
A2 Processor

User’s Manual

for Blue Gene/Q
Note: This document and the information it contains are provided on an as-is basis.
There is no plan for providing for future updates and corrections to this document.

October 23, 2012
Version 1.3

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2010, 2012

Printed in the United States of America October 2012

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.
The IBM semiconductor solutions home page can be found at ibm.com/chips.

Version 1.3
October 23, 2012

http://www.ibm.com
http://www.ibm.com/technology/
http://www.ibm.com/legal/copytrade.shtml

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 3 of 864

Contents

List of Figures ... 21

List of Tables ... 23

Revision Log ... 29

 About This Book .. 31
Who Should Use This Book .. 31
How to Use This Book ... 31
Notation ... 32
Related Publications ... 33

List of Acronyms and Abbreviations .. 35

1. Overview .. 45
1.1 A2 Core Key Design Fundamentals .. 45
1.2 A2 Core Features .. 46
1.3 The A2 Core as a Power ISA Implementation .. 49

1.3.1 Embedded Hypervisor ... 49
1.4 A2 Core Organization .. 49

1.4.1 Instruction Unit ... 50
1.4.2 Execution Unit ... 51
1.4.3 Instruction and Data Cache Controllers ... 51

1.4.3.1 Instruction Cache Controller ... 51
1.4.3.2 Data Cache Controller .. 51

1.4.4 Memory Management Unit (MMU) .. 52
1.4.5 Timers .. 54
1.4.6 Debug Facilities ... 54

1.4.6.1 Debug Modes ... 54
1.4.6.2 Development Tool Support ... 55

1.4.7 Floating-Point Unit Organization .. 55
1.4.7.1 Arithmetic and Load/Store Pipelines .. 56

1.4.8 IEEE 754 and Architectural Compliance ... 56
1.4.8.1 IEEE 754 Compliance .. 57

1.4.9 Floating-Point Unit Implementation ... 57
1.4.9.1 Reciprocal Estimates .. 57
1.4.9.2 Denormalized B Operands ... 57
1.4.9.3 Non-IEEE mode ... 57

1.4.10 Floating-Point Unit Interfaces .. 57
1.4.10.1 A2 Processor Core Interface .. 57
1.4.10.2 Clock and Power Management Interface ... 58

1.5 Core Interfaces .. 58
1.5.1 System Interface .. 58
1.5.2 Auxiliary Execution Unit (AXU) Port .. 59
1.5.3 JTAG Port .. 59

User’s Manual

A2 Processor

Contents

Page 4 of 864
Version 1.3

October 23, 2012

2. CPU Programming Model ... 61
2.1 Logical Partitioning .. 61

2.1.1 Overview .. 61
2.2 Storage Addressing ... 62

2.2.1 Storage Operands .. 62
2.2.2 Effective Address Calculation .. 64

2.2.2.1 Data Storage Addressing Modes .. 65
2.2.2.2 Instruction Storage Addressing Modes ... 65

2.2.3 Byte Ordering ... 66
2.2.3.1 Structure Mapping Examples ... 66
2.2.3.2 Instruction Byte Ordering .. 67
2.2.3.3 Data Byte Ordering ... 68
2.2.3.4 Byte-Reverse Instructions .. 69

2.3 Multithreading .. 70
2.3.1 Thread Identification .. 70

2.3.1.1 Thread Identification Register (TIR) ... 70
2.3.1.2 Processor Identification Register (PIR) .. 70
2.3.1.3 Guest Processor Identification Register (GPIR) ... 71

2.3.2 Thread Run State ... 71
2.3.2.1 Thread Stop I/O Pin .. 71
2.3.2.2 Thread Control and Status Register (THRCTL) ... 71
2.3.2.3 Core Configuration Register 0 (CCR0) ... 72
2.3.2.4 Thread Enable Register (TENS, TENC) ... 72
2.3.2.5 Thread Enable Status Register (TENSR) ... 73

2.3.3 Wake On Interrupt .. 74
2.3.3.1 Core Configuration Register 1 (CCR1) ... 74

2.3.4 Thread Priority ... 75
2.3.4.1 Program Priority Register (PPR32) .. 75
2.3.4.2 Instruction Unit Configuration Register 1 (IUCR1) .. 77

2.3.5 Resources Shared between Threads .. 77
2.3.6 Shared Resources ... 77

2.3.6.1 Accessing Shared Resources .. 78
2.3.7 Duplicated Resources .. 78
2.3.8 Pipeline Sharing ... 79

2.3.8.1 Instruction Cache .. 80
2.3.8.2 Instruction Buffer and Decode Dependency ... 80
2.3.8.3 Instruction Issue ... 80
2.3.8.4 Ram Unit ... 81
2.3.8.5 Microcode Unit .. 82
2.3.8.6 Integer Unit ... 82

2.4 Registers ... 82
2.4.1 Register Mapping ... 84
2.4.2 Register Types ... 84

2.4.2.1 General Purpose Registers .. 84
2.4.2.2 Special Purpose Registers ... 84
2.4.2.3 Condition Register .. 85
2.4.2.4 Machine State Register .. 85

2.5 32-Bit Mode ... 85
2.5.1 64-Bit Specific Instructions ... 85
2.5.2 32-Bit Instruction Selection .. 85

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 5 of 864

2.6 Instruction Categories ... 86
2.7 Instruction Classes .. 87

2.7.1 Defined Instruction Class ... 87
2.7.2 Illegal Instruction Class .. 88
2.7.3 Reserved Instruction Class .. 88

2.8 Implemented Instruction Set Summary ... 88
2.8.1 Integer Instructions .. 89

2.8.1.1 Integer Storage Access Instructions ... 89
2.8.1.2 Integer Arithmetic Instructions .. 91
2.8.1.3 Integer Logical Instructions .. 92
2.8.1.4 Integer Compare Instructions ... 92
2.8.1.5 Integer Trap Instructions .. 92
2.8.1.6 Integer Rotate Instructions ... 92
2.8.1.7 Integer Shift Instructions ... 93
2.8.1.8 Integer Population Count Instructions .. 93
2.8.1.9 Integer Select Instruction .. 93

2.8.2 Branch Instructions .. 94
2.8.3 Processor Control Instructions .. 94

2.8.3.1 Condition Register Logical Instructions .. 94
2.8.3.2 Register Management Instructions ... 95
2.8.3.3 System Linkage Instructions .. 95
2.8.3.4 Processor Control Instructions ... 95

2.8.4 Storage Control Instructions .. 95
2.8.4.1 Cache Management Instructions .. 96
2.8.4.2 TLB Management Instructions ... 96
2.8.4.3 Processor Synchronization Instruction ... 97
2.8.4.4 Load and Reserve and Store Conditional Instructions ... 97
2.8.4.5 Storage Synchronization Instructions ... 97
2.8.4.6 Wait Instruction ... 98

2.8.5 Initiate Coprocessor Instructions ... 98
2.8.5.1 Cache Initialization Instructions .. 98

2.9 Branch Processing .. 99
2.9.1 Branch Addressing .. 99
2.9.2 Branch Instruction BI Field .. 99
2.9.3 Branch Instruction BO Field ... 99
2.9.4 Branch Prediction .. 100

2.9.4.1 Branch Decoder ... 100
2.9.4.2 Branch Direction Prediction .. 101
2.9.4.3 Branch Prioritization ... 104
2.9.4.4 Branch Target Prediction .. 104
2.9.4.5 Redirection ... 105

2.9.5 Branch Control Registers .. 105
2.9.5.1 Link Register (LR) .. 105
2.9.5.2 Count Register (CTR) ... 106
2.9.5.3 Condition Register (CR) ... 107

2.10 Integer Processing .. 110
2.10.1 General Purpose Registers (GPRs) .. 110
2.10.2 Integer Exception Register (XER) ... 110

2.10.2.1 Summary Overflow (SO) Field ... 112
2.10.2.2 Overflow (OV) Field .. 112

User’s Manual

A2 Processor

Contents

Page 6 of 864
Version 1.3

October 23, 2012

2.10.2.3 Carry (CA) Field .. 112
2.10.2.4 Transfer Byte Count (TBC) Field .. 113

2.11 Processor Control .. 113
2.11.1 Special Purpose Registers General (SPRG0–SPRG8) ... 114
2.11.2 External Process ID Load Context (EPLC) Register .. 119
2.11.3 External Process ID Store Context (EPSC) Register ... 119

2.12 Privileged Modes ... 120
2.12.1 Privileged Instructions .. 121

2.12.1.1 Cache Locking Instructions .. 121
2.12.2 Privileged SPRs ... 122

2.13 Speculative Accesses ... 122
2.14 Synchronization ... 122

2.14.1 Context Synchronization .. 122
2.14.2 Execution Synchronization ... 124
2.14.3 Storage Ordering and Synchronization .. 124

2.15 Software Transactional Memory Acceleration ... 125
2.15.1 Summary .. 125
2.15.2 Implementation .. 125

2.15.2.1 L1 D-Cache .. 126
2.15.3 Watch Operation Ordering Requirements .. 126
2.15.4 Impact on Existing Software .. 126

3. FU Programming Model .. 127
3.1 Storage Addressing ... 127

3.1.1 Storage Operands .. 127
3.1.2 Effective Address Calculation .. 128
3.1.3 Data Storage Addressing Modes ... 128

3.2 Floating-Point Exceptions .. 129
3.3 Floating-Point Registers .. 129

3.3.1 Register Types ... 130
3.3.1.1 Floating-Point Registers (FPR0–FPR31) ... 130
3.3.1.2 Floating-Point Status and Control Register (FPSCR) .. 131

3.4 Floating-Point Data Formats ... 133
3.4.1 Value Representation .. 134
3.4.2 Binary Floating-Point Numbers .. 135

3.4.2.1 Normalized Numbers .. 135
3.4.2.2 Denormalized Numbers .. 136
3.4.2.3 Zero Values .. 136

3.4.3 Infinities .. 136
3.4.3.1 Not a Numbers ... 136

3.4.4 Sign of Result ... 137
3.4.5 Normalization and Denormalization ... 138
3.4.6 Data Handling and Precision ... 138
3.4.7 Rounding .. 139

3.5 Floating-Point Execution Models ... 140
3.5.1 Execution Model for IEEE Operations ... 141
3.5.2 Execution Model for Multiply-Add Type Instructions .. 143

3.6 Floating-Point Instructions ... 143
3.6.1 Instructions by Category .. 144

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 7 of 864

3.6.2 Load and Store Instructions ... 145
3.6.3 Floating-Point Store Instructions ... 146
3.6.4 Floating-Point Move Instructions ... 148
3.6.5 Floating-Point Arithmetic Instructions .. 148

3.6.5.1 Floating-Point Multiply-Add Instructions ... 149
3.6.6 Floating-Point Rounding and Conversion Instructions .. 149
3.6.7 Floating-Point Compare Instructions ... 150
3.6.8 Floating-Point Status and Control Register Instructions .. 151

4. Initialization ... 153
4.1 Core Reset .. 153
4.2 A2 Core State After Reset ... 154
4.3 Software Initiated Reset Requests .. 160

4.3.1 Software Reset Requests .. 160
4.3.1.1 From Debug ... 161
4.3.1.2 From Watchdog Timer .. 161

4.3.2 Reset Request Status .. 161
4.3.2.1 Debug Facility Reset Status ... 162
4.3.2.2 Timer Facility Reset Status .. 162

4.4 Initialization Software Requirements ... 163

5. Instruction and Data Caches ... 169
5.1 Data Cache Array Organization and Operation .. 169
5.2 Instruction Cache Array Organization and Operation ... 170
5.3 Cache Line Replacement Policy ... 170
5.4 Instruction Cache Controller .. 170

5.4.1 ICC Operations .. 171
5.4.2 Instruction Cache Coherency .. 171

5.4.2.1 Self-Modifying Code ... 172
5.4.2.2 Instruction Cache Synonyms .. 172

5.4.3 Instruction Cache Control and Debug ... 172
5.4.3.1 Instruction Cache Management and Debug Instruction Summary 172
5.4.3.2 Instruction Cache Parity Operations ... 173
5.4.3.3 Simulating Instruction Cache Parity Errors for Software Testing 173

5.5 Data Cache Controller ... 173
5.5.1 DCC Operations .. 174

5.5.1.1 Load and Store Alignment .. 175
5.5.1.2 Load Operations ... 175
5.5.1.3 Store Operations .. 176
5.5.1.4 Data Read and Instruction Fetch Interface Requests .. 176
5.5.1.5 Data Write Interface Requests ... 176
5.5.1.6 Storage Access Ordering ... 177

5.5.2 Data Cache Coherency ... 177
5.5.3 Data Cache Control ... 177

5.5.3.1 Data Cache Management Instruction Summary .. 177
5.5.3.2 dcbt and dcbtst Operation .. 178
5.5.3.3 Cache Locking Mechanisms .. 179
5.5.3.4 Data Cache Parity Operations .. 183
5.5.3.5 Simulating Data Cache Parity Errors for Software Testing .. 183

User’s Manual

A2 Processor

Contents

Page 8 of 864
Version 1.3

October 23, 2012

5.5.3.6 Data Cache Disable .. 183

6. Memory Management .. 185
6.1 MMU Overview .. 185

6.1.1 Support for Power ISA MMU Architecture ... 186
6.2 Page Identification ... 186

6.2.1 Virtual Address Formation ... 187
6.2.2 Address Space Identifier Convention ... 187
6.2.3 Exclusion Range (X-bit) Operation .. 188
6.2.4 TLB Match Process .. 189

6.3 Address Translation .. 191
6.4 Access Control .. 193

6.4.1 Execute Access ... 193
6.4.2 Write Access .. 193
6.4.3 Read Access .. 194
6.4.4 Access Control Applied to Cache Management Instructions ... 194

6.5 Storage Attributes .. 195
6.5.1 Write-Through (W) ... 196
6.5.2 Caching Inhibited (I) ... 196
6.5.3 Memory Coherence Required (M) ... 196
6.5.4 Guarded (G) ... 196
6.5.5 Endian (E) .. 197
6.5.6 User-Definable (U0–U3) .. 197
6.5.7 Supported Storage Attribute Combinations ... 197
6.5.8 Aliasing .. 197

6.6 Translation Lookaside Buffer ... 198
6.7 Effective to Real Address Translation Arrays .. 203

6.7.1 ERAT Context Synchronization ... 204
6.7.2 ERAT Reset Behavior .. 205
6.7.3 Atomic Update of ERAT Entries ... 205
6.7.4 ERAT LRU Round-Robin Replacement Mode ... 205
6.7.5 ERAT LRU Replacement Watermark .. 206
6.7.6 ERAT (TLB Lookaside Information) Coherency and Back-Invalidation 206
6.7.7 ERAT External PID (EPID) Context and Instruction Dependencies 208

6.8 Logical to Real Address Translation Array (Category E.HV.LRAT) .. 209
6.9 TLB Management Instructions (Architected) ... 212

6.9.1 TLB Read and Write Instructions (tlbre and tlbwe) ... 213
6.9.2 TLB Search Instruction (tlbsx[.]) .. 215
6.9.3 TLB Search and Reserve Instruction (tlbsrx.) .. 215
6.9.4 TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax) .. 216
6.9.5 TLB Invalidate Local (Indexed) Instruction (tlbilx) ... 218
6.9.6 TLB Sync Instruction (tlbsync) .. 218

6.10 ERAT Management Instructions (Non-Architected) .. 219
6.10.1 ERAT Read and Write Instructions (eratre and eratwe) ... 219
6.10.2 ERAT Search Instruction (eratsx[.]) ... 220
6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruction (erativax) 221
6.10.4 ERAT Invalidate Local (Indexed) Instruction (eratilx) .. 224

6.11 32-Bit Mode Memory Management Behavior .. 224
6.11.1 32-Bit Mode TLB Read and Write Instructions (tlbre and tlbwe) 225

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 9 of 864

6.11.2 32-Bit Mode TLB Search Instruction (tlbsx[.]) ... 225
6.11.3 32-Bit Mode TLB Search and Reserve Instruction (tlbsrx.) ... 225
6.11.4 32-Bit Mode TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax) 226
6.11.5 32-Bit Mode TLB Invalidate Local (Indexed) Instruction (tlbilx) .. 226
6.11.6 32-Bit Mode TLB Sync Instruction (tlbsync) ... 226
6.11.7 32-Bit Mode ERAT Read and Write Instructions (eratre and eratwe) 226
6.11.8 32-Bit Mode ERAT Search Instruction (eratsx[.]) .. 227
6.11.9 32-Bit Mode ERAT Invalidate Virtual Address (Indexed) Instruction (erativax) 227
6.11.10 32-Bit Mode ERAT Invalidate Local (Indexed) Instruction (eratilx) 228

6.12 Page Reference and Change Status Management .. 228
6.13 TLB and ERAT Parity Operations ... 229

6.13.1 Parity Errors Generated from tlbre or eratre .. 230
6.13.2 Simulating TLB and ERAT Parity Errors for Software Testing .. 231

6.14 ERAT-Only Mode Operation ... 232
6.15 TLB Reservations and TLB Write Conditional (Category E.TWC) .. 232
6.16 Hardware Page Table Walking (Category E.PT) .. 237

6.16.1 Searching the TLB for Direct and Indirect Entries ... 237
6.16.2 Indirect TLB Entry Page and Sub-Page Sizes ... 238
6.16.3 Hardware Page Table Entry Format .. 239
6.16.4 Calculation of Hardware Page Table Entry Real Address ... 240
6.16.5 Hardware Page Table Errors and Exceptions ... 241
6.16.6 Hardware Page Table Storage Control Attributes ... 241
6.16.7 TLB Update After Hardware Page Table Translation .. 242

6.17 Storage Control Registers (Architected) ... 244
6.17.1 Process ID Register (PID) ... 244
6.17.2 Logical Partition ID Register (LPIDR) .. 245
6.17.3 External PID Load Context (EPLC) Register ... 246
6.17.4 External PID Store Context (EPSC) Register .. 247
6.17.5 MMU Assist Register 0 (MAS0) ... 248
6.17.6 MMU Assist Register 1 (MAS1) ... 249
6.17.7 MMU Assist Register 2 (MAS2) ... 251
6.17.8 MMU Assist Register 2 Upper (MAS2U) ... 252
6.17.9 MMU Assist Register 3 (MAS3) ... 253
6.17.10 MMU Assist Register 4 (MAS4) ... 255
6.17.11 MMU Assist Register 5 (MAS5) ... 256
6.17.12 MMU Assist Register 6 (MAS6) ... 257
6.17.13 MMU Assist Register 7 (MAS7) ... 258
6.17.14 MMU Assist Register 8 (MAS8) ... 259
6.17.15 MAS0_MAS1 Register ... 260
6.17.16 MAS5_MAS6 Register ... 261
6.17.17 MAS7_MAS3 Register ... 262
6.17.18 MAS8_MAS1 Register ... 263
6.17.19 MMU Configuration Register (MMUCFG) .. 264
6.17.20 MMU Control and Status Register 0 (MMUCSR0) .. 265
6.17.21 TLB 0 Configuration Register (TLB0CFG) ... 266
6.17.22 TLB 0 Page Size Register (TLB0PS) .. 268
6.17.23 LRAT Configuration Register (LRATCFG) .. 269
6.17.24 LRAT Page Size Register (LRATPS) .. 270
6.17.25 Embedded Page Table Configuration Register (EPTCFG) ... 272
6.17.26 Logical Page Exception Register (LPER) .. 273

User’s Manual

A2 Processor

Contents

Page 10 of 864
Version 1.3

October 23, 2012

6.17.27 Logical Page Exception Register Upper (LPERU) ... 274
6.17.28 MAS Register Update Summary .. 275

6.18 Storage Control Registers (Non-Architected) .. 277
6.18.1 Memory Management Unit Control Register 0 (MMUCR0) ... 277
6.18.2 Memory Management Unit Control Register 1 (MMUCR1) ... 280
6.18.3 Memory Management Unit Control Register 2 (MMUCR2) ... 287
6.18.4 Memory Management Unit Control Register 3 (MMUCR3) ... 290

7. CPU Interrupts and Exceptions .. 293
7.1 Overview ... 293
7.2 Directed Interrupts ... 293
7.3 Interrupt Classes ... 294

7.3.1 Asynchronous Interrupts .. 294
7.3.2 Synchronous Interrupts .. 294

7.3.2.1 Synchronous, Precise Interrupts .. 294
7.3.2.2 Synchronous, Imprecise Interrupts ... 295

7.3.3 Critical and Noncritical Interrupts ... 296
7.3.4 Machine Check Interrupts .. 296

7.4 Interrupt Processing .. 297
7.4.1 Partially Executed Instructions ... 299

7.5 Interrupt Processing Registers .. 300
7.5.1 Register Mapping ... 301
7.5.2 Machine State Register (MSR) .. 301
7.5.3 Machine State Register Protect (MSRP) ... 303
7.5.4 Embedded Processor Control Register (EPCR) .. 304
7.5.5 Save/Restore Register 0 (SRR0) ... 305
7.5.6 Save/Restore Register 1 (SRR1) ... 306
7.5.7 Guest Save/Restore Register 0 (GSRR0) ... 308
7.5.8 Guest Save/Restore Register 1 (GSRR1) ... 308
7.5.9 Critical Save/Restore Register 0 (CSRR0) .. 310
7.5.10 Critical Save/Restore Register 1 (CSRR1) .. 311
7.5.11 Machine Check Save/Restore Register 0 (MCSRR0) ... 313
7.5.12 Machine Check Save/Restore Register 1 (MCSRR1) ... 313
7.5.13 Data Exception Address Register (DEAR) ... 315
7.5.14 Guest Data Exception Address Register (GDEAR) ... 316
7.5.15 Interrupt Vector Prefix Register (IVPR) .. 318
7.5.16 Guest Interrupt Vector Prefix Register (GIVPR) .. 318
7.5.17 Exception Syndrome Register (ESR) ... 318
7.5.18 Guest Exception Syndrome Register (GESR) ... 320
7.5.19 Machine Check Status Register (MCSR) ... 322

7.6 Interrupt Definitions ... 323
7.6.1 Critical Input Interrupt ... 326
7.6.2 Machine Check Interrupt .. 327

7.6.2.1 Machine Check Status Register (MCSR) ... 329
7.6.3 Data Storage Interrupt ... 330
7.6.4 Instruction Storage Interrupt .. 334
7.6.5 External Input Interrupt .. 336
7.6.6 Alignment Interrupt ... 337
7.6.7 Program Interrupt ... 338

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 11 of 864

7.6.8 Floating-Point Unavailable Interrupt .. 342
7.6.9 System Call Interrupt ... 342
7.6.10 Auxiliary Processor Unavailable Interrupt .. 343
7.6.11 Decrementer Interrupt ... 343
7.6.12 Fixed-Interval Timer Interrupt .. 344
7.6.13 Watchdog Timer Interrupt .. 344
7.6.14 Data TLB Error Interrupt .. 345
7.6.15 Instruction TLB Error Interrupt ... 346
7.6.16 Vector Unavailable Interrupt .. 347
7.6.17 Debug Interrupt .. 347
7.6.18 Processor Doorbell Interrupt .. 351
7.6.19 Processor Doorbell Critical Interrupt .. 352
7.6.20 Guest Processor Doorbell Interrupt ... 352
7.6.21 Guest Processor Doorbell Critical Interrupt ... 353
7.6.22 Guest Processor Doorbell Machine Check Interrupt ... 353
7.6.23 Embedded Hypervisor System Call Interrupt .. 354
7.6.24 Embedded Hypervisor Privilege Interrupt .. 354
7.6.25 LRAT Error Interrupt .. 355
7.6.26 User Decrementer Interrupt ... 356
7.6.27 Performance Monitor Interrupt ... 356

7.7 Processor Messages ... 357
7.7.1 Processor Message Handling and Filtering ... 357
7.7.2 Doorbell Message Filtering .. 358
7.7.3 Doorbell Critical Message Filtering .. 359
7.7.4 Guest Doorbell Message Filtering ... 360
7.7.5 Guest Doorbell Critical Message Filtering ... 360
7.7.6 Guest Doorbell Machine Check Message Filtering ... 361

7.8 Interrupt Ordering and Masking .. 362
7.8.1 Interrupt Ordering Software Requirements .. 363
7.8.2 Interrupt Order ... 364

7.9 Exception Priorities ... 365
7.9.1 Exception Priorities for Integer Load, Store, and Cache Management Instructions 366
7.9.2 Exception Priorities for Floating-Point Load and Store Instructions 367
7.9.3 Exception Priorities for Floating-Point Instructions (Other) .. 367
7.9.4 Exception Priorities for Privileged Instructions .. 368
7.9.5 Exception Priorities for Trap Instructions ... 368
7.9.6 Exception Priorities for System Call Instruction ... 368
7.9.7 Exception Priorities for Branch Instructions ... 369
7.9.8 Exception Priorities for Return From Interrupt Instructions .. 369
7.9.9 Exception Priorities for Reserved Instructions ... 369
7.9.10 Exception Priorities for All Other Instructions .. 370

8. FU Interrupts and Exceptions .. 371
8.1 Floating-Point Exceptions ... 371
8.2 Exceptions List .. 372
8.3 Floating-Point Interrupts .. 375

8.3.1 Floating-Point Unavailable Interrupt .. 375
8.3.2 Floating-Point Assist Interrupt ... 375

8.4 Floating-Point Exception Behavior .. 375

User’s Manual

A2 Processor

Contents

Page 12 of 864
Version 1.3

October 23, 2012

8.4.1 Invalid Operation Exception ... 375
8.4.1.1 Action .. 376

8.4.2 Zero Divide Exception .. 377
8.4.2.1 Action .. 377

8.4.3 Overflow Exception .. 378
8.4.3.1 Action .. 378

8.4.4 Underflow Exception .. 379
8.4.4.1 Action .. 379

8.4.5 Inexact Exception ... 380
8.4.5.1 Action .. 380

8.5 Exception Priorities for Floating-Point Load and Store Instructions .. 380
8.6 Exception Priorities for Other Floating-Point Instructions .. 381
8.7 QNaN .. 381
8.8 Updating FPRs on Exceptions .. 382
8.9 Floating-Point Status and Control Register (FPSCR) ... 382
8.10 Updating the Condition Register ... 385

8.10.1 Condition Register (CR) ... 385
8.10.2 Updating CR Fields .. 386
8.10.3 Generation of QNaN Results ... 386

9. Timer Facilities .. 387
9.1 Time Base ... 388

9.1.1 Reading the Time Base ... 389
9.1.2 Writing the Time Base .. 389

9.2 Decrementer (DEC) ... 389
9.3 User Decrementer (UDEC) ... 391
9.4 Fixed Interval Timer (FIT) .. 392
9.5 Watchdog Timer .. 393
9.6 Timer Control Register (TCR) ... 395
9.7 Timer Status Register (TSR) ... 397
9.8 Freezing the Timer Facilities ... 397
9.9 Selection of the Timer Clock Source ... 398
9.10 Synchronizing Timers Across Multiple Cores .. 398

10. Debug Facilities ... 399
10.1 Implications of Hypervisor on Debug Controls .. 399
10.2 Support for Development Tools ... 399
10.3 Debug Modes .. 399

10.3.1 Internal Debug Mode ... 400
10.3.2 External Debug Mode .. 400
10.3.3 Trace Debug Mode .. 401

10.4 Debug Events .. 402
10.4.1 Instruction Address Compare (IAC) Debug Event ... 402

10.4.1.1 IAC Debug Event Fields ... 403
10.4.1.2 IAC Debug Event Processing ... 404

10.4.2 Data Address Compare (DAC) Debug Event ... 405
10.4.2.1 DAC Debug Event Fields .. 405
10.4.2.2 DAC Debug Event Processing ... 407

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 13 of 864

10.4.2.3 DAC Debug Events Applied to Instructions that Result in Multiple Storage Accesses 407
10.4.2.4 DAC Debug Events Applied to Various Instruction Types ... 408

10.4.3 Data Value Compare (DVC) Debug Event .. 409
10.4.3.1 DVC Debug Event Fields ... 409
10.4.3.2 DVC Debug Event Processing ... 410
10.4.3.3 DVC Debug Events Applied to Instructions that Result in Multiple Storage Accesses 410
10.4.3.4 DVC Debug Events Applied to Various Instruction Types ... 411
10.4.3.5 DVC Debug Events Applied to Floating-Point Loads and Stores 411

10.4.4 Instruction Complete (ICMP) Debug Event ... 411
10.4.5 Branch Taken (BRT) Debug Event .. 412
10.4.6 Trap (TRAP) Debug Event .. 412
10.4.7 Return (RET) Debug Event ... 412
10.4.8 Interrupt (IRPT) Debug Event .. 413
10.4.9 Unconditional Debug Event (UDE) .. 414
10.4.10 Instruction Value Compare (IVC) Debug Event ... 414
10.4.11 Debug Event Summary ... 415

10.5 Debug Reset ... 415
10.6 Debug Timer Freeze ... 415
10.7 Debug Registers ... 415

10.7.1 Debug Control Register 0 (DBCR0) .. 416
10.7.2 Debug Control Register 1 (DBCR1) .. 418
10.7.3 Debug Control Register 2 (DBCR2) .. 419
10.7.4 Debug Control Register 3 (DBCR3) .. 421
10.7.5 Debug Status Register (DBSR) .. 422
10.7.6 Debug Status Register Write Register (DBSRWR) ... 423
10.7.7 Instruction Address Compare Registers (IAC1–IAC4) .. 425
10.7.8 Data Address Compare Registers (DAC1–DAC2) .. 426
10.7.9 Data Value Compare Registers (DVC1–DVC2) .. 427
10.7.10 Instruction Address Register (IAR) .. 428
10.7.11 Instruction Match Mask Registers (IMMR) .. 429
10.7.12 Instruction Match Registers (IMR) ... 429

10.8 Instruction Stuffing .. 429
10.8.1 Ram Mode Overview ... 430
10.8.2 Ram Register Descriptions .. 431
10.8.3 Example Ram Mode Procedures ... 434

10.8.3.1 SPR Read/Write Using GPR as Temporary Storage ... 434
10.8.3.2 Using Microcode Scratch Registers as Temporary Storage 435

10.8.4 Supported Ram Instructions .. 436
10.9 Direct Access to I-Cache and D-Cache Directories .. 437

10.9.1 General Read D-Cache Directory Sequence for L1 D-Cache ... 437
10.9.2 Instruction Unit Debug Register 0 (IUDBG0) ... 438
10.9.3 Instruction Unit Debug Register 1 (IUDBG1) ... 439
10.9.4 Instruction Unit Debug Register 2 (IUDBG2) ... 439
10.9.5 Execution Unit Debug Register 0 (XUDBG0) .. 440
10.9.6 Execution Unit Debug Register 1 (XUDBG1) .. 440
10.9.7 Execution Unit Debug Register 2 (XUDBG2) .. 441

10.10 Thread Control and Status .. 441
10.10.1 Using THRCTL Register to Stop Thread 0 .. 443
10.10.2 Using THRCTL Register to Start Thread 0 .. 443
10.10.3 Using THRCTL Register to Instruction Step Thread 0 .. 443

User’s Manual

A2 Processor

Contents

Page 14 of 864
Version 1.3

October 23, 2012

10.11 PC Configuration Register 0 (PCCR0) .. 444
10.12 Trace and Trigger Bus ... 445

10.12.1 Trace and Trigger Bus Overview ... 445
10.12.2 Unit Level Trace and Trigger Bus Implementation ... 446
10.12.3 Debug Select Registers ... 447

11. Performance Events and Event Selection ... 449
11.1 Event Bus Overview .. 449
11.2 A2 Core Event Bus and PC Unit Controls ... 450

11.2.1 Enabling Performance Event and Trace Bus Latches ... 450
11.2.2 Performance Analysis Operating Modes ... 450
11.2.3 Core Performance Event Selection to External Event Bus .. 450
11.2.4 Core Event Select Register (CESR) .. 452

11.3 Unit Level Performance Event Selection ... 454
11.3.1 Unit Event Multiplexer Component .. 454
11.3.2 Performance Monitor Event Tags and Count Modes ... 456
11.3.3 Unit Performance Event Tables ... 457

11.4 Unit Performance Event Tables .. 458
11.4.1 FU Performance Events Table ... 458
11.4.2 IU Performance Events Table .. 458
11.4.3 XU Performance Events Table .. 460
11.4.4 LSU Performance Events Table .. 462
11.4.5 MMU Performance Events Table ... 465

11.5 Unit Event Select Registers ... 466
11.5.1 FU Event Select Register (AESR) ... 466
11.5.2 IU Event Select Registers .. 468
11.5.3 XU Event Select Registers ... 470
11.5.4 LSU Event Select Registers ... 472
11.5.5 MMU Event Select Registers ... 474

11.6 A2 Support for Core Instruction Trace ... 476
11.6.1 Instruction Trace Mode Setup .. 476
11.6.2 Instruction Trace Record Data ... 476
11.6.3 Instruction Trace Record Formats and Ordering ... 477
11.6.4 Debug Bus Control When in Instruction Trace Mode ... 478

11.6.4.1 FU Trace Records .. 479
11.6.4.2 XU Debug Bus Control ... 479

11.7 A2 Support for Instruction Sampling .. 479

12. Implementation Dependent Instructions ... 481
12.1 Miscellaneous .. 481

12.1.1 Attention (attn) ... 481
12.2 TLB Management Instructions .. 482

12.2.1 TLB Read Entry (tlbre) .. 482
12.2.2 TLB Write Entry (tlbwe) ... 484
12.2.3 TLB Search Indexed (tlbsx[.]) ... 486
12.2.4 TLB Search and Reserve Indexed (tlbsrx.) ... 488
12.2.5 TLB Invalidate Virtual Address Indexed (tlbivax) .. 490
12.2.6 TLB Invalidate Local Indexed (tlbilx) ... 493

12.3 ERAT Management Instructions ... 496

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 15 of 864

12.3.1 ERAT Read Entry (eratre) ... 496
12.3.2 ERAT Write Entry (eratwe) ... 499
12.3.3 ERAT Search Indexed (eratsx[.]) ... 502
12.3.4 ERAT Invalidate Virtual Address Indexed (erativax) .. 504
12.3.5 ERAT Invalidate Local Indexed (eratilx) ... 507

12.4 Software Transactional Memory Instructions .. 509
12.4.1 Load Doubleword and Watch Indexed X-Form (ldawx.) ... 510
12.4.2 Watch Check All X-Form (wchkall) ... 511
12.4.3 Watch Clear X-Form (wclr) ... 512

12.5 Coprocessor Instructions .. 513
12.5.1 Initiate Coprocessor Store Word Indexed (icswx[.]) ... 515

12.5.1.1 General Registers .. 516
12.5.1.2 Initial Execution .. 517

12.5.2 Initiate Coprocessor Store Word External Process ID Indexed (icswepx[.]) 518
12.5.3 Execution ... 518

12.5.3.1 Condition Register 0 ... 519
12.5.4 Coprocessor-Request Block .. 520

12.5.4.1 Available Coprocessor Register (ACOP) ... 520
12.5.4.2 Hypervisor Available Coprocessor Register (HACOP) ... 521

12.6 Data Cache Block Flush .. 523
12.6.1 Data Cache Block Flush (dcbf) ... 523

12.7 Data Cache Block Flush by External PID .. 524
12.7.1 Data Cache Block Flush by External PID (dcbfep) ... 524

13. Power Management Methods .. 525
13.1 Chip Power Management Controls ... 525
13.2 Power-Saving Instructions .. 525

13.2.1 Power-Saving Instruction Sequence ... 526

14. Register Summary .. 529
14.1 Register Categories .. 529
14.2 Reserved Fields .. 535
14.3 Unimplemented SPRs ... 535
14.4 Device Control Registers .. 535
14.5 Alphabetical Register Listing ... 537

14.5.1 ACOP - Available Coprocessor ... 538
14.5.2 AESR - AXU Event Select Register ... 539
14.5.3 CCR0 - Core Configuration Register 0 .. 541
14.5.4 CCR1 - Core Configuration Register 1 .. 542
14.5.5 CCR2 - Core Configuration Register 2 .. 543
14.5.6 CCR3 - Core Configuration Register 3 .. 545
14.5.7 CESR - Core Event Select Register .. 546
14.5.8 CR - Condition Register ... 549
14.5.9 CSRR0 - Critical Save/Restore Register 0 .. 550
14.5.10 CSRR1 - Critical Save/Restore Register 1 .. 551
14.5.11 CTR - Count Register .. 553
14.5.12 DAC1 - Data Address Compare 1 ... 554
14.5.13 DAC2 - Data Address Compare 2 ... 555
14.5.14 DAC3 - Data Address Compare 3 ... 556

User’s Manual

A2 Processor

Contents

Page 16 of 864
Version 1.3

October 23, 2012

14.5.15 DAC4 - Data Address Compare 4 .. 557
14.5.16 DBCR0 - Debug Control Register 0 ... 558
14.5.17 DBCR1 - Debug Control Register 1 ... 560
14.5.18 DBCR2 - Debug Control Register 2 ... 562
14.5.19 DBCR3 - Debug Control Register 3 ... 564
14.5.20 DBSR - Debug Status Register .. 565
14.5.21 DBSRWR - Debug Status Register Write Register .. 567
14.5.22 DEAR - Data Exception Address Register ... 569
14.5.23 DEC - Decrementer ... 570
14.5.24 DECAR - Decrementer Auto-Reload ... 571
14.5.25 DVC1 - Data Value Compare 1 .. 572
14.5.26 DVC2 - Data Value Compare 2 .. 573
14.5.27 EPCR - Embedded Processor Control Register .. 574
14.5.28 EPLC - External Process ID Load Context .. 576
14.5.29 EPSC - External Process ID Store Context ... 577
14.5.30 EPTCFG - Embedded Page Table Configuration Register .. 578
14.5.31 ESR - Exception Syndrome Register ... 579
14.5.32 GDEAR - Guest Data Exception Address Register ... 581
14.5.33 GESR - Guest Exception Syndrome Register ... 582
14.5.34 GIVPR - Guest Interrupt Vector Prefix Register ... 584
14.5.35 GPIR - Guest Processor ID Register ... 585
14.5.36 GSPRG0 - Guest Software Special Purpose Register 0 ... 586
14.5.37 GSPRG1 - Guest Software Special Purpose Register 1 ... 587
14.5.38 GSPRG2 - Guest Software Special Purpose Register 2 ... 588
14.5.39 GSPRG3 - Guest Software Special Purpose Register 3 ... 589
14.5.40 GSRR0 - Guest Save/Restore Register 0 .. 590
14.5.41 GSRR1 - Guest Save/Restore Register 1 .. 591
14.5.42 HACOP - Hypvervisor Available Coprocessor ... 593
14.5.43 IAC1 - Instruction Address Compare 1 .. 594
14.5.44 IAC2 - Instruction Address Compare 2 .. 595
14.5.45 IAC3 - Instruction Address Compare 3 .. 596
14.5.46 IAC4 - Instruction Address Compare 4 .. 597
14.5.47 IAR - Instruction Address Register ... 598
14.5.48 IESR1 - IU Event Select Register 1 ... 599
14.5.49 IESR2 - IU Event Select Register 2 ... 600
14.5.50 IMMR - Instruction Match Mask Register ... 601
14.5.51 IMPDEP0 - Implementation Dependent Region 0 ... 602
14.5.52 IMPDEP1 - Implementation Dependent Region 1 ... 603
14.5.53 IMR - Instruction Match Register ... 604
14.5.54 IUCR0 - Instruction Unit Configuration Register 0 ... 605
14.5.55 IUCR1 - Instruction Unit Configuration Register 1 ... 606
14.5.56 IUCR2 - Instruction Unit Configuration Register 2 ... 607
14.5.57 IUDBG0 - Instruction Unit Debug Register 0 ... 608
14.5.58 IUDBG1 - Instruction Unit Debug Register 1 ... 609
14.5.59 IUDBG2 - Instruction Unit Debug Register 2 ... 610
14.5.60 IULFSR - Instruction Unit LFSR ... 611
14.5.61 IULLCR - Instruction Unit Live Lock Control Register .. 612
14.5.62 IVPR - Interrupt Vector Prefix Register .. 613
14.5.63 LPER - Logical Page Exception Register .. 614
14.5.64 LPERU - Logical Page Exception Register (Upper) ... 615

