
IBM T. J. Watson Research Center

© 2013 IBM Corporation

Blue Gene Performance Data Repository and
Application Data Prefetching

I-Hsin Chung
ihchung@us.ibm.com

© 2013 IBM Corporation

Performance Data Repository

§  Goal

–  To characterize the applications on existing systems

–  To understand the system resource usage

•  To provide inputs for next generation system design

§  Objective

–  Collect performance data and store them into a relational database

–  Uniform storage format

•  to support queries and presentation

•  To make comparisons cross applications or platforms

© 2013 IBM Corporation

Application Performance data/trace

Application

Job execution

Performance data/trace

instrumentation

collection

© 2013 IBM Corporation 4

Performance Data Repository

DB2
bgqsn2

grotius

Blue Gene
Compute nodes

mgmt

perf. data

submit
Instrumented

binary

Relational

Database

© 2013 IBM Corporation 5

How to use it?

§ Link the application with performance tool
–  Link the profiler libraries (e.g., -lmpihpmperf or -lpomprofperf) statically
– Or modified version of MPI compiler (wrapper)
– Supports MPI/Hardware counter, OpenMP profiler

§ Run the application

§ Query the database (optional)
– SQL statements

© 2013 IBM Corporation 6

Link the application with performance tool – MPI/HW
counter
§  Example: NPB-3.3-MPI BT on grotius
§  The MPI/BGPM library is at /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/

bobmpihpm/libmpihpmperf.a

§  /opt/ibmcmp/xlf/bg/14.1/bin/bgxlf_r -O -g -o ../bin/bt.A.4 bt.o make_set.o
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o define.o
copy_faces.o rhs.o solve_subs.o x_solve.o y_solve.o z_solve.o add.o
error.o verify.o setup_mpi.o ../common/print_results.o ../common/timers.o
btio.o -L /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/bobmpihpm -
lmpihpmperf -L /bgsys/drivers/ppcfloor/comm/xl/lib -lmpich -lmpl -lopa -
L /bgsys/drivers/ppcfloor/comm/sys/lib -lpami -L /bgsys/drivers/ppcfloor/
spi/lib -lSPI_cnk -lrt -lstdc++

© 2013 IBM Corporation 7

Link the application with performance tool - OpenMP

§  Example: a OpenMP toy code on grotius
§  The OpenMP profiler library is at /gpfs/DDNgpfs1/ihchung/codes11/

hpct.db2/source/lib/libpomprofperf.a
§  The instrumentation is done via "hooks" provided by the XL compiler

§  /opt/ibmcmp/vac/bg/12.1/bin/bgxlc_r -O2 -g -qsmp=omp -
qsimd=noauto -qsmp=omp myomp.c -o myomp -L/bgsys/drivers/
ppcfloor/spi/lib -L . -lSPI_cnk -lxlsmp_pomp -L../../lib -lpomprofperf

© 2013 IBM Corporation

Rosetta - CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Rank 0 Rank n

Commited Instructions

Commited AXU uCode sub-ops

Commited XU uCode sub-ops

Flushed Instructions and Operation
Cycles

FXU Dep Stalls

AXU Dep Stalls

Thread Arbitration Stalls

IU empty

© 2013 IBM Corporation

Rosetta – instruction & memory

Rank	
 0	
 Rank	
 n	

DDR	

bandwidth	
 0.001	
 0.005	

Heap	
 Usage	
 330100736	
 666894336	

Stack	
 Usage	
 20351	
 20351	

Gflops	
 0	
 1.813	

IPC	
 0.3869	
 0.2072	

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Rank 0 Rank n

integer ratio

float ratio

SIMD

non-SIMD

L1

L1P

L2

DDR

© 2013 IBM Corporation

Rosetta – MPI comm.

Rank	
 0	

Call	
 count	
 Data	
 size	
 Time	

MPI	
 Comm	
 P2P	
 217	
 868	
 700.658	

CollecLve	
 7	
 84	
 0.034	

total	
 comm	
 700.692	

total	
 Lme	
 711.03	

Rank	
 n	

Call	
 count	
 Data	
 size	
 Time	

P2P	
 7	
 28	
 0.022	

CollecLve	
 7	
 84	
 0.004	

total	
 comm	
 0.026	

total	
 Lme	
 711.03	

© 2013 IBM Corporation

Methodology

Performance Projection

Simulation
method

Hardware
Specification

Application
Performance data/

trace

© 2013 IBM Corporation

Simulation NPB D 64

0%

50%

100%

150%

200%

250%

300%

350%

400%

bt cg ep ft is lu mg sp

sim

bw/4

bw*4

comp/3.5

comp*3.5

© 2013 IBM Corporation

Status

§  Being deployed to ANL ALCF

§  Performance data will be output into plain-text SQL files in additional
to original performance data files

