 
§  The CG method requires iteration of 

sparse matrix and vector for 
multiplication 

§  Sparse matrix is represented in CSR 
format (compressed sparse row); 

§  NPB CG OpenMP 3.3 class C 
§  CG Kernel 60% strided memory 

accesses, 40% random 
–  Uniform: accessing matrix elements (8-

byte) and column indices (4-byte) in 
CSR 

–  Random: accessing vector elements (8-
byte) by the column indices 

–  Strong scaling 

§  Optimistic stream policy is too 
aggressive when with limited resource 
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Discussion 
§  With sufficient of hardware resource and time, 

L1P prefetches data from L2 into L1P and 
improves the performance 

–  Overlapping computation with data prefetching 
§  If data requests from L1 misses are predicted 

correctly 
–  It reduces 2/3 of the latency 
–  18 more cycles (between L1 and L1P) to be 

overlapped 
§  The stream of prefetch list addresses go through 

L2 to main memory 
–  The list prefetch reduces L1 cache miss penalty 

at the cost of the memory bandwidth (to L2 and/
or main memory) and the storage space 

–  Unless heavily memory-bound application, list 
prefetching should incur little overhead 

L1 6 cycles 
L1P 24 cycles 
L2 84 cycles 
Memory 346 cycles 
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Discussion - continued 

§  L1P buffer (4K bytes) is shared between stream and list 
prefetch engines up to four hardware threads 

–  Competition for injecting a request into PFD (prefetch directory) 
–  Stream prefetch has priority when requests come at the same 

time 
–  Competition may cause thrashing 

§  Size of the sliding window 
–  Decides mismatch of addresses allowed 
–  Constrained by the hardware (parallel comparison) 
– May be eased by using multiple smaller lists 

§  List of addresses  provides a channel for performance tuning 
–  Analysis together with hardware performance counter and 

debugging registers 

29 



IBM Research 

© 2013 IBM Corporation 

Conclusion 

§  Performance Data Repository aims to 
–  Characterize the applications 
–  Study the hardware usage 

§  L1P is intended to benefit applications with performance 
limited by indirect or random memory access patterns 

§  L1P shows effectiveness in graph-based applications and 
sparse matrix solvers with sufficient hardware resource. 

§  List prefetcher works well with stream prefetcher 
§  Future work 

– More intelligent control 
–  Coordination with other features such as massive speculative 

threading 
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