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 17 of 864

14.5.65 LPIDR - Logical Partition ID Register .. 616
14.5.66 LR - Link Register .. 617
14.5.67 LRATCFG - LRAT Configuration Register ... 618
14.5.68 LRATPS - LRAT Page Size Register .. 619
14.5.69 MAS0 - MMU Assist Register 0 ... 620
14.5.70 MAS0_MAS1 - MMU Assist Registers 0 and 1 ... 621
14.5.71 MAS1 - MMU Assist Register 1 ... 622
14.5.72 MAS2 - MMU Assist Register 2 ... 624
14.5.73 MAS2U - MMU Assist Register 2 (Upper) ... 625
14.5.74 MAS3 - MMU Assist Register 3 ... 626
14.5.75 MAS4 - MMU Assist Register 4 ... 628
14.5.76 MAS5 - MMU Assist Register 5 ... 629
14.5.77 MAS5_MAS6 - MMU Assist Registers 5 and 6 ... 630
14.5.78 MAS6 - MMU Assist Register 6 ... 631
14.5.79 MAS7 - MMU Assist Register 7 ... 632
14.5.80 MAS7_MAS3 - MMU Assist Registers 7 and 3 ... 633
14.5.81 MAS8 - MMU Assist Register 8 ... 634
14.5.82 MAS8_MAS1 - MMU Assist Registers 8 and 1 ... 635
14.5.83 MCSR - Machine Check Syndrome Register .. 636
14.5.84 MCSRR0 - Machine Check Save/Restore Register 0 ... 638
14.5.85 MCSRR1 - Machine Check Save/Restore Register 1 ... 639
14.5.86 MESR1 - MMU Event Select Register 1 .. 641
14.5.87 MESR2 - MMU Event Select Register 2 .. 642
14.5.88 MMUCFG - MMU Configuration Register .. 643
14.5.89 MMUCR0 - Memory Management Unit Control Register 0 ... 644
14.5.90 MMUCR1 - Memory Management Unit Control Register 1 ... 645
14.5.91 MMUCR2 - Memory Management Unit Control Register 2 ... 647
14.5.92 MMUCR3 - Memory Management Unit Control Register 3 ... 649
14.5.93 MMUCSR0 - MMU Control and Status Register 0 .. 650
14.5.94 MSR - Machine State Register .. 651
14.5.95 MSRP - Machine State Register Protect ... 653
14.5.96 PID - Process ID .. 654
14.5.97 PIR - Processor ID Register .. 655
14.5.98 PPR32 - Program Priority Register .. 656
14.5.99 PVR - Processor Version Register .. 657
14.5.100 SPRG0 - Software Special Purpose Register 0 .. 658
14.5.101 SPRG1 - Software Special Purpose Register 1 .. 659
14.5.102 SPRG2 - Software Special Purpose Register 2 .. 660
14.5.103 SPRG3 - Software Special Purpose Register 3 .. 661
14.5.104 SPRG4 - Software Special Purpose Register 4 .. 662
14.5.105 SPRG5 - Software Special Purpose Register 5 .. 663
14.5.106 SPRG6 - Software Special Purpose Register 6 .. 664
14.5.107 SPRG7 - Software Special Purpose Register 7 .. 665
14.5.108 SPRG8 - Software Special Purpose Register 8 .. 666
14.5.109 SRR0 - Save/Restore Register 0 ... 667
14.5.110 SRR1 - Save/Restore Register 1 ... 668
14.5.111 TB - Timebase ... 670
14.5.112 TBL - Timebase Lower .. 671
14.5.113 TBU - Timebase Upper .. 672
14.5.114 TCR - Timer Control Register .. 673

User’s Manual

A2 Processor

Contents

Page 18 of 864
Version 1.3

October 23, 2012

14.5.115 TENC - Thread Enable Clear Register .. 675
14.5.116 TENS - Thread Enable Set Register .. 676
14.5.117 TENSR - Thread Enable Status Register .. 677
14.5.118 TIR - Thread Identification Register ... 678
14.5.119 TLB0CFG - TLB 0 Configuration Register ... 679
14.5.120 TLB0PS - TLB 0 Page Size Register ... 680
14.5.121 TRACE - Hardware Trace Macro Control Register .. 681
14.5.122 TSR - Timer Status Register .. 682
14.5.123 UDEC - User Decrementer .. 683
14.5.124 VRSAVE - Vector Register Save ... 684
14.5.125 XER - Fixed Point Exception Register ... 685
14.5.126 XESR1 - XU Event Select Register 1 .. 686
14.5.127 XESR2 - XU Event Select Register 2 .. 687
14.5.128 XESR3 - XU Event Select Register 3 .. 688
14.5.129 XESR4 - XU Event Select Register 4 .. 689
14.5.130 XUCR0 - Execution Unit Configuration Register 0 ... 690
14.5.131 XUCR1 - Execution Unit Configuration Register 1 ... 693
14.5.132 XUCR2 - Execution Unit Configuration Register 2 ... 694
14.5.133 XUCR3 - Execution Unit Configuration Register 3 ... 695
14.5.134 XUCR4 - Execution Unit Configuration Register 4 ... 696
14.5.135 XUDBG0 - Execution Unit Debug Register 0 ... 697
14.5.136 XUDBG1 - Execution Unit Debug Register 1 ... 698
14.5.137 XUDBG2 - Execution Unit Debug Register 2 ... 699

15. SCOM Accessible Registers ... 701
15.1 Serial Communications (SCOM) Description .. 701
15.2 SCOM Register Summary ... 703

15.2.1 Read and Write Access Methods ... 703
15.2.1.1 Reset with AND Mask ... 703
15.2.1.2 Set with OR Mask ... 703

15.2.2 SCOM Register Summary Table ... 703
15.3 Alphabetical Register Listing ... 705

15.3.1 AXU Debug Select Register (ABDSR) ... 705
15.3.2 Error Injection Register (ERRINJ) .. 706
15.3.3 Fault Isolation Register 0 and Associated Registers ... 707
15.3.4 Fault Isolation Register 1 and Associated Registers ... 711
15.3.5 Fault Isolation Register 2 and Associated Registers ... 716
15.3.6 IU Debug Select Register (IDSR) .. 720
15.3.7 MMU/PC Debug Select Register (MPDSR) ... 723
15.3.8 PC Configuration Register 0 (PCCR0) ... 725
15.3.9 Ram Data Registers (RAMD, RAMDH, RAMDL) ... 726
15.3.10 Ram Instruction and Command Registers (RAMC, RAMI, RAMIC) 727
15.3.11 Special Attention Register (SPATTN) .. 729
15.3.12 Thread Control and Status Register (THRCTL) ... 730
15.3.13 XU Debug Select Register1 (XDSR1) .. 731
15.3.14 XU Debug Select Register2 (XDSR2) .. 734

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Contents

Page 19 of 864

Appendix A. Processor Instruction Summary ... 737
A.1 Instruction Formats ... 737
A.2 Implemented Instructions Sorted by Mnemonic .. 737

Appendix B. FU Instruction Summary .. 756
B.1 FU Instructions Sorted by Opcode .. 756

Appendix C. Debug and Trigger Groups .. 761
C.1 Unit Debug Multiplexer Component .. 761
C.2 Debug Multiplexer Component Ordering on the Ramp Bus ... 761
C.3 Example Debug Multiplexer Configuration Settings ... 762

C.3.1 Multiplexer Configuration for Trace/Trigger Signals from a Single Unit 762
C.3.2 Multiplexer Configuration for Trace/Trigger Signals from Multiple Units 762

C.4 AXU Debug Select Register and Debug Group Tables .. 763
C.5 IU Debug Select Register and Debug Group Tables .. 766
C.6 MMU and PC Debug Select Register and Debug Group Tables .. 778
C.7 XU Debug Select Register1 and Debug Group Tables .. 798
C.8 XU Debug Select Register2 and Debug Group Tables .. 817

Appendix D. Instruction Execution Performance and Code Optimizations 833
D.1 A2 Pipeline Overview ... 833

D.1.1 Arbitration Stages ... 834
D.1.2 Stall Stages ... 835
D.1.3 Flush Stages ... 835

D.2 Fetch ... 835
D.2.1 Fetch Arbitration .. 837
D.2.2 Next Instruction Fetch Address Computation ... 837
D.2.3 Instruction Cache Access and Alignment ... 837
D.2.4 Instruction Cache Misses .. 837
D.2.5 I-ERAT Misses .. 838
D.2.6 Instruction Buffer Operation .. 838
D.2.7 Branches and Branch Prediction .. 838

D.2.7.1 Branch Direction Prediction and the Branch History Table (BHT) 840
D.2.7.2 Taken-Branch Redirection ... 840
D.2.7.3 Branch Target Prediction ... 840
D.2.7.4 Branch Resolution and Mispredictions .. 841

D.3 Instruction Issue Operation ... 841
D.4 Instruction Pair Execution Performance Rules ... 841

D.4.1 Defining Latency, Penalty, and Execution Time ... 841
D.4.2 Unified CR Dependency ... 842
D.4.3 General CR Operand Dependency ... 842
D.4.4 Move To Condition Register Fields (mtcrf) Instruction Dependency 843
D.4.5 Move From Condition Register (mfcr) Instruction Dependency .. 843
D.4.6 Move From and Move To Special Purpose Register (mfspr) Dependency 843
D.4.7 Move From Machine State Register (mfmsr) Dependency ... 843
D.4.8 Multiply Dependency ... 843
D.4.9 Divide Dependency ... 844
D.4.10 Store Word Conditional Indexed (stwcx.) Instruction Dependency 844

User’s Manual

A2 Processor

Contents

Page 20 of 864
Version 1.3

October 23, 2012

D.4.11 TLB Management Instruction Dependencies .. 845
D.4.12 Processor Control Instruction Operation ... 845
D.4.13 Load Instruction Dependency .. 846
D.4.14 String/Multiple Operations ... 846
D.4.15 Load-and-Reserve and Store-Conditional Instructions ... 846
D.4.16 Storage Synchronization Operations ... 847

D.5 Loads, Stores, and Data Cache Organization .. 847
D.5.1 Overview ... 847
D.5.2 Loads ... 848
D.5.3 Stores .. 848
D.5.4 Load Miss Queue .. 849
D.5.5 L2 Command Arbitration ... 849
D.5.6 D-ERAT Misses ... 849
D.5.7 Back Invalidations ... 849
D.5.8 Address Alignment .. 849

D.6 Interrupt Effects .. 850
D.7 Floating-Point Instruction Handling ... 850

D.7.1 General FPR Operand Dependency ... 852
D.7.2 Denormalized Results ... 852
D.7.3 Denormalized Operands ... 852
D.7.4 Not a Number (NaN) Cases .. 852
D.7.5 Floating-Point Load Dependency .. 852
D.7.6 Floating-Point Store Data Dependency ... 852
D.7.7 General CR Operand Dependency ... 853
D.7.8 Floating-Point Divide Dependency .. 853
D.7.9 Floating-Point Square Root Dependency .. 853
D.7.10 Move to Condition Register from Floating-Point Status and Control Register Dependency
853
D.7.11 Move to FPSCR Fields and FPSCR Dependencies .. 854
D.7.12 Floating-Point Record Forms .. 854

D.8 Interrupt Conditions .. 854
D.9 Flush Conditions ... 858

Appendix E. Programming Examples .. 861
E.1 Wait Instruction with Fast Wakeup for Power Savings ... 861
E.2 Floating-Point Conversions ... 861

E.2.1 Conversion from Floating-Point Number to Signed Integer Word 861
E.2.2 Conversion from Floating-Point Number to Unsigned Integer Word 862

E.3 Floating-Point Selection .. 862
E.3.1 Comparison to Zero ... 863
E.3.2 Minimum and Maximum .. 863
E.3.3 Simple If-Then-Else Constructions .. 863

E.4 Notes ... 863

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Figures

Page 21 of 864

List of Figures
Figure 1-1. A2 Core Organization ... 50

Figure 1-2. A2 Processor Block Diagram ... 56

Figure 2-1. A2 Core Instruction Unit ... 79

Figure 2-2. Instruction Issue Timing Diagram 1 .. 80

Figure 2-3. Instruction Issue Timing Diagram 2 .. 81

Figure 2-4. Instruction Issue Timing Diagram 3 .. 81

Figure 2-5. User Programming Model Registers .. 83

Figure 3-1. Approximation to Real Numbers .. 135

Figure 3-2. Selection of z1 and z2 .. 140

Figure 4-1. Software-Initiated Reset Request Overview .. 163

Figure 6-1. Virtual Address to TLB Entry Match Process ... 190

Figure 6-2. Effective-to-Real Address Translation Flow ... 192

Figure 6-3. ERAT Entry Word Definitions ... 220

Figure 6-4. ERAT Entry Word Definitions for 32-Bit Mode ... 227

Figure 6-5. Indirect Entry to Page Table Size Calculation .. 238

Figure 6-6. Page Table Entry Format ... 239

Figure 9-1. Relationship of Timer Facilities to the Time Base .. 387

Figure 9-2. Watchdog State Machine ... 395

Figure 10-1. Pass-Through Trace and Trigger Bus Overview .. 446

Figure 10-2. Trace and Trigger Bus Unit Description ... 447

Figure 11-1. Performance Event Selection Overview ... 449

Figure 11-2. Core Event Multiplexer Description .. 451

Figure 11-3. A2 Common Unit Event Multiplexer Component .. 456

Figure 12-1. ICSWX (RS32:63) Coprocessor-Command Word ... 517

Figure 12-2. Coprocessor Command Word (CCW) .. 518

Figure 12-3. Generic Coprocessor-Request Block ... 520

Figure 15-1. Chip Level Infrastructure Example to Access SCOM Registers in the A2 Core 702

Figure 15-2. Principle Timing of Information Carried on CCH and DCH .. 702

Figure C-1. Debug Multiplexer Component ... 761

Figure D-1. A2 Pipeline Structure ... 833

Figure D-2. Instruction Cache ... 836

Figure D-3. Branch Prediction ... 839

Figure D-4. FU Dataflow ... 851

User’s Manual

A2 Processor

List of Figures

Page 22 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Tables

Page 23 of 864

List of Tables
Table 2-1. Data Operand Definitions ... 63

Table 2-2. Alignment Effects for Storage Access Instructions .. 63

Table 2-3. Priority Levels ... 76

Table 2-4. Other “or” Instruction Hints ... 76

Table 2-5. Program Priority Register (PPR32) .. 76

Table 2-6. Register Mapping ... 84

Table 2-7. Category Listing ... 86

Table 2-8. Instruction Categories .. 89

Table 2-9. Integer Storage Access Instructions .. 90

Table 2-10. Integer Storage Access Instructions by External Process ID ... 90

Table 2-11. Operand Handling Dependent on Alignment ... 90

Table 2-12. Integer Arithmetic Instructions .. 91

Table 2-13. Integer Logical Instructions .. 92

Table 2-14. Integer Compare Instructions ... 92

Table 2-15. Integer Trap Instructions .. 92

Table 2-16. Integer Rotate Instructions ... 93

Table 2-17. Integer Shift Instructions .. 93

Table 2-18. Integer Population Count Instructions .. 93

Table 2-19. Integer Select Instruction ... 93

Table 2-20. Branch Instructions .. 94

Table 2-21. Condition Register Logical Instructions .. 94

Table 2-22. Register Management Instructions .. 95

Table 2-23. System Linkage Instructions .. 95

Table 2-24. Processor Control Instruction ... 95

Table 2-25. Cache Management Instructions ... 96

Table 2-26. Cache Management Instructions by External Process ID .. 96

Table 2-27. TLB Management Instructions ... 96

Table 2-28. Processor Synchronization Instruction ... 97

Table 2-29. Load and Reserve and Store Conditional Instructions ... 97

Table 2-30. Storage Synchronization Instructions ... 97

Table 2-31. Wait Instruction .. 98

Table 2-32. Initiate Coprocessor Instructions .. 98

Table 2-33. Cache Initialization Instructions .. 98

Table 2-34. BO Field Encodings ... 100

Table 2-35. ‘at’ Bit Encodings .. 100

Table 2-36. CR Updating Instructions ... 108

Table 2-37. GPR Registers ... 110

Table 2-38. XER[SO,OV] Updating Instructions .. 111

User’s Manual

A2 Processor

List of Tables

Page 24 of 864
Version 1.3

October 23, 2012

Table 2-39. XER[CA] Updating Instructions ..111

Table 2-40. SPRG0 Register ...114

Table 2-41. SPRG1 Register ...114

Table 2-42. SPRG2 Register ...115

Table 2-43. SPRG3 Register ...115

Table 2-44. SPRG4 Register ...115

Table 2-45. SPRG5 Register ...116

Table 2-46. SPRG6 Register ...116

Table 2-47. SPRG7 Register ...116

Table 2-48. SPRG8 Register ...117

Table 2-49. GSPRG0 Register ..117

Table 2-50. GSPRG1 Register ..117

Table 2-51. GSPRG2 Register ..118

Table 2-52. GSPRG3 Register ..118

Table 2-53. Privileged Instructions ..121

Table 3-1. Data Operand Definitions ...128

Table 3-2. Invalid Operation Exception Categories ...129

Table 3-3. Floating-Point Registers (FPR0–FPR31) ...130

Table 3-4. Floating-Point Status and Control Register (FPSCR) ...131

Table 3-5. Floating-Point Single Format ..134

Table 3-6. Floating-Point Double Format ...134

Table 3-7. Format Fields ..134

Table 3-8. IEEE 754 Floating-Point Fields ...134

Table 3-9. Rounding Modes ..140

Table 3-10. IEEE 64-Bit Execution Model ...141

Table 3-11. Interpretation of the G, R, and X Bits ..141

Table 3-12. Location of the Guard, Round, and Sticky Bits in the IEEE Execution Model142

Table 3-13. Multiply-Add 64-Bit Execution Model ..143

Table 3-14. Location of Guard, Round, and Sticky Bits in the Multiply-Add Execution Model143

Table 3-15. Floating-Point Load Instructions ...146

Table 3-16. Floating-Point Store Instructions ..147

Table 3-17. Floating-Point Move Instructions ..148

Table 3-18. Floating-Point Elementary Arithmetic Instructions ..148

Table 3-19. Floating-Point Multiply-Add Instructions ...149

Table 3-20. Floating-Point Rounding and Conversion Instructions ...150

Table 3-21. Comparison Sets ..150

Table 3-22. Floating-Point Compare and Select Instructions ..151

Table 3-23. Floating-Point Status and Control Register Instructions ...151

Table 4-1. Register Reset Values ..155

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Tables

Page 25 of 864

Table 4-2. Shadow TLB Array Entry Initialization .. 158

Table 5-1. Data Cache Array Organization ... 169

Table 5-2. Cache Size and Parameters .. 169

Table 5-3. Instruction Cache Array Organization .. 170

Table 5-4. Cache Size and Parameters .. 170

Table 5-5. XUCR Bits .. 183

Table 6-1. Page Size and Effective Address to EPN Comparison .. 191

Table 6-2. Page Size and Real Address Formation .. 192

Table 6-3. Access Control Applied to Cache Management Instructions ... 194

Table 6-4. TLB Entry Fields ... 199

Table 6-5. ERAT Class Field Reload Value For UTLB Hits .. 208

Table 6-6. LRAT Entry Fields .. 211

Table 6-7. TLB Management Instruction Privilege Levels ... 212

Table 6-8. TLB Congruence Class Hashing Function (of EPN Address Bits) 214

Table 6-9. Supported EPN[27:51] Field Values in Downbound TLBIVAX Request 218

Table 6-10. ERAT Management Instruction Privilege Levels .. 219

Table 6-11. Summary of Supported IS Field Values in ERATIVAX .. 222

Table 6-12. Supported EPN[27:51] Field Values in Downbound erativax Request 224

Table 6-13. TLB Reservation Fields .. 233

Table 6-14. TLB Update After Page Table Translation ... 242

Table 6-15. MAS Register Update Summary .. 275

Table 7-1. Register Mapping in Guest State ... 301

Table 7-2. Interrupt Types and Associated Offsets ... 316

Table 7-3. Interrupt and Exception Types ... 323

Table 8-1. Invalid Operation Exception Categories ... 372

Table 8-2. MSR[FE0, FE1] Modes .. 374

Table 8-3. Invalid Operation Exceptions ... 376

Table 8-4. QNaN Result .. 381

Table 8-5. FPSCR[FPRF] Result Flags ... 382

Table 8-6. Floating-Point Status and Control Register (FPSCR) .. 383

Table 8-7. Bit Encodings for a CR Field .. 386

Table 9-1. Timebase Register (TB) ... 388

Table 9-2. Timebase Lower Register (TBL) .. 388

Table 9-3. Timebase Upper Register (TBU) .. 389

Table 9-4. Decrementer Register (DEC) ... 390

Table 9-5. Decrementer Auto-Reload Register (DECAR) ... 390

Table 9-6. Fixed Interval Timer Period Selection .. 392

Table 9-7. Watchdog Timer Period Selection .. 393

Table 9-8. Watchdog Timer Exception Behavior ... 394

User’s Manual

A2 Processor

List of Tables

Page 26 of 864
Version 1.3

October 23, 2012

Table 10-1. PCCR0[DBA] (Debug Action) Definition per Thread ..400

Table 10-2. Debug Events ...402

Table 10-3. Debug Event Summary ..415

Table 10-4. Ram Instruction and Command Register (RAMIC) ..431

Table 10-5. Ram Instruction Register (RAMI) ..431

Table 10-6. Ram Command Register (RAMC) ..431

Table 10-7. Ram Data Register (RAMD) ...433

Table 10-8. Ram Data Register High (RAMDH) ..433

Table 10-9. Ram Data Register Low (RAMDL) ...434

Table 10-10. Thread Control and Status Register (THRCTL) ...442

Table 10-11. PC Configuration Register 0 (PCCR0) ...444

Table 11-1. Core Event Multiplexer to External Event Bus ..451

Table 11-2. Performance Monitor Event Tags ...457

Table 11-3. FU Performance Events Table ...458

Table 11-4. IU Performance Events Table ..458

Table 11-5. XU Performance Events Table ...460

Table 11-6. LSU Performance Events Table ...462

Table 11-7. MMU Performance Events Table ...465

Table 11-8. Core Instruction Trace Data and Control Signals ...477

Table 11-9. First Instruction Trace Record Format ..477

Table 11-10. Format of Subsequent Instruction Trace Records ..478

Table 11-11. Trace Record Type Decode and Instruction Trace Record Ordering478

Table 14-1. Register Summary ..530

Table 15-1. SCOM Register Summary ..703

Table 15-2. Error Injection Register ...706

Table 15-3. Fault Isolation Register 0 (FIR0) ...708

Table 15-4. FIR0 Action1 Register (FIR0A1) ...709

Table 15-5. FIR0 Mask Register (FIR0M) ..710

Table 15-6. FIR0 and FIR1 Registers (Read Only) ...711

Table 15-7. Fault Isolation Register 1 ..711

Table 15-8. FIR1 Action0 Register (FIR1A0) ...713

Table 15-9. FIR1 Action1 Register (FIR1A1) ...714

Table 15-10. FIR1 Mask Register (FIR1M) ..714

Table 15-11. Fault Isolation Register 2 (FIR2) ...716

Table 15-12. FIR2 Action0 Register (FIR2A0) ...717

Table 15-13. FIR2 Action1 Register (FIR2A1) ...718

Table 15-14. FIR2 Mask Register (FIR2M) ..720

Table 15-15. PC Configuration Register 0 (PCCR0) ...725

Table 15-16. Ram Data Register (RAMD) ...726

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Tables

Page 27 of 864

Table 15-17. Ram Data Register High (RAMDH) .. 726

Table 15-18. Ram Data Register Low (RAMDL) ... 727

Table 15-19. Ram Command Register (RAMC) .. 727

Table 15-20. Ram Instruction Register (RAMI) ... 729

Table 15-21. Ram Instruction and Command Register (RAMIC) .. 729

Table 15-22. Special Attention Register .. 729

Table 15-23. Thread Control and Status Register (THRCTL) ... 730

Table A-1. A2 Core Instructions by Mnemonic .. 738

Table B-1. FU Instructions by Opcode ... 756

Table C-1. AXU Debug Select Register (ADBSR) ... 763

Table C-2. AXU Debug Multiplexer Debug and Trigger Groups .. 764

Table C-3. IU Debug Select Register (IDSR) ... 766

Table C-4. IU Debug Mux1 Debug and Trigger Groups .. 768

Table C-5. IU Debug Mux2 Debug and Trigger Groups .. 774

Table C-6. MMU and PC Debug Select Register (MPDSR) .. 778

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups ... 781

Table C-8. PC Debug Multiplexer Debug and Trigger Groups .. 796

Table C-9. XU Debug Select Register1 (XDSR1) .. 798

Table C-10. XU Debug Mux1 Debug and Trigger Groups ... 800

Table C-11. XU Debug Mux2 Debug and Trigger Groups ... 807

Table C-12. XU Debug Select Register2 (XDSR2) .. 817

Table C-13. XU Debug Mux3 Debug and Trigger Groups ... 819

Table C-14. XU Debug Mux4 Debug and Trigger Groups ... 830

Table D-1. Multiply Instructions and Their Associated Latency ... 844

Table D-2. Divide Instructions and Their Associated Latency ... 844

Table D-3. SRAM Operations .. 847

Table D-4. Interrupt Conditions .. 854

Table D-5. Flush Conditions .. 858

User’s Manual

A2 Processor

List of Tables

Page 28 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Revision Log

Page 29 of 864

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Pages Description

October 23, 2012
657

Version 1.3.
Updated Section 14.5.99 PVR - Processor Version Register.

May 25, 2011 — Version 1.2.
Removed “IBM Confidential.”

April 1, 2011 Version 1.1.

518 Added a programming note to Section 12.5.3 Execution.

90 Revised Table 2-11 Operand Handling Dependent on Alignment.

December 15, 2010 — Version 1.0. Initial release.

User’s Manual

A2 Processor

Revision Log

Page 30 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

About This Book

Page 31 of 864

About This Book

This user’s manual provides the architectural overview, programming model, and detailed information about
the instruction set, registers, and other facilities of the IBM® Power ISA A2 64-bit embedded processor core.

The A2 embedded controller core features:

• Power ISA Architecture

• Concurrent-issue pipeline with dynamic branch prediction

• Separate 16 KB each instruction and data caches

• Memory management unit (MMU) with a 512-entry translation lookaside buffer (TLB)

• 4 TB (42-bit) physical address capability

• 128-bit reload interface and 128-bit store interface

• ANSI/IEEE 754-1985 compliant floating-point1

• Single-precision and double-precision operation in hardware

• Auxiliary execution unit (AXU) that executes the Power ISA floating-point instruction set

• Super-pipelined: Single cycle throughput for most instructions

• In-order execution and completion

Who Should Use This Book

This book is for system hardware and software developers and for application developers who need to under-
stand the A2 core. The audience should understand embedded system design, operating systems, RISC
microprocessing, and computer organization and architecture.

How to Use This Book

This book describes the A2 core device architecture, programming model, registers, and instruction set. This
book contains the following chapters:

• Overview on page 45

• CPU Programming Model on page 61

• FU Programming Model on page 127

• Initialization on page 153

• Instruction and Data Caches on page 169

• Memory Management on page 185

• CPU Interrupts and Exceptions on page 293

• FU Interrupts and Exceptions on page 371

• Timer Facilities on page 387

1.Power ISA FUs require software support for IEEE compliance.

floating-point unit

instruction set architecture

kilobyte

terabyte

American National Standards Institute

Institute of Electrical and Electronics Engineers

User’s Manual

A2 Processor

About This Book

Page 32 of 864
Version 1.3

October 23, 2012

• Debug Facilities on page 399

• Performance Events and Event Selection on page 449

• Implementation Dependent Instructions on page 481

• Power Management Methods on page 525

• Register Summary on page 529

• SCOM Accessible Registers on page 701

This book contains the following appendixes:

• Processor Instruction Summary on page 737

• FU Instruction Summary on page 756

• Debug and Trigger Groups on page 761

• Instruction Execution Performance and Code Optimizations on page 833

• Programming Examples on page 861

Notation

The manual uses the following notational conventions:

• Active low signals are shown with an overbar (Active_Low).

• All numbers are decimal unless specified in some special way.

• 0bnnnn means a number expressed in binary format.

• 0xnnnn means a number expressed in hexadecimal format.

Underscores might be used between digits.

• RA refers to General Purpose Register (GPR) RA.

• (RA) refers to the contents of GPR RA.

• (RA|0) refers to the contents of GPR RA or to the value 0 if the RA field is 0.

• Bits in registers, instructions, and fields are specified as follows.

• Bits are numbered most-significant bit to least-significant bit, starting with bit 0.

• Xp means bit p of register, instruction, or field X.

• Xp:q means bits p through q of a register, instruction, or field X.

• Xp,q,... means bits p, q,... of a register, instruction, or field X.

• X[p] means a named field p of register X.

• X[p:q] means named fields p through q of register X.

• X[p,q,...] ... means named fields p, q,... of register X.

• ¬X means the ones complement of the contents of X.

• A period (.) as the last character of an instruction mnemonic means that the instruction records status
information in certain fields of the Condition Register as a side effect of execution, as described in
Section 12 Implementation Dependent Instructions on page 481.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

About This Book

Page 33 of 864

• The symbol  is used to describe the concatenation of two values. For example, 0b010  0b111 is the
same as 0b010111.

• xn means x raised to the n power.

• nx means the replication of x, n times (that is, x concatenated to itself n – 1 times). n0 and n1 are special
cases:

• n0 means a field of n bits with each bit equal to 0. Thus 50 is equivalent to 0b00000.

• n1 means a field of n bits with each bit equal to 1. Thus 51 is equivalent to 0b11111.

• /, //, ///,... denotes a reserved field in an instruction or in a register.

• ? denotes an allocated bit in a register.

• A shaded field denotes a field that is reserved or allocated in an instruction or in a register.

Related Publications
• Power ISA User Set Architecture (Book I, Version 2.06)

• Power ISA Virtual Environment Architecture (Book II, Version 2.06)

• Power ISA Operating Environment Architecture (Book III-E, Version 2.06)

The Power ISA specifications are available at www.power.org.

www.power.org

User’s Manual

A2 Processor

About This Book

Page 34 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Acronyms and Abbreviations

Page 35 of 864

List of Acronyms and Abbreviations

ABIST automatic built-in self test

ALU arithmetic logic unit

ANSI American National Standards Institute

ARE auto-reload enable

AS address space

ATB alternate time base category

attn attention

AXU auxiliary execution unit

B base category

BCLR branch conditional to Link Register

BE big endian

BHT branch history table

BP branch prediction

BRDCAST broadcast

BRT branch taken

BTA branch target address

CA carry

CAM content addressable memory

CC congruence class

CCH control channel

CCW coprocessor command word

CD coprocessor directive

CEE change exception enable

CI coprocessor instance

CIA current instruction address

CPU central processing unit

CRB coprocessor-request block

CS cache specification category

User’s Manual

A2 Processor

List of Acronyms and Abbreviations

Page 36 of 864
Version 1.3

October 23, 2012

CSB control status block

CSI context synchronizing instruction

DAC data address compare

DBA debug action

DBELL doorbell interrupt

DCC data cache controller

DCH data channel

DCI data cache invalidate instruction

DCR device control register

DEA data effective address

DEC decrementer

D-ERAT data ERAT

DERRDET D-ERAT error detect

DFP decimal floating-point category

DL downlink

DRA data real address

DSI data storage interrupt

DSP digital signal processor

DVC data value compare

E endian or embedded category

E.CD embedded.cache debug category

E.CI embedded.cache initialization category

E.DC embedded.device control category

E.ED embedded.enhanced debug category

E.HV embedded.hypervisor category

E.LE embedded.little-endian category

E.PC embedded.processor control category

E.PD embedded.external PID category

E.PM embedded.performance monitor category

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Acronyms and Abbreviations

Page 37 of 864

E.PT embedded.page table category

E.TWC embedded.tlb write conditional category

EA effective address

ECC error-correcting code

ECL embedded cache locking category

EDM external debug mode

EEN error entry number

EH exclusive access hint

EM embedded multithreading category

EM.TM embedded multithreading.thread management category

EPID external PID

EPLC external process ID load context

EPN effective page number

EPR external problem state bit

EPSC external process ID store context

ERAT effective to real address translation

ESID effective segment ID

EVPR Exception Vector Prefix Register

EXC external control category

EXP external proxy category

FE floating-point equal

FG floating-point greater than

FIFO first-in, first out

FIR fault isolation register

FIT fixed interval timer

FL floating-point less than

FP floating-point category

FP.R floating-point.record category

FPR floating-point register

User’s Manual

A2 Processor

List of Acronyms and Abbreviations

Page 38 of 864
Version 1.3

October 23, 2012

FU floating-point unit

FXU fixed-point unit

G guarded

GB gigabyte

GB/sec gigabytes per second

GHz gigahertz

GPR general purpose register

GS guest state

HTM hardware trace macro

HWT hardware table walker

I caching inhibited

I/O input/output

IAC instruction address compare

IEA instruction effective address

IBUFF instruction buffer

ICC instruction cache controller

ICI instruction cache immediate instruction

ICMP instruction complete

IDE imprecise debug event

IEA instruction effective address

IEEE Institute of Electrical and Electronics Engineers

I-ERAT instruction ERAT

IERRDET I-ERAT error detect

IFAR Instruction Fetch Address Register

IND indirect

INSTTRACE instruction trace mode

I/O input/output

IR intermediate result

IRPT interrupt

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Acronyms and Abbreviations

Page 39 of 864

IS instruction fetch address space OR invalidation select

ISA instruction set architecture

ISI instruction storage interrupt

IU instruction unit

IU0 - IU6 instruction unit pipeline stage

IVC instruction value compare

JTAG Joint Test Action Group

KB kilobyte

LA logical address

L1 level 1

L2 level 2

LA logical address

LBIST logic built-in self-test

LE little endian

LIFO last-in, first-out

LMA legacy integer multiply-accumulate1 category

LMQ load miss queue

LMV legacy move assist category

LPID logical partition identifier

LPIDTAG LPID tag

LPN logical page number

LRAT logical to real address translation

LRU least recently used

LSb least significant bit

LSB least significant byte

LSQ load/store quadword category

LSU load/store unit

M memory coherence required

MA move assist category

User’s Manual

A2 Processor

List of Acronyms and Abbreviations

Page 40 of 864
Version 1.3

October 23, 2012

MAS MMU assist

MAV MMU Architecture version

MB megabyte

MESI modified, exclusive, shared, invalid

MHz megahertz

MMC memory coherence category

MMU memory management unit

MSB most significant byte

MSRP Machine State Register protect

MT multithread

NaN Not a Number

NAND not AND

NH next higher in magnitude

NIA next instruction address

NL next lower in magnitude

NOR not OR

OV overflow

OX overflow exception

PC processor control

PCB pervasive control bus

PCR processor compatibility category

PIB pervasive interconnect bus

PID processor ID

PIRTAG PIR tag

PME power-management

PMU performance monitor unit

POR power-on reset

PS page size specified by PTE

PTE page table entry

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Acronyms and Abbreviations

Page 41 of 864

QNaN quiet NaN

RA real address

RAW read-after-write

REE reference exception enable

RET return

RISC reduced instruction set computing

RMT replacement management table

RO read only

ROM read-only memory

RPN real page number

S server category

S.PM server.performance monitor category

S.RPTA server.relaxed page table alignment category

SAO strong access order category

SCOM serial communications

SCPM store conditional page mobility category

SEM sequential execution model

SER soft error rate

SIMD single instruction, multiple data

SLB segment lookaside buffer

SNaN signalling NaN

SO summary overflow

SOC system-on-a-chip

SP signal processing engine category

SPE signal processing engine

SP.FD SPE.embedded float scalar double category

SP.FS SPE.embedded float scalar single category

SP.FV SPE.embedded float vector category

SPR Special Purpose Register

User’s Manual

A2 Processor

List of Acronyms and Abbreviations

Page 42 of 864
Version 1.3

October 23, 2012

SPRN special purpose register number

SPRG Special Purpose Registers General

SR supervisor mode read access

SRAM static random access memory

STM stream category

SW supervisor mode write access

SX supervisor mode execution access

TB terabyte

TBC transfer byte count

TBL time base lower

TBU time base upper

TERRDET TLB error detect

TGS translation guest space identifier

TID translation ID

TLB translation lookaside buffer

TLPID translation logical partition identifier

TRC trace category

TS translation space identifier

UC microcode unit or uncorrectable error

uCode microcode

UCT unavailable coprocessor type

UDE unconditional debug event

UDEC user decrementer

UE underflow exception

UL uplink

UND undefined

UR user mode read access

UTLB unified translation lookaside buffer

UW user mode write access

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

List of Acronyms and Abbreviations

Page 43 of 864

UX underflow exception or user mode execution access

V vector category

V.LE little-endian category

VA virtual addresses

VF virtualization fault

VHDL very-high-speed integrated circuit (VHSIC) hardware description language

VLE variable length encoding category

VLPT virtual linear page table

VPN virtual page number

VSID virtual segment ID

VSX vector-scalar extension category

VX invalid operation exception

W write-through

WAW write-after-write

WC wake control or write to clear

WDT watchdog timer

WIMGE write-through, caching-inhibited, memory coherency required, guarded, and endi-
anness attributes

WP watchdog timer period

WS write to set

WT wait category

XOR exclusive OR

XU execution unit

ZX zero divide exception

User’s Manual

A2 Processor

List of Acronyms and Abbreviations

Page 44 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 45 of 864

1. Overview

The IBM Power ISA A2 64-bit embedded processor core is an implementation of the scalable and flexible
Power ISA architecture. The A2 core implements four simultaneous threads of execution within the core.
Each thread of execution can be viewed as a processor within a 4-way multiprocessor with shared dataflow.
This gives the effective appearance of four independent processing units to software. The performance of the
four threads is limited because they share some resources such as the L1 and L2 caches.

The floating-point unit interfaces to the A2 processor core and incorporates a 6-stage arithmetic pipeline. The
pipeline enables one arithmetic instruction to be issued during each cycle. Floating-point instructions execute
with 6-cycle latency and 1-cycle throughput, except for operations on denormalized operands, division, and
square root.

1.1 A2 Core Key Design Fundamentals

The key design fundamentals of the A2 core are the following:

• 64-bit implementation of the Power ISA Version 2.06 Book III-E - Embedded Platform Environment.
– The A2 core provides binary compatibility for IBM PowerPC® application level code (problem state).
– The A2 core implements the Embedded Hypervisor Architecture to provide secure compute domains

and operating system virtualization.

• The A2 core is optimized for aggregate throughput.

– 4-way, fine-grained simultaneous multithreaded.
– 2-way concurrent issue. One branch/integer/load/store + one AXU (FP/vector).
– In-order dispatch and execution.
– 27 FO4 design.

