| IBM T. J. Watson Research Center

Blue Gene Performance Data Repository and
Application Data Prefetching

I-Hsin Chung
ihchung@us.ibm.com

© 2013 IBM Corporation

Performance Data Repository

= Goal
— To characterize the applications on existing systems
— To understand the system resource usage
+ To provide inputs for next generation system design
= QObjective
— Collect performance data and store them into a relational database
— Uniform storage format
 to support queries and presentation

* To make comparisons cross applications or platforms

\ © 2013 IBM Corporation

Application Performance data/trace

Application

instrumentation

Job execution

collection

Performance data/trace

\ © 2013 IBM Corporation

Performance Data Repository

Instrumented

binary

AN
N

DB2
bgqgsn2

grotius

~

N
M

Relational

Database

~

 pert g |

© 2013 IBM Corporation

How to use it?

=Link the application with performance tool
— Link the profiler libraries (e.g., -Impihpmperf or -lpomprofperf) statically
— Or modified version of MP| compiler (wrapper)
— Supports MPI/Hardware counter, OpenMP profiler

= Run the application

“ Query the database (optional)

— SQL statements

5 \ © 2013 IBM Corporation

Link the application with performance tool — MPI/HW
counter

= Example: NPB-3.3-MPI BT on grotius

= The MPI/BGPM library is at /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/
bobmpihpm/libmpihpmperf.a

= [opt/ibmcmp/xIf/bg/14.1/bin/bgxIf r-O -g -0 ../bin/bt.A.4 bt.o make set.o
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o define.o
copy_faces.o rhs.o solve_subs.o x_solve.o y _solve.o z_solve.o add.o
error.o verify.o setup_mpi.o ../common/print_results.o ../common/timers.o
btio.o -L /gpfs/DDNgpfs1/ihchung/codes11/hpct.db2/bobmpihpm -
Impihpmperf -L /bgsys/drivers/ppcfloor/comm/xl/lib -Impich -Impl -lopa -
L /bgsys/drivers/ppcfloor/comm/sys/lib -lpami -L /bgsys/drivers/ppcfloor/
spi/lib -ISPI_cnk -Irt -Istdc++

6 \ © 2013 IBM Corporation

Link the application with performance tool - OpenMP

= Example: a OpenMP toy code on grotius

= The OpenMP profiler library is at /gpfs/DDNgpfs1/ihchung/codes11/
hpct.db2/source/lib/libpomprofperf.a

= The instrumentation is done via "hooks" provided by the XL compiler

= [opt/ibmcmp/vac/bg/12.1/bin/bgxlc_r -0O2 -g -gsmp=omp -
gsimd=noauto -gsmp=omp myomp.c -0 myomp -L/bgsys/drivers/
ppcfloor/spi/lib -L . -ISPI_cnk -Ixlsmp_pomp -L../../lib -lpomprofperf

7 \ © 2013 IBM Corporation

Rosetta - CPU

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

1

Rank 0

Rank n

“ Commited Instructions

“ Commited AXU uCode sub-ops

B Commited XU uCode sub-ops

E Flushed Instructions and Operation
Cycles

B EFXU Dep Stalls
AXU Dep Stalls

¥ Thread Arbitration Stalls

51U empty

© 2013 IBM Corporation

Rosetta — instruction & memory

100%
90%
80%
70% Hinteger ratio
E float ratio
60%
SIMD
50% ®non-SIMD
mL1
40% EL1P
mL2
0,
30% EDDR
20% Rank 0 Rank n
DDR
10% bandwidth 0.001 0.005
. Heap Usage 330100736 666894336
0% : Stack Usage 20351 20351

Rank 0 Rank n Gflops 0 1.813
IPC 0.3869 0.2072

|

© 2013 IBM Corporation

Rosetta — MP| comm.

Rank O
Call count Datasize Time
MPI Comm P2P 217 868 700.658
Collective 7 84 0.034
total comm 700.692
total time 711.03
Rank n
Call count Data size Time
P2P 7 28 0.022
Collective 7 84 0.004
total comm 0.026
total time 711.03

\ © 2013 IBM Corporation

JdedTE= 9099
Methodology

/

Application
Performance data/
Hardware trace
Speeification

Simulation
method

Performance Projection

\ © 2013 IBM Corporation

Simulation NPB D 64

400%
350%
300% —
250% —
HEsim
Ebw/4
0,
200% bw*4
®comp/3.5
150% “comp*3.5
100% -
50% -
0% -

bt cg ep ft is lu mg sp

\ © 2013 IBM Corporation

Status
= Being deployed to ANL ALCF

= Performance data will be output into plain-text SQL files in additional
to original performance data files