§  User interface is being developed
–  Excel spreadsheet
–  Web interface

IBM Research

© 2013 IBM Corporation

Application Data Prefetching

§ Memory performance
– Latency: caching, prefetching

– Bandwidth

§  Indirect memory access
– A(B(j)): A, B arrays, j ordered index

– Prevalent in a wide variety of science and engineering
applications

– Difficult to optimize

14

IBM Research

© 2013 IBM Corporation

IBM Blue Gene/Q L1P

§ Level One Cache Prefetch
– Predicts memory access patterns

– Prefetches the data accordingly

§ Stream prefetcher
– Handles sequential memory access patterns

§ List prefetcher
– Handles non-sequential memory access patterns

15

IBM Research

© 2013 IBM Corporation

Level One Cache Prefetcher

§  The interface between the core and the
rest of BG/Q system

§  Each core is paired with a L1P

§  4K byte L1P buffer storing data from L2

§  Prefetch line size 128 bytes, 32 lines

§  Buffer managed by Prefetch Directory
(PFD)

§  Unlike cache, L1P generates load
requests autonomously

16

IBM Research

© 2013 IBM Corporation

Stream Prefetch Engine

§ Prefetches data from a consecutive sequence of 128-byte
blocks

§ Maintains up to 16 sequences (streams) per core

§ Stream establishment
– Automatic detection

• Optimistic – no consecutive memory access pattern is required
• Confirmed (default) – requires a detection of a stream

– Manual setup
• Use dcbt (data cache block touch) command
• Write to a special memory mapped I/O (MMIO) register

17

IBM Research

© 2013 IBM Corporation

Stream Prefetch Engine - continued

§  Stream detection table (SDT)
–  Holds up to 16 addresses
–  L1 miss address

•  If there is a match – stream detected
•  If no match – insert into table

§  Prefetch directory (PFD)
–  Stream established – user

configurable depth & stream ID

–  L1 miss address matches
•  hit: triggers further prefetching
•  not ready: increases prefetch depth

t

SDT (16)

(32)

18

IBM Research

© 2013 IBM Corporation

List Prefetch Engine
§  Prefetches data by a predefined list of addresses

§  Data prefetched up to a user-configurable depth

§  Tracking location of the current L1 miss in the list

§  Memory access pattern may not repeat itself exactly

–  Sliding window “ReadListArray” size of 8

§  L1 miss address compared within the window
–  Found – advances the window and further

prefetching

–  Not found – mismatch counter increases; too
many mismatches then aborts

§  Predefined list resides in main memory
–  Can be manually controlled via APIs

–  Can be used for analysis/debugging

19

IBM Research

© 2013 IBM Corporation

List Prefetch Engine - continued

§ Simple pattern compression mechanism
– Two L1 misses fall into same L1P line

§ List compression table (LCT)

§ The engine can be paused/resumed
– To exclude code segments

§ Stop/deactivate list prefetch engine
– List creating side: flush LCT, attach end-of-list mark

– List prefetching side: wait last memory access

§ One list prefetch engine per one hardware thread
20

IBM Research

© 2013 IBM Corporation

Evaluation – Basic Analysis

§ Three loops are used
– Only non-uniform memory accesses

– Half uniform and half non-uniform memory accesses

– Only uniform memory accesses

§ Up to 4 hardware threads on same/different cores

§ Performance metrics
– Time (cycles)

– Number of L1P hits

21

IBM Research

© 2013 IBM Corporation

Non-uniform Memory Accesses - Time
§  Weak scaling workload for threads

§  Stream prefetcher is not helpful

§  List prefetcher with enough resource (L1P buffer)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 3 4

no prefetch - same core confirmed - same core optimistic - same core

list prefetch - same core confirmed & list - same core optimistic & list - same core

no prefetch - diff core confirmed - diff core optimistic - diff core

list prefetch - diff core confirmed & list - diff core optimistic & list - diff core

22

IBM Research

© 2013 IBM Corporation

Non-uniform Memory Accesses – L1P hits

§  Stream prefetcher with optimistic policy is too aggressive when
competing L1P buffer with list prefetcher