• The A2 core is a modular design to support reuse.

– The A2 core provides a general purpose coprocessor (AXU) port to attached unique AXUs.

• AXUs have full ISA flexibility.
• AXUs currently include:

– FU - Power ISA V2.06 scalar double-precision floating-point unit.
• The AXU is an optional unit.

– The A2 core provides for an optional MMU unit.

• The MMU unit supports Power ISA V2.06 Book III-E Memory Management (MAV 2.0).
• Without the MMU, the A2 core supports the software-managed ERATs defined in this document.

– The A2 core provides for an optional microcode engine and ROM.

• Power ISA V2.06 Book I and II instructions are supported with a combination of microcoded
instructions and hardware implemented instructions.

instruction set architecture

auxiliary execution unit

floating point

floating-point unit

memory management unit

MMU Architecture version

read only memory

User’s Manual

A2 Processor

Overview

Page 46 of 864
Version 1.3

October 23, 2012

1.2 A2 Core Features

The A2 core is a high-performance, low-power engine that implements the flexible and powerful Power ISA
Architecture.

The A2 core contains a single-issue, in-order, pipelined processing unit, along with other functional elements
required by embedded product specifications. These other functions include memory management, cache
control, timers, and debug facilities. Interfaces for custom coprocessors and floating-point functions are
provided. The processor interface is 128 bits for reads and 128 bits (optional 256 bits version of the A2) for
writes and provides the framework to efficiently support system-on-a-chip (SOC) designs.

A2 core features include:

• High-performance, concurrent-issue, 64-bit RISC CPU

• 4-way, fine-grained simultaneous multithreaded implementation of the full 64-bit Power ISA Architec-
ture

– One outstanding I-fetch request to the L2 cache per thread
– One 8-entry instruction fetch buffer per thread
– Up to four instructions can be placed in the instruction buffer per cycle
– Up to one instruction can be taken out of the instruction buffer per cycle per thread
– Instruction decode and dependency per thread

• Two-way concurrent instruction decode and issue

• In-order dispatch, execution, and completion

• High-accuracy dynamic branch prediction

– 8 1024 entry branch history table with 2 bits of history
– Four-entry link stack per thread

• Highly-pipelined microarchitecture

– Full GPR bypass
– Full CR bypass
– Link Register bypass

• Single unified pipeline

• Complex integer, system, branch, simple integer, and load/store pipelines

• 5-port (3-read, 2-write) 32  4  64-bit General Purpose Register (GPR) file

• Hardware support for all CPU misaligned accesses (except for lmw and stmw)

• Full support for both big- and little-endian byte ordering

• Primary caches

• Separate instruction and data cache arrays

• Array size offerings: 16 KB

• Single-cycle access

• 64-byte line size

• 8-way set-associative D-cache, 4-way set-associative I-cache

• Write-through operation

• Unified (for all threads) nonblocking with up to eight outstanding load misses

reduced instruction set computing

central processing unit

level 2

general purpose register

Condition Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 47 of 864

• Cache line locking supported

• Caches can be partitioned to provide separate regions for transient instructions and data

• Critical-word-first data access and forwarding

• Pseudo LRU replacement policy

• Cache tags and data are parity protected. Errors are recoverable.

• Memory Management Unit (MMU)

• Support for Power ISA categories Embedded.Hypervisor (E.HV), Embedded.Hypervisor.LRAT
(E.HV.LRAT), Embedded.TLB Write Conditional (E.TWC), and Embedded.Page Table (E.PT)

• Support for Power ISA Book III-E MMU Architecture Version 2.0 (MAV 2.0)

• Separate instruction and data ERATs

– Fully associative 16-entry I-ERAT shared by all threads
– Fully associative 32-entry D-ERAT shared by all threads
– Entries can be shared by two or more threads via 4-bit thread ID mask field
– Exclusion range function to allow address “holes” at base of page entries
– ERATs operate in one of two modes: MMU mode or ERAT-only mode

1. MMU mode; ERAT with backing MMU
– Software-managed page tables and indirect (IND = 1) TLB entries
– Hardware handles ERAT miss with TLB hit
– Hardware handles direct (IND = 0) TLB miss via hardware page table walking
– Software handles indirect (IND = 1) TLB miss via instruction and data TLB miss exceptions
– Software can also install direct (IND = 0) TLB entries as required

2. ERAT-only mode; effective-to-real address translation with ERATs only
– MMU removed, no backing TLB
– Software-managed ERAT entries – I/D TLB miss exceptions

• 512-entry, 4-way set-associative unified TLB array

• Variable page sizes for direct (IND = 0) entries (4 KB, 64 KB, 1 MB, 16 MB, 1 GB), simultaneously
resident in TLB and/or ERAT, and indirect (IND = 1) entries (1 MB and 256 MB) in TLB

• 88-bit virtual address (contains 64-bit effective address)

• 42-bit (4 TB) real addressability

• Flexible TLB management via software management, or via hardware page table search

• Flexible storage attribute controls for write-through, caching inhibited, coherent, guarded, and byte
order (endianness)

• Four user-definable storage attribute controls

• TLB tags and data are parity protected against soft errors.

• Debug facilities

• Extensive hardware debug facilities

• Multiple instruction and data address breakpoints
• Data value compare
• Instruction value compare
• Single-step, branch, trap, and other debug events

• Noninvasive real-time software trace interface

least recently used

effective-to-real address translation

instruction ERAT

translation lookaside buffer

terabyte

User’s Manual

A2 Processor

Overview

Page 48 of 864
Version 1.3

October 23, 2012

• Timer facilities

• 64-bit time base
• Decrementer with auto-reload capability
• Fixed interval timer (FIT)
• Watchdog timer with critical interrupt and/or auto-reset

• Multiple core interfaces operating at core frequency

• System interface

• A command interface for instruction reads, data reads, and data writes

• A 256-bit interface for data writes (XUCR0[L2SIW] selects 128-bit mode)

• A 128-bit interface for instruction reads and data reads

• An invalidate interface to the core for the system to maintain L1 cache coherency

• Auxiliary execution unit (AXU) port

– Allows full ISA flexibility

• AXU includes support for separate decode and dependency
• Full support to stall and flush the processor

– A2 core pipeline exposed to allow high-performance, tightly coupled coprocessors

– Four-thread issue selection

– Provides functional extensions to the processor pipelines

– 256-bit load/store interface (direct access between AXU and the primary data cache)

– Interface can support AXU execution of all Power ISA floating-point instructions

– Attachment capability for DSP coprocessing such as accumulators and SIMD computation

– Enables customer-specific instruction enhancements for unique applications

• Clock and power management interface

• Debug interface

• Performance monitor event interface

Floating-point unit features include:

• IEEE 754-1985 compliance1

• Single-precision and double-precision operation in hardware

• Executes Power ISA floating-point instruction set

• Masked exceptions handled in hardware

• Super-pipelined; single-cycle throughput for most instructions

• In-order dispatch, execution, and completion

• Single instruction decode and issue

• Thirty-two 64-bit Floating-Point Registers (FPRs)

• 64-bit load/store interface

1. The A2 FPU requires software support for IEEE 754 compliance. See IEEE 754 and Architectural Compliance on page 56
for details.

level 1

digital signal processor

Institute of Electrical and Electronics Engineers

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 49 of 864

1.3 The A2 Core as a Power ISA Implementation

The A2 core implements the full, 64-bit fixed-point Power ISA Architecture. The A2 core fully complies with
these architectural specifications. The core does not implement the floating-point operations, although a
floating-point unit (FU) can be attached (using the AXU interface).

1.3.1 Embedded Hypervisor

The A2 core implements the Embedded Hypervisor Architecture to provide secure compute domains and
operating system virtualization. The Embedded Hypervisor Architecture introduces the concept of partitions
by two main architectural changes. The first is by extending the virtual address with a logical partition identi-
fier (LPID). The identifier serves an analogous purpose to the process ID (PID) and is used to distinguish
partitions. The second change is introducing a new privilege level above supervisor and reallocating owner-
ship of resources between the two levels. Moving the ownership of certain resources beyond the supervisor
helps software to provide secure compute domains.

In addition to providing logical partitions, the following requirements are set forth:

• Ensure a secure environment. An operating system in one logical partition is not allowed to affect the
resources of an operating system in another partition.

• Maintain compatibility with the existing programming model. An existing operating system today should
require only minor initialization changes to run.

• An operating system running in a logical partition should not be able to deny service to any shared
resources.

• Clean and secure communication channels between supervisor and embedded hypervisor states (in both
directions).

• The ability to run guest operating systems efficiently and provide real-time response to interrupts.

1.4 A2 Core Organization

The A2 core includes a concurrent-issue instruction fetch and decode unit with an attached branch unit,
together with a pipeline for complex integer, simple integer, and load/store operations. The A2 core also
includes a memory management unit (MMU); separate instruction and data cache units; pervasive and debug
logic; and timer facilities.

User’s Manual

A2 Processor

Overview

Page 50 of 864
Version 1.3

October 23, 2012

1.4.1 Instruction Unit

The instruction unit of the A2 core fetches, decodes, and issues two instructions from different threads per
cycle to any combination of the one execution pipeline and the AXU interface (see Section 1.4.2 Execution
Unit on page 51 and Section 1.5.2 Auxiliary Execution Unit (AXU) Port on page 59). The instruction unit
includes a branch unit that provides dynamic branch prediction using a branch history table (BHT). This
mechanism greatly improves the branch prediction accuracy and reduces the latency of taken branches, such
that the target of a branch can usually be executed immediately after the branch itself with no penalty.

Figure 1-1. A2 Core Organization

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 51 of 864

1.4.2 Execution Unit

The A2 core contains a single execution pipeline. The pipeline consists of seven stages and can access the
5-ported (three read, two write) GPR file.

The pipeline handles all arithmetic, logical, branch, and system management instructions (such as interrupt
and TLB management, move to/from system registers, and so on) as well as arithmetic, logical operations
and all loads, stores and cache management operations. The pipelined multiply unit can perform 32-bit  32-
bit multiply operations with single-cycle throughput and single-cycle latency. The width of the divider is 64
bits. Divide instructions dealing with 64-bit operands recirculate for 65 cycles, and operations with 32-bit oper-
ands recirculate for 32 cycles. No divide instructions are pipelined; they all require some recirculation.

All misaligned operations are handled in hardware with no penalty on any operation that is contained within
an aligned 32-byte region. The load/store pipeline supports all operations to both big-endian and little-endian
data regions.

Appendix D Instruction Execution Performance and Code Optimizations on page 833 provides detailed infor-
mation about instruction timings and performance implications in the A2 core.

1.4.3 Instruction and Data Cache Controllers

The A2 core provides separate instruction and data cache controllers and arrays, which allow concurrent
access and minimize pipeline stalls. The storage capacity of the cache arrays 16 KB each. Both cache
controllers have 64-byte lines, with 4-way set-associativity I-cache and 8-way set-associativity D-cache. Both
caches support parity checking on the tags and data in the memory arrays to protect against soft errors. If a
parity error is detected, the CPU forces an L1 miss and reloads from the system bus. The A2 core can be
configured to cause a machine check exception on a D-cache parity error.

The Power ISA instruction set provides a rich set of cache management instructions for software-enforced
coherency. See Instruction and Data Caches on page 169 for detailed information about the instruction and
data cache controllers.

1.4.3.1 Instruction Cache Controller

The instruction cache controller (ICC) delivers up to four instructions per cycle to the instruction unit of the A2
core. The ICC also handles the execution of the Power ISA instruction cache management instructions for
coherency.

1.4.3.2 Data Cache Controller

The data cache controller (DCC) handles all load and store data accesses, as well as the Power ISA data
cache management instructions. All misaligned accesses are handled in hardware. Cacheable load accesses
that are contained within a double quadword (32 bytes) are handled as a single request. Cacheable store or
caching inhibited loads or store accesses that are contained within a quadword (16 bytes) are handled as a
single request. Load and store accesses that cross these boundaries are broken into separate byte accesses
by the hardware by the microcode engine. When in 32-byte store mode (XUCR0[L2SIW] = 1), then all
misaligned store or load accesses contained within a double quadword (32 bytes) are handled as a single
request. This includes cacheable and caching inhibited stores and loads.

User’s Manual

A2 Processor

Overview

Page 52 of 864
Version 1.3

October 23, 2012

The DCC interfaces to the AXU port to provide direct load/store access to the data cache for AXU load and
store operations. Such AXU load and store instructions can access up to 32 bytes (a double quadword) in a
single cycle for cacheable accesses and can access up to 16 bytes (a quadword) in a single cycle for caching
inhibited accesses.

The data cache always operates in a write-through manner.

The DCC also supports cache line locking and “transient” data via way locking.

The DCC provides for up to eight outstanding load misses, and the DCC can continue servicing subsequent
load and store hits in an out-of-order fashion. Store-gathering is not performed within the A2 core.

1.4.4 Memory Management Unit (MMU)

The A2 core supports a flat, 42-bit (4 TB) real (physical) address space. This 42-bit real address is generated
by the MMU as part of the translation process from the 64-bit effective address, which is calculated by the
processor core as an instruction fetch or load/store address.

Note: In 32-bit mode, the A2 core forces bits 0:31 of the calculated 64-bit effective address to zeros. There-
fore, to have a translation hit in 32-bit mode, software needs to set the effective address upper bits to zero in
the ERATs and TLB.

The MMU provides address translation, access protection, and storage attribute control for embedded appli-
cations. The MMU supports demand paged virtual memory and other management schemes that require
precise control of logical to physical address mapping and flexible memory protection. Working with appro-
priate system level software, the MMU provides the following functions:

• Translation of the 88-bit virtual address, 1-bit guest state (GS), 8-bit logical partition ID (LPID), 1-bit
address space (AS) identifier, 14-bit process ID (PID), and 64-bit effective address into the 42-bit real
address (note the 1-bit indirect entry IND bit is not considered part of the virtual address)

• Page-level read, write, and execute access control

• Storage attributes for cache policy, byte order (endianness), and speculative memory access

• Software control of page replacement strategy

The translation lookaside buffer (TLB) is the primary hardware resource involved in the control of translation,
protection, and storage attributes. It consists of 512 entries, each specifying the various attributes of a given
page of the address space. The TLB is 4-way set associative. The TLB entries can be of type direct (IND = 0),
in which case the virtual address is translated immediately by a matching entry, or of type indirect (IND = 1),
in which case the hardware page table walker is invoked to fetch and install an entry from the hardware page
table.

The TLB tag and data memory arrays are parity protected against soft errors; if a parity error is detected
during an address translation, the TLB and ERAT caches treat the parity error like a miss and proceed to
either reload the entry with correct parity (in the case of an ERAT miss, TLB hit) and set the parity error bit in
the appropriate fault isolation register (FIR), or generate a TLB exception where software can take appro-
priate action (in the case of a TLB miss).

An operating system can choose to implement hardware page tables in memory that contain virtual to logical
translation page table entries (PTEs) per Category E.PT. These PTEs are loaded into the TLB by the hard-
ware page table walker logic after the logical address is converted to a real address via the logical to real
address translation (LRAT) per Category E.HV.LRAT. Software must install indirect (IND = 1) type TLB
entries for each page table that is to be traversed by the hardware walker. Alternately, software can manage

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 53 of 864

the establishment and replacement of TLB entries by simply not using indirect entries (that is, by using only
direct IND = 0 entries). This gives system software significant flexibility in implementing a custom page
replacement strategy. For example, to reduce TLB thrashing or translation delays, software can reserve
several TLB entries for globally accessible static mappings. The instruction set provides several instructions
for managing TLB entries. These instructions are privileged, and the processor must be in supervisor state i
for them to be executed.

The first step in the address translation process is to expand the effective address into a virtual address. This
is done by taking the 64-bit effective address and prepending to it a 1-bit guest state (GS) identifier, an 8-bit
logical partition ID (LPID), a 1-bit address space (AS) identifier, and the 14-bit process identifier (PID). The
1-bit indirect entry (IND) identifier is not considered part of the virtual address. The LPID value is provided by
the LPIDR register, and the PID value is provided by the PID register (see Memory Management on
page 185). The GS and AS identifiers are provided by the Machine State Register (MSR, see CPU Interrupts
and Exceptions on page 293), which contains separate bits for the instruction fetch address space (MSR[IS])
and the data access address space (MSR[DS]). Together, the 64-bit effective address and the other identi-
fiers form an 88-bit virtual address. This 88-bit virtual address is then translated into the 42-bit real address
using the TLB.

The MMU divides the address space (whether effective, virtual, or real) into pages. Five direct (IND = 0) page
sizes (4 KB, 64 KB, 1 MB, 16 MB, 1 GB) are simultaneously supported, such that at any given time the TLB
can contain entries for any combination of page sizes. The MMU also supports two indirect (IND = 1) page
sizes (1 MB and 256 MB) with associated sub-page sizes (see Section 6.16 Hardware Page Table Walking
(Category E.PT)). For an address translation to occur, a valid direct entry for the page containing the virtual
address must be in the TLB. An attempt to access an address for which no TLB direct exists results in a
search for an indirect TLB entry to be used by the hardware page table walker. If neither a direct or indirect
entry exists, an instruction (for fetches) or data (for load/store accesses) TLB miss exception occurs.

To improve performance, both the instruction cache and the data cache maintain separate shadow TLBs
called ERATs. The ERATs contain only direct (IND = 0) type entries. The instruction ERAT (I-ERAT) contains
16 entries, while the data ERAT (D-ERAT) contains 32 entries. These ERAT arrays minimize TLB contention
between instruction fetch and data load/store operations. The instruction fetch and data access mechanisms
only access the main unified TLB when a miss occurs in the respective ERAT. Hardware manages the
replacement and invalidation of both the I-ERAT and D-ERAT; no system software action is required in MMU
mode. In ERAT-only mode, an attempt to access an address for which no ERAT entry exists causes an
instruction (for fetches) or data (for load/store accesses) TLB miss exception.

Each TLB entry provides separate user state and supervisor state read, write, and execute permission
controls for the memory page associated with the entry. If software attempts to access a page for which it
does not have the necessary permission, an instruction (for fetches) or data (for load/store accesses) storage
exception occurs.

Each TLB entry also provides a collection of storage attributes for the associated page. These attributes
control cache policy (such as cacheability and write-through as opposed to copy-back behavior), byte order
(big-endian as opposed to little-endian), and enabling of speculative access for the page. In addition, a set of
four, user-definable storage attributes are provided. These attributes can be used to control various system-
level behaviors.

Section 6 Memory Management describes the A2 core MMU functions in greater detail.

User’s Manual

A2 Processor

Overview

Page 54 of 864
Version 1.3

October 23, 2012

1.4.5 Timers

The A2 core contains a time base and three timers: a decrementer (DEC), a fixed interval timer (FIT), and a
watchdog timer. The time base is a 64-bit counter that gets incremented at a frequency either equal to the
processor core clock rate or as controlled by a separate asynchronous timer clock input to the core. No inter-
rupt is generated as a result of the time base wrapping back to zero.

The DEC is a 32-bit register that is decremented at the same rate at which the time base is incremented. The
user loads the DEC register with a value to create the desired interval. When the register is decremented to
zero, a number of actions occur: the DEC stops decrementing, a status bit is set in the Timer Status Register
(TSR), and a decrementer exception is reported to the interrupt mechanism of the A2 core. Optionally, the
DEC can be programmed to reload automatically the value contained in the Decrementer Auto-Reload
Register (DECAR), after which the DEC resumes decrementing. The Timer Control Register (TCR) contains
the interrupt enable for the decrementer interrupt.

The FIT generates periodic interrupts based on the transition of a selected bit from the time base. Users can
select one of four intervals for the FIT period by setting a control field in the TCR to select the appropriate bit
from the time base. When the selected time base bit transitions from 0 to 1, a status bit is set in the TSR and
a fixed interval timer exception is reported to the interrupt mechanism of the A2 core. The FIT interrupt enable
is contained in the TCR.

Similar to the FIT, the watchdog timer also generates a periodic interrupt based on the transition of a selected
bit from the time base. Users can select one of four intervals for the watchdog period, again by setting a
control field in the TCR to select the appropriate bit from the time base. Upon the first transition from 0 to 1 of
the selected time base bit, a status bit is set in the TSR and a watchdog timer exception is reported to the
interrupt mechanism of the A2 core. The watchdog timer can also be configured to initiate a hardware reset if
a second transition of the selected time base bit occurs before the first watchdog exception being serviced.
This capability provides an extra measure of recoverability from potential system lock-ups.

The timer functions of the A2 core are more fully described in Timer Facilities on page 387

1.4.6 Debug Facilities

The A2 core debug facilities include debug modes for the various types of debugging used during hardware
and software development. Also included are debug events that allow developers to control the debug
process. Debug modes and debug events are controlled using debug registers in the chip. The debug regis-
ters are accessed either through software running on the processor, or through the serial communications
(SCOM) port.

The debug modes, events, controls, and interfaces provide a powerful combination of debug facilities for
hardware development tools such as the RISCWatch debugger from IBM.

A brief overview of the debug modes and development tool support are provided below. Debug Facilities on
page 399 provides detailed information about each debug mode and other debug resources.

1.4.6.1 Debug Modes

The A2 core supports two debug modes: internal and external. Each mode supports a different type of debug
tool used in embedded systems development. Internal debug mode supports software-based ROM monitors,
and external debug mode supports a hardware emulator type of debug. The debug modes are controlled by
Debug Control Register 0 (DBCR0) and the setting of bits in the Machine State Register (MSR).

read-only memory

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 55 of 864

Internal debug mode supports accessing architected processor resources, setting hardware and software
breakpoints, and monitoring processor status. In internal debug mode, debug events can generate debug
exceptions, which can interrupt normal program flow so that monitor software can collect processor status
and alter processor resources.

Internal debug mode relies on exception-handling software—running on the processor—along with an
external communications path to debug software problems. This mode is used while the processor continues
executing instructions and enables debugging of problems in application or operating system code. Access to
debugger software executing in the processor while in internal debug mode is through a communications port
on the processor board, such as a serial port or Ethernet connection.

External debug mode supports stopping, starting, and single-stepping the processor, accessing architected
processor resources, setting hardware and software breakpoints, and monitoring processor status. In
external debug mode, debug events can architecturally “freeze” the processor. While the processor is frozen,
normal instruction execution stops, and the architected processor resources can be accessed and altered
using a debug tool (such as RISCWatch) attached through the SCOM port. This mode is useful for debugging
hardware and low-level control software problems.

1.4.6.2 Development Tool Support

The A2 core provides powerful debug support for a wide range of hardware and software development tools.

RISCWatch is an example of a development tool that uses the external debug mode, debug events, and the
SCOM port to support hardware and software development and debugging.

1.4.7 Floating-Point Unit Organization

The floating-point unit incorporates a single-issue instruction decode and issue unit and a 6-stage arithmetic
pipeline working in parallel with a 4-stage load/store pipeline. The floating-point unit contains a Floating-Point
Register (FPR) file that interfaces to both pipelines. There are thirty-two 64-bit FPRs.

Figure 1-2 illustrates the logical organization of the A2 core and its relationship to the A2 processor core.

User’s Manual

A2 Processor

Overview

Page 56 of 864
Version 1.3

October 23, 2012

1.4.7.1 Arithmetic and Load/Store Pipelines

The A2 core has a single execution pipeline. The pipeline handles all computational instructions and reads
from and writes to the FPRs, Floating-Point Status and Control Register (FPSCR), and the Condition Register
(CR).

1.4.8 IEEE 754 and Architectural Compliance

The A2 core is IEEE 754 and Power ISA compliant and implements single-precision and double-precision
instructions.

Figure 1-2. A2 Processor Block Diagram

Instruction Decode/Issue Unit

AXU
Interface

Data
Cache

Arithmetic
Pipe

CR

Load/Store
Pipe

FPSCR

Thread 0 Thread 1

Unit

FPR0

FPR1

•
•
•

FPR1

FPR30

FPR31

Floating-Point AXUA2 Core

Thread 2 Thread 3

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 57 of 864

1.4.8.1 IEEE 754 Compliance

IEEE 754 requires a certain set of operations to be included in any implementation that claims to be
compliant. Such operations can be implemented in hardware, software, or a combination of the two. The
Power ISA floating-point architecture includes most of the required operations but some are missing. The
missing operations are: floating-point remainder, format conversion between binary and decimal, and format
conversion from integer to floating-point. It is necessary to provide a software library to support these missing
functions. In other words, the Power ISA Architecture requires software support to be fully complaint with the
IEEE standard.

1.4.9 Floating-Point Unit Implementation

Certain aspects of the behavior of the floating-point unit are implementation-specific.

1.4.9.1 Reciprocal Estimates

While the Power ISA Architecture defines single-precision reciprocal estimates and reciprocal square root
estimates to have relative errors of 2-5 and 2-8 respectively, both are implemented in the A2 core to have a
relative error of 2-14.

Programmers are encouraged to take advantage of this increased accuracy, but must be aware that code
that relies on this increased accuracy might not work on any other Power ISA FU.

1.4.9.2 Denormalized B Operands

The floating-point unit supports all denormal numbers in the dataflow with no additional latency except the
following cases:

1. B is a double-precision denorm AND NOT (move{fabs/fnabs/fneg} OR fsel OR fcfid OR mv_to_fpscr).

2. B is a single-precision denorm AND NOT (move{fabs/fnabs/fneg} OR fsel)

If any of the above cases are detected, the A2 core flushes to the microcode engine, which in turn issues a
prenormalization instruction, followed by the original instruction. The latency for these operations increases
by 20 cycles when this occurs.

1.4.9.3 Non-IEEE mode

Non-IEEE mode, controlled by the NI bit in the FPSCR, is intended to eliminate data-dependent overhead
cycles caused by exceptional operands or results. The result is faster, deterministic performance with reason-
able results. This mode is not supported by the A2 core. The value of the NI bit is ignored.

1.4.10 Floating-Point Unit Interfaces

The floating-point unit interfaces to the A2 processor core.

1.4.10.1 A2 Processor Core Interface

This interface enables the A2 core to interact with the A2 processor core. Interactions include resets and
updating the CR.

User’s Manual

A2 Processor

Overview

Page 58 of 864
Version 1.3

October 23, 2012

1.4.10.2 Clock and Power Management Interface

The CPM interface supports clock distribution and power management to reduce power consumption below
the normal operational level. External logic is necessary for the sleep mode to function.

1.5 Core Interfaces

The core includes the following interfaces:

• System interface

• Auxiliary execution unit (AXU) port

• SCOM, debug, trace, and performance monitor event ports

• Interrupt interface

• Clock and power management interface

Several of these interfaces are described briefly in the sections below.

1.5.1 System Interface

The A2 core interface has one command interface for instruction reads, data reads, and data writes, and uses
a 42-bit address bus. A full 64-byte cache line is implied for cacheable data reads and cacheable instruction
fetches. The transfer length is used to indicate 1 byte, 2 byte, 4 byte, 8 byte, 16 byte, and 32 byte for
noncacheable reads and 16 bytes for noncacheable instruction fetches. There is a 256-bit data interface for
data writes with 32 byte enables indicating which bytes should be written.

Data writes can be 1 byte, 2 byte, 4 byte, 8 byte, or 16 byte for noncacheable or cacheable writes. There is a
128-bit data reload interface for instruction reads and data reads. When the reload data is less than 16 bytes
(due to the transfer length indicating 1 byte, 2 byte, 4 byte or 8 byte), the data should be aligned within the 16
byte reload bus based on the associated command interface address. There is a back invalidate interface for
systems with an entity outside the A2 core (such as an L2 cache controller) that provide hardware cache
coherency.

A2 supports a mode that enables a 32-byte write bus to the A2 core/L2 interface. Only the AXU can produce
32-byte writes.

The command interface is a credit-based interface. The A2 core can handle up to eight load-type credits. The
actual number of load-type credits (L) that it will handle is initialized in the A2 core configuration ring. In the A2
core, there is a 12-entry load command queue that includes eight entries for data loads and four entries for
instruction fetches. An entity outside the A2 core is expected to have a near queue of L entries for load-type
operations and to give a pop indication to the A2 core as each is sent to the far queue that contains 8 to 12
entries. The specific command is indicated in the transaction type.

Examples of transaction types that expect data to be returned on the reload bus are instruction fetch, load,
and dcbt. Examples of transaction types that do not expect data to be returned on the reload bus are store,
dcbz and dcbf. The A2 core can handle up to 32 store-type credits. The actual number of credits (S) that it
will handle is initialized in the A2 core configuration ring.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Overview

Page 59 of 864

An entity outside the A2 core is expected to be able to queue the S store-type operations and give a pop indi-
cation to the A2 core for each as it is processed and the queue entry is available. For an entity outside the A2
core that also support store gathering, it should give a gather indication to the A2 core when the store is gath-
ered with an existing queue entry to let the A2 core know that an additional queue entry is available.

1.5.2 Auxiliary Execution Unit (AXU) Port

This interface provides the A2 core with the flexibility to attach a tightly-coupled coprocessor-type macro
incorporating instructions that go beyond those provided within the processor core itself. The AXU port
provides sufficient functionality for attachment of various coprocessor functions such as a fully-compliant
Power ISA floating-point unit (single- or double-precision), multimedia engine, DSP, or other custom function
implementing algorithms appropriate for specific system applications. The AXU interface supports can be
used with macros that contain their own register files. AXU load and store instructions can directly access the
A2 core data cache, with operands of up to a double quadword (32 bytes) in length.

The AXU interface provides the capability for a coprocessor to execute instructions that are not part of the
Power ISA instruction set at the same time that the A2 core is executing PowerISA instructions. Areas within
the architected instruction space allow for these customer-specific or application-specific AXU instruction set
extentions. Further description is beyond the scope of this document.

1.5.3 JTAG Port

The A2 core SCOM port supports the indirect attachment of a debug tool such as the RISCWatch product
from IBM. A logic block outside the A2 core must provide JTAG to SCOM port translation. Through the SCOM
port, and using the debug facilities designed into the A2 core, a debug workstation can single-step the
processor and interrogate the internal processor state to facilitate hardware and software debugging.

digital signal processor

Joint Test Action Group

User’s Manual

A2 Processor

Overview

Page 60 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 61 of 864

2. CPU Programming Model

The programming model of the A2 core describes how the following features and operations of the core
appear to programmers:

• Logical Partitioning on page 61

• Storage Addressing on page 62

• Multithreading on page 70

• Registers on page 82

• 32-Bit Mode on page 85

• Instruction Categories on page 86

• Instruction Classes on page 87

• Implemented Instruction Set Summary on page 88

• Wait Instruction on page 98

• Branch Processing on page 99

• Integer Processing on page 110

• Processor Control on page 113

• Privileged Modes on page 120

• Speculative Accesses on page 122

• Synchronization on page 122

• Software Transactional Memory Acceleration on page 125

2.1 Logical Partitioning

2.1.1 Overview

Logical partitioning defines instructions, resources, and methods for establishing an additional attribute of
processor privilege called a guest state.

The Embedded.Hypervisor category permits processors and portions of real storage to be assigned to local
collections called partitions such that a program executing on a processor in one partition cannot interfere
with any program executing on a processor in a different partition. This isolation can be provided for both
problem state and privileged state programs by using a layer of trusted software called a hypervisor program
(or simply a “hypervisor”) and the resources provided by this category to manage system resources. The
collection of software that runs in a given partition and its associated resources is called a guest. The guest
normally includes an operating system (or other system software) running in privileged state and its associ-
ated processes running in the problem state under the management of the hypervisor. The processor is in the
guest state when a guest is executing, and it is in the hypervisor state when the hypervisor is executing. The
processor is executing in the guest state when MSR[GS] = 1.

A2 implements 28 partitions. See Section 6.17.2 Logical Partition ID Register (LPIDR) on page 245. All
threads of a single A2 core must be assigned to the same logical partition.

User’s Manual

A2 Processor

CPU Programming Model

Page 62 of 864
Version 1.3

October 23, 2012

A processor is assigned to one partition at any given time. A processor can be assigned to any given partition
without consideration of the physical configuration of the system (for example, shared registers, caches,
organization of the storage hierarchy), except that processors that share certain hypervisor resources might
need to be assigned to the same partition. Additionally, certain resources can be used by the guest at the
discretion of the hypervisor. Such usage might cause interference between partitions, and the hypervisor
should allocate those resources accordingly. The primary registers and facilities used to control logical parti-
tioning are described in the following subsections. Other facilities associated with logical partitioning are
described within the appropriate sections within this book.

Category Embedded.Hypervisor changes the operating system programming model to allow for easier virtu-
alization, while retaining a default backwards compatible mode where an operating system written for proces-
sors not containing this category will still operate as before without using the logical partitioning facilities.

2.2 Storage Addressing

As a 64-bit implementation of the Power ISA Architecture, the A2 core implements a uniform 64-bit effective
address (EA) space. Effective addresses are expanded into virtual addresses and then translated to 42-bit
(4 TB) real addresses by the memory management unit (see Memory Management on page 185 for more
information about the translation process). The organization of the real address space into a physical address
space is system-dependent, and is described in the user’s manuals for chip-level products that incorporate an
A2 core.

The A2 core generates an effective address whenever it executes a storage access, branch, cache manage-
ment, or translation look aside buffer (TLB) management instruction, or when it fetches the next sequential
instruction.

2.2.1 Storage Operands

Bytes in storage are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Data storage operands accessed by the integer load/store instructions can be bytes, halfwords, words,
doublewords or—for load/store multiple and string instructions—a sequence of words or bytes, respectively.
Data storage operands accessed by auxiliary execution unit (AXU) load/store instructions can be bytes, half-
words, words, doublewords, quadwords or double quadwords. The address of a storage operand is the
address of its first byte (that is, of its lowest-numbered byte). Byte ordering can be either big endian or little
endian, as controlled by the endian storage attribute (see Byte Ordering on page 66; also see Endian (E) on
page 197 for more information about the endian storage attribute).

Operand length is implicit for each scalar storage access instruction type (that is, each storage access
instruction type other than the load/store multiple and string instructions). The operand of such a scalar
storage access instruction has a “natural” alignment boundary equal to the operand length. In other words,
the natural address of an operand is an integral multiple of the operand length. A storage operand is said to
be aligned if it is aligned at its natural boundary; otherwise, it is said to be unaligned.

Data storage operands for storage access instructions have the characteristics shown in Table 2-1 on
page 63.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 63 of 864

The alignment of the operand effective address of some storage access instructions might affect perfor-
mance; in some cases, it might cause an alignment exception to occur. For such storage access instructions,
the best performance is obtained when the storage operands are aligned. Table 2-2 summarizes the effects
of alignment on those storage access instruction types for which such effects exist. If an instruction type is not
shown in the table, there are no alignment effects for that instruction type.

Table 2-1. Data Operand Definitions

Storage Access Instruction Type Operand Length Addr[59:63] if Aligned

Byte (or String) 8 bits 0bxxxxx

Halfword 2 bytes 0bxxxx0

Word (or Multiple) 4 bytes 0bxxx00

Doubleword 8 bytes 0bxx000

Quadword (AXU only) 16 bytes 0bx0000

Double Quadword (AXU only) 32 bytes 0b00000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

Table 2-2. Alignment Effects for Storage Access Instructions (Sheet 1 of 2)

Storage Access Instruction Type Alignment Effects

Integer cacheable load halfword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] = 0b11111); otherwise no
effect. (See notes.)

Integer cacheable store or caching
inhibited load/store halfword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] = 0b1111); otherwise no
effect. (See notes.)

Integer cacheable load word Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b11100); otherwise no
effect. (See notes.)

Integer cacheable store or caching
inhibited load/store word

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b1100); otherwise no
effect. (See notes.)

Integer cacheable load doubleword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b11000); otherwise no
effect. (See notes.)

Integer cacheable store or caching
inhibited load/store doubleword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b1000); otherwise no
effect. (See notes.)

Integer load/store multiple Broken into a series of word (4-byte) accesses until the last word is accessed. The load/store
multiple address must be word aligned. (See notes.)

Integer load/store string Broken into a series of byte accesses until the last byte is accessed. (See notes.)

AXU cacheable load halfword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] = 0b11111); otherwise no
effect. (See notes.)

AXU cacheable store or caching inhib-
ited load/store halfword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] = 0b1111); otherwise no
effect. (See notes.)

AXU cacheable load word Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b11100); otherwise no
effect. (See notes.)

AXU cacheable store or caching inhib-
ited load/store word

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b1100); otherwise no
effect. (See notes.)

AXU cacheable load doubleword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b11000); otherwise no
effect. (See notes.)

AXU cacheable store or caching inhib-
ited load/store doubleword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b1000); otherwise no
effect. (See notes.)

User’s Manual

A2 Processor

CPU Programming Model

Page 64 of 864
Version 1.3

October 23, 2012

Cache management instructions access cache block operands; for the A2 core, the cache block size is 64
bytes. However, the effective addresses calculated by cache management instructions are not required to be
aligned on cache block boundaries. Instead, the architecture specifies that the associated low-order effective
address bits (bits 58:63 for the A2 core) are ignored during the execution of these instructions.

Similarly, the TLB management instructions access page operands, and—as determined by the page size—
the associated low-order effective address bits are ignored during the execution of these instructions.

Instruction storage operands, on the other hand, are always 4 bytes long, and the effective addresses calcu-
lated by branch instructions are therefore always word-aligned.

2.2.2 Effective Address Calculation

For a storage access instruction, if the sum of the effective address and the operand length exceeds the
maximum effective address of 264–1 for 64-bit mode or 232–1 in 32-bit mode (that is, the storage operand
itself crosses the maximum address boundary), the result of the operation is undefined, as specified by the
architecture. The A2 core performs the operation as if the storage operand wrapped around from the
maximum effective address to effective address 0. Software, however, should not depend upon this behavior,
so that it can be ported to other implementations that do not handle this scenario in the same fashion. Accord-
ingly, software should ensure that no data storage operands cross the maximum address boundary.

Note: Because instructions are words and because the effective addresses of instructions are always implic-
itly on word boundaries, it is not possible for an instruction storage operand to cross any word boundary,
including the maximum address boundary.

Effective address arithmetic, which calculates the starting address for storage operands, wraps around from
the maximum address to address 0 for all effective address computations except next sequential instruction
fetching. See Instruction Storage Addressing Modes on page 65 for more information about next sequential
instruction fetching at the maximum address boundary.

AXU cacheable load quadword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b10000); otherwise no
effect. (See notes.)

AXU cacheable store or caching inhib-
ited load/store quadword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b0000); otherwise no
effect. (See notes.)

AXU cacheable load double quadword Broken into byte accesses if crosses 32-byte boundary (EA[59:63] > 0b00000); otherwise no
effect. (See notes.)

AXU cacheable store or caching inhib-
ited load/store double quadword

Broken into byte accesses if crosses 16-byte boundary (EA[60:63] > 0b0000); otherwise no
effect. (See notes.)

Notes:

• Any unaligned access that also crosses a 4 K page boundary causes an alignment exception.
• An auxiliary processor can specify that the EA for a given AXU load/store instruction must be aligned at the operand-size boundary

or, alternatively, at a word boundary. If the AXU so indicates this requirement and the calculated EA fails to meet it, the A2 core
generates an alignment exception. Alternatively, an auxiliary processor can specify that the EA for a given AXU load/store instruc-
tion should be “forced” to be aligned by ignoring the appropriate number of low-order EA bits and processing the AXU load/store as
if those bits were 0. Byte, halfword, word, doubleword, and quadword AXU load/store instructions ignore 0, 1, 2, 3, and 4 low-order
EA bits, respectively.