= User interface is being developed
— Excel spreadsheet
— Web interface

\ © 2013 IBM Corporation

| IBM Research

Application Data Prefetching

= Memory performance

— Latency: caching, prefetching
— Bandwidth

= Indirect memory access
— A(B(j)): A, B arrays, j ordered index

— Prevalent in a wide variety of science and engineering
applications

— Difficult to optimize

14 © 2013 IBM Corporation

| IBM Research

IBM Blue Gene/Q L1P

= Level One Cache Prefetch
— Predicts memory access patterns

— Prefetches the data accordingly

= Stream prefetcher

— Handles sequential memory access patterns

= List prefetcher

— Handles non-sequential memory access patterns

15 © 2013 IBM Corporation

| IBM Research

Level One Cache Prefetcher

= The interface between the core and the el B - =
rest of BG/Q system Co.re@ R s B @;g
= Each core is paired with a L1P L ; 2 e
. Core% Llngz L2 % &)
= 4K byte L1P buffer storing data from L2 2 2 g 2
= Prefetch line size 128 bytes, 32 lines : %é’ Ny g
= Buffer managed by Prefetch Directory Cz L;F’z = — § 2
(PFD) ove | B2 Bes
Pl R-lal |28
= Unlike cache, L1P generates load
requests autonomously N o | Network
<: PCI Express

16 © 2013 IBM Corporation

| IBM Research

1
@

Stream Prefetch Engine

= Prefetches data from a consecutive sequence of 128-byte
blocks

= Maintains up to 16 sequences (streams) per core

= Stream establishment

— Automatic detection

 Optimistic — no consecutive memory access pattern is required
 Confirmed (default) — requires a detection of a stream

— Manual setup

+ Use dcbt (data cache block touch) command
* Write to a special memory mapped I/O (MMIO) register

17 © 2013 IBM Corporation

| IBM Research

1
@

Stream Prefetch Engine - continued

Prefetch Address (32) stream ID

= Stream detection table (SDT) prvwon R Y s

stream establishment Ox1
0x2

0x3
0x4

— Holds up to 16 addresses

==~

— L1 miss address

« |f there is a match — stream detected

* If no match — insert into table gﬁ; i
= Prefetch directory (PFD) > ‘tt ;,dhft 33 :)
— Stream established — user 2251 i
configurable depth & stream ID 032 | 3 §
— L1 miss address matches g:i: 33,

* hit: triggers further prefetching
* not ready: increases prefetch depth

i © 2013 IBM Corporation

| IBM Research

1
@

List Prefetch Engine

= Prefetches data by a predefined list of addresses

Data prefetched up to a user-configurable depth

Tracking location of the current L1 miss in the list

Memory access pattern may not repeat itself exactly match
Prefetch up to here

— Sliding window “ReadListArray” size of 8

L1 miss address compared within the window

Wow slides next to the match
— Found — advances the window and further
prefetching

R
— Not found — mismatch counter increases; too ‘More prefetch

many mismatches then aborts

Predefined list resides in main memory
— Can be manually controlled via APls

— Can be used for analysis/debugging

19 © 2013 IBM Corporation

| IBM Research

List Prefetch Engine - continued

= Simple pattern compression mechanism

— Two L1 misses fall into same L1P line
= List compression table (LCT)

= The engine can be paused/resumed

— To exclude code segments

= Stop/deactivate list prefetch engine
— List creating side: flush LCT, attach end-of-list mark

— List prefetching side: wait last memory access

= One list prefetch engine per one hardware thread

20 © 2013 IBM Corporation

I
1
]
T
@

| IBM Research

Evaluation — Basic Analysis

= Three loops are used
— Only non-uniform memory accesses
— Half uniform and half non-uniform memory accesses

— Only uniform memory accesses
= Up to 4 hardware threads on same/different cores

= Performance metrics
— Time (cycles)
— Number of L1P hits

21 © 2013 IBM Corporation

| IBM Research

T
@

Non-uniform Memory Accesses - Time

= Weak scaling workload for threads

22

= Stream prefetcher is not helpful

= List prefetcher with enough resource (L1P buffer)

7000000

6000000

5000000

4000000

3000000
2000000
1000000

0

1
Bno prefetch - same core

® |ist prefetch - same core
A no prefetch - diff core
» |ist prefetch - diff core

2
W confirmed - same core
Bconfirmed & list - same core
B confirmed - diff core
confirmed & list - diff core

optimistic - same core
Boptimistic & list - same core
“Joptimistic - diff core

optimistic & list - diff core

© 2013 IBM Corporation

| IBM Research

1L
@

Non-uniform Memory Accesses — L1P hits

23

= Stream prefetcher with optimistic policy is too aggressive when
competing L1P buffer with list prefetcher