0

10000

20000

30000

40000

50000

60000

1 2 3 4

list prefetch - same core confirmed & list - same core optimistic & list - same core

list prefetch - diff core confirmed & list - diff core optimistic & list - diff core

23

IBM Research

© 2013 IBM Corporation

Half Uniform and Half Non-uniform Memory Accesses - Time
§  Strong scaling workload for threads

§  Performance further improved when both prefetchers working together

0

5

10

15

20

25

30

1 2 3 4

default - same core opt - same core conf - same core
list - same core list & opt - same core list & conf - same core
default - diff core opt - diff core conf - diff core
list - diff core list & opt - diff core list & conf - diff core

24

IBM Research

© 2013 IBM Corporation

Uniform Memory Accesses - Time
§  Weak scaling workload for threads

§  List prefetcher is competitive to the stream prefetcher to achieve similar performance

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 3 4

default - same core opt - same core conf - same core list - same core

list & opt - same core list & conf - same core default - diff core opt - diff core

25

IBM Research

© 2013 IBM Corporation

Evaluation – Graph Algorithm
§  An Variant of Shiloach-Vishkin

Algorithm (SV)
§  A representation of connectivity

algorithms adapts the widely-
used graft-and-shortcut
approach

§  Complexities of O[log n] time
and O[(m+n) log n] work under
CRCW PRAM model

§  Grafting components
dominates execution time

§  Indirect memory accesses
§  Works reasonably well with

small to mid size datasets
§  One may break a big graph

into small pieces and handles
separately

100K, 400K 1M, 4M 10M, 40M
sw + opt 285 2960 30186
sw + conf 210 2138 23201
sw + dcbt 253 2460 26749
list + opt 141 2299 39611
list + conf 124 2280 44130
list + dcbt 124 2280 44130

1

10

100

1000

10000

100000

P
er

fo
rm

an
ce

 ti
m

e
(M

ill
io

n
cy

cl
es

)

sw + opt sw + conf sw + dcbt
list + opt list + conf list + dcbt

26

IBM Research

© 2013 IBM Corporation

Evaluation – CG Iteration and Sparse Matrix
§  The conjugate gradient method is

frequently used to solve linear systems
§  The CG method requires iteration of

sparse matrix and vector for
multiplication

§  Sparse matrix is represented in CSR
format (compressed sparse row);

§  NPB CG OpenMP 3.3 class C
§  CG Kernel 60% strided memory

accesses, 40% random
–  Uniform: accessing matrix elements (8-

byte) and column indices (4-byte) in
CSR

–  Random: accessing vector elements (8-
byte) by the column indices

–  Strong scaling

§  Optimistic stream policy is too
aggressive when with limited resource

27

IBM Research

© 2013 IBM Corporation

Discussion
§  With sufficient of hardware resource and time,

L1P prefetches data from L2 into L1P and
improves the performance

–  Overlapping computation with data prefetching
§  If data requests from L1 misses are predicted

correctly
–  It reduces 2/3 of the latency
–  18 more cycles (between L1 and L1P) to be

overlapped
§  The stream of prefetch list addresses go through

L2 to main memory
–  The list prefetch reduces L1 cache miss penalty

at the cost of the memory bandwidth (to L2 and/
or main memory) and the storage space

–  Unless heavily memory-bound application, list
prefetching should incur little overhead

L1 6 cycles
L1P 24 cycles
L2 84 cycles
Memory 346 cycles

28

IBM Research

© 2013 IBM Corporation

Discussion - continued

§  L1P buffer (4K bytes) is shared between stream and list
prefetch engines up to four hardware threads

–  Competition for injecting a request into PFD (prefetch directory)
–  Stream prefetch has priority when requests come at the same

time
–  Competition may cause thrashing

§  Size of the sliding window
–  Decides mismatch of addresses allowed
–  Constrained by the hardware (parallel comparison)
– May be eased by using multiple smaller lists

§  List of addresses provides a channel for performance tuning
–  Analysis together with hardware performance counter and

debugging registers

29

IBM Research

© 2013 IBM Corporation

Conclusion

§  Performance Data Repository aims to
–  Characterize the applications
–  Study the hardware usage

§  L1P is intended to benefit applications with performance
limited by indirect or random memory access patterns

§  L1P shows effectiveness in graph-based applications and
sparse matrix solvers with sufficient hardware resource.

§  List prefetcher works well with stream prefetcher
§  Future work

– More intelligent control
–  Coordination with other features such as massive speculative

threading

30