Table 2-2. Alignment Effects for Storage Access Instructions (Sheet 2 of 2)

Storage Access Instruction Type Alignment Effects

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 65 of 864

2.2.2.1 Data Storage Addressing Modes

There are two data storage addressing modes supported by the A2 core:

• Base + displacement (D-mode) addressing mode:

The 16-bit D field is sign-extended and added to the contents of the GPR designated by RA or to zero if
RA = 0.

• Base + index (X-mode) addressing mode:

The contents of the GPR designated by RB (or the value 0 for lswi and stswi) are added to the contents
of the GPR designated by RA or to 0 if RA = 0.

2.2.2.2 Instruction Storage Addressing Modes

There are four instruction storage addressing modes supported by the A2 core:

• I-form branch instructions (unconditional):

The 24-bit LI field is concatenated on the right with 0b00, sign-extended, and then added to either the
address of the branch instruction if AA = 0 or to 0 if AA = 1.

• Taken B-form branch instructions:

The 14-bit BD field is concatenated on the right with 0b00, sign-extended, and then added to either the
address of the branch instruction if AA = 0 or to 0 if AA = 1.

• Taken XL-form branch instructions:

The contents of bits 0:61 of the Link Register (LR) or the Count Register (CTR) are concatenated on the
right with 0b00 to form the 64-bit effective address of the next instruction.

Note: In 32-bit mode, the A2 core forces bits 0:31 of the calculated 64-bit effective address to zeros.

• Next sequential instruction fetching (including nontaken branch instructions):

The value 4 is added to the address of the current instruction to form the 64-bit effective address of the
next instruction. If the address of the current instruction is 0xFFFF_FFFF_FFFF_FFFC in 64-bit mode or
0x0000_0000_FFFF_FFFC in 32-bit mode, the A2 core wraps the next sequential instruction address
back to address 0. This behavior is not required by the architecture, which specifies that the next sequen-
tial instruction address is undefined under these circumstances. Therefore, software should not depend
upon this behavior, so that it can be ported to other implementations that do not handle this scenario in
the same fashion. Accordingly, if software wants to execute across this maximum address boundary and
wrap back to address 0, it should place an unconditional branch at the boundary with a displacement of 4.

In addition to the above four instruction storage addressing modes, the following behavior applies to
branch instructions:

• Any branch instruction with LK = 1:

The value 4 is added to the address of the current instruction and the low-order 64 bits of the result are
placed into the LR. As for the similar scenario for next sequential instruction fetching, if the address of the
branch instruction is 0xFFFF_FFFF_FFFF_FFFC in 64-bit mode or 0x0000_0000_FFFF_FFFC in 32-bit
mode, the result placed into the LR is architecturally undefined, although once again the A2 core wraps
the LR update value back to address 0. Again, however, software should not depend on this behavior so
that it can be ported to implementations that do not handle this scenario in the same fashion.

general purpose register

User’s Manual

A2 Processor

CPU Programming Model

Page 66 of 864
Version 1.3

October 23, 2012

2.2.3 Byte Ordering

If scalars (individual data items and instructions) were indivisible, there would be no such concept as “byte
ordering.” It is meaningless to consider the order of bits or groups of bits within the smallest addressable unit
of storage, because nothing can be observed about such order. Only when scalars, which the programmer
and processor regard as indivisible quantities, can comprise more than one addressable unit of storage does
the question of order arise.

For a machine in which the smallest addressable unit of storage is the 64-bit doubleword, there is no question
of the ordering of bytes within doublewords. All transfers of individual scalars between registers and storage
are of doublewords, and the address of the byte containing the high-order 8 bits of a scalar is no different
from the address of a byte containing any other part of the scalar.

For the Power ISA Architecture, as for most current computer architectures, the smallest addressable unit of
storage is the 8-bit byte. Many scalars are halfwords, words, or doublewords that consist of groups of bytes.
When a word-length scalar is moved from a register to storage, the scalar occupies 4 consecutive byte
addresses. It thus becomes meaningful to discuss the order of the byte addresses with respect to the value of
the scalar: which byte contains the highest-order 8 bits of the scalar, which byte contains the next-highest-
order 8 bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially arbitrary. There are 24
ways to specify the ordering of 4 bytes within a word, but only two of these orderings are sensible:

• The ordering that assigns the lowest address to the highest-order (left-most) 8 bits of the scalar, the next
sequential address to the next-highest-order 8 bits, and so on.

This ordering is called big endian because the “big end” (most-significant end) of the scalar, considered
as a binary number, comes first in storage. IBM RISC System/6000, IBM System/390®, and Motorola
680x0 are examples of computer architectures using this byte ordering.

• The ordering that assigns the lowest address to the lowest-order (“right-most”) 8 bits of the scalar, the
next sequential address to the next-lowest-order 8 bits, and so on.

This ordering is called little endian because the “little end” (least-significant end) of the scalar, considered
as a binary number, comes first in storage. The Intel x86 is an example of a processor architecture using
this byte ordering.

Power ISA supports both big-endian and little-endian byte ordering, for both instruction and data storage
accesses. Which byte ordering is used is controlled on a memory page basis by the endian (E) storage
attribute, which is a field within the TLB entry for the page. The endian storage attribute is set to 0 for a big-
endian page and is set to 1 for a little-endian page. See Memory Management on page 185 for more informa-
tion about memory pages, the TLB, and storage attributes, including the endian storage attribute.

2.2.3.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a character string. The
comments show the value assumed to be in each structure element; these values show how the bytes
comprising each structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
int c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */

reduced instruction set computing

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 67 of 864

short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on desirable boundaries.
The following structure mapping examples show each scalar aligned at its natural boundary. This alignment
introduces padding of 4 bytes between a and b, one byte between d and e, and two bytes between e and f.
The same amount of padding is present in both big-endian and little-endian mappings.

Big-Endian Mapping

The big-endian mapping of structure s follows (the data is highlighted in the structure mappings). Addresses,
in hexadecimal, are below the data stored at the address. The contents of each byte, as defined in structure
s, is shown as a (hexadecimal) number or character (for the string elements). The shaded cells correspond to
padded bytes.

Little-Endian Mapping

Structure s is shown mapped little endian.

2.2.3.2 Instruction Byte Ordering

Power ISA defines instructions as aligned words (4 bytes) in memory. As such, instructions in a big-endian
program image are arranged with the most-significant byte (MSB) of the instruction word at the lowest-
numbered address.

11 12 13 14

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

User’s Manual

A2 Processor

CPU Programming Model

Page 68 of 864
Version 1.3

October 23, 2012

Consider the big-endian mapping of instruction p at address 0x00, where, for example, p = add r7, r7, r4:

On the other hand, in a little-endian mapping the same instruction is arranged with the least-significant byte
(LSB) of the instruction word at the lowest-numbered address:

By the definition of Power ISA bit numbering, the most-significant byte of an instruction is the byte containing
bits 0:7 of the instruction. As depicted in the instruction format diagrams (see Instruction Formats in the
Power ISA specification), this most-significant byte is the one that contains the primary opcode field (bits 0:5).
Due to this difference in byte orderings, the processor must perform whatever byte reversal is required
(depending on the particular byte ordering in use) to correctly deliver the opcode field to the instruction
decoder. In the A2 core, this reversal is performed between the memory interface and the instruction cache,
according to the value of the endian storage attribute for each memory page, such that the bytes in the
instruction cache are always correctly arranged for delivery directly to the instruction decoder.

If the endian storage attribute for a memory page is reprogrammed from one byte ordering to the other, the
contents of the memory page must be reloaded with program and data structures that are in the appropriate
byte ordering. Furthermore, anytime the contents of instruction memory change, the instruction cache must
be made coherent with the updates by invalidating the instruction cache and refetching the updated memory
contents with the new byte ordering.

2.2.3.3 Data Byte Ordering

Unlike instruction fetches, data accesses cannot be byte-reversed between memory and the data cache.
Data byte ordering in memory depends upon the data type (byte, halfword, word, and so on) of a specific data
item. It is only when moving a data item of a specific type from or to an architected register (as directed by the
execution of a particular storage access instruction) that it becomes known what kind of byte reversal might
be required due to the byte ordering of the memory page containing the data item. Therefore, byte reversal
during load or store accesses is performed between the data cache (or memory, on a data cache miss, for
example) and the load register target or store register source, depending on the specific type of load or store
instruction (that is, byte, halfword, word, and so on).

Comparing the big-endian and little-endian mappings of structure s, as shown in Structure Mapping Exam-
ples on page 66, the differences between the byte locations of any data item in the structure depends upon
the size of the particular data item. For example (again referring to the big-endian and little-endian mappings
of structure s):

• The word a has its 4 bytes reversed within the word spanning addresses 0x00 – 0x03.

• The halfword e has its 2 bytes reversed within the halfword spanning addresses 0x1C – 0x1D.

Note: The array of bytes d, where each data item is a byte, is not reversed when the big-endian and little-
endian mappings are compared. For example, the character 'A' is located at address 0x14 in both the big-
endian and little-endian mappings.

The size of the data item being loaded or stored must be known before the processor can decide whether,
and if so, how, to reorder the bytes when moving them between a register and the data cache (or memory).

MSB LSB

0x00 0x01 0x02 0x03

LSB MSB

0x00 0x01 0x02 0x03

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 69 of 864

• For byte loads and stores, including strings, no reordering of bytes occurs regardless of byte ordering.

• For halfword loads and stores, bytes are reversed within the halfword for one byte order with respect to
the other.

• For word loads and stores (including load/store multiple), bytes are reversed within the word for one byte
order with respect to the other.

• For doubleword loads and stores, bytes are reversed within the doubleword for one byte order with
respect to the other.

• For quadword loads and stores (AXU loads/stores only), bytes are reversed within the quadword for one
byte order with respect to the other.

Note: This mechanism applies independent of the alignment of data. In other words, when loading a multi-
byte data operand with a scalar load instruction, bytes are accessed from the data cache (or memory) starting
with the byte at the calculated effective address and continuing with consecutively higher-numbered bytes
until the required number of bytes have been retrieved. Then, the bytes are arranged such that either the byte
from the highest-numbered address (for big-endian storage regions) or the lowest-numbered address (for lit-
tle-endian storage regions) is placed into the least-significant byte of the register. The rest of the register is
filled in corresponding order with the rest of the accessed bytes. An analogous procedure is followed for sca-
lar store instructions.

For load/store multiple instructions, each group of 4 bytes is transferred between memory and the register
according to the procedure for a scalar load word instruction.

For load/store string instructions, the most-significant byte of the first register is transferred to or from memory
at the starting (lowest-numbered) effective address, regardless of byte ordering. Subsequent register bytes
(from most-significant to least-significant, and then moving into the next register, starting with the most-signif-
icant byte, and so on) are transferred to or from memory at sequentially higher-numbered addresses. This
behavior for byte strings ensures that if two strings are loaded into registers and then compared, the first
bytes of the strings are treated as most significant with respect to the comparison.

2.2.3.4 Byte-Reverse Instructions

The Power ISA defines load/store byte-reverse instructions, which can access storage that is specified as
being of one byte ordering in the same manner that a regular (that is, nonbyte-reverse) load/store instruction
would access storage that is specified as being of the opposite byte ordering. In other words, a load/store
byte-reverse instruction to a big-endian memory page transfers data between the data cache (or memory)
and the register in the same manner that a normal load/store would transfer the data to or from a little-endian
memory page. Similarly, a load/store byte-reverse instruction to a little-endian memory page transfers data
between the data cache (or memory) and the register in the same manner that a normal load/store would
transfer the data to or from a big-endian memory page.

The function of the load/store byte-reverse instructions is useful when a particular memory page contains a
combination of data with both big-endian and little-endian byte ordering. In such an environment, the endian
storage attribute for the memory page would be set according to the predominant byte ordering for the page,
and the normal load/store instructions would be used to access data operands that used this predominant
byte ordering. Conversely, the load/store byte-reverse instructions would be used to access the data oper-
ands that were of the other (less prevalent) byte ordering.

Software compilers cannot typically make general use of the load/store byte-reverse instructions, so they are
ordinarily used only in special, hand-coded device drivers.

User’s Manual

A2 Processor

CPU Programming Model

Page 70 of 864
Version 1.3

October 23, 2012

2.3 Multithreading

The A2 core has four threads that allow simultaneous execution within the processor and can be viewed as a
4-way multiprocessor with shared dataflow. This gives the effective appearance of four independent
processing units from the view of software. The performance of each thread can be limited due to the sharing
of resources between each of the threads.

2.3.1 Thread Identification

2.3.1.1 Thread Identification Register (TIR)

The TIR is a read-only register that can be used to distinguish a thread from other threads on the A2 core.
The TIR returns a value n, where n is referred to as “thread n.”

2.3.1.2 Processor Identification Register (PIR)

The PIR is a read-only register that uniquely identifies a specific instance of a processor thread, within a
multiprocessor configuration, enabling software to determine exactly which thread it is running on. This capa-
bility is important for operating system software within multiprocessor configurations.

Register Short Name: TIR Read Access: Hypv

Decimal SPR Number: 446 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:61 /// 0x0 Reserved

62:63 TID 0b00 Processor Thread ID
This field can be used to distinguish the thread from other threads on the processor.
Threads are numbered sequentially, with valid values ranging from 0 to 3.

Register Short Name: PIR Read Access: Priv

Decimal SPR Number: 286 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: GPIR Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:61 CID IO 0x0 Processor Core ID IO

Returns the value of the I/O pin an_ac_coreid. This can be used to distinguish a processor
core from other processor cores in the system.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 71 of 864

2.3.1.3 Guest Processor Identification Register (GPIR)

The GPIR is a register that identifies a specific instance of a processor thread for the guest operating system.
The GPIR is used to filter incoming processor messages. See Processor Messages on page 357.

2.3.2 Thread Run State

The A2 core provides several methods for controlling a thread’s run state. For a thread to fetch instructions,
all methods outlined below must be properly configured. If any one I/O or register is configured to stop a
thread, the affected thread will not fetch instructions.

2.3.2.1 Thread Stop I/O Pin

The I/O pin, an_ac_pm_thread_stop, can be used to stop the A2 core from fetching instructions. Stopping a
thread causes all instructions that have begun executing to be completed and all prefetched instructions to be
discarded.

2.3.2.2 Thread Control and Status Register (THRCTL)

The SCOM accessible THRCTL register can control the thread run state to allow an external debugger
control of the processor. See Direct Access to I-Cache and D-Cache Directories on page 437. Stopping a
thread via THRCTRL causes all instructions that have begun executing to be completed and all prefetched
instructions to be discarded.

62:63 TID 0b00 Processor Thread ID

This field can be used to distinguish the thread from other threads on the processor.
Threads are numbered sequentially, with valid values ranging from 0 to 3.

Register Short Name: GPIR Read Access: Priv

Decimal SPR Number: 382 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32:49 VPTAG 0x0 Virtual Processor Tag

Storage used by the guest operating system to identify the virtual processor on which the
operating system is running.

50:63 DBTAG 0x0 Doorbell Tag

Used to match guest doorbell messages that are sent to all the processors and virtual pro-
cessors in a coherence domain. If a sent guest doorbell message tag matches the DBTAG
field, a guest doorbell is said to be accepted on the (virtual) processor.

Bits Field Name Initial
Value Description

serial communications

User’s Manual

A2 Processor

CPU Programming Model

Page 72 of 864
Version 1.3

October 23, 2012

2.3.2.3 Core Configuration Register 0 (CCR0)

The CCR0 is used to disable or enable threads. When a thread is disabled by setting the CCR0 bit corre-
sponding to the thread to 0, all instructions that have begun executing are completed and all prefetched
instructions are discarded. Subsequent instructions are not prefetched or initiated. Asynchronous interrupts
or other conditions that are unmasked and enabled in CCR1 for the thread will cause the thread to be re-
enabled. Executing a wait instruction on a thread will cause that thread’s CCR0[WE] to be set to 1. CCR0
also contains controls for allowing the processor to enter a power managed state. See Section 13 Power
Management Methods on page 525 for information about power savings modes.

Programming Note: When using mtccr0 to put other threads to sleep, using an external interrupt or any
asynchronous interrupt as the wake-up method is not reliable. The thread being put to sleep might have just
taken an interrupt and MSR(EE) is zero, preventing wake-up. In this case, mtccr0 should be used to wake up
the sleeping threads. A thread can put itself to sleep using mtccr0 or the wait instruction and wake up using
an external interrupt or any asynchronous interrupt reliably.

2.3.2.4 Thread Enable Register (TENS, TENC)

The Thread Enable Register is used to disable or enable threads and is provided as a means to access
shared resources (see Accessing Shared Resources on page 78). When a thread is disabled by setting the
TEN bit corresponding to the thread 0, all instructions that have begun executing are completed and all
prefetched instructions are discarded. Subsequent instructions are not prefetched or initiated. All asynchro-
nous interrupts for the thread are delayed until the thread is re-enabled.

Register Short Name: CCR0 Read Access: Hypv

Decimal SPR Number: 1008 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

32:33 PME 0b00 Power Management Enable

00 Disabled: No power savings mode entered.
01 PM_Sleep_enable: PM_Sleep state entered when all threads are stopped.
10 PM_RVW_enable: PM_RVW state entered when all threads are stopped.
11 Disabled2: No power savings mode entered.
Note: See the A2 User Manual, Power Management Methods section.

34:51 /// 0x0 Reserved

52:55 WEM 0b0000 Wait Enable Mask

0 No effect to CCR0[WE].
1 Allows writing of the corresponding bit in the CCR0[WE] field. These bits are non-

persistent. A read always returns zeros.

56:59 /// 0b0000 Reserved

60:63 WE 0b0000 Wait Enable

For t < 4, bit 63-t corresponds to thread t:
0 Indicates that the thread is enabled.
1 Indicates that the thread is disabled.
Note: This field can also be set by a wait instruction.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 73 of 864

The TEN is accessed by using two registers: TENS and TENC. When TENS is written, threads for which the
corresponding bit in TENS is 1 are enabled; threads for which the corresponding bit in TENS is 0 are unaf-
fected. When TENC is written, threads for which the corresponding bit in TENC is 1 are disabled; threads for
which the corresponding bit in TENC is 0 are unaffected. When either SPR is read, the current value of the
TEN is returned.

2.3.2.5 Thread Enable Status Register (TENSR)

The TENSR indicates which threads are quiesced.

Programming Note: The TENSR is only valid after a context synchronizing instruction or an event that pre-
cisely stops a thread, such as a write to TEN.

Programming Note: When thread T1 disables other threads, Tn, it sets the 10 bits corresponding to Tn to
zeros. To ensure that all operations being performed by threads Tn have been performed with respect to all
threads on the processor, thread T1 reads the TENSR until all the bits corresponding to the disabled threads,
Tn, are zeros.

Register Short Name: TENS Read Access: Hypv

Decimal SPR Number: 438 Write Access: Hypv

Initial Value: 0x0000000000000001 Duplicated for Multithread: N

Slow SPR: N Notes: WS

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TEN 0b0001 Thread Enable Set

For t < 4, bit 63-t corresponds to thread t. When bit 63-t is set to 1, thread t is enabled, if it
is not already. When bit 63-t is set 0, thread t is unaffected.
When bit 63-t is read, the current value of the thread enable is returned.

Register Short Name: TENC Read Access: Hypv

Decimal SPR Number: 439 Write Access: Hypv

Initial Value: 0x0000000000000001 Duplicated for Multithread: N

Slow SPR: N Notes: WC

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TEN 0b0001 Thread Enable Clear

For t < 4, bit 63-t corresponds to thread t. When bit 63-t is set to 1, thread t is disabled, if it
is not already. When bit 63-t is set 0, thread t is unaffected.
When bit 63-t is read, the current value of the thread enable is returned.

special purpose register

User’s Manual

A2 Processor

CPU Programming Model

Page 74 of 864
Version 1.3

October 23, 2012

2.3.3 Wake On Interrupt

The A2 core can be configured to wake on interrupts or other conditions, if the thread was disabled by a write
to CCR0 or by executing a wait instruction.

2.3.3.1 Core Configuration Register 1 (CCR1)

CCR1 provides additional masking on what conditions can cause the processor to resume execution. The
conditions or interrupts specified must be appropriately unmasked and must also be enabled in CCR1 to exit
the stopped state.

Register Short Name: TENSR Read Access: Hypv

Decimal SPR Number: 437 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TENSR 0b0000 Thread Enable Status Register

Bit 63-t of the TENSR corresponds to thread t.

Register Short Name: CCR1 Read Access: Hypv

Decimal SPR Number: 1009 Write Access: Hypv

Initial Value: 0x000000000F0F0F0F Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:39 WC3 0xF Thread 3 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

40:41 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 75 of 864

2.3.4 Thread Priority

Thread priority can be changed by writing the PPR32 register, executing an or Rx,Rx,Rx instruction, or by
causing an interrupt.

2.3.4.1 Program Priority Register (PPR32)

The program priority register controls thread priority. A2 hardware supports three physical priorities. In A2’s
lowest hardware priority, the number of cycles between two instructions being issued is determined by
IUCR1[THRES]. See Instruction Unit Configuration Register 1 (IUCR1) on page 77.

The mapping of the three hardware priorities to the architected priorities in the PPR32 register is shown in
Table 2-3. An or Rx,Rx,Rx is used to set PPR32[PRI]; these are also shown in Table 2-3. Other defined or
Rx,Rx,Rx hints shown in Table 2-4 are ignored. PPR32[PRI] remains unchanged if the privilege state of the
processor executing the instruction is lower than the privilege indicated in Table 2-3. PPR32[PRI] also
remains unchanged if “000” is written to the field.

If MSR[EE] is 0 and PPR32 = low then thread priority is increased to medium; PPR32 is unchanged. When
MSR[EE] is 1, thread priority is determined by PPR32[PRI]. This function is provided to reduce delay in the
processing of interrupts.

42:47 WC2 0xF Thread 2 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

48:49 /// 0b00 Reserved

50:55 WC1 0xF Thread 1 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

56:57 /// 0b00 Reserved

58:63 WC0 0xF Thread 0 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Programming Model

Page 76 of 864
Version 1.3

October 23, 2012

Table 2-5. Program Priority Register (PPR32)

Table 2-3. Priority Levels

Rx PPR32[PRI] ISA Priority
A2 Hardware Priority with IUCR1[HIPRI] Setting

Privileged
00 01 10 11

31 001 very low a2low a2low a2low a2low yes

1 010 low no

6 011 medium low a2medium a2medium a2medium a2medium no

2 100 medium a2high no

5 101 medium high a2high yes

3 110 high a2high yes

7 111 very high a2high hypv

Table 2-4. Other “or” Instruction Hints

Rx Mnemonic Reserved

27 yield Yes

29 mdoio Yes

30 mdoom Yes

Register Short Name: PPR32 Read Access: Any

Decimal SPR Number: 898 Write Access: Any

Initial Value: 0x00000000000C0000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:42 /// 0x0 Reserved

43:45 PRI 0b011 Thread Priority

001 Very low (privileged).
010 Low.
011 Medium low.
100 Medium.
101 Medium high (privileged).
110 High (privileged).
111 Very high (hypervisor).
Access violations or writing a value of zero will result in a nop.

46:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 77 of 864

2.3.4.2 Instruction Unit Configuration Register 1 (IUCR1)

2.3.5 Resources Shared between Threads

All architected states are duplicated for each thread except for logical partitioning and memory. This allows
each thread to look independent from a software standpoint. Some nonarchitected resources are shared
between threads to save on the overall area for the core. Section 2.3.6 provides more information about
shared resources. Section 2.3.7 on page 78 provides more information about duplicated resources.

2.3.6 Shared Resources

Register Short Name: IUCR1 Read Access: Hypv

Decimal SPR Number: 883 Write Access: Hypv

Initial Value: 0x0000000000001000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:51 HIPRI 0b01 High Priority Privilege Level

The A2 core has three priority values implemented in hardware. This field configures which
value in PPR32[PRI] corresponds to the implementations highest priority.
00 Medium normal.
01 Medium high.
10 High.
11 Very high.

52:57 /// 0x0 Reserved

58:63 THRES 0x0 Low Priority Minimum Issue Count

Sets the number of cycles between low priority issues, which is set by PPR32[PRI]. The
number of cycles is equal to THRES 4. This field is not used when a thread is set to high
or medium priority.

Instruction ERAT array Entries can be used as shared or thread specific.

L1 instruction cache array

Data ERAT array Entries can be used as shared or thread specific.

L1 data cache array

Load miss queue

Store queue

Microcode ROM array

Branch history table This is a configurable resource and can be set up to be shared or duplicated.

SPR registers Not all SPRs are shared. See Table 14-1 Register Summary on page 530 for
more information.

Instruction fetch pipeline

Instruction issue

Integer execution pipeline

effective to real address translation

read-only memory

User’s Manual

A2 Processor

CPU Programming Model

Page 78 of 864
Version 1.3

October 23, 2012

2.3.6.1 Accessing Shared Resources

When software executing in thread Tn writes a new value in an SPR (mtspr) that is shared with other
threads, either of the following sequences of operations can be performed to ensure that the write operation
has been performed with respect to other threads.

Sequence 1

• Disable all other threads (see Thread Enable Register (TENS, TENC) on page 72).
• Write to the shared SPR (mtspr).
• Perform a context synchronizing operation.
• Enable the previously disabled threads.

In the above sequence, the context synchronizing operation ensures that the write operation has been
performed with respect to all other threads that share the SPR. The enabling of other threads ensures that
subsequent instructions of the enabled threads use the new SPR value because enabling a thread is a
context synchronizing operation.

Sequence 2

• All threads are put in hypervisor state and begin polling a storage flag.
• The thread updating the SPR does the following:

• Writes to the SPR (mtspr).
• Sets a storage flag indicating that the write operation was done.
• Performs a context synchronizing operation.

• When other threads see the updated storage flag, they perform context synchronizing operations.

In the above sequence, the context synchronizing operation by the thread that writes to the SPR ensures that
the write operation has been performed with respect to all other threads that share the SPR; the context
synchronizing operation by the other threads ensures that subsequent instructions for these threads use the
updated value.

2.3.7 Duplicated Resources

TLB

LRAT

Link stack queue

Instruction buffer

Thread dependency

GPR register file This includes extra registers for microcode instruction use.

SPR registers Not all SPRs are duplicated. See Table 14-1 Register Summary on page 530 for
more information.

Branch history table This is a configurable resource and can be setup to be shared or duplicated.

logical to real address translation

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 79 of 864

2.3.8 Pipeline Sharing

Figure 2-1 shows the instruction flow for the A2 core.

Figure 2-1. A2 Core Instruction Unit

User’s Manual

A2 Processor

CPU Programming Model

Page 80 of 864
Version 1.3

October 23, 2012

2.3.8.1 Instruction Cache

The instruction cache is a shared resource between all threads where a single thread can be selected each
cycle dependent upon the number of instructions currently contained within that thread’s instruction buffers.
There are two watermarks within the instruction buffer that determine a thread’s priority level for fetches that
are empty and half-empty. The empty watermarks gives the corresponding thread high priority and a half-
empty level gives the thread a low-priority fetch request. The high-priority and low-priority fetches are two
separate round-robin queues to give each thread an even chance at getting the next command. A low-priority
fetch is only issued when none of the high-priority water marks are active. The instruction cache and instruc-
tion directories are 4-way associative and are a shared resource between all threads. The branch prediction
unit that is part of the instruction cache in Figure 2-1 on page 79 contains a branch history table and link stack
to allow proper branch resolution. The link stack is a 4-deep queue per thread whereas the branch history
table is a 2-bit history that can configured to either 1 k per thread or a 4 k history shared between all four
threads.

2.3.8.2 Instruction Buffer and Decode Dependency

The colored portion of Figure 1-1 on page 50 contains all of the instruction buffer, decode, and dependency
logic for each of the threads. This logic is duplicated for each thread to allow other threads with nondependent
commands to be issued to maximize usage for the integer and floating-point pipelines.

2.3.8.3 Instruction Issue

Instruction issue is a shared resource within the core, and the logic is a 1+1 concurrent issue machine. This
allows two commands to be issued per cycle; however, each of the commands issued must be from separate
threads with one to the XU and another to the AXU units. The selection logic for the issue logic is a simple
round-robin scheme with three levels of priority to allow software more flexibility.

See Figure 2-2, Figure 2-3, and Figure 2-4 for examples of round-robin logic.

Figure 2-2. Instruction Issue Timing Diagram 1 (Thread 0, high priority; threads 1, 2, 3 low priority; timeout set to 3.)

execution unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 81 of 864

.

2.3.8.4 Ram Unit

The Ram unit allows an external command to be issued within a given thread’s instruction stream. This unit is
a shared resource within a core in that only one thread can issue a Ram command at a time. It is software’s
responsibility to only allow one outstanding command per core, and it is necessary to poll the core until this
command has completed before issuing any new commands.

Figure 2-3. Instruction Issue Timing Diagram 2 (All threads set to high priority; timeout set to 3.)

Figure 2-4. Instruction Issue Timing Diagram 3 (Threads 0 and 1, high priority; threads 2 and 3, medium priority;
timeout set to 3.)

User’s Manual

A2 Processor

CPU Programming Model

Page 82 of 864
Version 1.3

October 23, 2012

2.3.8.5 Microcode Unit

The microcode unit (uCode) is partially shared and partially duplicated logic. The ROM that contains the
actual stream of instructions to be issued is a shared unit; however, each thread contains its own microcode
engine so that all four threads can be within a uCode stream at the same time. One of the engines will read a
single command from the ROM each cycle based upon a fair round-robin scheme (not based upon the thread
priority level for the issue logic), and issue that command to the appropriate thread’s instruction buffer. If the
instruction buffer is over halfway filled, the uCode will stop issuing new commands. In addition, it will not
include this thread for ROM reads until the instruction buffer has drained below this point.

2.3.8.6 Integer Unit

The integer execution unit is shared between threads because there is a unified execution, load/store, and
branch pipeline. Exceptions and flushes from one thread usually will not affect another thread.

However, a flush that will affect all threads when encountered by one of the threads is caused by a data
cache invalidate (DCI) or instruction cache invalidate (ICI) that reaches completion. A DCI or ICI will flush all
threads for one cycle to allow the L1 caches to be invalidated. Software is required to guarantee that the load
miss queue is empty for all threads before execution of a DCI.

Another flush condition caused by one thread that can affect another thread occurs when reload data
returning for an outstanding load collides with a load or store at the data cache array pins.

For a comprehensive list of flush conditions, see Interrupt Conditions on page 854.

Some multiply operations and all divide operations require recirculation within the multiply/divide unit, there-
fore blocking all other threads from executing multiplies and divides. This does not prevent other threads from
executing any instructions other than multiplies and divides. If any multiply or divide instructions are issued
and collide with a recirculating multiply or divide, the younger instructions are flushed. In the case of the multi-
plier, the size of the operands determines how many cycles are needed for recirculation. The width of the
multiplier is 32 bits by 32 bits, so any operations that require multiplying 64-bit operands will require recircula-
tion. If both operands are 32 bits, no recirculation is needed (in other words, the instruction is pipelined as
normal). The width of the divider is 64 bits. Divide instructions dealing with 64-bit operands recirculate for 65
cycles, and operations with 32-bit operands recirculate for 32 cycles. No divide instructions are pipelined; they
all require some recirculation.

A forward progress timer monitors that each thread is making forward progress. If the thread appears to be
hung, thread priorities are adjusted to break out of a potential live-lock condition.

2.4 Registers

This section provides an overview of the register categories and types provided by the A2 core. Detailed
descriptions of each of the registers are provided within the chapters covering the functions with which they
are associated (for example, the cache control and cache debug registers are described in Instruction and
Data Caches on page 169). An alphabetical summary of all registers, including bit definitions, is provided in
Register Summary on page 529

All registers in the A2 core are architected as 64 bits wide, although certain bits in some registers are
reserved and thus not necessarily implemented. For all registers with fields marked as reserved, these
reserved fields should be written as 0 and read as undefined. The recommended coding practice is to

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 83 of 864

perform the initial write to a register with reserved fields set to 0, and to perform all subsequent writes to the
register using a read-modify-write strategy: read the register; use logical instructions to alter defined fields,
leaving reserved fields unmodified; and write the register.

All of the registers are grouped into categories according to the processor functions with which they are asso-
ciated. In addition, each register is classified as being of a particular type, as characterized by the specific
instructions that are used to read and write registers of that type. Finally, most of the registers contained
within the A2 core are defined by the Power ISA Architecture, although some registers are implementation-
specific and unique to the A2 core.

Figure 2-5 illustrates the A2 core registers contained in the user programming model; that is, those registers
to which access is nonprivileged and that are available to both user and supervisor programs.

Table 14-1 on page 530 lists the A2 core registers contained in the supervisor or hypervisor programming
model, to which access is privileged.

Figure 2-5. User Programming Model Registers

Integer Processing

GPR0

GPR1

GPR31

GPR2

•
•
•

Condition Register

CR

XER

Link Register

LR

CTR

Timer

TBU

TB

SPRG4

SPRG5

SPRG7

SPRG6

Processor Control

VR Save Register

VRSAVE

Count Register

Integer Exception Register

Time Base
Branch Control

SPR General 3–7

General Purpose

Replicated per Thread

SPRG3

UDEC

User Decrementer Register

User’s Manual

A2 Processor

CPU Programming Model

Page 84 of 864
Version 1.3

October 23, 2012

2.4.1 Register Mapping

Some special purpose register (SPR) accesses in guest state are mapped to analogous registers for the
guest state. This removes the requirement for the hypervisor software to handle embedded hypervisor privi-
lege interrupts for these accesses and make the required emulated changes by the hypervisor for these high-
use registers.

Accesses to the registers listed in Table 2-6 are changed by the processor to the registers given in the table
when the processor is in guest state (MSR[GS] = 1). Accesses to these registers are not mapped when not in
guest state.

2.4.2 Register Types

There are five register types contained within and/or supported by the A2 core. Each register type is charac-
terized by the instructions that are used to read and write the registers of that type. The following subsections
provide an overview of each of the register types and the instructions associated with them.

2.4.2.1 General Purpose Registers

The A2 core contains 32 integer general purpose registers (GPRs); each contains 64 bits. In 32-bit mode, all
instructions that operate on GPRs produce the same GPR results in 32-bit mode as in 64-bit mode.

Integer Processing on page 110 provides more information about integer operations and the use of GPRs.

2.4.2.2 Special Purpose Registers

Special Purpose Registers (SPRs) are directly accessed using the mtspr and mfspr instructions. In addition,
certain SPRs might be updated as a side-effect of the execution of various instructions. For example, the
Integer Exception Register (XER) (see Integer Exception Register (XER) on page 110) is an SPR that is
updated with arithmetic status (such as carry and overflow) upon execution of certain forms of integer arith-
metic instructions.

Table 2-6. Register Mapping

SPR Accessed SPR Mapped to Type of Access

SRR0 GSRR0 mtspr, mfspr

SRR1 GSRR1 mtspr, mfspr

ESR GESR mtspr, mfspr

DEAR GDEAR mtspr, mfspr

PIR GPIR mtspr, mfspr

SPRG0 GSPRG0 mtspr, mfspr

SPRG1 GSPRG1 mtspr, mfspr

SPRG2 GSPRG2 mtspr, mfspr

SPRG3 GSPRG3 mtspr, mfspr

USPRG3 GSPRG3 mtspr, mfspr

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 85 of 864

SPRs control the use of the debug facilities, timers, interrupts, memory management, caches, and other
architected processor resources. Table 14-1 on page 530 shows the mnemonic, name, and number for each
SPR, in alphabetical order. Each of the SPRs is described in more detail within the section or chapter
covering the function with which it is associated.

2.4.2.3 Condition Register

The Condition Register (CR) is a 32-bit register of its own unique type and is divided up into eight, indepen-
dent 4-bit fields (CR0–CR7). The CR can be used to record certain conditional results of various arithmetic
and logical operations. Subsequently, conditional branch instructions can designate a bit of the CR as one of
the branch conditions (see Wait Instruction on page 98). Instructions are also provided for performing logical
bit operations and for moving fields within the CR.

See Condition Register (CR) on page 107 for more information about the various instructions that can update
the CR.

2.4.2.4 Machine State Register

The Machine State Register (MSR) is a register of its own unique type that controls important chip functions,
such as the enabling or disabling of various interrupt types.

The MSR can be written from a GPR using the mtmsr instruction. The contents of the MSR can be read into
a GPR using the mfmsr instruction. The MSR[EE] bit can be set or cleared atomically using the wrtee or
wrteei instructions. The MSR contents are also automatically saved, altered, and restored by the interrupt-
handling mechanism. See Machine State Register (MSR) on page 301 for more detailed information about
the MSR and the function of each of its bits.

2.5 32-Bit Mode

2.5.1 64-Bit Specific Instructions

Instructions or registers that are categorized as 64-bit are only available in 64-bit implementations of the A2
core. In a 64-bit implementation in 32-bit mode, all instructions that operate on GPRs produce the same GPR
results in 32-bit mode as in 64-bit mode. Instructions that set condition bits do so based on the 32-bit result
computed. Effective addresses and all SPRs operate on the low-order 32 bits only unless otherwise stated.

2.5.2 32-Bit Instruction Selection

Any software that uses any of the instructions listed in the 64-bit category is considered 64-bit software.
Generally speaking, 32-bit software should avoid using any instruction or instructions that depend on any
particular setting of bits 0:31 of any 64-bit application-accessible system register, including General Purpose
Registers, for producing the correct 32-bit results. Context switching might or might not preserve the upper 32
bits of application-accessible 64-bit system registers, and insertion of arbitrary settings of those upper 32 bits
at arbitrary times during the execution of the 32-bit application must not affect the final result.

User’s Manual

A2 Processor

CPU Programming Model

Page 86 of 864
Version 1.3

October 23, 2012

2.6 Instruction Categories

The Power ISA defines that each facility (including registers and fields therein) and instruction is in exactly
one category. Table 2-7 indicate the categories that are implemented by the A2 processor core.

Table 2-7. Category Listing (Sheet 1 of 2)

Implemented
by A2 Core Category Abbreviation Notes

Yes Base B Required for all implementations.

No Server S Required for server implementations.

Yes Embedded E Required for embedded implementations.

No Alternate Time Base ATB An additional time base; see Book II.

Yes Cache Specification CS Specify a specific cache for some instructions; see Book II.

No Decimal Floating-Point DFP Decimal floating-point facilities.

No Decorated Storage DS Decorated storage facilities.

No Embedded.Cache Debug E.CD Provides direct access to cache data and directory content.

Yes Embedded.Cache Initialization E.CI Instructions that invalidate the entire cache.

No Embedded.Device Control E.DC Embedded device control bus support.

No Embedded.Enhanced Debug E.ED Embedded enhanced debug facility; see Book III-E.

Yes Embedded.External PID E.PD Embedded external PID facility; see Book III-E.

Yes Embedded.Hypervisor
Embedded.Hypervisor.LRAT

E.HV
E.HV.LRAT

Embedded logical partitioning and hypervisor facilities.
Embedded hypervisor logical to real address translation.

Yes Embedded.Little-Endian E.LE Embedded little-endian page attribute; see Book III-E.

Yes Embedded.Page Table E.PT Embedded page table facility; see Book III-E.

Yes Embedded.TLB Write Conditional E.TWC Embedded TLB write conditional facility; see Book III-E.

No Embedded.Performance Monitor E.PM Embedded performance monitor example; see Book III-E.

Yes Embedded.Processor Control E.PC Processor control facility; see Book III-E.

Yes Embedded Cache Locking ECL Embedded cache locking facility; see Book III-E.