60000

50000

40000

30000

20000

10000

|

|

|

|

1

Blist prefetch - same core

¥ |ist prefetch - diff core

2 3
W confirmed & list - same core

fAconfirmed & list - diff core

4

optimistic & list - same core

|optimistic & list - diff core

© 2013 IBM Corporation

| IBM Research

1L
@

Half Uniform and Half Non-uniform Memory Accesses - Time

= Strong scaling workload for threads

= Performance further improved when both prefetchers working together

1

30

25

20 1

15 1

10 A

2 3 4
Bdefault - same core W opt - same core conf - same core

H ist - same core Olist & opt - same core H|ist & conf - same core
B default - diff core Bopt - diff core Cconf - diff core

m |ist - diff core list & opt - diff core " list & conf - diff core

24 I © 2013 IBM Corporation

| IBM Research

Uniform Memory Accesses - Time

Weak scaling workload for threads

)

= List prefetcher is competitive to the stream prefetcher to achieve similar performance

1800000

1600000

1400000 -

1200000 -

1000000 -

800000 -

600000 +

400000 -

200000 -

0 a

Bdefault - same core Mopt - same core conf - same core

Olist & opt - same core B|ist & conf - same core Ddefault - diff core

H |ist - same core

Oopt - diff core

25

© 2013 IBM Corporation

| IBM Research

Evaluation — Graph Algorithm

= An Variant of Shiloach-Vishkin
Algorithm (SV)

= A representation of connectivity
algorithms adapts the widely-
used graft-and-shortcut
approach

= Complexities of O[log n] time
and O[(m+n) log n] work under
CRCW PRAM model

= Grafting components
dominates execution time

= |ndirect memory accesses

= Works reasonably well with
small to mid size datasets

= One may break a big graph
into small pieces and handles
separately

26

100000

) —_—

Q0 —_—

= 10000 =

c =

2 — =

= 1000 = =H=
o =t =

£ = =

D 100 =} =} = B
3] — —F =

c — —— —

g — = —

= 10 =} — =

2 = = =

o) — 3 —F =

o R\ ||| =3 NAINES: =]

100K, 400K 1M, 4M 10M, 40M
Osw + opt 285 2960 30186
@sw + conf 210 2138 23201
Osw + dcbt 253 2460 26749
®list + opt 141 2299 39611
Olist + conf 124 2280 44130
Dlist + dcbt 124 2280 44130
Nsw + opt @sw + conf Osw + dcbt
Blist + opt Olist + conf Hlist + dcbt

© 2013 IBM Corporation

| IBM Research

@

Evaluation — CG lteration and Sparse Matrix

The conjugate gradient method is
frequently used to solve linear systems

The CG method requires iteration of
sparse matrix and vector for
multiplication

Sparse matrix is represented in CSR
format (compressed sparse row);

NPB CG OpenMP 3.3 class C
CG Kernel 60% strided memory
accesses, 40% random

— Uniform: accessing matrix elements (8-
byte) and column indices (4-byte) in
CSR

— Random: accessing vector elements (8-
byte) by the column indices

— Strong scaling
Optimistic stream policy is too

aggressive when with limited resource
27

3000

2500
2000
g 1500 +
1000

500

1

1x4

@no prefetch Soptimistic mconfirmed Blist B list & optimistic Qlist & confirmed

© 2013 IBM Corporation

| IBM Research

Discussion

= With sufficient of hardware resource and time,
L1P prefetches data from L2 into L1P and
improves the performance

— Overlapping computation with data prefetching

= If data requests from L1 misses are predicted
correctly

— It reduces 2/3 of the latency

— 18 more cycles (between L1 and L1P) to be
overlapped

= The stream of prefetch list addresses go through
L2 to main memory

— The list prefetch reduces L1 cache miss penalty
at the cost of the memory bandwidth (to L2 and/
or main memory) and the storage space

— Unless heavily memory-bound application, list
prefetching should incur little overhead

28

@

L1 6 cycles
L1P 24 cycles
L2 84 cycles

Memory 346 cycles

© 2013 IBM Corporation

| IBM Research

n
Tl
@

Discussion - continued

= L1P buffer (4K bytes) is shared between stream and list
prefetch engines up to four hardware threads

— Competition for injecting a request into PFD (prefetch directory)

— Stream prefetch has priority when requests come at the same
time

— Competition may cause thrashing
= Size of the sliding window

— Decides mismatch of addresses allowed
— Constrained by the hardware (parallel comparison)
— May be eased by using multiple smaller lists

= List of addresses provides a channel for performance tuning

— Analysis together with hardware performance counter and
debugging registers

29 © 2013 IBM Corporation

| IBM Research

n
Tl
@

Conclusion

= Performance Data Repository aims to
— Characterize the applications
— Study the hardware usage

= L1P is intended to benefit applications with performance
limited by indirect or random memory access patterns

= L1P shows effectiveness in graph-based applications and
sparse matrix solvers with sufficient hardware resource.

= List prefetcher works well with stream prefetcher

= Future work

— More intelligent control

— Coordination with other features such as massive speculative
threading

30 © 2013 IBM Corporation