Yes Embedded Multithreading
Embedded multiThread-
ing.Thread Management

EM
EM.TM

Embedded multithreading; see Book III-E.
Embedded multithreading thread management facility.

No External Control EXC External control facility; see Book II.

No External Proxy EXP External proxy facility; see Book III-E.

Yes Floating-Point
Floating-Point.Record

FP
FP.R

Floating-point facilities.
Floating-point instructions with Rc = 1.

No Legacy Move Assist LMV Determine left most zero byte instruction.

No Legacy Integer Multiply-
Accumulate1 LMA Legacy integer multiply-accumulate instructions.

No Load/Store Quadword LSQ Load/store quadword instructions; see Book III-S.

Yes Memory Coherence MMC Requirement for memory coherence; see Book II.

No Move Assist MA Move assist instructions.

No Processor Compatibility PCR Processor compatibility register.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 87 of 864

2.7 Instruction Classes

Power ISA architecture defines all instructions as falling into exactly one of the following three classes, as
determined by the primary opcode (and the extended opcode, if any):

1. Defined

2. Illegal

3. Reserved

2.7.1 Defined Instruction Class

This class of instructions consists of all the instructions defined in Power ISA. In general, defined instructions
are guaranteed to be supported within a Power ISA system as specified by the architecture, either within the
processor implementation itself or within emulation software supported by the system operating software.

As defined by Power ISA, any attempt to execute a defined instruction will:

• Cause an illegal instruction exception type of program interrupt, if the instruction is not recognized by the
implementation; or

• Cause a floating-point unavailable interrupt if the instruction is recognized as a floating-point instruction,
but floating-point processing is disabled; or

No Server.Performance Monitor S.PM Performance monitor example for servers; see Book III-S.

No Server.Relaxed Page Table Align-
ment S.RPTA HTAB alignment on a 256 KB boundary; see Book III-S.

No Signal Processing Engine
SPE.Embedded Float Scalar Dou-
ble
SPE.Embedded Float Scalar Sin-
gle
SPE.Embedded Float Vector

SP
SP.FD
SP.FS
SP.FV

Facility for signal processing.
GPR-based floating-point double-precision instruction set.
GPR-based floating-point single-precision instruction set.
GPR-based floating-point vector instruction set.

Yes Store Conditional Page Mobility SCPM Store conditional accounting for page movement; see Book II.

No Stream STM Stream variant of dcbt instruction; see Book II.

No Strong Access Order SAO Assist for X86 emulation; see Book II.

No Trace TRC Trace facility example; see Book III-S.

No Variable Length Encoding VLE Variable length encoding facility; see Book VLE.

determined by
AXU Vector-Scalar Extension VSX Vector-scalar extension.

determined by
AXU

Vector
Little-Endian

V
V.LE

Vector facilities.
Little-endian support for vector storage operations.

Yes Wait WT Wait instruction; see Book II.

Yes 64-Bit 64 Required for 64-bit implementations; not defined for 32-bit
implementations.

Table 2-7. Category Listing (Sheet 2 of 2)

Implemented
by A2 Core Category Abbreviation Notes

signal processing engine

User’s Manual

A2 Processor

CPU Programming Model

Page 88 of 864
Version 1.3

October 23, 2012

• Perform the actions described in the rest of this document, if the instruction is recognized and supported
by the implementation. The architected behavior might cause other exceptions.

The A2 core recognizes and fully supports all of the instructions in the defined class and in the categories
supported, with a few exceptions. First, instructions that are defined for floating-point processing are not
supported within the A2 core, but can be implemented within an auxiliary processor and attached to the core
using the AXU interface. If no such auxiliary processor is attached, attempting to execute any floating-point
instructions causes an illegal instruction exception type of program interrupt. If an auxiliary processor that
supports the floating-point instructions is attached, the behavior of these instructions is as defined above and
as determined by the implementation details of the floating-point auxiliary processor.

2.7.2 Illegal Instruction Class

This class of instructions contains the set of instructions described in Power ISA Appendix D of Book Appen-
dices. Illegal instructions are available for future extensions of the Power ISA; that is, some future version of
the Power ISA might define any of these instructions to perform new functions.

Any attempt to execute an illegal instruction causes the system illegal instruction error handler to be invoked
and will have no other effect.

An instruction consisting entirely of binary zeros is guaranteed always to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized storage will result in the invocation of
the system illegal instruction error handler.

2.7.3 Reserved Instruction Class

This class of instructions contains the set of instructions described in Power ISA Appendix E of Book Appen-
dices.

Reserved instructions are allocated to specific purposes that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction causes the system illegal instruction error handler to be
invoked if the instruction is not implemented.

Because implementations are typically expected to treat reserved-nop instructions as true no-ops, these
instruction opcodes are available for future extensions to Power ISA that have no effect on the architected
state. Such extensions might include performance-enhancing hints, such as new forms of cache touch
instructions. Software would be able to take advantage of the functionality offered by the new instructions and
still remain backwards-compatible with implementations of previous versions of Power ISA.

The A2 core implements all of the reserved-nop instruction opcodes as true no-ops. The specific reserved-
nop opcodes are the following extended opcodes under primary opcode 31: 530, 562, 594, 626, 658, 690,
722, and 754.

2.8 Implemented Instruction Set Summary

This section provides an overview of the various types and categories of instructions implemented within the
A2 core. Appendix A Processor Instruction Summary on page 737 lists each implemented instruction alpha-
betically (and by opcode) along with a short-form description and its extended mnemonics.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 89 of 864

Table 2-8 summarizes the A2 core instruction set by category. Instructions within each category are
described in subsequent sections.

2.8.1 Integer Instructions

Integer instructions transfer data between memory and the GPRs and perform various operations on the
GPRs. This category of instructions is further divided into seven subcategories, described in the following
sections.

2.8.1.1 Integer Storage Access Instructions

Integer storage access instructions load and store data between memory and the GPRs. These instructions
operate on bytes, halfwords, and words. Integer storage access instructions also support loading and storing
multiple registers, character strings, and byte-reversed data, and loading data with sign-extension.

Table 2-9 shows the integer storage access instructions in the A2 core. In the table, the syntax “[u]” indicates
that the instruction has both an “update” form (in which the RA addressing register is updated with the calcu-
lated address) and a “nonupdate” form. Similarly, the syntax “[x]” indicates that the instruction has both an
“indexed” form (in which the address is formed by adding the contents of the RA and RB GPRs) and a
“base + displacement” form (in which the address is formed by adding a 16-bit signed immediate value (spec-
ified as part of the instruction) to the contents of GPR RA.

Table 2-8. Instruction Categories

Category Subcategory Instruction Types

Integer

Integer Storage Access load, store

Integer Arithmetic add, subtract, multiply, divide, negate

Integer Logical and, andc, or, orc, xor, nand, nor, xnor, extend sign, count leading
zeros

Integer Compare compare, compare logical

Integer Select select operand

Integer Trap trap

Integer Rotate rotate and insert, rotate and mask

Integer Shift shift left, shift right, shift right algebraic

Branch branch, branch conditional, branch to link, branch to count

Processor Control

Condition Register Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor

Register Management move to/from SPR, move to/from MSR, write to external interrupt
enable bit, move to/from CR

System Linkage system call, return from interrupt, return from critical interrupt, return
from machine check interrupt

Processor Synchronization instruction synchronize

Storage Control

Cache Management data allocate, data invalidate, data touch, data zero, data flush, data
store, instruction invalidate, instruction touch

TLB Management read, write, search, synchronize

Storage Synchronization memory synchronize, memory barrier

Note: The A2 core does not implement any device control registers (DCRs). Move to and move from DCR instructions are dropped
silently. They are no-ops and do not cause an exception.

User’s Manual

A2 Processor

CPU Programming Model

Page 90 of 864
Version 1.3

October 23, 2012

Table 2-11 shows how operands are handled depending on alignment. Optimal performance and configura-
tion is achieved when operands are aligned.

Table 2-9. Integer Storage Access Instructions

Loads Stores

Byte Halfword Word Double Multiple/String Byte Halfword Word Double Multiple/String

lbz[u][x]
lha[u][x]
lhbrx
lhz[u][x]

lwbrx
lwz[u][x]
lwa[u][x]

ld[u][x]
ldbrx

lmw
lswi
lswx

stb[u][x]
sth[u][x]
sthbrx

stw[u][x]
stwbrx

std[u][x]
stdbrx

stmw
stswi
stswx

Table 2-10. Integer Storage Access Instructions by External Process ID

Loads Stores

Byte Halfword Word Double Byte Halfword Word Double

lbepx lhepx lwepx ldepx stbepx sthepx stwepx stdepx

Table 2-11. Operand Handling Dependent on Alignment (Sheet 1 of 2)

Operand Big Endian - Boundary Crossing Little Endian - Boundary Crossing

Size Byte Align None 32B Block 16B Block2 Virtual Page None 32B Block 16B Block2 Virtual Page

Integer

8 Byte 8 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<8 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

4 Byte 4 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<4 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

2 Byte 2 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<2 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

1 Byte 1 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

lmw, stmw 4 uCode uCode uCode uCode uCode uCode uCode uCode

<4 Alignment
Exception

Alignment
Exception

Alignment
Exception

Alignment
Exception

Alignment
Exception

Alignment
Exception

Alignment
Exception

Alignment
Exception

string uCode uCode uCode uCode uCode uCode uCode uCode

Float

8 Byte 8 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<8 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

4 Byte 4 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<4 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

Any General Purpose AXU

32 Byte 32 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<32 uCode uCode uCode uCode Pipeline uCode uCode uCode

Notes:

1. If the storage operand spans two virtual pages that have different storage control attributes, an alignment exception occurs.
2. Only valid if the request is a cache-inhibited load or a store request with the L2 interface in 16-byte mode.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 91 of 864

2.8.1.2 Integer Arithmetic Instructions

Arithmetic operations are performed on integer or ordinal operands stored in registers. Instructions that
perform operations on two operands are defined in a 3-operand format; an operation is performed on the
operands, which are stored in two registers. The result is placed in a third register. Instructions that perform
operations on one operand are defined in a 2-operand format; the operation is performed on the operand in a
register, and the result is placed in another register. Several instructions also have immediate formats in
which one of the source operands is a field in the instruction.

Most integer arithmetic instructions have versions that can update CR[CR0] and/or XER[SO, OV] (Summary
Overflow, Overflow), based on the result of the instruction. Some integer arithmetic instructions also update
XER[CA] (Carry) implicitly. See Integer Processing on page 110 for more information about how these
instructions update the CR and/or the XER.

Table 2-12 lists the integer arithmetic instructions in the A2 core. In the table, the syntax “[o]” indicates that
the instruction has both an “o” form (which updates the XER[SO,OV] fields) and a “non-o” form. Similarly, the
syntax “[.]” indicates that the instruction has both a “record” form (which updates CR[CR0]) and a “nonrecord”
form.

16 Byte 16 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<16 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

8 Byte 8 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<8 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

4 Byte 4 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<4 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

2 Byte 2 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

<2 Pipeline uCode uCode uCode Pipeline uCode uCode uCode

1 Byte 1 Pipeline N/A N/A N/A Pipeline N/A N/A N/A

Table 2-12. Integer Arithmetic Instructions

Add Subtract Multiply Divide Negate

add[o][.]
addc[o][.]
adde[o][.]
addi
addic[.]
addis
addme[o][.]
addze[o][.]

subf[o][.]
subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

mulhw[.]
mulhwu[.]
mulli
mullw[o][.]
mulhd[.]
mulhdu[.]
mulld[o][.]

divw[o][.]
divwu[o][.]
divwe[o][.]
divweu[o][.]
divd[o][.]
divdu[o][.]
divde[o][.]
divdeu[o][.]

neg[o][.]

Table 2-11. Operand Handling Dependent on Alignment (Sheet 2 of 2)

Operand Big Endian - Boundary Crossing Little Endian - Boundary Crossing

Size Byte Align None 32B Block 16B Block2 Virtual Page None 32B Block 16B Block2 Virtual Page

Notes:

1. If the storage operand spans two virtual pages that have different storage control attributes, an alignment exception occurs.
2. Only valid if the request is a cache-inhibited load or a store request with the L2 interface in 16-byte mode.

User’s Manual

A2 Processor

CPU Programming Model

Page 92 of 864
Version 1.3

October 23, 2012

2.8.1.3 Integer Logical Instructions

Table 2-13 lists the integer logical instructions in the A2 core. See Integer Arithmetic Instructions on page 91
for an explanation of the “[.]” syntax.

2.8.1.4 Integer Compare Instructions

These instructions perform arithmetic or logical comparisons between two operands and update the CR with
the result of the comparison.

Table 2-14 lists the integer compare instructions in the A2 core.

2.8.1.5 Integer Trap Instructions

Table 2-15 lists the integer trap instructions in the A2 core.

2.8.1.6 Integer Rotate Instructions

These instructions rotate operands stored in the GPRs. Rotate instructions can also mask rotated operands.

Table 2-16 lists the rotate instructions in the A2 core. See Integer Arithmetic Instructions on page 91 for an
explanation of the “[.]” syntax.

Table 2-13. Integer Logical Instructions

And
And with
Comple-

ment
Nand Or

Or with
Com-
ple-

ment

Nor Xor Equiva-
lence

Extend
Sign

Count
Leading
Zeros

Permute Parity

and[.]
andi.
andis.

andc[.] nand[.]
or[.]
ori
oris

orc[.] nor[.]
xor[.]
xori
xoris

eqv[.]
extsb[.]
extsh[.]
extsw[.]

cntlzw[.]
cntlzd[.] bpermd prtyw

prtyd

Table 2-14. Integer Compare Instructions

Arithmetic Logical

cmp
cmpi
cmpb

cmpl
cmpli

Table 2-15. Integer Trap Instructions

Trap

tw
twi
td
tdi

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 93 of 864

2.8.1.7 Integer Shift Instructions

Table 2-17 lists the integer shift instructions in the A2 core. Note that the shift right algebraic instructions
implicitly update the XER[CA] field. See Integer Arithmetic Instructions on page 91 for an explanation of the
“[.]” syntax.

2.8.1.8 Integer Population Count Instructions

Table 2-18 lists the integer population count instructions in the A2 core.

2.8.1.9 Integer Select Instruction

Table 2-19 lists the integer select instruction in the A2 core. The RA operand is 0 if the RA field of the instruc-
tion is 0; it is the contents of GPR(RA) otherwise.

Table 2-16. Integer Rotate Instructions

Rotate and Insert Rotate and Mask Rotate and Clear

rlwimi[.]
rldimi[.]

rlwinm[.]
rlwnm[.]

rldcl[.]
rldcr[.]
rldic[.]
rldicl[.]
rldicr[.]

Table 2-17. Integer Shift Instructions

Shift Left Shift Right Shift Right
Algebraic

slw[.]
sld[.]

srw[.]
srd[.]

sraw[.]
srawi[.]
srad[.]
sradi[.]

Table 2-18. Integer Population Count Instructions

Pop Count

popcntb
popcntw
popcntd

Table 2-19. Integer Select Instruction

Integer Select

isel

User’s Manual

A2 Processor

CPU Programming Model

Page 94 of 864
Version 1.3

October 23, 2012

2.8.2 Branch Instructions

These instructions unconditionally or conditionally branch to an address. Conditional branch instructions can
test condition codes set in the CR by a previous instruction and branch accordingly. Conditional branch
instructions can also decrement and test the Count Register (CTR) as part of branch determination and can
save the return address in the Link Register (LR). The target address for a branch can be a displacement
from the current instruction address or an absolute address or contained in the LR or CTR.

See Wait Instruction on page 98 for more information about branch operations.

Table 2-20 lists the branch instructions in the A2 core. In the table, the syntax “[l]” indicates that the instruc-
tion has both a “link update” form (which updates LR with the address of the instruction after the branch) and
a “nonlink update” form. Similarly, the syntax “[a]” indicates that the instruction has both an “absolute
address” form (in which the target address is formed directly using the immediate field specified as part of the
instruction) and a “relative” form (in which the target address is formed by adding the specified immediate
field to the address of the branch instruction).

2.8.3 Processor Control Instructions

Processor control instructions manipulate system registers, perform system software linkage, and synchro-
nize processor operations. The instructions in these three subcategories of processor control instructions are
described below.

2.8.3.1 Condition Register Logical Instructions

These instructions perform logical operations on a specified pair of bits in the CR, placing the result in another
specified bit. The benefit of these instructions is that they can logically combine the results of several compar-
ison operations without incurring the overhead of conditional branching between each one. Software perfor-
mance can significantly improve if multiple conditions are tested at once as part of a branch decision.

Table 2-21 lists the condition register logical instructions in the A2 core.

Table 2-20. Branch Instructions

Branch

b[l][a]
bc[l][a]
bcctr[l]
bclr[l]

Table 2-21. Condition Register Logical Instructions

crand
crandc
creqv
crnand

crnor
cror
crorc
crxor

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 95 of 864

2.8.3.2 Register Management Instructions

These instructions move data between the GPRs and control registers in the A2 core.

Table 2-22 lists the register management instructions in the A2 core.

2.8.3.3 System Linkage Instructions

These instructions invoke supervisor software level for system services and return from interrupts.

When executing in the guest state (MSR[GS,PR] = 0b10), execution of an rfi instruction is mapped to rfgi
and the rfgi instruction is executed in place of the rfi.

Table 2-23 lists the system linkage instructions in the A2 core.

2.8.3.4 Processor Control Instructions

The msgsnd and msgclr instructions are provided for sending and clearing messages to processors and
other devices in the coherence domain. These instructions are hypervisor privileged.

Table 2-28 shows the processor control instructions in the A2 core.

2.8.4 Storage Control Instructions

These instructions manage the instruction and data caches and the TLB of the A2 core. Instructions are also
provided to synchronize and order storage accesses. The instructions in these three subcategories of storage
control instructions are described in the following sections.

Table 2-22. Register Management Instructions

CR DCR1 MSR SPR TB

mcrf
mcrxr
mfcr
mfocrf
mtcrf
mtocrf

mfdcr
mfdcrx
mfdcrux
mtdcr
mtdcrx
mtdcrux

mfmsr
mtmsr
wrtee
wrteei

mfspr
mtspr mttb

1. When CCR2(EN_DCR) is zero, DCR instructions are dropped silently. They are no-ops and do not cause an exception.

Table 2-23. System Linkage Instructions

ehpriv
rfi
rfci
rfgi
rfmci
sc

Table 2-24. Processor Control Instruction

msgsnd
msgclr

User’s Manual

A2 Processor

CPU Programming Model

Page 96 of 864
Version 1.3

October 23, 2012

2.8.4.1 Cache Management Instructions

These instructions control the operation of the data and instruction caches. Instructions are provided to fill,
flush, invalidate, or zero data cache blocks, where a block is defined as a 64-byte cache line. Instructions are
also provided to fill or invalidate instruction cache blocks.

Table 2-25 lists the cache management instructions in the A2 core.

2.8.4.2 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array and search the TLB array for an
entry that will translate a given virtual address.

Table 2-27 lists the TLB management instructions in the A2 core. See Integer Arithmetic Instructions on
page 91 for an explanation of the “[.]” syntax.
.

Table 2-25. Cache Management Instructions

Data Cache Instruction Cache

dcba
dcbf
dcbi
dcbst
dcbt
dcbtst
dcbz

dcbtls
dcbtstls
dcblc

icbi
icbt

icbtls
icblc

Table 2-26. Cache Management Instructions by External Process ID

Data Cache Instruction Cache

dcbstep
dcbtep
dcbfep
dcbtstep
dcbzep

icbiep

Table 2-27. TLB Management Instructions

tlbre
tlbsx[.]
tlbsync
tlbwe
tlbivax

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 97 of 864

2.8.4.3 Processor Synchronization Instruction

The processor synchronization instruction, isync, forces the processor to complete all instructions preceding
the isync before allowing any context changes as a result of any instructions that follow the isync. Addition-
ally, all instructions that follow the isync will execute within the context established by the completion of all
the instructions that precede the isync. See Synchronization on page 122 for more information about the
synchronizing effect of isync.

Table 2-28 shows the processor synchronization instructions in the A2 core.

2.8.4.4 Load and Reserve and Store Conditional Instructions

The load and reserve and store conditional instructions can be used to construct a sequence of instructions
that appears to perform an atomic update operation on an aligned storage location.

The A2 core implements the exclusive access hint (EH) included in load and reserve instructions.

2.8.4.5 Storage Synchronization Instructions

The storage synchronization instructions allow software to enforce ordering amongst the storage accesses
caused by load and store instructions, which by default are weakly-ordered by the processor. “Weakly-
ordered” means that the processor is architecturally permitted to perform loads and stores generally out-of-
order with respect to their sequence within the instruction stream, with some exceptions. However, if a
storage synchronization instruction is executed, then all storage accesses prompted by instructions
preceding the synchronizing instruction must be performed before any storage accesses prompted by
instructions that come after the synchronizing instruction. See Synchronization on page 122 for more infor-
mation about storage synchronization.

msync is an extended mnemonic for the synchronize instruction so that it can be coded with the L value as
part of the mnemonic rather than as a numeric operand.

Table 2-28 shows the storage synchronization instructions in the A2 core.

Table 2-28. Processor Synchronization Instruction

isync
sync

Table 2-29. Load and Reserve and Store Conditional Instructions

Loads Stores

Word Double Word Double

lwarx ldarx stwcx. stdcx.

Table 2-30. Storage Synchronization Instructions

msync
mbar

User’s Manual

A2 Processor

CPU Programming Model

Page 98 of 864
Version 1.3

October 23, 2012

2.8.4.6 Wait Instruction

The wait instruction allows instruction fetching and execution to be suspended under certain conditions,
depending on the value of the WC field. WC = 11 is treated as a no-op instruction. WC = 10 specifies a wake
condition determined by the an A2 input signal called an_ac_sleep_en.

Table 2-31 shows the wait instructions in the A2 core.

2.8.5 Initiate Coprocessor Instructions

Initiation of a coprocessor is requested by issuing the Initiate Coprocessor Store Word Indexed (icswx)
instruction. A coprocessor is not a standard processor, but instead is a specialized processor that is capable
of one or more particular tasks with the intent to provide acceleration of each task that might have otherwise
been done by the program. See Section 12.5 Coprocessor Instructions on page 513.

Table 2-32 shows the icswx instructions in the A2 core.

2.8.5.1 Cache Initialization Instructions

The dci and ici instructions are privileged instructions, and if executed in supervisor mode they will flash
invalidate the entire associated cache. They do not generate an address, nor are they affected by the access
control mechanism.

Table 2-28 shows the cache initialization instructions in the A2 core.

The dci and ici instructions have a CT field. The following describes the affects of the CT field.

• CT = 0 indicates L1 only. The L1 cache will be invalidated and request is not sent to the L2.

• CT = 2 indicates L1 and L2. The L1 cache will be invalidated and request is sent to the L2.

• CT != 0,2 indicates a no-op. No L1 caches are invalidated and the request is not sent to the L2.

Table 2-31. Wait Instruction

wait

Table 2-32. Initiate Coprocessor Instructions

icswx[.]
icswepx[.]

Table 2-33. Cache Initialization Instructions

dci
ici

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 99 of 864

2.9 Branch Processing

The four branch instructions provided by A2 core are summarized in Table 2.8.2 on page 94. The following
sections provide additional information about branch addressing, instruction fields, prediction, and registers.

2.9.1 Branch Addressing

The branch instruction (b[l][a]) specifies the displacement of the branch target address as a 26-bit value (the
24-bit LI field right-extended with 0b00). This displacement is regarded as a signed 26-bit number covering an
address range of 32 MB. Similarly, the branch conditional instruction (bc[l][a]) specifies the displacement as
a 16-bit value (the 14-bit BD field right-extended with 0b00). This displacement covers an address range of
32 KB.

For the relative form of the branch and branch conditional instructions (b[l] and bc[l], with instruction field
AA = 0), the target address is the address of the branch instruction itself (the current instruction address, or
CIA) plus the signed displacement. This address calculation is defined to “wrap around” from the maximum
effective address (0xFFFF_FFFF_FFFF_FFFF) to 0x0000_0000_0000_0000 and vice-versa.

For the absolute form of the branch and branch conditional instructions (ba[l] and bca[l], with instruction field
AA = 1), the target address is the sign-extended displacement. This means that with absolute forms of the
branch and branch conditional instructions, the branch target can be within the first or last 32 MB or 32 KB of
the address space, respectively.

The other two branch instructions, bclr (branch conditional to LR) and bcctr (branch conditional to CTR), do
not use absolute or relative addressing. Instead, they use indirect addressing, in which the target of the
branch is specified indirectly as the contents of the LR or CTR.

2.9.2 Branch Instruction BI Field

Conditional branch instructions can optionally test one bit of the CR, as indicated by instruction field BO[0]
(see Section 2.9.3). The value of instruction field BI specifies the CR bit to be tested (32-63). The BI field is
ignored if BO[0] = 1. The branch (b[l][a]) instruction is by definition unconditional; hence, it does not have a BI
instruction field. Instead, the position of this field is part of the LI displacement field.

2.9.3 Branch Instruction BO Field

The BO field specifies the condition under which a conditional branch is taken and whether the branch decre-
ments the CTR as shown in Table 2-34. In the table, M = 0 in 64-bit mode and M = 32 in 32-bit mode. The
branch (b[l][a]) instruction is by definition unconditional; hence, it does not have a BO instruction field.
Instead, the position of this field is part of the LI displacement field.

Conditional branch instructions can optionally test one bit in the CR. This option is selected when BO[0] = 0. If
BO[0] = 1, the CR does not participate in the branch condition test. If the CR condition option is selected, the
condition is satisfied (branch can occur) if the CR bit selected by the BI instruction field matches BO[1].

Conditional branch instructions can also optionally decrement the CTR by one and test whether the decre-
mented value is 0. This option is selected when BO[2] = 0. If BO[2] = 1, the CTR is not decremented and
does not participate in the branch condition test. If the CTR decrement option is selected, BO[3] specifies the
condition that must be satisfied to allow the branch to be taken. If BO[3] = 0, CTR  0 is required for the
branch to occur. If BO[3] = 1, CTR = 0 is required for the branch to occur.

User’s Manual

A2 Processor

CPU Programming Model

Page 100 of 864
Version 1.3

October 23, 2012

The “a” and “t” bits of the BO field can be used by software to provide a hint about whether the branch is likely
to be taken or is likely not to be taken, as shown in Table 2-35.

This implementation has dynamic mechanisms for predicting whether a branch will be taken. Because the
dynamic prediction is likely to be very accurate and is likely to be overridden by any hint provided by the “at”
bits, the “at” bits should be set to 0b00 unless the static prediction implied by at = 0b10 or at = 0b11 is highly
likely to be correct.

2.9.4 Branch Prediction

The following sections detail the methods by which the branch predictor decodes incoming branches, gener-
ates predictions for both the direction and target of these branches, and guides instruction flow based on
these predictions.

2.9.4.1 Branch Decoder

Before the branch predictor itself, every instruction cache line is passed through the branch decoder. The
primary purpose of the branch decoder is to identify any valid branch instructions contained within the cache
line. Valid branches include b, bc, bclr, bcctr, and their derivatives.

The branch decoder also decodes any hints contained within the branch instructions. Hints can be specified
for any branch conditional instruction (bc, bclr, bcctr, and their derivatives). Hints are encoded in the branch
instruction's BO field.

Table 2-34. BO Field Encodings

BO Description Description

0000z Decrement the CTR, then branch if the decremented CTRM:63 neq 0 and CRBI = 0.

0001z Decrement the CTR, then branch if the decremented CTRM:63 = 0 and CRBI = 0.

001at Branch if CRBI = 0.

0100z Decrement the CTR, then branch if the decremented CTRM:63 neq 0 and CRBI = 1.

0101z Decrement the CTR, then branch if the decremented CTRM:63 = 0 and CRBI = 1.

011at Branch if CRBI = 1.

1a00t Decrement the CTR, then branch if the decremented CTRM:63 neq 0.

1a01t Decrement the CTR, then branch if the decremented CTRM:63 = 0.

1z1zz Branch always.

Notes:

1. ‘z’ denotes a bit that is ignored.
2. The ‘a’ and ‘t’ bits are used as described in Table 2-35 on page 100.

Table 2-35. ‘at’ Bit Encodings

at Hint

00 No hint is given.

01 Reserved.

10 The branch is very likely not to be taken.

11 The branch is very likely to be taken.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 101 of 864

Ultimately, the branch decoder generates four flags that will be used by the branch predictor at a later stage.
These bits are appended to the original 32-bit instruction and are carried along as part of the instruction until
needed.

Branch is configurable. Each type of branch, as well as software hints, can be enabled or disabled at this
point for prediction purposes. Configuration bits are controlled via the IUCR0 register.

2.9.4.2 Branch Direction Prediction

Branch direction prediction is performed simultaneously on all valid branch instructions within a cache line to
guide instruction flow appropriately. The first taken branch within a cache line will cause the branch predictor
to redirect the instruction flow, and all subsequent instructions within that cache line are considered invalid.

Hard branches, by definition, are always taken. In all other cases, however, the branch predictor must make a
choice and predict which direction a branch will take. The branch predictor contains three direction prediction
mechanisms. In order of priority, they are: software prediction, dynamic hardware prediction, and static hard-
ware prediction. Each of these mechanisms can be independently enabled or disabled via the IUCR0
register. If enabled, a higher priority prediction always overrides a lower priority prediction. If all prediction
mechanisms are disabled, the branch predictor will predict “branch not taken” and will take no action.

All branch direction predictions are completed in IU3. It is expected that the XU will flag a misprediction and
flush if any predicted branch direction does not match the eventual resolved branch direction.

Software Prediction

Software prediction relies on hints encoded into the branch instruction itself to determine whether a branch
will be predicted taken or not. Assuming well written software, this method can yield relatively accurate
predictions with trivial resource utilization because implementing software prediction requires only a small
amount of combinatorial logic. If a hint is valid and the hint is taken, the branch will be evaluated taken. If a
hint is valid and the hint is not taken, the branch will be evaluated not taken. If the hint is not valid, some other
method must be used to predict the branch.

When programming with branches, the user is expected to apply hints responsibly, using them only where
appropriate. Appropriate usage generally involves a very predictable software construct, like a loop, where
the user knows that a branch will be executed in every iteration except the last. Conversely, software hints
might also be appropriate in cases where branching will be truly random and not prone to trends. In truly
random cases, hinting that a branch will not be taken might be the most efficient course, because it will elimi-
nate frequent false branches and subsequent redirections to correct the instruction flow.

It is not required that software hints be used. If no hints are specified (or if software prediction is disabled), a
prediction is generated based on either dynamic hardware prediction or static hardware prediction.

Dynamic Hardware Prediction

Dynamic hardware prediction relies on a particular instruction's recent history to determine whether a branch
will be predicted taken or not. This method requires a great deal more resources than software prediction
because a large array, or branch history table (BHT), is necessary to store history information for every
branch instruction that has been executed. This method has the advantage, however, that it can identify and
use trends in the software that the programmer has not explicitly identified or might not be aware of.

instruction unit pipeline stage 3

User’s Manual

A2 Processor

CPU Programming Model

Page 102 of 864
Version 1.3

October 23, 2012

Dynamic prediction begins when a valid instruction initiates a read access to the BHT in IU0. The BHT is
indexed based on the current instruction IFAR, and returns a 2-bit history value for that instruction. Because
any or all of the instructions in a cache line can be valid branches, all four branch histories are accessed
simultaneously from four instances of the BHT array (each array is dedicated to one slice of the cache line).
BHT data for this access is available in IU2. Based on the IU2 IFAR, BHT data is rotated to synchronize with
concurrent instruction rotation in the I-cache. Branch histories are then available for evaluation in IU3.

Assuming that the instruction is not a hard branch and that software prediction has not been applied, the
value returned from the BHT is used to predict the current instruction. If the history MSB is a '0', the branch is
predicted not taken; if it is a '1', the branch is predicted taken. Both history bits are appended to the branch
instruction for later use. Once the instruction reaches the execution unit and the branch is resolved, the
executed branch direction is returned to the branch predictor along with the associated history bits and
instruction IFAR. The executed branch direction is then used to update the branch history for that instruction.

Bimodal Branch History

An instruction's branch history is nothing more than a saturating 2-bit counter. Each time an executed branch
is resolved taken, its history bits are incremented up to a maximum value of ‘11’. Each time an executed
branch is resolved not taken, its history bits are decremented down to a minimum value of ‘00’. The updated
history value is written back into the BHT based on the executed instruction IFAR, and is available the next
time the instruction is issued.

This 2-bit, or bimodal, scheme is superior to a single-bit history, in that it operates according to trends rather
than basing its prediction on a single event. This prevents a single anomaly from corrupting future predictions.
In the case of a loop, for example, a single-bit history predictor will mispredict twice - once upon entering and
once upon exiting that particular loop. The bimodal predictor will only mispredict once - upon exiting. Predic-
tors of this type have been shown to have an average accuracy of greater than 90%. In reality, however, the
way in which the software routines are written ultimately governs how accurate any prediction mechanism
can be.

BHT Arrays

The BHT is comprised of four identical arrays, each associated with one of the four instructions within a cache
line. Each of these consists of a 2-bit  1 k-entry array with dedicated read and write ports. The 10-bit BHT
read address is comprised of IU0 IFAR bits 50:59, with all four BHTs reading concurrently. The 10-bit BHT
write address is comprised of the EX2 IFAR bits 50:59, with bits 60:61 used as an encoded write enable for
each array.

Collisions

It is currently assumed that the arrays used for BHT allow write-through. In that case, read-write collisions are
not an issue.

Aliasing

Because the BHT arrays are only 1 K deep, it is impossible to index every instruction individually (only a small
portion of available IFAR bits are actually used to index into the array). Aliasing is the unavoidable result.
Aliasing reduces the accuracy of the predictor because multiple instructions can share the same BHT index.

instruction unit pipeline stage 0

Instruction Fetch Address Register

instruction unit pipeline stage 2

instruction unit pipeline stage 3

execution unit pipeline stage 2

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 103 of 864

The effect could be minimized by increasing the depth of the BHT (and the number of IFAR bits used), but
with an IFAR that is potentially 62 bits long, aliasing can never be eliminated entirely. A depth of 1 k was
chosen as a compromise between accuracy and area.

Thread Isolation

Total BHT capacity can be shared between all threads or it can be segmented and isolated on a per thread
basis. A shared BHT provides the maximum capacity (and minimum aliasing) and is appropriate when iden-
tical programs are running on all four threads. In that case, it is reasonable to assume the branch histories are
common. The shared BHT is indexed by 10 IFAR bits. A thread-isolated BHT eliminates the possibility of
cross-thread contamination and is appropriate when each thread is running an unrelated program. The
thread-isolated BHT is indexed by 8 IFAR bits, with the 2 MSBs replaced with the encoded thread ID. Config-
uration is possible via the IUCR0 register. It should be noted that changing the BHT index configuration in this
way during execution will invalidate BHT entries until they can be re-established, thus impacting performance.
Due to this impact, changing configuration during execution is not recommended for short instruction
sequences.

GShare

GShare is a global branch prediction scheme. Global branch prediction uses the recent history of executed
branches in a program as an indicator of which direction the next branch will take.

The branch predictor keeps track of the 10 most recent branches executed within each thread by using a 10-
bit global history register per thread. Each bit corresponds to an executed branch ('0' = branch resolved not
taken, '1' = branch resolved taken). Whenever a new branch is executed, new data is shifted in and the oldest
data is shifted out. According to the standard GShare scheme, the BHT index is then created by XORing the
current thread's global history with the lower bits of the instruction IFAR.

In theory, GShare indexing will result in a more accurate predictor than straight IFAR indexing. Gshare can be
disabled via the IUCR0 register, and the BHT can be accessed directly with the address index. In the event
that Gshare is disabled/enabled, it should be noted that all global history bits and individual branch history
entries in the BHT are invalidated and must be re-established. This can also affect the performance of other
threads if they are using the option of thread-sharing for the BHT. Thread-sharing of BHT resources can also
be disabled, so that entries are isolated per thread. Again, it should be noted that all BHT entries are invali-
dated and must be re-established if thread-sharing is enabled/disabled after code has been executed.
Changing either the Gshare or BHT sharing options both affect the performance of the system and depend on
the code sequences they are using. Generally you do not want to change the configuration, especially when
in BHT shared mode, for short instruction sequences.

Static Hardware Prediction

Static hardware prediction relies on the assumption that most executed branch instructions in a program are
resolved taken. It is a trivial mechanism that forces all valid branches to be predicted taken. It is a catch-all if
software prediction and dynamic hardware prediction are not being used.

User’s Manual

A2 Processor

CPU Programming Model

Page 104 of 864
Version 1.3

October 23, 2012

2.9.4.3 Branch Prioritization

After all valid branch instructions within a cache line have been evaluated, they are prioritized in the order
they occur. The first branch within a cache line to be evaluated taken - by whatever method - is considered
the priority branch. It is this instruction that is used to flush the current thread, predict the new branch target
address (BTA), and redirect the IFAR. All subsequent instructions within the cache line are invalidated.

2.9.4.4 Branch Target Prediction

Branch targets are determined based on branch type. All branch target calculations are completed in IU4.

Hard Branch and Branch Conditional

Incoming B and BC instructions contain all the information necessary to calculate a BTA on the fly. The cases
are defined here. AA, LI, and BD are all defined instruction fields.

• If B and AA = '1', BTA  LI

• If B and AA = '0', BTA  LI + IFAR

• If BC and AA = '1', BTA  BD

• If BC and AA = '0', BTA  BD + IFAR

These BTAs have the advantage of being guaranteed correct. Because the terms used to calculate a BTA
are explicitly defined at the time the BTA is calculated, there can be no ambiguity and no chance of BTA
corruption.

Branch Conditional to Link Register

Incoming BCLR instructions obtain a BTA from the branch predictor's link stack. The link stack is a LIFO
buffer designed to keep track of nested subroutines. It holds a list of potential LINK register contents, which
are maintained based on subroutine calls and returns. A subroutine call is defined as any taken branch where
instruction field LK = '1'. When a subroutine call is detected, the NIA (incremented IFAR) is pushed onto the
top of the link stack because this is the location to which the subroutine will return. A subroutine return is
defined as a taken branch conditional to LR (BCLR) where instruction field BH = ‘00’ (while this is kept as a
condition for a subroutine return, it is generally assumed that all BCLR instructions are intended as subroutine
returns). When a subroutine return is detected, a previously stored NIA is popped off the top of the link stack,
and used as a BTA for the current BCLR instruction. In the event of nested subroutines, multiple consecutive
calls are followed by multiple consecutive returns, with the LIFO structure of the link stack keeping everything
ordered properly. The link stack is isolated and replicated per thread to maintain proper instruction flow in and
out of the buffer. Each stack is four entries deep, and wide enough to accommodate the entire IFAR (poten-
tially 62 bits). A pointer is used to define the top of the stack.

Misalignment

In the event of a stack misalignment, the stack must be realigned. Misalignment occurs when the branch
direction for a subroutine call/return is predicted incorrectly and the stack pointer is consequently moved to
the wrong location. Realignment of the stack pointer relies on the use of a shadow pointer. The shadow
pointer is governed by the same rules as the stack pointer, except that it acts on resolved branches instead of
predicted branches. This guarantees that the value of the shadow pointer is always correct (even though the
data is too old to be useful to the branch predictor under normal circumstances). Any time the execution unit
flushes (whether due to a branch misprediction or not), the stack pointer is overwritten with the value of the

instruction unit pipeline stage 4

last-in, first-out

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 105 of 864

shadow pointer. The shadow pointer becomes valid for predictions at this point because all branch instruc-
tions that have not yet been resolved by the execution unit will be flushed with the rest of the pipeline. In the
special case that a subroutine call was predicted not taken, then resolved taken, simple realignment is not
sufficient. The top of the realigned stack must also be updated with the subroutine call's NIA.

Overflow

Because the link stack is only four entries deep, the logic can only handle four nested subroutines before
overflowing. In the case of an overflow, the stack pointer wraps and continue storing NIAs, overwriting
existing data in the oldest locations. In this way, the link stack is always able to return BTAs for the four most
recent nested subroutine calls. If the nesting has gone deeper than this, the link stack returns garbage for
anything less recent. This is unavoidable. A deeper stack could reduce the impact at the expense of area.

Corruption

It should be noted that there is a danger of BTA corruption in the case of BCLR instructions, due to either
stack misalignment or overflow conditions. The XU must compare the predicted BTA against the executed
BTA for all BCLRs and flag a misprediction if they fail to match.

Branch Conditional to Count Register

BCCTR BTAs cannot be reliably predicted. Because of differences in usage, the contents of the Count
Register cannot be emulated in the same way that the contents of the Link Register can. In addition, there is
no reason to assume that the contents of the Count Register will remain static from the time the branch is
predicted to the time it is resolved; thus, tapping the Count Register directly is not a good option either.

Instead of ignoring BCCTR instructions entirely due to this limitation, the branch predictor is still able to
provide some benefit in these cases. If a BCCTR is predicted taken, the branch predictor will cause a simulta-
neous flush and hold on the current thread. Redirecting the thread to a specific location is impossible without
a BTA, but holding the current thread in I-cache at least allows other threads to make full use of hardware
resources until the branch can be properly resolved in XU. At that point, it is assumed that the XU will flush,
redirecting the thread to the correct location. The hold signal is released if such a flush is detected.

2.9.4.5 Redirection

In the event of any branches predicted taken, the branch predictor asserts the redirect thread ID and IFAR
back to the I-cache as a local flush. Redirections are asserted in IU5.

2.9.5 Branch Control Registers

There are three registers in the A2 core that are associated with branch processing. They are described in the
following sections.

2.9.5.1 Link Register (LR)

The LR is written from a GPR using mtspr, and it can be read into a GPR using mfspr. The LR can also be
updated by the “link update” form of branch instructions (instruction field LK = 1). Such branch instructions
load the LR with the address of the instruction following the branch instruction (4 + address of the branch

instruction unit pipeline stage 5

User’s Manual

A2 Processor

CPU Programming Model

Page 106 of 864
Version 1.3

October 23, 2012

instruction). Thus, the LR contents can be used as a return address for a subroutine that was entered using a
link update form of branch. The bclr instruction uses the LR in this fashion, enabling indirect branching to any
address.

When being used as a return address by a bclr instruction, bits 62:63 of the LR are ignored because all
instruction addresses are on word boundaries.

Access to the LR is nonprivileged.

2.9.5.2 Count Register (CTR)

The CTR is written from a GPR using mtspr, and it can be read into a GPR using mfspr. The CTR contents
can be used as a loop count that gets decremented and tested by conditional branch instructions that specify
count decrement as one of their branch conditions (instruction field BO[2] = 0). Alternatively, the CTR
contents can specify a target address for the bcctr instruction, enabling indirect branching to any address.

Access to the CTR is nonprivileged.

Register Short Name: LR Read Access: Any

Decimal SPR Number: 8 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 LR 0x0 Link Register

The Link Register (LR) is a 64-bit register. It can be used to provide the branch target
address for the Branch Conditional to Link Register instruction, and it holds the return
address after branch instructions for which LK = 1.

Register Short Name: CTR Read Access: Any

Decimal SPR Number: 9 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 CTR 0x0 Counter

The Count Register (CTR) is a 64-bit register. It can be used to hold a loop count that can
be decremented during execution of branch instructions that contain an appropriately
coded BO field. If the value in the Count Register is 0 before being decremented, it is -1
afterward. The Count Register can also be used to provide the branch target address for
the Branch Conditional to Count Register instruction.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 107 of 864

2.9.5.3 Condition Register (CR)

The CR is used to record certain information (“conditions”) related to the results of the various instructions
that are enabled to update the CR. A bit in the CR can also be selected to be tested as part of the condition of
a conditional branch instruction.

The CR is organized into eight 4-bit fields (CR0–CR7), as shown in the following table. Table 2-36 on
page 108 lists the instructions that update the CR.

Access to the CR is nonprivileged.

Register Short Name: CR Read Access: Any

Decimal SPR Number: N/A Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:35 CR0 0b0000 Condition Register Field 0

36:39 CR1 0b0000 Condition Register Field 1

40:43 CR2 0b0000 Condition Register Field 2

44:47 CR3 0b0000 Condition Register Field 3

48:51 CR4 0b0000 Condition Register Field 4

52:55 CR5 0b0000 Condition Register Field 5

56:59 CR6 0b0000 Condition Register Field 6

60:63 CR7 0b0000 Condition Register Field 7

User’s Manual

A2 Processor

CPU Programming Model

Page 108 of 864
Version 1.3

October 23, 2012

To summarize, the CR can be accessed in any of the following ways:

• mfcr reads the CR into a GPR. Note that this instruction does not update the CR and is therefore not
listed in Table 2-36.

• Conditional branch instructions can designate a CR bit to be used as a branch condition. Note that these
instructions do not update the CR and are therefore not listed in Table 2-36.

• mtcrf sets specified CR fields by writing to the CR from a GPR, under control of a mask field specified as
part of the instruction.

• mcrf updates a specified CR field by copying another specified CR field into it.

• mcrxr copies certain bits of the XER into a specified CR field, and clears the corresponding XER bits.

• Integer compare instructions update a specified CR field.

• CR-logical instructions update a specified CR bit with the result of any one of eight logical operations on a
specified pair of CR bits.

Table 2-36. CR Updating Instructions

Integer Processor
Control

Storage
Control

Implementation
Specific

Storage
Access Arithmetic Logical Compare Rotate Shift

CR-Logical
and Register
Management

TLB
Management

See Section 12
on page 481

stwcx.
stdcx.

add.[o]
addc.[o]
adde.[o]
addic.
addme.[o]
addze.[o]

subf.[o]
subfc.[o]
subfe.[o]
subfme.[o]
subfze.[o]

mulhw.
mulhwu.
mullw.[o]

divw.[o]
divwu.[o]
divdo.
divduo.

neg.[o]

mulhd.
mulhdu.
mulld.
mulldo.
divd.
divdu.

and.
andi.
andis.

andc.

nand.

or.
orc.

nor.

xor.

eqv.

extsb.
extsw.
extsh.

cntlzw.
cntlzd.

cmp
cmpi

cmpl
cmpli

rlwimi.

rlwinm.
rlwnm.

rldcl.
rldcr.
rldic.
rldicl.
rldicr.
rldimi.

slw.

srw.

sraw.
srawi.

sld.
srad.[i]
srd.

crand
crandc
creqv
crnand
crnor
cror
crorc
crxor

mcrf
mcrxr
mtcrf

tlbsx.
tlbsrx.

icswx.
icswepx.
eratsx.
ldawx.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 109 of 864

• Certain forms of various integer instructions (the “.” forms) implicitly update CR[CR0], as do certain forms
of the auxiliary processor instructions implemented within the A2 core.

• Auxiliary processor instructions can, in general update, a specified CR field in an implementation-speci-
fied manner. In addition, if an auxiliary processor implements the floating-point operations specified by
the Power ISA, those instructions update the CR in the manner defined by the architecture. See
Book III-E: Power ISA Architecture Enhanced for Embedded Applications for details.

CR[CR0] Implicit Update By Integer Instructions

Most of the CR-updating instructions listed in Table 2-36 implicitly update the CR0 field. These are the
various “dot-form” instructions, indicated by a “.” in the instruction mnemonic. Most of these instructions
update CR[CR0] according to an arithmetic comparison of 0 with the 64-bit result in 64-bit mode or compar-
ison with the lower 32 bits of the result in 32-bit mode. The compare to 0 uses a signed comparison, indepen-
dent of whether the actual operation being performed by the instruction is considered “signed” or not. For
example, logical instructions such as and., or., and nor. update CR[CR0] according to this signed compar-
ison to 0, even though the result of such a logical operation is not typically interpreted as a signed value. For
each of these dot-form instructions, the individual bits in CR[CR0] are updated as follows:

Note that if an arithmetic overflow occurs, the “sign” of an instruction result indicated in CR[CR0] might not
represent the “true” (infinitely precise) algebraic result of the instruction that set CR0. For example, if an add.
instruction adds two large positive numbers and the magnitude of the result cannot be represented as a twos-
complement number in a 64-bit register in 64-bit mode or in a 32-bit register in 32-bit mode, an overflow
occurs and CR[CR0]0 is set, even though the infinitely precise result of the add is positive.

Similarly, adding the largest 64-bit twos-complement negative number (0x8000_0000_0000_0000) to itself in
64-bit mode or the largest 32-bit twos-complement negative number (0x8000_0000) to itself in 32-bit mode
results in an arithmetic overflow and 0x0000_0000_0000_0000 in 64-bit mode or 0x0000_0000 (in bits 32:63)
in 32-bit mode is recorded in the target register. CR[CR0]2 is set, indicating a result of 0, but the infinitely
precise result is negative.

CR[CR0]3 is a copy of XER[SO] at the completion of the instruction, whether or not the instruction that is
updating CR[CR0] is also updating XER[SO]. Note that if an instruction causes an arithmetic overflow but is
not of the form that actually updates XER[SO], then the value placed in CR[CR0]3 does not reflect the arith-
metic overflow that occurred on the instruction (it is merely a copy of the value of XER[SO] that was already in
the XER before the execution of the instruction updating CR[CR0]).

There are a few dot-form instructions that do not update CR[CR0] in the fashion described above. These
instructions are: stwcx., stdcx.

CR[CR0]0 — LT Less than 0; set if the most-significant bit of the 64-bit result in 64-bit mode or
the most-significant bit of the 32-bit result in 32-bit mode is 1.

CR[CR0]1 — GT Greater than 0; set if the 64-bit result in 64-bit mode or the 32-bit result in
32-bit mode is nonzero and the most-significant bit of the result is 0.

CR[CR0]2 — EQ Equal to 0; set if the 64-bit result in 64-bit mode or the 32-bit result in 32-bit
mode is 0.

CR[CR0]3 — SO Summary overflow; a copy of XER[SO] at the completion of the instruction
(including any XER[SO] update being performed the instruction itself.

User’s Manual

A2 Processor

CPU Programming Model

Page 110 of 864
Version 1.3

October 23, 2012

CR Update By Integer Compare Instructions

Integer compare instructions update a specified CR field with the result of a comparison of two 64-bit
numbers in 64-bit mode or two 32-bit numbers in 32-bit mode, the first of which is from a GPR and the second
of which is either an immediate value or from another GPR. There are two types of integer compare instruc-
tions, arithmetic and logical, and they are distinguished by the interpretation given to the 64-bit numbers in
64-bit mode or to the 32-bit numbers in 32-bit mode being compared. For arithmetic compares, the numbers
are considered to be signed, whereas for logical compares, the numbers are considered to be unsigned. As
an example, consider the comparison of 0 with 0xFFFF_FFFF_FFFF_FFFF. In an arithmetic compare, 0 is
larger; in a logical compare, 0xFFFF_FFFF_FFFF_FFFF is larger.

A compare instruction can direct its result to any CR field. The BF field (bits 6:8) of the instruction specifies
the CR field to be updated. After a compare, the specified CR field is interpreted as follows:

2.10 Integer Processing

Integer processing includes loading and storing data between memory and GPRs, as well as performing
various operations on the values in GPRs and other registers (the categories of integer instructions are
summarized in Table 2-8 on page 89). The sections that follow describe the registers that are used for integer
processing and how they are updated by various instructions. In addition, Condition Register (CR) on
page 107 provides more information about the CR updates caused by integer instructions.

2.10.1 General Purpose Registers (GPRs)

The A2 core contains 32 GPRs. The contents of these registers can be transferred to and from memory using
integer storage access instructions. Operations are performed on GPRs by most other instructions.

Access to the GPRs is nonprivileged.

2.10.2 Integer Exception Register (XER)

The XER records overflow and carry indications from integer arithmetic and shift instructions. It also provides
a byte count for string indexed integer storage access instructions (lswx and stswx). Note that the term
exception in the name of this register does not refer to exceptions as they relate to interrupts, but rather to the
arithmetic exceptions of carry and overflow.

CR[(BF)]0 — LT The first operand is less than the second operand.

CR[(BF)]1 — GT The first operand is greater than the second operand.

CR[(BF)]2 — EQ The first operand is equal to the second operand.

CR[(BF)]3 — SO Summary overflow; a copy of XER[SO].

Table 2-37. GPR Registers

Bits Field Name Initial
Value Description

0:31 N/A N/A General Purpose Register Data

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 111 of 864

The following table illustrates the fields of the XER, while Table 2-38 and Table 2-39 list the instructions that
update XER[SO,OV] and the XER[CA] fields, respectively. The sections that follow the figure and tables
describe the fields of the XER in more detail.

Access to the XER is nonprivileged.

Register Short Name: XER Read Access: Any

Decimal SPR Number: 1 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32 SO 0b0 Summary Overflow

The Summary Overflow bit is set to 1 whenever an instruction (except mtspr) sets the
Overflow bit.

33 OV 0b0 Overflow

The Overflow bit is set to indicate that an overflow has occurred during execution of an
instruction.

34 CA 0b0 Carry

Carry bit from extend arithmetic operations.

35:56 /// 0x0 Reserved

57:63 SI 0x0 String Index

This field specifies the number of bytes to be transferred by a Load String Indexed or Store
String Indexed instruction.

Table 2-38. XER[SO,OV] Updating Instructions

Integer Arithmetic Processor Control

Add Subtract Multiply Divide Negate Register Management

addo[.]
addco[.]
addeo[.]
addmeo[.]
addzeo[.]

subfo[.]
subfco[.]
subfeo[.]
subfmeo[.]
subfzeo[.]

mullwo[.]

mulldo[.]

divwo[.]
divwuo[.]

divdo[.]
divduo[.]

nego[.] mtspr
mcrxr

Table 2-39. XER[CA] Updating Instructions

Integer Arithmetic Integer Shift Processor Control

Add Subtract Shift Right Algebraic Register Management

addc[o][.]
adde[o][.]
addic[.]
addme[o][.]
addze[o][.]

subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

sraw[.]
srawi[.]

srad[.]
sradi[.]

mtspr
mcrxr

User’s Manual

A2 Processor

CPU Programming Model

Page 112 of 864
Version 1.3

October 23, 2012

2.10.2.1 Summary Overflow (SO) Field

This field is set to 1 when an instruction is executed that causes XER[OV] to be set to 1, except for the case
of mtspr(XER), which writes XER[SO,OV] with the values in (RS)0:1, respectively. Once set, XER[SO] is not
reset until either an mtspr(XER) is executed with data that explicitly writes 0 to XER[SO], or until an mcrxr
instruction is executed. The mcrxr instruction sets XER[SO] (as well as XER[OV,CA]) to 0 after copying all
three fields into CR[CR0]0:2 (and setting CR[CR0]3 to 0).

Given this behavior, XER[SO] does not necessarily indicate that an overflow occurred on the most recent
integer arithmetic operation, but rather that one occurred at some time subsequent to the last clearing of
XER[SO] by mtspr(XER) or mcrxr.

XER[SO] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, various integer
instructions copy XER[SO] into CR[CR0]3 (see Condition Register (CR) on page 107).

2.10.2.2 Overflow (OV) Field

This field is updated by certain integer arithmetic instructions to indicate whether the infinitely precise result of
the operation can be represented in 64 bits when in 64-bit mode or in 32 bits when in 32-bit mode. For those
integer arithmetic instructions that update XER[OV] and produce signed results, XER[OV] = 1 if the result is
greater than 263–1 or less than –263 (in 64-bit mode) or if the result is greater than 231–1 or less than –231
(when in 32-bit mode); otherwise, XER[OV] = 0. For those integer arithmetic instructions that update
XER[OV] and produce unsigned results (certain integer divide instructions and multiply-accumulate auxiliary
processor instructions), XER[OV] = 1 if the result is greater than 264–1 (when in 64-bit mode) or if the result is
greater than 231–1 (when in 32-bit mode); otherwise, XER[OV] = 0.

The mtspr(XER) and mcrxr instructions also update XER[OV]. Specifically, mcrxr sets XER[OV] (and
XER[SO,CA]) to 0 after copying all three fields into CR[CR0]0:2 (and setting CR[CR0]3 to 0), while
mtspr(XER) writes XER[OV] with the value in (RS)1.

XER[OV] is read (along with the rest of the XER) into a GPR by mfspr(XER).

2.10.2.3 Carry (CA) Field

This field is updated by certain integer arithmetic instructions (the “carrying” and “extended” versions of add
and subtract) to indicate whether or not there is a carry-out of the most-significant bit of the 64-bit result when
in 64-bit mode or a carry-out of the most-significant bit of the 32-bit result when in 32-bit mode. XER[CA] = 1
indicates a carry. The integer shift right algebraic instructions update XER[CA] to indicate whether or not any
1 bits were shifted out of the least significant bit of the result, if the source operand was negative.

The mtspr(XER) and mcrxr instructions also update XER[CA]. Specifically, mcrxr sets XER[CA] (as well as
XER[SO,OV]) to 0 after copying all three fields into CR[CR0]0:2 (and setting CR[CR0]3 to 0), while
mtspr(XER) writes XER[CA] with the value in (RS)2.

XER[CA] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, the “extended”
versions of the add and subtract integer arithmetic instructions use XER[CA] as a source operand for their
arithmetic operations.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 113 of 864

2.10.2.4 Transfer Byte Count (TBC) Field

The TBC field is used by the string indexed integer storage access instructions (lswx and stswx) as a byte
count. The TBC field is also written by mtspr(XER) with the value in (RS)25:31.

XER[TBC] is read (along with the rest of the XER) into a GPR by mfspr(XER).

2.11 Processor Control

Except for the MSR, each of the following registers is described in more detail in the following sections. The
MSR is described in more detail in Machine State Register (MSR) on page 301.

• Machine State Register (MSR) - Controls interrupts and other processor functions.

• Special Purpose Registers General (SPRGs) - SPRs for general purpose software use.

• Vector Save Register (VRSAVE) - Can be used to indicate which VRs are currently in use by a program.

• Processor Version Register (PVR) - Indicates the specific implementation of a processor.

• Thread Identification Register (TIR) - Indicates the specific instance of a thread within in a processor.

• Processor Identification Register (PIR) - Indicates the specific instance of a processor in a multiprocessor
system.

• Guest Processor Identification Register (GPIR) - Indicates the specific instance of a processor in a multi-
processor system for the guest state.

• Thread Enable Register (TENS, TENC) - Controls the thread run state.

• Thread Enable Status Register (TENSR) - Indicates the thread run state.

• External Process ID Registers (EPLC, EPSC) - Alternate PID for loads, stores, and cache operations.

• Core Configuration Register 0 (CCR0) - Controls specific processor functions, such as run controls.

• Core Configuration Register 1 (CCR1) - Controls specific processor functions, such as thread wakeup
controls.

• Core Configuration Register 2 (CCR2) - Controls various other processor functions.

• Instruction Unit Configuration Register 0 (IUCR0) - Contains various configuration options for the instruc-
tion unit.

• Instruction Unit Configuration Register 1(IUCR1) - Contains various configuration options for the instruc-
tion unit.

• Execution Unit Configuration Register 0 (XUCR0) - Contains various configuration options for the execu-
tion unit.

• Execution Unit Configuration Register 1(XUCR1) - Contains various configuration options for the execu-
tion unit.

• Execution Unit Configuration Register 2(XUCR2) - Contains various configuration options for the execu-
tion unit.

• Program Priority Register (PPR32) - Controls thread priority.

User’s Manual

A2 Processor

CPU Programming Model

Page 114 of 864
Version 1.3

October 23, 2012

2.11.1 Special Purpose Registers General (SPRG0–SPRG8)

SPRG0 through SPRG8 are provided for general purpose, system-dependent software use. One common
system usage of these registers is as temporary storage locations. For example, a routine might save the
contents of a GPR to an SPRG and later restore the GPR from it. This is faster than a save/restore to a
memory location. These registers are written using mtspr and read using mfspr.

Table 2-40. SPRG0 Register

Table 2-41. SPRG1 Register

SPRG0 through SPRG2 These 64-bit registers can be accessed only in supervisor mode. Access to these
registers when in guest state is mapped to GSPRG0 through GSPRG2.

SPRG3 These 64-bit registers can be written only in supervisor mode. These registers can
be read in supervisor and user modes. Access to these registers when in guest
state is mapped to GSPRG3.

SPRG4 through SPRG7 These 64-bit registers can be written only in supervisor mode. These registers can
be read in supervisor and user modes.

SPRG8 These 64-bit registers can be accessed only in supervisor mode.

Register Short Name: SPRG0 Read Access: Priv

Decimal SPR Number: 272 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG0 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG0 0x0 Software Special Purpose Register 0

An SPR for software use that has no defined functionality.

Register Short Name: SPRG1 Read Access: Priv

Decimal SPR Number: 273 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG1 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG1 0x0 Software Special Purpose Register 1

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 115 of 864

Table 2-42. SPRG2 Register

Table 2-43. SPRG3 Register

Table 2-44. SPRG4 Register

Register Short Name: SPRG2 Read Access: Priv

Decimal SPR Number: 274 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG2 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG2 0x0 Software Special Purpose Register 2

An SPR for software use that has no defined functionality.

Register Short Name: SPRG3 Read Access: Priv/Any

Decimal SPR Number: 275/259 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG3 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG3 0x0 Software Special Purpose Register 3

An SPR for software use that has no defined functionality.

Register Short Name: SPRG4 Read Access: Priv/Any

Decimal SPR Number: 276/260 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG4 0x0 Software Special Purpose Register 4

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

CPU Programming Model

Page 116 of 864
Version 1.3

October 23, 2012

Table 2-45. SPRG5 Register

Table 2-46. SPRG6 Register

Table 2-47. SPRG7 Register

Register Short Name: SPRG5 Read Access: Priv/Any

Decimal SPR Number: 277/261 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG5 0x0 Software Special Purpose Register 5

An SPR for software use that has no defined functionality.

Register Short Name: SPRG6 Read Access: Priv/Any

Decimal SPR Number: 278/262 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG6 0x0 Software Special Purpose Register 6

An SPR for software use that has no defined functionality.

Register Short Name: SPRG7 Read Access: Priv/Any

Decimal SPR Number: 279/263 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG7 0x0 Software Special Purpose Register 7

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 117 of 864

Table 2-48. SPRG8 Register

Table 2-49. GSPRG0 Register

Table 2-50. GSPRG1 Register

Register Short Name: SPRG8 Read Access: Hypv

Decimal SPR Number: 604 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG8 0x0 Software Special Purpose Register 8

An SPR for software use that has no defined functionality.

GSPRG0 through
GSPRG2

These 64-bit registers can be accessed only in supervisor mode.

GSPRG3 These 64-bit registers can be written only in supervisor mode. These registers can
be read in supervisor and user modes.

Register Short Name: GSPRG0 Read Access: Priv

Decimal SPR Number: 368 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG0 0x0 Guest Software Special Purpose Register 0

An SPR for software use that has no defined functionality.

Register Short Name: GSPRG1 Read Access: Priv

Decimal SPR Number: 369 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG1 0x0 Guest Software Special Purpose Register 1

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

CPU Programming Model

Page 118 of 864
Version 1.3

October 23, 2012

Table 2-51. GSPRG2 Register

Table 2-52. GSPRG3 Register

Register Short Name: GSPRG2 Read Access: Priv

Decimal SPR Number: 370 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG2 0x0 Guest Software Special Purpose Register 2

An SPR for software use that has no defined functionality.

Register Short Name: GSPRG3 Read Access: Priv

Decimal SPR Number: 371 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG3 0x0 Guest Software Special Purpose Register 3

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 119 of 864

2.11.2 External Process ID Load Context (EPLC) Register

The EPLC register contains fields to provide the context for external process ID load instructions.

2.11.3 External Process ID Store Context (EPSC) Register

The EPSC register contains fields to provide the context for External Process ID store instructions. The field
encoding is the same as the EPLC register.

Register Short Name: EPLC Read Access: Priv

Decimal SPR Number: 947 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EPR 0b0 External Load Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID load instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Load Context AS Bit

Used in place of MSR[DS] for translation when an external process ID load instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Load Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID load instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Load Context Logical Process ID Value HO

Used in place of LPID register value for load translation when an external PID load instruc-
tion is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Load Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
load instruction is executed.

Register Short Name: EPSC Read Access: Priv

Decimal SPR Number: 948 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

User’s Manual

A2 Processor

CPU Programming Model

Page 120 of 864
Version 1.3

October 23, 2012

2.12 Privileged Modes

The Power ISA architecture defines two operating “states” or “modes”: supervisor (privileged) and user
(nonprivileged). Which mode the processor is operating in is controlled by MSR[PR]. When MSR[PR] is 0, the
processor is in supervisor mode and can execute all instructions and access all registers, including privileged
ones. When MSR[PR] is 1, the processor is in user mode and can only execute nonprivileged instructions
and access nonprivileged registers. An attempt to execute a privileged instruction or to access a privileged
register while in user mode causes a privileged instruction exception type of program interrupt to occur.

Note that the name “PR” for the MSR field refers to an historical alternative name for user mode, which is
“problem state.” Hence the value 1 in the field indicates “problem state,” and not “privileged” as one might
expect.

Bits Field Name Initial
Value Description

32 EPR 0b0 External Store Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID store instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Store Context AS Bit

Used in place of MSR[DS] for translation when an external process ID store instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Store Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID store instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Store Context Logical Process ID Value HO

Used in place of the LPID register value for load translation when an external PID store
instruction is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Store Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
store instruction is executed.

MSR[GS] MSR[PR] Mode

0 0 Hypervisor

0 1 User

1 0 Guest Supervisor

1 1 Guest User

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 121 of 864

2.12.1 Privileged Instructions

An instruction that is hypervisor privileged must be in the hypervisor state (MSR[GS,PR] = 0b00) to success-
fully execute. If executed from guest privileged state (MSR[GS,PR] = 0b10), an embedded hypervisor privi-
lege exception occurs. A register that is hypervisor privileged must be in the hypervisor state (MSR[GS,PR] =
0b00) to be accessed. If accessed from guest privileged state (MSR[GS,PR] = 0b10), an embedded hyper-
visor privilege exception occurs.

All the instructions listed in Table 2-53 are privileged and cannot be executed in user mode; some instructions
are also hypervisor privileged and must be executed in hypervisor mode.

2.12.1.1 Cache Locking Instructions

The cache locking instructions (dcblc, dcbtls, dcbtstls, icblc, icbtls) are special and produce exceptions
according to the following expression:

if MSRP[UCLEP]=1 AND MSR[GS]=1
if MSR[PR]=1

Cache Locking Type Data Storage Interrupt
else

Embedded Hypervisor Privilege Interrupt

Table 2-53. Privileged Instructions

Instruction Hypervisor
Privileged Instruction Hypervisor

Privileged Instruction Hypervisor
Privileged

dcbfep ici rfgi

dcbi icswepx[.] stbepx

dcbstep lbepx stdepx

dcbtep ldepx stfdepx

dcbtstep lfdepx sthepx

dcbzep lhepx stwepx

dci lwepx tlbilx EPCR[DGTMI] = 1

ehpriv tlbivax Yes

eratilx Yes mfmsr tlbre Yes

erativax Yes mfspr1 Yes2 tlbsrx. EPCR[DGTMI] = 1

eratre Yes msgclr Yes tlbsx Yes

eratsrx[.] Yes msgsnd Yes tlbsync Yes

eratsx[.] Yes tlbwe3 EPCR[DGTMI] = 1

eratwe Yes mtmsr tlbwec3 EPCR[DGTMI] = 1

icbiep mtspr1 Yes2 wrtee

rfci Yes wrteei

rfi

rfmci Yes

1. Applies to any SPR number with SPRN5 = 1. See Privileged SPRs on page 122.
2. Applies to SPR numbers listed as hypervisor privileged. See Table 14-1 Register Summary on page 530.
3. This instruction is hypervisor privileged when MSR[GS] = 1 and TLB0CFG[GTWE] = 0.

User’s Manual

A2 Processor

CPU Programming Model

Page 122 of 864
Version 1.3

October 23, 2012

endif
else // MSRP[UCLEP]=0 OR MSR[GS] = 0

if MSR[PR]=1 and MSR[UCLE]=0
Cache Locking Type Data Storage Interrupt

endif
end

2.12.2 Privileged SPRs

Most SPRs are privileged. The only defined nonprivileged SPRs are LR, CTR, XER, VRSAVE, SPRG3 - 7
(read access only), TBU (read access only), and TBL (read access only). The A2 core also treats all SPR
numbers with a 1 in bit 5 of the SPRN field as privileged, whether the particular SPR number is defined or not.
Thus, the core causes a privileged instruction exception type of program interrupt on any attempt to access
such an SPR number while in user mode. In addition, the core causes an illegal instruction exception type of
program interrupt on any attempt to access while in user mode an undefined SPR number with a 0 in SPRN5.
On the other hand, the result of attempting to access an undefined SPR number in supervisor mode is unde-
fined, regardless of the value in SPRN5.

2.13 Speculative Accesses

The Power ISA Architecture permits implementations to perform speculative accesses to memory, either for
instruction fetching or for data loads. A speculative access is defined as any access that is not required by the
sequential execution model (SEM).

For example, the A2 core speculatively prefetches instructions down the predicted path of a conditional
branch; if the branch is later determined to not go in the predicted direction, the fetching of the instructions
from the predicted path is not required by the SEM and thus is speculative. The A2 core always executes load
instructions in program order; load instructions are never speculative.

The architecture provides two mechanisms for protecting against errant accesses to such “non-well-behaved”
memory addresses. The first is the guarded (G) storage attribute, and protects against speculative data
accesses. The second is the execute permission mechanism, which protects against speculative instruction
fetches. Both of these mechanisms are described in Memory Management on page 185.

2.14 Synchronization

The A2 core supports the synchronization operations of the Power ISA architecture. There are three kinds of
synchronization defined by the architecture, each of which is described in the following sections.

2.14.1 Context Synchronization

The context of a program is the environment in which the program executes. For example, the mode (user or
supervisor) is part of the context, as are the address translation space and storage attributes of the memory
pages being accessed by the program. Context is controlled by the contents of certain registers and other
resources, such as the MSR and the translation lookaside buffer (TLB).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 123 of 864

Under certain circumstances, it is necessary for the hardware or software to force the synchronization of a
program’s context. Context synchronizing operations include all interrupts except machine check, as well as
the isync, sc, rfi, rfci, and rfmci instructions. Context synchronizing operations satisfy the following require-
ments:

1. The operation is not initiated until all instructions preceding the operation have completed to the point at
which they have reported any and all exceptions that they will cause.

2. All instructions preceding the operation must complete in the context in which they were initiated. That is,
they must not be affected by any context changes caused by the context synchronizing operation or by
any instructions after the context synchronizing operation.

3. If the operation is the sc instruction (which causes a system call interrupt) or is itself an interrupt, the
operation is not initiated until no higher priority interrupt is pending (see CPU Interrupts and Exceptions
on page 293).

4. All instructions that follow the operation must be refetched and executed in the context that is established
by the completion of the context synchronizing operation and all of the instructions that preceded it.

Note that context synchronizing operations do not force the completion of storage accesses, nor do they
enforce any ordering amongst accesses before and/or after the context synchronizing operation. If such
behavior is required, then a storage synchronizing instruction must be used (see Storage Ordering and
Synchronization on page 124).

Also note that, architecturally, machine check interrupts are not context synchronizing. Therefore, an instruc-
tion that precedes a context synchronizing operation can cause a machine check interrupt after the context
synchronizing operation occurs and additional instructions have completed. For the A2 core, this can only
occur with data machine check exceptions, and not instruction machine check exceptions.

The following scenarios use pseudocode examples to illustrate the effects of context synchronization. Subse-
quent text explains how software can further guarantee “storage ordering.”

1. Consider the following self-modifying code instruction sequence:
stw XYZ Store to caching inhibited address XYZ.
isync
XYZ Fetch and execute the instruction at address XYZ.

In this sequence, the isync instruction does not guarantee that the XYZ instruction is fetched after the
store has occurred to memory. There is no guarantee which XYZ instruction will execute; either the old
version or the new (stored) version might.

2. Now consider the required self-modifying code sequence:
stw Write new instruction to data cache.
dcbst Push the new instruction from the data cache to memory.
msync Guarantee that dcbst completes before subsequent instructions begin.
icbi Invalidate old copy of instruction in instruction cache.
msync Guarantee that icbi completes before subsequent instructions begin.
isync Force context synchronization, discarded instructions and refetch; fetch of

stored instruction guaranteed to get new value.

3. This example illustrates the use of isync with context changes to the debug facilities
mtdbcr0 Enable the instruction address compare (IAC) debug event.
isync Wait for the new Debug Control Register 0 (DBCR0) context to be established.
XYZ This instruction is at the IAC address; an isync is necessary to guarantee that the

User’s Manual

A2 Processor

CPU Programming Model

Page 124 of 864
Version 1.3

October 23, 2012

IAC event is recognized on the execution of this instruction; without the isync,
the XYZ instruction might be prefetched and dispatched to execution before recog-
nizing that the IAC event has been enabled.

2.14.2 Execution Synchronization

Execution synchronization is a subset of context synchronization. An execution synchronizing operation satis-
fies the first two requirements of context synchronizing operations, but not the latter two. That is, execution
synchronizing operations guarantee that preceding instructions execute in the “old” context, but do not guar-
antee that subsequent instructions operate in the “new” context. An example of a scenario requiring execu-
tion synchronization would be just before the execution of a TLB-updating instructions (such as tlbwe). An
execution synchronizing instruction should be executed to guarantee that all preceding storage access
instructions have performed their address translations before executing tlbwe to invalidate an entry that
might be used by those preceding instructions.

There are four execution synchronizing instructions: mtmsr, wrtee, wrteei, and msync. Of course, all
context synchronizing instruction are also implicitly execution synchronizing, because context synchroniza-
tion is a superset of execution synchronization.

Note that the Power ISA imposes additional requirements on updates to MSR[EE] (the external interrupt
enable bit). Specifically, if an mtmsr, wrtee, or wrteei instruction sets MSR[EE] = 1, and an external input,
decrementer, or fixed interval timer exception is pending, the interrupt must be taken before the instruction
that follows the MSR[EE]-updating instruction is executed. In this sense, these MSR[EE]-updating instruc-
tions can be thought of as being context synchronizing with respect to the MSR[EE] bit, in that it guarantees
that subsequent instructions execute (or are prevented from executing and an interrupt taken) according to
the new context of MSR[EE].

2.14.3 Storage Ordering and Synchronization

Storage synchronization enforces ordering between storage access instructions executed by the A2 core.
There are two storage synchronizing instructions: msync and mbar. The Power ISA defines different
ordering requirements for these two instructions, but the A2 core implements them in an identical fashion.
Architecturally, msync is the “stronger” of the two, and is also execution synchronizing, whereas mbar is not.

The mbar instruction acts as a barrier between all storage access instructions executed before the mbar and
all those executed after the mbar. That is, mbar ensures that all of the storage accesses initiated by instruc-
tions before the mbar are performed with respect to the memory subsystem before any of the accesses initi-
ated by instructions after the mbar. However, mbar does not prevent subsequent instructions from executing
(nor even from completing) before the completion of the storage accesses initiated by instructions before the
mbar.

The msync instruction, on the other hand, does guarantee that all preceding storage accesses have actually
been performed with respect to the memory subsystem before the execution of any instruction after the
msync. Note that this requirement goes beyond the requirements of mere execution synchronization in that
execution synchronization does not require the completion of preceding storage accesses.

The following two examples illustrate the distinctive use of mbar versus msync.
stw Store data to an I/O device.
msync Wait for store to actually complete.
stw

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Programming Model

Page 125 of 864

In this example, the mtdcr is reconfiguring the I/O device in a manner that would cause the preceding store
instruction to fail, were the mtdcr to change the device before the completion of the store. Because mtdcr is
not a storage access instruction, the use of mbar instead of msync does not guarantee that the store is
performed before letting the mtdcr reconfigure the device. It only guarantees that subsequent storage
accesses are not performed to memory or any device before the earlier store.

Now consider this next example:
stb X Store data to an I/O device at address X, causing a status bit at address Y to be

reset.
mbar Guarantee preceding store is performed to the device before any subsequent

storage accesses are performed.
lbz Y Load status from the I/O device at address Y.

Here, mbar is appropriate instead of msync, because all that is required is that the store to the I/O device
happens before the load does, but not that other instructions subsequent to the mbar will not get executed
before the store.

2.15 Software Transactional Memory Acceleration

2.15.1 Summary

The A2 core is augmented with support for three new instructions: ldawx (load double-word and set watch
indexed), wchkall (watch check all), and wclr (watch clear). These instructions are used to control a moni-
toring facility that detects writes by other threads to watched memory locations. For more information, see
Section 12.4 Software Transactional Memory Instructions on page 509.

A thread can execute a sequence of ldawx instructions, setting watches for multiple memory locations, with
one or more wchkall operations to detect whether any of its watched locations have potentially been written
by another thread. The set of watches can then be cleared with a wclr instruction. If the number of watches
exceeds the capacity of the watch facility, subsequent wchkall instructions will conservatively indicate that
one of the watched cache blocks has been written by another thread.

2.15.2 Implementation

Three user-level instructions interact with a set of watch bits associated with the L1 D-cache. One bit per
thread per cache block is added to the L1 D-cache to capture the common-case working set of watches.

The ldawx and wchkall instructions are performance critical. These instructions are fully-pipelined with
performance similar to conventional load instructions.

The wclr instruction is less performance critical. When performed with a nonzero EA, the wclr instruction
should be performed sequentially with respect to other memory operations to the same location. When
performed with an EA of 0, wclr must simply complete before any subsequent ldawx instruction is able to
complete (that is, gating ldawx instructions at dispatch pending a wclr instruction should be sufficient). When
wclr is executed with EA = 0, a signal is raised to the L1 D-cache indicating that all of the watch bits should
be flash cleared, and the watchlost sticky bit for the thread performing the wclr should be set to the L value
from the instruction.

When wchkall is executed, the watchlost sticky bit (part of the L1 D-cache, see Section 2.15.2.1) corre-
sponding to the executing thread is probed, and the CR is updated appropriately.

User’s Manual

A2 Processor

CPU Programming Model

Page 126 of 864
Version 1.3

October 23, 2012

2.15.2.1 L1 D-Cache

Four bits are added per cache block, representing the set of watches that exist for that block corresponding to
each thread. If not already available, the A2 core needs to provide a thread identifier associated with each
request to the L1 D-cache to control the watch bits affected by each command. The L1 D-cache controller
also maintains an additional “sticky” bit per thread denoted watchlost, which reflects whether any watches
have been lost since that thread last reset its watchlost bit.

A regular load that misses the L1 allocates the line in L1D and resets all watchbits for that line. For each write
operation performed by the processor, the watch bits for all threads other than the writing thread are reset for
that particular block. For example, a write by thread 0 to a block whose watch bits are all set to 1 will result in
all of the watch bits being reset to 0, aside from the watch bit corresponding to thread 0. A line's invalidation
from the L1 (due to dcbf, dcbz, dci, larx/stcx, icswx, multi-hit error, parity error, back invalidate, icsw[ep]x,
or capacity replacement) also result in the resetting of a block's watch bits for all threads. Any other requests
to a block (from the processor or coherence interface) should have no effect on the watch bits, so long as the
block remains valid in a readable state in the L1 D-cache. When a watch bit is reset from 1 to 0 for a thread,
the sticky “watch lost” bit for that thread is updated to 1. A dci instruction sets the sticky “watch lost” bit for all
threads regardless of any watch bits reset from 1 to 0.

The L1 D-cache must also provide an interface for flash clearing all of the watch bits for a designated thread
and setting/resetting the designated thread's watchlost sticky bit. Watch bits and sticky bits for threads other
than the designated thread should remain untouched.

2.15.3 Watch Operation Ordering Requirements

A ldawx by a processor P1 is performed with respect to any processor or mechanism P2 when the value and
watchbit to be returned by the ldawx can no longer be changed by an operation by P2. A wchkall instruction
by P1 is performed with respect to P2 when an operation by P2 can no longer affect the state of any watches
summarized by the wchkall condition value. Watch values returned by ldawx and wchkall are consistent
with the data protected by those watches. The ordering of ldawx and wchkall instructions with respect to the
performance of prior operations (for example, outstanding writes) is controlled by the same rules governing
ordinary loads as specified in Power ISA Book II, section 1.7.1.

Implementations are free to reorder ldawx instructions with respect to other memory operations (including
other ldawx instructions) subject to data dependencies. Reordering of the wclr and wchkall instructions with
respect to other instructions that manipulate watches is disallowed.

2.15.4 Impact on Existing Software

None.

data cache invalidate instruction

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 127 of 864

3. FU Programming Model

The programming model of the A2 core describes how the following features and operations appear to
programmers:

• Storage addressing, including storage operands, effective address calculation, and data storage address-
ing modes, starting on page 127

• Floating-point exceptions, starting on page 129

• Floating-point registers, starting on page 129

• Floating-point data formats, starting on page 133

• Floating-point execution models, starting on page 140

• Floating-point instructions, starting on page 143

The Power ISA specification (referred to as Book III-E) specifies that the floating-point unit (FU) implements
a floating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic (referred to as IEEE 754). However, the architecture requires software support to conform fully
with the standard. IEEE 754 defines certain required operations (addition, subtraction, and so on). The term
“floating-point operation” is used to refer to one of these required operations or to the operation performed by
one of the multiply-add or reciprocal estimate instructions. All floating-point operations conform to the IEEE
standard. All floating-point operations produce the same results regardless of the value of IEEE mode (NI) bit.

3.1 Storage Addressing

Floating-point storage accesses use the same uniform 64-bit effective address (EA) space as all A2 core
storage accesses. Effective addresses are expanded into virtual addresses and then translated to 42-bit
(4 TB) real addresses by the memory management unit (MMU) of the processor core.

Note: In 32-bit mode, the A2 core forces bits 0:31 of the calculated 64-bit effective address to zeros. There-
fore, for a translation to hit in 32-bit mode, software needs to set the effective address upper bits to zero in the
ERATs and the TLB.

The A2 core generates an effective address whenever it executes a load/store instruction.

3.1.1 Storage Operands

Bytes in storage are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

The data storage operands accessed by the A2 core load/store instructions can be words (4 bytes or 32 bits)
or doublewords (8 bytes or 64 bits). The address of a storage operand is the address of its first byte (that is,
of its lowest-numbered byte). Byte ordering can be either big endian or little endian, as controlled by the
endian (E) storage attribute.

Operand length is implicit for each scalar storage access instruction. The operand of such a scalar storage
access instruction has a natural alignment boundary equal to the operand length. In other words, the natural
address of an operand is an integral multiple of the operand length. A storage operand is said to be aligned if
it is aligned at its natural boundary; otherwise, it is said to be unaligned.

Data storage operands for storage access instructions have the characteristics shown in Table 3-1.

American National Standards Institute

Institute of Electrical and Electronics Engineers

terabyte

effective to real address translation

translation lookaside buffer

User’s Manual

A2 Processor

FU Programming Model

Page 128 of 864
Version 1.3

October 23, 2012

The alignment of the operand effective address of some storage access instructions can affect performance
and in some cases can cause an alignment exception to occur. For such storage access instructions, the best
performance is obtained when the storage operands are naturally aligned. Table 2-11 on page 90 summa-
rizes the effects of alignment on those storage access instruction types for which such effects exist.

3.1.2 Effective Address Calculation

For a storage access instruction, if the sum of the effective address and the operand length exceeds the
maximum effective address of 264 – 1 for 64-bit mode or 232-1 in 32-bit mode (that is, the storage operand
itself crosses the maximum address boundary), the result of the operation is undefined, as specified by the
architecture. The A2 core performs the operation as if the storage operand wrapped around from the
maximum effective address to effective address 0. Software, however, should not depend upon this behavior,
so that can be ported to other implementations that do not handle such accesses in the same manner. Soft-
ware should ensure that no data storage operands cross the maximum address boundary.

Note: Because instructions are words and because the effective addresses of instructions are always implic-
itly on word boundaries, an instruction storage operand cannot cross any word boundary, including the maxi-
mum address boundary.

Effective address arithmetic, which calculates the starting address for storage operands, wraps around from
the maximum address to address 0, for all effective address computations except next sequential instruction
fetching.

3.1.3 Data Storage Addressing Modes

The A2 core supports the following data storage addressing modes.

• Base + displacement (D-mode) addressing mode:

The 16-bit D field is sign-extended to 64 bits and added to the contents of the GPR designated by RA, or
to zero if RA = 0. The 64-bit sum forms the effective address of the data storage operand.

Note: In 32-bit mode, the A2 core forces bits 0:31 of the calculated 64-bit effective address to zeros.

• Base + index (X-mode) addressing mode:

The contents of the GPR designated by RB (or the value 0 for lswi and stswi) are added to the contents
of the GPR designated by RA, or to zero if RA = 0;

Table 3-1. Data Operand Definitions

Storage Access Instruction Type Operand Length A[60:63] if aligned

Word 4 bytes 0bxx00

Doubleword 8 bytes 0bx000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1 regardless of the state of other bits in the address.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 129 of 864

3.2 Floating-Point Exceptions

Each floating-point exception, and each category of invalid operation exception, is associated with an excep-
tion bit in the FPSCR. The following floating-point exceptions are detected by the processor. The associated
FPSCR fields are listed with each exception and invalid operation exception category.

• Invalid operation exception (VX)

• Zero divide exception (ZX)

• Overflow exception (OX)

• Underflow exception (UX)

• Inexact exception (XI)

Each floating-point exception also has a corresponding enable bit in the FPSCR. See Floating-Point Status
and Control Register Instructions on page 151 for descriptions of these exception and enable bits and FU
Interrupts and Exceptions on page 371 for a detailed discussion of floating-point exceptions including the
effects of the FPSCR enable bits.

3.3 Floating-Point Registers

This section provides an overview of the register types implemented in the A2 core. Detailed descriptions of
the floating-point registers are provided within the chapters covering the functions with which they are associ-
ated. An alphabetical summary of all registers, including bit definitions, is provided in Register Summary on
page 529.

Certain bits in some registers are reserved and thus not necessarily implemented. For all registers with fields
marked as reserved, these reserved fields should be written as 0 and read as undefined. The recommended
coding practice is to perform the initial write to a register with reserved fields set to 0, and to perform all
subsequent writes to the register using a read-modify-write strategy. That is, read the register; use logical
instructions to alter defined fields, leaving reserved fields unmodified; and write the register.

Each register is classified as being of a particular type, as characterized by the specific instructions used to
read and write registers of that type. The registers contained within the A2 core are defined by Book III-E.

Table 3-2. Invalid Operation Exception Categories

Category FPSCR Field

SNaN VXSNAN

Infinity – Infinity VXISI

Infinity  Infinity VXIDI

Zero  Zero VXZDZ

Infinity  Zero VXIMZ

Invalid Compare VXVC

Software Request VXSOFT

Invalid Square Root VXSQRT

Invalid Integer Convert VXCVI

Floating-Point Status and Control Register

User’s Manual

A2 Processor

FU Programming Model

Page 130 of 864
Version 1.3

October 23, 2012

3.3.1 Register Types

The A2 core core provides two types of registers, Floating-Point Registers (FPRs) and the FPSCR. Each type
is characterized by the instructions used to read and write the registers. The following subsections provide an
overview of each register type and the instructions associated with them.

3.3.1.1 Floating-Point Registers (FPR0–FPR31)

The A2 core provides 32 Floating-Point Registers (FPRs), each 64 bits wide. In any cycle, the FPR file can
read the operands for a store instruction and an arithmetic instruction or write the data from a load instruction
and the result of an arithmetic instruction.

The FPRs are numbered FPR0–FPR31. The floating-point instruction formats provide 5-bit fields to specify
the FPRs used as operands in the execution of the associated instructions.

Each FPR contains 64 bits that support the floating-point double format. All instructions that interpret the
contents of an FPR as a floating-point value uses the floating-point double format for this interpretation.

The computational instructions, and the move and select instructions, operate on data located in FPRs. With
the exception of the compare instructions, they place the result value into an FPR and optionally place status
information into the Condition Register (CR).

Load and store double instructions are provided that transfer 64 bits of data between storage and the FPRs
with no conversion. Load single instructions transfer and convert floating-point values in floating-point single
format from storage to the same value in floating-point double format in the FPRs. Store single instructions
are provided to transfer and convert floating-point values in floating-point double format from the FPRs to the
same value in floating-point single format in storage.

Some floating-point instructions update the FPSCR and CR explicitly. Some of these instructions move data
to and from an FPR to the FPSCR or from the FPSCR to an FPR.

The computational instructions and the select instruction accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values must be representable in single format. If not, the
result placed into the target FPR and the setting of status bits in the FPSCR are undefined.

0 63

Table 3-3. Floating-Point Registers (FPR0–FPR31)

Bits Field Name Description

0:63 Floating-Point Register Data

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 131 of 864

3.3.1.2 Floating-Point Status and Control Register (FPSCR)

The FPSCR controls the handling of floating-point exceptions and records status resulting from the floating-
point operations.

Table 3-4. Floating-Point Status and Control Register (FPSCR) (Sheet 1 of 3)

Bits Field Name Description

0:28 Reserved
Note: FPSCR[28] is reserved for extension of the DRN field; therefore DRN can be set by using the mtfsfi
instruction to set the rounding mode.

29:31 DRN DFP Rounding Control
000 Round to nearest, ties to even.
001 Round toward zero.
010 Round toward +infinity.
011 Round toward -infinity.
100 Round to nearest, ties away from 0.
101 Round to nearest, ties toward 0.
110 Round to away from zero.
111 Round to prepare for shorter precision.
See Section 5.5.2 in PowerISA Version 2.06B.

32 FX Floating-Point Exception Summary
0 No FPSCR exception bits changed from 0 to 1.
1 At least one FPSCR exception bit changed from 0 to 1.
All floating-point instructions, except mtfsfi and mtfsf, implicitly set this field to 1 if the instruction causes any
floating-point exception bits in the FPSCR to change from 0 to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
can alter this field explicitly.

33 FEX Floating-Point Enabled Exception Summary
The OR of all the floating-point exception fields masked by their respective enable fields. mcrfs, mtfsfi, mtfsf,
mtfsb0, and mtfsb1 cannot alter this field explicitly.

34 VX Floating-Point Invalid Operation Exception Summary
The OR of all the invalid operation exception fields. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter
this field explicitly.

35 OX Floating-Point Overflow Exception
0 A floating-point overflow exception did not occur.
1 A floating-point overflow exception occurred.
See Overflow Exception on page 368.

36 UX Floating-Point Underflow Exception
0 A floating-point underflow exception did not occur.
1 A floating-point underflow exception occurred.
See Underflow Exception on page 369.

37 ZX Floating-Point Zero Divide Exception
0 A floating-point zero divide exception did not occur.
1 A floating-point zero divide exception occurred.
See Zero Divide Exception on page 367.

38 XX Floating-Point Inexact Exception
0 A floating-point inexact exception did not occur.
1 A floating-point inexact exception occurred.
This field is a sticky version of FPSCR[FI] The following rules describe how a given instruction sets this field.
If the instruction affects FPSCR[FI], the new value of this field is obtained by ORing the old value of this field
with the new value of FPSCR[FI].
If the instruction does not affect FPSCR[FI], the value of this field is unchanged.

User’s Manual

A2 Processor

FU Programming Model

Page 132 of 864
Version 1.3

October 23, 2012

39 VXSNAN Floating-Point Invalid Operation Exception (SNaN)
0 A floating-point invalid operation exception (VXSNAN) did not occur.
1 A floating-point invalid operation exception (VXSNAN) occurred.
See Invalid Operation Exception on page 365.

40 VXISI Floating-Point Invalid Operation Exception ( – )
0 A floating-point invalid operation exception (VXISI) did not occur.
1 A floating-point invalid operation exception (VXISI) occurred.
See Invalid Operation Exception on page 365.

41 VXIDI Floating-Point Invalid Operation Exception (  )
0 A floating-point invalid operation exception (VXIDI) did not occur.
1 A floating-point invalid operation exception (VXIDI) occurred.
See Invalid Operation Exception on page 365.

42 VXZDZ Floating-Point Invalid Operation Exception (0  0)
0 A floating-point invalid operation exception (VXZDZ) did not occur.
1 A floating-point invalid operation exception (VXZDZ) occurred.
See Invalid Operation Exception on page 365.

43 VXIMZ Floating-Point Invalid Operation Exception (  0)
0 A floating-point invalid operation exception (VXIMZ) did not occur.
1 A floating-point invalid operation exception (VXIMZ) occurred.
See Invalid Operation Exception on page 365.

44 VXVC Floating-Point Invalid Operation Exception (Invalid Compare)
0 A floating-point invalid operation exception (VXVC) did not occur.
1 A floating-point invalid operation exception (VXVC) occurred.
See Invalid Operation Exception on page 365.

45 FR Floating-Point Fraction Rounded
The last arithmetic or rounding and conversion instruction either produced an inexact result during rounding or
caused a disabled overflow exception. See Rounding on page 131. This bit is not sticky.

46 FI Floating-Point Fraction Inexact
The last arithmetic or rounding and conversion instruction either produced an inexact result during rounding or
caused a disabled overflow exception. See Rounding on page 131. This bit is not sticky.
See the definition of FPSCR[XX] regarding the relationship between FPSCR[FI] and FPSCR[XX].

47 FPRF Floating-Point Result Flag (FPRF)

48 FL Floating-Point Less Than or Negative

49 FG Floating-Point Greater Than or Positive

50 FE Floating-Point Equal to Zero

51 FU Floating-Point Unordered or NaN

52 Reserved

53 VXSOFT Floating-Point Invalid Operation Exception (Software Request)
0 A floating-point invalid operation exception (software request) did not occur.
1 A floating-point invalid operation exception (software request) occurred.
See Invalid Operation Exception on page 365.

54 VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root)
0 A floating-point invalid operation exception (invalid square root) did not occur.
1 A floating-point invalid operation exception (invalid square root) occurred.
See Invalid Operation Exception on page 365.

Table 3-4. Floating-Point Status and Control Register (FPSCR) (Sheet 2 of 3)

Bits Field Name Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 133 of 864

Programming Note: All floating-point operations conform to the IEEE standard. All floating-point operations
produce the same results regardless of the value of IEEE mode (NI) bit.

3.4 Floating-Point Data Formats

This section describes floating-point data formats, representation of floating-point values, data handling and
precision, and rounding.

Floating-point values are represented in two binary fixed-length formats. Single-precision values are repre-
sented in the 32-bit single format. Double-precision values are represented in the 64-bit double format. The
single format can be used for data in storage, but cannot be stored in the FPRs. The double format can be
used for data in storage and for data in the FPRs. When a floating-point value is loaded from storage using a

55 VXCVI Floating-Point Invalid Operation Exception (Invalid Integer Convert)
0 A floating-point invalid operation exception (invalid integer convert) did not occur.
1 A floating-point invalid operation exception (invalid integer convert) occurred.
See Invalid Operation Exception on page 365.

56 VE Floating-Point Invalid Operation Exception Enabled
0 Floating-point invalid operation exceptions are disabled.
1 Floating-point invalid operation exceptions are enabled.

57 OE Floating-Point Overflow Exception Enable
0 Floating-point overflow exceptions are disabled.
1 Floating-point overflow exceptions are enabled.

58 UE Floating-Point Underflow Exception Enable
0 Floating-point underflow exceptions are disabled.
1 Floating-point underflow exceptions are enabled.

59 ZE Floating-Point Zero Divide Exception Enable
0 Floating-point zero divide exceptions are disabled.
1 Floating-point zero divide exceptions are enabled.

60 XE Floating-Point Inexact Exception Enable
0 Floating-point inexact exceptions are disabled.
1 Floating-point inexact exceptions are enabled.

61 NI Floating-Point Non-IEEE Mode
0 Non-IEEE mode is disabled.
1 Non-IEEE mode is enabled.
If FPSCR[NI] = 1, the remaining FPSCR bits might have meanings other than those given in this document,
and the results of floating-point operations need not conform to the IEEE standard. If the IEEE-conforming
result of a floating-point operation would be a denormalized number, the result of that operation is 0 (with the
same sign as the denormalized number) if FPSCR[NI] = 1. The behavior when FPSCR[NI] = 1 can vary from
one implementation to another

62:63 RN Floating-Point Rounding Control
00 Round to nearest.
01 Round toward zero.
10 Round toward +infinity.
11 Round toward –infinity.
 See Rounding on page 131.

Table 3-4. Floating-Point Status and Control Register (FPSCR) (Sheet 3 of 3)

Bits Field Name Description

User’s Manual

A2 Processor

FU Programming Model

Page 134 of 864
Version 1.3

October 23, 2012

load single instruction, it is converted to double format and placed in the target FPR. Conversely, a floating-
point value stored from an FPR into storage using a store single instruction is converted to single format
before being placed in storage.

The lengths of the exponent and the fraction fields differ between these two formats. The structure of the
single and double formats are shown in Table 3-5 and Table 3-6, respectively.

Values in floating-point format are composed of three fields:

If only a portion of a floating-point data item in storage is accessed, such as with a load or store instruction for
a byte or halfword (or word in the case of floating-point double format), the value affected depends on
whether the Power ISA embedded system is operating with big-endian or little-endian byte ordering.

3.4.1 Value Representation

Representation of numeric values in the floating-point formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the significand. The significand consists of a leading implied
bit concatenated on the right with the FRACTION. This leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit position (that is, the first bit to the left of the binary
point). Values representable within the two floating-point formats can be specified by the parameters listed in
Table 3-8.

Table 3-5. Floating-Point Single Format

S EXP FRACTION

0 1 9 31

Table 3-6. Floating-Point Double Format

S EXP FRACTION

0 1 12 63

Table 3-7. Format Fields

Field Description

S Sign bit

EXP Exponent + bias

FRACTION Fraction

Table 3-8. IEEE 754 Floating-Point Fields (Sheet 1 of 2)

Single Double

Exponent Bias +127 +1023

Maximum Exponent +127 +1023

Minimum Exponent –126 –1022

Field Widths (Bits)

Sign 1 1

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 135 of 864

The FPRs support the floating-point double format only.

The numeric and nonnumeric values representable within each of the two supported formats are approxima-
tions to the real numbers and include the normalized numbers, denormalized numbers, and zero values. The
nonnumeric values representable are the infinities and the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers but are not numbers themselves, and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the real numbers by order alone. It is possible, however, to
define restricted operations among numbers and infinities. The relative location on the real number line for
each of the defined entities is shown in Figure 3-1.

The NaNs are not related to the numeric values or infinities by order or value, but are encodings used to
convey diagnostic information such as the representation of uninitialized variables.

Descriptions of the different floating-point values defined in the architecture follow.

3.4.2 Binary Floating-Point Numbers

These are machine-representable values used as approximations to real numbers. Three categories of
numbers are supported: normalized numbers, denormalized numbers, and zero values.

3.4.2.1 Normalized Numbers

Normalized numbers (NOR) have an unbiased exponent value in the range:

–126 to 127 in single format
–1022 to 1023 in double format

They are values in which the implied unit bit is 1. Normalized numbers are interpreted as follows:

NOR = (–1)s  2E  (1.fraction)

where s is the sign, E is the unbiased exponent, and 1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normalized floating-point number are approximately equal to:

• Single format:
1.2 10–38  M  3.4  1038

• Double format:
2.2  10–308  M  1.8  10308

Exponent 8 11

Fraction 23 52

Significand 24 53

Figure 3-1. Approximation to Real Numbers

Table 3-8. IEEE 754 Floating-Point Fields (Sheet 2 of 2)

Single Double

+0-0–DEN +DEN +NOR +INF–INF –NOR

User’s Manual

A2 Processor

FU Programming Model

Page 136 of 864
Version 1.3

October 23, 2012

3.4.2.2 Denormalized Numbers

Denormalized numbers (±DEN) are values that have a biased exponent value of zero and a nonzero fraction
value. They are nonzero numbers smaller in magnitude than the representable normalized numbers. They
are values in which the implied unit bit is 0. Denormalized numbers are interpreted as follows:

DEN = (–1)s  2Emin  (0.fraction)

where Emin is the minimum representable exponent value (–126 for single-precision, –1022 for double-preci-
sion).

3.4.2.3 Zero Values

Zero values (±0) have a biased exponent value of zero and a fraction value of zero. Zeros can have a positive
or negative sign. The sign of zero is ignored by comparison operations; comparison treats +0 as equal to –0.

3.4.3 Infinities

Infinities (±) are values that have the maximum biased exponent value:

• 255 in single format

• 2047 in double format

and a zero fraction value. They are used to approximate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers can be related by ordering in the affine sense:

– < every finite number < +

Arithmetic on infinities is always exact and does not signal any exception, except when an exception occurs
due to the invalid operations as described in Invalid Operation Exception on page 375.

3.4.3.1 Not a Numbers

Not a Numbers (NaNs) are values that have the maximum biased exponent value and a nonzero fraction
value. The sign bit is ignored; that is, NaNs are neither positive nor negative. If the high-order bit of the frac-
tion field is 0, the NaN is a signalling NaN (SNaN); otherwise it is a quiet NaN (QNaN).

Signaling NaNs are used to signal exceptions when they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain invalid operations, such as invalid arithmetic opera-
tions on infinities or on NaNs, when invalid operation exception is disabled (FPSCR[VE] = 0). Quiet NaNs
propagate through all floating-point instructions except fcmpo, frsp, and fctiw. Quiet NaNs do not signal
exceptions, except for ordered comparison and conversion to integer operations. Specific encodings in
QNaNs can thus be preserved through a sequence of floating-point operations, and used to convey diag-
nostic information to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation because one of the operands is a NaN or because a
QNaN was generated due to a disabled invalid operation exception, the following rule is applied to determine
the NaN with the high-order fraction bit set to 1 that is to be stored as the result.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 137 of 864

if FPR(FRA) is a NaN
then FPR(FRT)  FPR(FRA)
else if FPR(FRB) is a NaN
then if instruction is frsp

then FPR(FRT)  FPR(FRB)0:34 ||
290

else FPR(FRT)  FPR(FRB)
else if FPR(FRC) is a NaN

then FPR(FRT)  FPR(FRC)
else if generated QNaN

then FPR(FRT)  generated QNaN

If the operand specified by FRA is a NaN, that NaN is stored as the result. Otherwise, if the operand specified
by FRB is a NaN (if the instruction specifies an FRB operand), that NaN is stored as the result, with the low-
order 29 bits of the result set to 0 if the instruction is frsp. Otherwise, if the operand specified by FRC is a
NaN (if the instruction specifies an FRC operand), that NaN is stored as the result. Otherwise, if a QNaN was
generated due to a disabled invalid operation exception, that QNaN is stored as the result. If a QNaN is to be
generated as a result, the QNaN generated has a sign bit of 0, an exponent field of all 1s, and a high-order
fraction bit of 1 with all other fraction bits 0. Any instruction that generates a QNaN as the result of a disabled
invalid operation must generate this QNaN (that is, 0x7FF8_0000_0000_0000).

A double-precision NaN is representable in single format if and only if the low-order 29 bits of the double-
precision NaNs fraction are zero.

3.4.4 Sign of Result

The following rules govern the sign of the result of an arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even when the operands or results are zeros or infinities.

• The sign of the result of an add operation is the sign of the operand having the larger absolute value. If
both operands have the same sign, the sign of the result of an add operation is the same as the sign of
the operands. The sign of the result of the subtract operation x – y is the same as the sign of the result of
the add operation x + (–y).

When the sum of two operands with opposite sign, or the difference of two operands with the same sign, is
exactly zero, the sign of the result is positive in all rounding modes except round-toward-infinity, in which
mode the sign is negative.

• The sign of the result of a multiply or divide operation is the Exclusive OR of the signs of the operands.

• The sign of the result of a frsqrte instruction is always positive, except that the reciprocal square root of
–0 is –Infinity.

• The sign of the result of an frsp[.], or fctiw operation is the sign of the operand being converted.

For the multiply-add instructions, the preceding rules are applied first to the multiply operation and then to the
add or subtract operation (one of the inputs to the add or subtract operation is the result of the multiply opera-
tion).

User’s Manual

A2 Processor

FU Programming Model

Page 138 of 864
Version 1.3

October 23, 2012

3.4.5 Normalization and Denormalization

• The intermediate result of an arithmetic or frsp instruction might require normalization and/or denormal-
ization. Normalization and denormalization do not affect the sign of the result.

• When an arithmetic or frsp instruction produces an intermediate result consisting of a sign bit, an expo-
nent, and a nonzero significand with a 0 leading bit; it is not a normalized number and must be normal-
ized before it is stored.

A number is normalized by shifting its significand left while decrementing its exponent by 1 for each bit
shifted, until the leading significand bit becomes 1. The G bit and the R bit (see Execution Model for IEEE
Operations on page 141) participate in the shift with zeros shifted into the Round bit. The exponent is
regarded as if its range were unlimited.

After normalization, or if normalization was not required, the intermediate result can have a nonzero signifi-
cand and an exponent value that is less than the minimum value that can be represented in the format speci-
fied for the result. In this case, the intermediate result is said to be “tiny” and the stored result is determined
by the rules described in Underflow Exception on page 379. These rules might require denormalization.

A number is denormalized by shifting its significand right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format's minimum value. If any significant bits are lost in this shifting
process, “loss of accuracy” has occurred (see Underflow Exception on page 379) and an underflow exception
is signaled.

3.4.6 Data Handling and Precision

Instructions are defined to move floating-point data between the FPRs and storage. For double format data,
the data is not altered during the move. For single format data, a format conversion from single to double is
performed when loading from storage into an FPR. A format conversion from double to single is performed
when storing from an FPR to storage. The load/store instructions do not cause floating-point exceptions.

• All computational, move, and fsel instructions use the floating-point double format.

Floating-point single-precision values are obtained with the following types of instruction.

• Load floating-point single

This form of instruction accesses a single-precision operand in single format in storage, converts it to
double format, and loads it into an FPR. No floating-point exceptions are caused by these instructions.

• Round to floating-point single-precision

The frsp instruction rounds a double-precision operand to single-precision, checking the exponent for
single-precision range and handling any exceptions according to respective enable bits, and places that
operand into an FPR as a double-precision operand. For results produced by single-precision arithmetic
instructions, single-precision loads, and other instances of the frsp instruction, this operation does not
alter the value.

Programming Note: The frsp instruction enables value conversion from double-precision to single-pre-
cision with appropriate exception checking and rounding. This instruction should be used to convert dou-
ble-precision floating-point values (produced by double-precision load and arithmetic instructions) to
single-precision values before storing them into single-format storage elements or using them as oper-
ands for single-precision arithmetic instructions. Values produced by single-precision load and arithmetic
instructions are already single-precision values and can be stored directly into single-format storage ele-

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 139 of 864

ments, or used directly as operands for single-precision arithmetic instructions, without preceding the
store, or the arithmetic instruction, by an frsp instruction.

• Single-precision arithmetic instructions

This form of instruction takes operands from the FPRs in double format, performs the operation as if it
produced an intermediate result having infinite precision and unbounded exponent range, and then
coerces this intermediate result to fit in single format. Status bits in the FPSCR are set to reflect the sin-
gle-precision result. The result is then converted to double format and placed into an FPR. The result lies
in the range supported by the single format.

All input values must be representable in single format. If they are not, the result placed into the target
FPR, and the setting of status bits in the FPSCR, are undefined.

• Store floating-point single

This form of instruction converts a double-precision operand to single format and stores that operand into
storage. No floating-point exceptions are caused by these instructions. (The value being stored is effec-
tively assumed to be the result of an instruction of one of the preceding three types.)

When the result of a load floating-point single, frsp, or single-precision arithmetic instruction is stored in an
FPR, the low-order 29 fraction bits are zero.

Programming Note: A single-precision value can be used in double-precision arithmetic operations.
The reverse is true only if the double-precision value is representable in single format.

3.4.7 Rounding

Rounding applies to operations that have numeric operands (operands that are not infinities or NaNs).
Rounding the intermediate result of such operations can cause an overflow exception, an underflow excep-
tion, or an inexact exception. The following description assumes that the operations cause no exceptions and
that the result is numeric. See Value Representation on page 134 and FU Interrupts and Exceptions on
page 371 for the cases not covered here. Execution Model for IEEE Operations on page 141 provides a
detailed explanation of rounding.

The arithmetic and rounding and conversion instructions produce intermediate results that can be regarded
as having infinite precision and unbounded exponent range. Such intermediate results are normalized or
denormalized if required, then rounded to the target format. The final result is then placed into the target FPR
in double format or in integer format, depending on the instruction.

The arithmetic and rounding and conversion instructions, which round intermediate results, set FPSCR[FR,
FI]. If the fraction was incremented during rounding, FPSCR[FR] = 1; otherwise, FPSCR[FR] = 0. If the
rounded result is inexact, FPSCR[FI] = 1; otherwise, FPSCR[FI] = 0.

The estimate instructions set FPSCR[FR, FI] to undefined values. The remaining floating-point instructions do
not alter FPSCR[FR, FI].

FPSCR[RN] specifies one of four programmable rounding modes.

Let z be the intermediate arithmetic result or the operand of a convert operation. If z can be represented
exactly in the target format, then the result in all rounding modes is z as represented in the target format. If z
cannot be represented exactly in the target format, let z1 and z2 bound z as the next larger and next smaller
numbers representable in the target format. Then, z1 or z2 can be used to approximate the result in the target
format.

User’s Manual

A2 Processor

FU Programming Model

Page 140 of 864
Version 1.3

October 23, 2012

Figure 3-2 shows the relation of z, z1, and z2 in this case. The following rules specify the rounding in the four
modes. “LSb” means “least-significant bit.”

Table 3-9 describes the rounding modes.

3.5 Floating-Point Execution Models

All implementations of this architecture must provide the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the computational instructions for the infinities, denormalized
numbers, and NaNs. The material in the remainder of this section applies to instructions that have numeric
operands and a numeric result (that is, operands and a result that are not infinities or NaNs) and that cause
no exceptions. See Value Representation on page 134 and Floating-Point Exceptions on page 371 for the
cases not covered here.

Although the double format specifies an 11-bit exponent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions. One extra bit is required when denormalized double-
precision numbers are prenormalized. The second bit is required to permit the computation of the adjusted
exponent value in the following cases when the corresponding exception enable bit is 1:

• Underflow during multiplication using a denormalized operand.

• Overflow during division using a denormalized divisor.

The IEEE standard includes 32-bit and 64-bit arithmetic. The standard requires that single-precision arith-
metic be provided for single-precision operands. The standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or double-precision operands, but states that single-precision
floating-point operations should not accept double-precision operands. Book III-E follows these guidelines:
double-precision arithmetic instructions can have operands of either or both precisions, while single-precision

Figure 3-2. Selection of z1 and z2

Table 3-9. Rounding Modes

FPSCR[RN] Rounding Mode Description

00 Round to Nearest Choose the value that is closest to z, either z1 or z2. In case of a tie, choose the one
that is even (the LSb is 0).

01 Round toward Zero Choose the smaller in magnitude (z1 or z2).

10 Round toward +Infinity Choose z1.

11 Round toward –Infinity Choose z2.

By Incrementing LSb of z
Infinitely Precise Value
By Truncating after LSb

0
Positive valuesNegative values

z2 z z1z2 z z1

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 141 of 864

arithmetic instructions require all operands to be single-precision. Double-precision arithmetic instructions
produce double-precision values, while single-precision arithmetic instructions produce single-precision
values.

For arithmetic instructions, conversions from double-precision to single-precision must be done explicitly by
software, while conversions from single-precision to double-precision are done implicitly.

3.5.1 Execution Model for IEEE Operations

The following description uses 64-bit arithmetic as an example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision Guard, Round, and Sticky bits (described in this section)
are logically adjacent to the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is considered to be performed with a floating-point accumulator
having the following format, where bits 0:55 comprise the significand of the intermediate result.

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out of the significand.

The L bit is the leading unit bit of the significand, which receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the fraction of the operand.

The Guard (G), Round (R), and Sticky (X) bits are extensions to the low-order bits of the accumulator. The G
and R bits are required for post-normalization of the result. The G, R, and X bits are required during rounding
to determine if the intermediate result is equally near the two nearest representable values. The X bit serves
as an extension to the G and R bits by representing the logical OR of all bits that can appear to the low-order
side of the R bit, due either to shifting the accumulator right or to other generation of low-order result bits. The
G and R bits participate in the left shifts with zeros being shifted into the R bit. Table 3-11 shows the signifi-
cance of the G, R, and X bits with respect to the intermediate result (IR), the representable number next lower
in magnitude (NL), and the representable number next higher in magnitude (NH).

Table 3-10. IEEE 64-Bit Execution Model

S C L FRACTION G R X

0 1 52 53 54 55

Table 3-11. Interpretation of the G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact.

0
0
0

0
1
1

1
0
1

IR is closer to NL.

1 0 0 IR is midway between NL and NH.

1
1
1

0
1
1

1
0
1

IR is closer to NH.

User’s Manual

A2 Processor

FU Programming Model

Page 142 of 864
Version 1.3

October 23, 2012

After normalization, the intermediate result is rounded using the rounding mode specified by FPSCR[RN]. If
rounding results in a carry into C, the significand is shifted right one position and the exponent incremented
by one. This yields an inexact result and possibly also exponent overflow. Fraction bits to the left of the bit
position used for rounding are stored into the FPR, and low-order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCR[RN] as described in Rounding on
page 139. For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of accumulator
bits. Table 3-12 shows the positions of the Guard, Round, and Sticky bits for double-precision and single-
precision floating-point numbers in the IEEE execution model.

Rounding can be treated as though the significand were shifted right, if required, until the least significant bit
to be retained is in the low-order bit position of the FRACTION. If any of the Guard, Round, or Sticky bits is
nonzero, then the result is inexact.

Z1 and Z2, as defined in Rounding on page 139, can be used to approximate the result in the target format
when one of the following rules is used.

• Round to nearest

– Guard bit = 0
The result is truncated. (Result exact [GRX = 000] or closest to next lower value in magnitude [GRX =
001, 010, or 011])

– Guard bit = 1
Depends on Round and Sticky bits:

• Case a
If the Round or Sticky bit is 1 (inclusive), the result is incremented. (Result closest to next higher
value in magnitude [GRX = 101, 110, or 111])

• Case b
If the Round and Sticky bits are 0 (result midway between closest representable values) and if
the low-order bit of the result is 1, the result is incremented. Otherwise (the low-order bit of the
result is 0), the result is truncated (this is the case of a tie rounded to even).

• Round toward zero
Choose the smaller in magnitude of Z1 or Z2. If the Guard, Round, or Sticky bit is nonzero, the result is
inexact.

• Round toward +infinity
Choose Z1.

• Round toward –infinity
Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction is a floating round to single-
precision or single-precision arithmetic instruction, the intermediate result is either normalized or placed in
correct denormalized form before being rounded.

Table 3-12. Location of the Guard, Round, and Sticky Bits in the IEEE Execution Model

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of 26:52, G, R, X

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 143 of 864

3.5.2 Execution Model for Multiply-Add Type Instructions

The A2 core provides a special form of instruction that performs up to three operations in one instruction (a
multiplication, an addition, and a negation). With this added capability comes the special ability to produce a
more exact intermediate result as input to the rounder. 32-bit arithmetic is similar except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the significand of the intermediate result.

The first part of the operation is a multiplication. The multiplication has two 53-bit significands as inputs, which
are assumed to be prenormalized, and produces a result conforming to the above model. If there is a carry
out of the significand (into the C bit), then the significand is shifted right one position, shifting the L bit (leading
unit bit) into the most significant bit of the FRACTION and shifting the C bit (carry out) into the L bit. All 106
bits (L bit, the FRACTION) of the product take part in the add operation. If the exponents of the two inputs to
the adder are not equal, the significand of the operand with the smaller exponent is aligned (shifted) to the
right by an amount that is added to that exponent to make it equal to the other input's exponent. Zeros are
shifted into the left of the significand as it is aligned, and bits shifted out of bit 105 of the significand are ORed
into the X' bit. The add operation also produces a result conforming to the above model with the X' bit taking
part in the add operation.

The result of the addition is then normalized, with all bits of the addition result, except the X' bit, participating
in the shift. The normalized result serves as the intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms of accumulator bits.
Table 3-14 shows the positions of the Guard, Round, and Sticky bits for double-precision and single-precision
floating-point numbers in the multiply-add execution model.

The rules for rounding the intermediate result are the same as those given in Execution Model for IEEE Oper-
ations on page 141.

If the instruction is a floating negative multiply-add or floating negative multiply-subtract, the final result is
negated.

3.6 Floating-Point Instructions

Primary opcode 63 is used for the double-precision arithmetic instructions and miscellaneous instructions,
such as the Floating-Point Status and Control Register Manipulation instructions. Primary opcode 59 is used
for the single-precision arithmetic instructions.

Table 3-13. Multiply-Add 64-Bit Execution Model

S C L FRACTION X’

0 1 105 106

Table 3-14. Location of Guard, Round, and Sticky Bits in the Multiply-Add Execution Model

Format Guard Round Sticky

Double 53 54 OR of 55:105, X'

Single 24 25 OR of 26:105, X'

User’s Manual

A2 Processor

FU Programming Model

Page 144 of 864
Version 1.3

October 23, 2012

The single-precision instructions for which there is a corresponding double-precision instruction have the
same format and extended opcode as the corresponding double-precision instruction.

Instructions are provided to perform arithmetic, rounding, conversion, comparison, and other operations in
floating-point registers; to move floating-point data between storage and these registers; and to manipulate
the FPSCR explicitly.

These instructions are divided into two categories.

• Computational instructions

The computational instructions are those that perform addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion, comparison, and combinations of these operations.
These instructions provide the floating-point operations. They place status information into the FPSCR.
They are the instructions described in Floating-Point Arithmetic Instructions on page 148, Floating-Point
Rounding and Conversion Instructions on page 149, and Floating-Point Compare Instructions on
page 150.

• Noncomputational instructions

The noncomputational instructions, which perform loads and stores, move the contents of a floating-point
register to another floating-point register possibly altering the sign, manipulate the FPSCR explicitly, and
select a value from one of two floating-point registers based on the value in a third floating-point register.
These operations are not considered floating-point operations. With the exception of the instructions that
manipulate the FPSCR explicitly, they do not alter the FPSCR. Those instructions are described in Float-
ing-Point Status and Control Register Instructions on page 151.

A floating-point number consists of a signed exponent and a signed significand. The quantity expressed by
this number is the product of the significand and the number 2exponent. Encodings are provided in the data
format to represent finite numeric values, infinity, and values that are Not a Number (NaN). Operations
involving infinities produce results following traditional mathematical conventions. NaNs have no mathemat-
ical interpretation, but their encoding supports a variable diagnostic information field. NaNs can be used to
indicate such things as uninitialized variables and can be produced by certain invalid operations.

One class of exceptions that occur during floating-point instruction execution is unique to floating-point opera-
tions: the floating-point exception. Bits set in the FPSCR indicate floating-point exceptions. They can cause
an enabled exception type of program interrupt to be taken, if the proper control bits are set.

3.6.1 Instructions by Category

The floating-point instructions can be classified into computational and noncomputational categories. The
computational instructions include those that perform arithmetic operations or conversions on operands.
Noncomputational instructions perform loads/stores and moves (with possible sign changes) or select data.
Additionally, some noncomputational instructions can write directly to the FPSCR. All instructions executed in
the load/store pipeline are noncomputational, while most executed in the arithmetic pipeline are computa-
tional.

All floating-point operands are stored internally in double-precision format. Arithmetic operations specified as
single require that the internal data is representable as single (that is, having an unbiased exponent between
–126 and 127 and a significand accurately representable in 24 bits). If the data cannot be represented in this
way, the results stored in the FPR, and the status bits set in FPSCR and CR (as appropriate) are undefined.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 145 of 864

For consistency, to reduce the likelihood of causing a serious malfunction due to user error, and to enable
random testing, single-precision operations are performed on double-precision operands. For all cases
except for fdivs and fsqrts, the operation is performed as if it were double-precision; the result is then
rounded to single-precision. For fdivs and fsqrts, the appropriate number of iterations are performed to
accomplish a single-precision result (potentially with early out); the quotient is then properly rounded.

In all cases, result exceptions (overflow, underflow, and inexact) are detected and reported based on the
result, not on the source operands. Default (masked exception) results are the same as for the single-preci-
sion instructions. In the case of masked overflow or underflow exceptions, the least significant 11 bits of the
adjusted true exponent are returned.

The results of all single-precision operations are rounded to single precision. These results are stored in
double-precision format, but are restricted to single-precision range (exponent and fraction). All status bits are
set based upon the single-precision result.

3.6.2 Load and Store Instructions

The A2 core instruction set includes instructions to load from memory to an FPR and to store from an FPR to
memory.

For load instructions, the function of the load/store logic is to receive data from the 16-byte bus from the A2
core and present it to the FPRs. Data received from the A2 core could be single- or double-precision and in
the big- or little-endian formats. Also, the data received is word aligned. Data to the FPR must be in the big-
endian, double-precision format.

For store instructions, one operand from the FPR is received. Data is to be word aligned on the output bus,
There are two basic forms of load instruction: single-precision and double-precision. Because the FPRs
support only floating-point double format, single-precision load floating-point instructions convert single-preci-
sion data to double format before loading the operand into the target FPR. The conversion and loading steps
are as follows.

Let WORD0:31 be the floating-point single-precision operand accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then
FPR(FRT)0:1  WORD0:1
FPR(FRT)2  WORD1
FPR(FRT)3  WORD1
FPR(FRT)4  WORD1
FPR(FRT)5:63  WORD2:31 ||

290
Denormalized Operand
if WORD1:8 = 0 and WORD9:31  0 then
sign  WORD0
exp  -126
frac0:52  0b0 || WORD9:31 ||

290
normalize the operand
do while frac0 = 0

frac  frac1:52 || 0b0
exp  exp - 1

FPR(FRT)0  sign
FPR(FRT)1:11  exp + 1023
FPR(FRT)12:63  frac1:52

User’s Manual

A2 Processor

FU Programming Model

Page 146 of 864
Version 1.3

October 23, 2012

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then
FPR(FRT)0:1  WORD0:1
FPR(FRT)2  WORD1
FPR(FRT)3  WORD1
FPR(FRT)4  WORD1
FPR(FRT)5:63  WORD2:31 ||

290

For double-precision load floating-point instructions, no conversion is required because the data from storage
is copied directly into the FPR.

Some of the floating-point load instructions update GPR(RA), the effective address. For these forms, if
RA  0, the effective address is placed into GPR(RA) and the storage element (byte, halfword, word, or
doubleword) addressed by EA is loaded into FPR(RT). If RA = 0, the instruction form is invalid.

Floating-point load storage accesses cause data storage exceptions if the program is not allowed to read the
storage location. FLoating-point load storage accesses cause data TLB error exceptions if the program
attempts to access storage that is unavailable.

Note: RA and RB denote GPRs, while FRT denotes an FPR.

Both big-endian and little-endian byte orderings are supported.

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction: single-precision, double-precision, and integer. The integer
form is provided by the stfiwx instruction, described in the Power ISA V2.06 specification. Because the FPRs
support only floating-point double format for floating-point data, single-precision store floating-point instruc-
tions convert double-precision data to single format before storing the operand in storage. The conversion
steps are as follows.

Let WORD0:31 be the word in storage written to.

Table 3-15. Floating-Point Load Instructions

Mnemonic Operands Instruction

lfd FRT, D(RA) Load Floating-Point Double

lfdu FRT, D(RA) Load Floating-Point Double with Update

lfdux FRT, RA, RB Load Floating-Point Double with Update Indexed

lfdx FRT, RA, RB Load Floating-Point Double Indexed

lfdepx FRT, RA, RB Load Floating-Point Double External Process ID Indexed

lfs FRT, D(RA) Load Floating-Point Single

lfsu FRT, D(RA) Load Floating-Point Single with Update

lfsux FRT, RA, RB Load Floating-Point Single with Update Indexed

lfsx FRT, RA, RB Load Floating-Point Single Indexed

lfiwax FRT, RA, RB Load Floating-Point as Integer Word Algebraic Indexed

lfiwzx FRT, RA, RB Load Floating-Point as Integer Word and Zero Indexed

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 147 of 864

No Denormalization Required (includes Zero / Infinity / NaN)
if FPR(FRS)1:11 > 896 or FPR(FRS)1:63 = 0 then
WORD0:1  FPR(FRS)0:1
WORD2:31  FPR(FRS)5:34
Denormalization Required
if 874  FRS1:11  896 then
sign  FPR(FRS)0
exp  FPR(FRS)1:11 – 1023
frac  0b1 || FPR(FRS)12:63
denormalize operand
do while exp < –126

frac  0b0 || frac0:62
exp  exp + 1

WORD0  sign
WORD1:8  0x00
WORD9:31  frac1:23
else WORD  undefined

Notice that, if the value to be stored by a single-precision store floating-point instruction is larger in magnitude
than the maximum number representable in single format, the first case above (“No Denormalization
Required”) applies. The result stored in WORD is then a well-defined value, but is not numerically equal to the
value in the source register. The result of a single-precision load floating-point from WORD will not compare
equal to the contents of the original source register.

For double-precision store floating-point instructions and for the store floating-point as integer word instruc-
tion, no conversion is required because the data from the FPR is copied directly into storage.

Some of the floating-point store instructions update GPR(RA) with the effective address. For these forms, if
RA  0, the effective address is placed into GPR(RA).

Floating-point store storage accesses cause a data storage interrupt if the program is not allowed to write to
the storage location. Integer store storage accesses cause a data TLB error interrupt if the program attempts
to access storage that is unavailable.

Note: RA and RB denote GPRs, while FRS denotes an FPR.

Both big-endian and little-endian byte orderings are supported.

Table 3-16. Floating-Point Store Instructions (Sheet 1 of 2)

Mnemonic Operands Instruction

stfd FRS, D(RA) Store Floating-Point Double

stfdu FRS, D(RA) Store Floating-Point Double with Update

stfdux FRS, RA, RB Store Floating-Point Double with Update Indexed

stfdx FRS, RA, RB Store Floating-Point Double Indexed

stfdepx FRS, RA, RB Store Floating-Point Double External Process ID Indexed

stfiwx FRS, RA, RB Store Floating-Point as Integer Word Indexed

stfs FRS, D(RA) Store Floating-Point Single

User’s Manual

A2 Processor

FU Programming Model

Page 148 of 864
Version 1.3

October 23, 2012

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.4 Floating-Point Move Instructions

These instructions copy data from one floating-point register to another, altering the sign bit (bit 0) as
described in the instruction descriptions in Power ISA V2.06 specification for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of value (for example, the sign bit of an NaN can be
altered by fneg, fabs, fnabs, and fcpsgn). These instructions do not alter the FSPCR.

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.5 Floating-Point Arithmetic Instructions

These instructions perform elementary arithmetic operations.

stfsu FRS, D(RA) Store Floating-Point Single with Update

stfsux FRS, RA, RB Store Floating-Point Single with Update Indexed

stfsx FRS, RA, RB Store Floating-Point Single Indexed

Table 3-17. Floating-Point Move Instructions

Mnemonic Operands Instruction

fabs FRT, FRB Floating Absolute Value

fcpsgn FRT, FRA, FRB Floating Copy Sign

fmr FRT, FRB Floating Move Register

fnabs FRT, FRB Floating Negative Absolute Value

fneg FRT, FRB Floating Negate

Table 3-18. Floating-Point Elementary Arithmetic Instructions (Sheet 1 of 2)

Mnemonic Operands Instruction

fadd FRT, FRA, FRB Floating Add

fadds FRT, FRA, FRB Floating Add Single

fdiv FRT, FRA, FRB Floating Divide

fdivs FRT, FRA, FRB Floating Divide Single

fmul FRT, FRA, FRB Floating Multiply

fmuls FRT, FRA, FRB Floating Multiply Single

fre FRT, FRB Floating Reciprocal Estimate

fres FRT, FRB Floating Reciprocal Estimate Single

frsqrte FRT, FRB Floating Reciprocal Square Root Estimate

frsqrtes FRT, FRB Floating Reciprocal Square Root Estimate Single

fsqrt FRT, FRB Floating Square Root

Table 3-16. Floating-Point Store Instructions (Sheet 2 of 2)

Mnemonic Operands Instruction

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 149 of 864

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.5.1 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add operation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide (L bit, FRACTION), and all 106 bits take part in the
add/subtract portion of the instruction.

FPSCR bits are set as follows.

• Overflow, Underflow, and Inexact Exception bits, the FR and FI bits, and the FPRF field are set based on
the final result of the operation, and not on the result of the multiplication.

• Invalid Operation exception bits are set as if the multiplication and the addition were performed using two
separate instructions (fmul[s], followed by fadd[s] or fsub[s]. That is, multiplication of infinity by 0 or of
anything by an SNaN, and addition of an SNaN, cause the corresponding exception bits to be set.

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.6 Floating-Point Rounding and Conversion Instructions

Examples of uses of these instructions to perform various conversions can be found in
Appendix E.2 Floating-Point Conversions on page 861.

fsqrts FRT, FRB Floating Square Root Single

fsub FRT, FRA, FRB Floating Subtract

fsubs FRT, FRA, FRB Floating Subtract Single

Table 3-19. Floating-Point Multiply-Add Instructions

Mnemonic Operands Instruction

fmadd FRT, FRA, FRB, FRC Floating Multiply-Add

fmadds FRT, FRA, FRB, FRC Floating Multiply-Add Single

fmsub FRT, FRA, FRB, FRC Floating Multiply-Subtract

fmsubs FRT, FRA, FRB, FRC Floating Multiply-Subtract Single

fnmadd FRT, FRA, FRB, FRC Floating Negative Multiply-Add

fnmadds FRT, FRA, FRB, FRC Floating Negative Multiply-Add Single

fnmsub FRT, FRA, FRB, FRC Floating Negative Multiply-Subtract

fnmsubs FRT, FRA, FRB, FRC Floating Negative Multiply-Subtract Single

Table 3-18. Floating-Point Elementary Arithmetic Instructions (Sheet 2 of 2)

Mnemonic Operands Instruction

User’s Manual

A2 Processor

FU Programming Model

Page 150 of 864
Version 1.3

October 23, 2012

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.7 Floating-Point Compare Instructions

The floating-point compare instructions compare the contents of two floating-point registers. Comparison
ignores the sign of zero (+0 is treated as equal to –0). The comparison result can be ordered or unordered.

The comparison sets one bit in the designated CR field to 1 and the other three bits to 0. FPSCR[FPCC] is set
in the same way.

The CR field and FPSCR[FPCC] are set as shown in Table 3-21.

Table 3-20. Floating-Point Rounding and Conversion Instructions

Mnemonic Operand Instruction

fcfid FRT, FRB Floating Convert From Integer Doubleword

fcfidu FRT, FRB Floating Convert From Integer Doubleword Unsigned

fcfids FRT, FRB Floating Convert From Integer Doubleword Single

fcfidus FRT, FRB Floating Convert From Integer Doubleword Unsigned Single

fctid FRT, FRB Floating Convert to Integer Doubleword

fctidu FRT, FRB Floating Convert to Integer Doubleword Unsigned

fctidz FRT, FRB Floating Convert to Integer Doubleword and Round to Zero

fctiduz FRT, FRB Floating Convert to Integer Doubleword Unsigned and Round to Zero

fctiw FRT, FRB Floating Convert to Integer Word

fctiwu FRT, FRB Floating Convert to Integer Word Unsigned

fctiwz FRT, FRB Floating Convert to Integer Word and Round to Zero

fctiwuz FRT, FRB Floating Convert to Integer Word Unsigned and Round to Zero

frim FRT, FRB Floating Round to Integer Minus

frin FRT, FRB Floating Round to Integer Nearest

frip FRT, FRB Floating Round to Integer Plus

friz FRT, FRB Floating Round to Integer Zero

frsp FRT, FRB Floating Round to Single-Precision

Table 3-21. Comparison Sets

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Programming Model

Page 151 of 864

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

3.6.8 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register instruction synchronizes the effects of all floating-point
instructions executed by a given processor. Executing a Floating-Point Status and Control Register instruc-
tion ensures that all floating-point instructions previously initiated by the given processor have completed
before the Floating-Point Status and Control Register instruction is initiated, and that no subsequent floating-
point instructions are initiated by the given processor until the Floating-Point Status and Control Register
instruction has completed. In particular:

• All exceptions that will be caused by the previously initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Register instruction is initiated.

• All invocations of the enabled exception type of program interrupt that will be caused by the previously ini-
tiated instructions have occurred before the Floating-Point Status and Control Register instruction is initi-
ated.

• No subsequent floating-point instruction that depends on or alters the settings of any FPSCR bits is initi-
ated until the Floating-Point Status and Control Register instruction has completed.

Floating-point load and floating-point store instructions are not affected.

Note: For complete instruction descriptions, see the Power ISA V2.06 specification.

Table 3-22. Floating-Point Compare and Select Instructions

Mnemonic Operands Instruction

fcmpo BF, FRA, FRB Floating Compare Ordered

fcmpu BF, FRA, FRB Floating Compare Unordered

fsel FRT, FRA, FRB, FRC Floating Select

ftdiv BF, FRA, FRB Floating Test for Software Divide

ftsqrt BF, FRA, FRB Floating Test for Software Square Root

Table 3-23. Floating-Point Status and Control Register Instructions

Mnemonic Operands Instruction

mcrfs Move to Condition Register from FPSCR

mffs FRT Move from FPSCR

mtfsb0 BT Move to FPSCR Bit 0

mtfsb1 BT Move to FPSCR Bit 1

mtfsf FLM, FRB Move to FPSCR Fields

mtfsfi BF,U Move to FPSCR Field Immediate

User’s Manual

A2 Processor

FU Programming Model

Page 152 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 153 of 864

4. Initialization

Reset of the A2 core is performed by a flush 0 scan of all rings followed by scan initialization of specific rings
as required. Reset controls external to the core drive scan ring selection and control signals into the core
during initialization. Core reset is performed as part of the chip initialization operations during the power-on
reset sequence. Additionally, software running on individual threads can initiate reset requests, either through
debug logic or due to activation of the watchdog timer. These software-initiated reset requests are forwarded
to reset control circuitry external to the core. The resulting reset operation, if any, will scan initialize the whole
core.

This chapter describes a basic core reset sequence and the initial state of the A2 core after a reset. It also
describes how software initiates reset requests and contains a description of the initialization software
required to complete initialization so that the A2 core can begin executing application code. Initialization of
other on-chip and/or off-chip system components might also be needed in addition to the processor core
initialization described in this chapter.

4.1 Core Reset

Reset of the A2 core is controlled through an external reset controller. All scannable latches are initialized
through flush 0 and/or scan operations to the scan rings. The arrays are initialized using the ABIST engines.
A more complete reset sequence will also run LBIST and full ABIST to further verify core hardware. The reset
procedure initializes the core to a cycle-reproducible state. After reset operations complete, program execu-
tion on each thread can be initiated through activation of core control signals. The following procedure
describes the typical steps a reset controller performs during a core reset.

1. Start with grid clocks active and all core clocks held off.

2. Scan latches on all core scan rings to their flush 0 initialization values. The flush 0 scan initializes the
scannable latches to their initial value as specified in the VHDL. All nonscan latches are then clocked for
eight cycles to initialize them based on the scanned latches.

3. Scan the gptr, time, and repair rings with alternate initialization values as needed.

4. Arrays are initialized through their ABIST engines.

5. Scan the func, bcfg, dcfg, regf and abst rings to their flush 0 initialization values. The flush 0 scan initial-
izes the scannable latches on these rings to their initial value as specified in the VHDL. All nonscan
latches are then clocked for eight cycles to initialize them based on the scanned latches. The default core
initialization is for thread 0 to begin first instruction fetch when clocks start, unless held in a stopped state
either through the core’s an_ac_pm_thread_stop inputs or through latches on the bcfg scan ring.

6. Scan configuration latches (bcfg and dcfg scan rings) with alternate initial values as needed. See the
appropriate chip level information regarding configuration ring initialization procedures.

7. Start all core clocks.

8. Once functional clocks are started, circuitry within the A2 core controls initialization of the I-ERAT and D-
ERAT array entries required for first instruction fetch.

9. A thread is released from a stopped state and begins fetching instructions from the starting reset vector.
Threads can be held in a stopped state after reset through several methods:

a. The THRCTL[Tx_Stop] bits can be configured to be active, thereby holding the threads in a quiesced
state when clocks are started. The boot configuration ring (bcfg) is used in step 6 to initialize the

automatic built-in self test

logic built-in self-test

very-high-speed integrated circuit (VHSIC) hardware description language

instruction ERAT

data effective to real address translation

data effective to real address translation

User’s Manual

A2 Processor

Initialization

Page 154 of 864
Version 1.3

October 23, 2012

THRCTL register. A SCOM write to the THRCTL register can then reset the stop bit for the desig-
nated thread, and instruction execution commences.

b. The TEN register can be initialized such that individual threads are disabled. The boot configuration
ring (bcfg) is used in step 6 to initialize this register. The SCOM-accessible Ram registers can then be
used to perform instruction-stuffing operations to the core and write the TENS SPR to enable instruc-
tion execution on the desired thread.

c. Chip level controls can force threads into a quiesced state using the core’s an_ac_pm_thread_stop
input signals. Once clocks have been started, deactivation of these inputs enables instruction execu-
tion to start.

4.2 A2 Core State After Reset

After reset, the contents of registers and other facilities within the A2 core are defined such that instructions
can be fetched and executed from the initial program memory page. Repeatable and deterministic behavior
can be guaranteed provided that the proper software initialization sequence is followed. System software
must fully configure the rest of the A2 core resources, as well as the other facilities within the chip and/or
system.

The following list summarizes the requirements of the Power ISA with regards to the processor state after
reset, before any additional initialization by software.

• All fields of the MSR are flush 0 initialized: disabling all asynchronous interrupts, placing the processor in
hypervisor or nonguest supervisor state, setting 32-bit mode, and specifying that instruction and data
accesses are to the system (as opposed to application) address space.

Note: The default (flush 0) MSR initialization values can be overridden at reset during scanning of the
boot configuration ring.

• DBCR0[RST] is set to 0, thereby ending any previous software-initiated reset operation.

• TCR[WRC] is set to 0, thereby disabling the watchdog timer reset operation.

• The PVR is defined, after reset and otherwise, to contain a value that indicates the specific processor
implementation.

• The TEN Register is flush 0 initialized such that thread 0 begins fetching instructions after core clocks are
started. This default setting can be overridden at reset during scanning of the boot configuration ring.

• The Instruction Address Register (IAR) is set to the starting effective address (EA), which is scanned into
the boot configuration ring during hardware reset. This scanned value can be
0x0000_0000_FFFF_FFFC, the EA of the last word of the address space, or some other location,
depending on system requirements.

Note: At reset, MSR[CM] is flush 0 scanned to zero, which is 32-bit mode, unless changed by scan ini-
tialization of the boot configuration ring. In 32-bit mode, IAR(0:31) are forced to zero by the A2 core.

The memory management resources are set to values such that the processor is able to successfully fetch
and execute instructions and read (but not write) data within the 4 KB program memory page located within a
configurable area of the 64-bit effective address space.

Exactly how this is accomplished is implementation-dependent. For example, it might or might not be the
case that a TLB entry is established in a manner that is visible to software using the TLB management
instructions. Regardless of how the implementation enables access to the initial program memory page,

serial communications

special purpose register

Debug Control Register 0

Reset

Timer Control Register

Watchdog Timer Reset Control

Processor Version Register

Thread Enable

Machine State Register

Computation Mode

translation lookaside buffer

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 155 of 864

instruction execution starts at the IAR effective address scanned into the boot configuration ring during hard-
ware reset (0x0000_0000_FFFF_FFFC, the last word of the effective address space, or some other location).
The instruction at this address must be an unconditional branch backwards to the start of the initialization
sequence, which must lie somewhere within the initial 4 KB program memory page. The real address to
which the initial effective address will be translated is also implementation- or system-dependent, as are the
various storage attributes of the initial program memory page such as the caching inhibited and endian
attributes.

Note: In the A2 core, two entries are established in the instruction shadow TLB (I-ERAT) and data shadow
TLB (D-ERAT) at reset with the properties described in Table 4-2 on page 158. When operating in MMU
mode with a backing UTLB, it is required that initialization software insert entries into the UTLB to cover these
same memory regions before performing any context synchronizing operation (including causing any excep-
tions that would lead to an interrupt) because a context synchronizing operation invalidates the shadow TLB
entries. In the ERAT-only mode of operation, initialization software must insert appropriate entries directly into
the I-ERAT and D-ERAT arrays before performing context synchronizations and allowing interrupts to occur.

Initialization software should consider all other resources within the A2 core to be undefined after a reset, in
order for the initialization sequence to be compatible with other Power ISA implementations. Table 4-1 and
Table 4-2 show the reset state of specific A2 core control registers and other configurable registers that can
be initialized differently from their flush 0 state through scanning of the boot configuration ring.

During chip initialization, some chip control registers must be initialized to ensure proper chip operation.
Peripheral devices can also be initialized as appropriate for the system design.

Table 4-1. Register Reset Values (Sheet 1 of 3)

Register Register or Field
Reset Values Comments

CCR0 0x00000000 Default reset value can be altered via a scan of the boot configuration ring.
Disables power management and wait enable fields.

CCR2 0x00000001 Default reset value can be altered via a scan of the boot configuration ring.
Initializes various core resources, such as microcode, auxiliary processor, Attn instruction,
ERAT-Only mode, and user mode access to CCR0.

CCR3 0x00000000 Default reset value can be altered via a scan of the boot configuration ring.
Sets single instruction mode and MSR[EE] priority

DBCR0 0x00000000 Default reset value can be altered via a scan of the debug configuration ring.
Flush 0 initialization clears any debug event enables and the reset (RST) enable field.

DBCR3 0x00000000 All bits in DBCR3 are flush 0 initialized to 0.
This clears any debug event enables.

DBSR 0x00000000 All bits in the DBSR are flush 0 initialized to 0.
This clears any debug event status.

Fault
Isolation
Registers

See:
Section 15.3.3 (FIR0)
Section 15.3.4 (FIR1)
Section 15.3.5 (FIR2)

Default reset value can be altered via a scan of the boot configuration ring.
The default FIR initialization is cleared (no errors) and the default FIR mask initialization is set
(all errors masked off).
All FIR action registers have a default initialization value based on the type of error (recover-
able or checkstop) associated with each error bit.
The FIR-related registers include: FIR0, FIR0A0, FIR0A1, FIR0M, FIR1, FIR1A0, FIR1A1,
FIR1M, FIR2, FIR2A0, FIR2A1, FIR2M.

IAR0:61 0x00000000FFFFFFFC Default reset value can be altered via a scan of the boot configuration ring.
Effective address of the initial reset instruction.

Fault Isolation Register

memory management mode

unified translation lookaside buffer

effective to real address translation

User’s Manual

A2 Processor

Initialization

Page 156 of 864
Version 1.3

October 23, 2012

IUCR0 0x000010FA Default reset value can be altered via a scan of the boot configuration ring.
Initializes the various branch prediction options.

IUCR1 0x00001000 Default reset value can be altered via a scan of the boot configuration ring.
Controls thread priority and low-priority issue count settings.

IUCR2 0x00000000 Default reset value can be altered via a scan of the boot configuration ring.
Sets AXU implementation dependent bits.

MAS4 0x00000100 Default reset value can be altered via a scan of the boot configuration ring.
Initializes parameters used to transfer default contents to other MAS registers: TSIZED, ED,
ID, MD, GD, WD and INDD.

MMUCFG 0x08558341 Default reset value can be altered via a scan of the boot configuration ring.
Initializes fields that enable LRAT and TLB write conditional functions.

MMUCR0 0x00000000 Initializes parameters used by certain TLB management instructions: ECL, TGS, TS, TLBSEL,
TID, and TID_NZ.

MMUCR1 0x0C000000 Default reset value can be altered via a scan of the boot configuration ring.
Initializes fields that control various I-ERAT and D-ERAT management and error functions.

MMUCR2 0x000A7531 Default reset value can be altered via a scan of the boot configuration ring.
Initializes fields used to control the MMU TLB page size sequencer hardware.

MMUCR3 0x0000000F Default reset value can be altered via a scan of the boot configuration ring.
Initializes parameters used by certain TLB management instructions: X, R, C, ECL, Class,
WLC, ResvAttr, and ThdID.

MSR 0x00000000 The MSR flush 0 initializes to 0, but can also be scanned to an initial value through the boot
configuration ring.

• Sets initial processor state, including:
• Hypervisor or nonguest supervisor state (PR, GS)
• 32-bit computation mode (CM)

• Disables interrupts (CE, EE, ME, DE, FE0, FE1).
• Enables address space 0 (IS, DS).
• Disables floating-point and vector instructions (FP, SPV).
• Sets cache locking instructions as privileged (UCLE).

PPCR0 0x00000000 Default reset value can be altered via a scan of the debug configuration ring.
Controls debug modes and other debug related options.

PPR32 0x000c0000 Default reset value can be altered via scan of boot configuration ring.
Sets thread priority.

TCR 0x00000000 All bits in TCR are flush 0 initialized to 0.
This clears the reset (WRC) enable field.

TENC 0x00000001 Default reset value can be altered via a scan of the boot configuration ring.
Thread enable controls.

TENS 0x00000001 Default reset value can be altered via a scan of the boot configuration ring.
Thread enable controls.

THRCTL 0x00000000 Default reset value can be altered via a scan of the boot configuration ring.
Sets thread stop controls; enables various debug controls.

TLB0CFG 0x0407a200 Default reset value can be altered via a scan of the boot configuration ring.
Initializes fields that enable TLB page table support, indirect entry installs, and guest TLB write
functions.

TSR 0x00000000 All bits in the TSR are flush 0 initialized to 0.

Table 4-1. Register Reset Values (Sheet 2 of 3)

Register Register or Field
Reset Values Comments

auxiliary execution unit

MMU assist

logical to real address translation

Timer Status Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 157 of 864

XUCR0 0x000708C0 Default reset value can be altered via a scan of the boot configuration ring.
Initializes various XU control parameter fields.

XUCR1 0x00000000 Default reset value can be altered via a scan of the boot configuration ring.
Disables livelock buster logic.

XUCR2 0xFFFFFFFF Initializes L1 replacement management tables.

XUCR3 0x02401441 Default reset value can be altered via a scan of the debug configuration ring.
Controls various completion logic debug options.

XUCR4 0x00000500 Default reset value can be altered via a scan of the debug configuration ring.
Controls various load-store unit and divide debug options.

Table 4-1. Register Reset Values (Sheet 3 of 3)

Register Register or Field
Reset Values Comments

level 1

User’s Manual

A2 Processor

Initialization

Page 158 of 864
Version 1.3

October 23, 2012

Table 4-2. Shadow TLB Array Entry Initialization (Sheet 1 of 3)

Resource Field Reset Value Comment

TLBentry[1]1 EPN0:51 System-dependent c. Reset value is specified by the boot configuration ring.

X 0 Exclusion range enable bit (disabled).

SIZE 0b0001 Page size selection (set to 4 KB). This field is recoded to a 3-bit field in the
ERAT shadow copies.

V 1 Valid bit (enabled).

ThreadID 0b1111 Thread sharing mask (shared by all threads).

Class 0b00 Class ID bits.

ExtClass 0 Extended class ID bit.

TID_NZ 0 Translation identifier nonzero bit.

TGS 0 Translation guest state.

TS 0 Translation space (IS or DS matching).

TID5 0x00 Translation identifier (set to shared process ID)

TLPID6 N/A Translation logical partition identifier

RPN22:31 System-dependent3 Real page number MSBs (4 GB base real address). Reset value is specified
by boot configuration ring.

RPN32:51 System-dependent4 Real page number LSBs (4 KB real page number offset). Reset value is speci-
fied by the boot configuration ring.

R,C 0b00 Reference and change bits.

WLC 0b00 D-cache way locking class attribute.

ResvAttr 0 Reserved page attributes.

U[0:3] System-dependent3 User definable storage attributes. Reset value is specified by the boot configu-
ration ring.

W 0 Write-through storage attribute disabled.

I 1 Caching inhibited storage attribute enabled.

M 0 Memory coherent storage attribute disabled.

G 1 Guarded storage attribute enabled.

E System-dependent3 Reset value of endian storage attribute is specified by the boot configuration
ring.

VF 0 Virtualization fault disabled.

UX 0 User mode execution access disabled.

SX 1 Supervisor mode execution access enabled.

UW 0 User mode write access disabled.

SW 0 Supervisor mode write access disabled.

UR 0 User mode read access disabled.

SR 1 Supervisor mode read access enabled.

instruction address space

data address space

most-significant byte

gigabyte

least significant byte

kilobyte

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 159 of 864

TLBentry[2]2 EPN0:51 0x0000000000000 Effective page number (matches IVPR(0:51) reset value).

X 0 Exclusion range enable bit (disabled).

SIZE 0b0001 Page size selection (set to 4 KB). This field is recoded to a 3-bit field in the
ERAT shadow copies.

V 1 Valid bit (enabled).

ThreadID 0b1111 Thread sharing mask (shared by all threads).

Class 0b00 Class ID bits.

ExtClass 1 Extended class ID bit (protected “pinned” entry).

TID_NZ 0 Translation identifier nonzero bit.

TGS 0 Translation guest state.

TS 0 Translation space (IS or DS matching).

TID5 0x00 Translation identifier (set to shared process ID).

TLPID6 N/A Translation logical partition identifier.

RPN22:31 System-dependent3 Real page number MSBs (4 GB base real address). Reset value is specified
by the boot configuration ring.

RPN32:51 System-dependent4 Real page number LSBs (4 KB real page number offset). Reset value is speci-
fied by the boot configuration ring.

R,C 0b00 Reference and change bits.

WLC 0b00 D-cache way locking class attribute.

ResvAttr 0 Reserved page attributes.

U[0:3] System-dependent3 User-definable storage attributes. Reset value is specified by the boot configu-
ration ring.

W 0 Write-through storage attribute disabled.

I 1 Caching inhibited storage attribute enabled.

M 0 Memory coherent storage attribute disabled.

G 1 Guarded storage attribute enabled.

E System-dependent3 Reset value of endian storage attribute is specified by the boot configuration
ring.

VF 0 Virtualization fault disabled.

UX 0 User-mode execution access disabled.

SX 1 Supervisor-mode execution access enabled.

UW 0 User-mode write access disabled.

SW 0 Supervisor-mode write access disabled.

UR 0 User-mode read access disabled.

SR 1 Supervisor-mode read access enabled.

Table 4-2. Shadow TLB Array Entry Initialization (Sheet 2 of 3)

Resource Field Reset Value Comment

User’s Manual

A2 Processor

Initialization

Page 160 of 864
Version 1.3

October 23, 2012

4.3 Software Initiated Reset Requests

The Power ISA Book III-E defines two sets of facilities that can be used by software to request a reset: debug
and the watchdog timer. Whether or not these facilities are used is implementation-dependent. This section
describes how the A2 core supports their usage through a set of generic reset request outputs and reset
status inputs. The meaning that a system associates with these signals, and how they are used, is beyond
the scope of this document.

The following sections describe how these facilities can be used by software to initiate a reset operation.

4.3.1 Software Reset Requests

The A2 core implements four reset request output signals. They originate from SPRs in the debug and timer
facilities. Once activated, they remain set until cleared by software or through the reset operation. System
software can assign different levels of reset actions (that is, core, chip, system) to these signals, and respond
accordingly.

1. “TLBentry[1]” refers to an entry in the shadow instruction and data TLB arrays (entry 14 in the I-ERAT, and entry 30 in the D-
ERAT) that is automatically configured by the A2 core to enable fetching and reading (but not writing) from the initial program
memory page. The ERAT LRU watermark is automatically initialized to be just below this entry (13 for the I-ERAT or 29 for the D-
ERAT). This entry is not architecturally visible to software in the unified TLB. This entry can be invalidated upon certain context
synchronizing operations, unless boot software configures MMUCR1[CSINV] to prevent this or changes this entry’s ExtClass to 1.
Otherwise, software must initialize a corresponding entry in the main unified TLB array before executing any operation that could
lead to a context synchronization invalidation. See Table 6.7.1 ERAT Context Synchronization and Section 4.4 Initialization Soft-
ware Requirements on page 163 for more information.

2. “TLBentry[2]” refers to an entry in the shadow instruction and data TLB arrays (entry 15 in the I-ERAT and entry 31 in the D-ERAT)
that is automatically configured by the A2 core to enable fetching and reading (but not writing) from the initial interrupt vector area
(that is, an effective address “page 0” entry). This entry is not architecturally visible to software in the unified TLB. This entry is ini-
tialized with ExtClass = 1 to be protected from context synchronizing invalidations. Software must initialize a corresponding entry in
the main unified TLB array before taking any action to change the invalidation protection of this entry such that a context synchro-
nizing event would invalidate this entry. See Table 6.7.1 ERAT Context Synchronization and Section 4.4 Initialization Software
Requirements on page 163 for more information.

3. The system-dependent values for RPN(22:31), U[0:3], and E for both TLBentry[1] and TLBentry[2] are the same value (that is, the
same boot configuration ring bits).

4. The system-dependent values for RPN(32:51) for TLBentry[1] and TLBentry[2] can be configured to be unique values (that is,
these values are separate boot configuration ring bits).

5. The TID fields in the shadow TLB (ERAT) arrays support only the eight LSbs of the 14-bit TID field in the unified TLB.
6. The TLPID field that exists in the unified TLB is not implemented in the shadow TLBs (that is, the ERATs are not tagged with the

logical partition identifier).

ac_an_reset_1_request The core is requesting a type 1 reset.

ac_an_reset_2_request The core is requesting a type 2 reset.

ac_an_reset_3_request The core is requesting a type 3 reset.

ac_an_reset_wd_request Is active with the reset request signal when it is coming from the watchdog
timer; otherwise, the request is from DBCR0[RST].

Table 4-2. Shadow TLB Array Entry Initialization (Sheet 3 of 3)

Resource Field Reset Value Comment

least recently used

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 161 of 864

Because the reset request logic is implemented in multiple thread-specific sources, it is possible that more
than one reset request output signal can be active at the same time. Software should coordinate the use of
these facilities within a partition so as to minimize multiple reset request types being activated together. On
the other hand, the system reset control logic should be able to support multiple active requests, probably by
initiating the highest requested reset type.

4.3.1.1 From Debug

Software can request a reset by writing a 2-bit encoded value to DBCR0[RST]. The A2 core decodes the bits
and activates one of three reset type requests as shown below.

DBCR0[RST]:

• 0b00 - No reset.
• 0b01 - Activates a type 1 reset request.
• 0b10 - Activates a type 2 reset request.
• 0b11 - Activates a type 3 reset request.

4.3.1.2 From Watchdog Timer

Software enables watchdog timer resets through various fields in the Timer Control Register. The 2-bit
TCR[WRC] field defines the type of reset that will be requested, and must be nonzero for a watchdog timer
exception to activate a reset request. On the second watchdog timer exception, the TCR[WRC] value deter-
mines the corresponding reset type request as shown below:

TCR[WRC] when second watchdog timer exception is activated:

• 0b00 - Watchdog timer reset is disabled.
• 0b01 - Activates a type 1 reset request.
• 0b10 - Activates a type 2 reset request.
• 0b11 - Activates a type 3 reset request.

4.3.2 Reset Request Status

The system can obtain the cause of a reset request before taking any reset actions. The DBCR0[RST] and
FIR0(52:55) fields indicate which thread requested the reset. Additional state and status information for the
failing thread can then be obtained by interrogating various registers within the core. Once the core is reset,
however, this and any other status related to the problem is lost.

After reset operations have initialized the core’s registers, status information can be written to the
DBSR[MRR] and TSR[WRS] fields indicating that a software-initiated reset request has occurred. The A2
core implements four reset status inputs for this purpose:

an_ac_reset_1_complete A type 1 software-initiated reset occurred.

an_ac_reset_2_complete A type 2 software-initiated reset occurred.

an_ac_reset_3_complete A type 3 software-initiated reset occurred.

an_ac_reset_wd_complete If this signal is active with another of the reset complete signals, it indicates
that the reset was the result of a watchdog timer request. The TSR[WRS]
field is updated in addition to the DBSR[MRR] field.

User’s Manual

A2 Processor

Initialization

Page 162 of 864
Version 1.3

October 23, 2012

The an_ac_reset_x_complete inputs must be active for a minimum of one clock pulse to set the DBSR[MRR]
and TSR[WRS] reset status bits. If more than one reset input is active at the same time, they are set using the
following priority: highest = type 3, next = type 2, lowest = type 1.

4.3.2.1 Debug Facility Reset Status

The Most Recent Reset field of the Debug Status Register (DBSR[MRR]) indicates the type of reset that
occurred last. The flush 0 scan of the core’s reset initializes this field to 0b00. Once initialized by the core
reset, chip level reset controls can use the an_an_reset_x_complete signals to provide additional reset status
to software. The DBSR[MRR] field of all threads is updated with the same reset status.

DBSR[MRR]:

• 0b00 - No reset status since last cleared.
• 0b01 - A type 1 reset has occurred.
• 0b10 - A type 2 reset has occurred.
• 0b11 - A type 3 reset has occurred.

4.3.2.2 Timer Facility Reset Status

The Watchdog Timer Reset Status field of the Timer Status Register (TSR[WRS]) indicates that a reset was
caused by a watchdog timer exception. The flush 0 scan of the core’s reset initializes this field to 0b00. Once
initialized by the core reset, chip level reset controls can use the an_an_reset_x_complete signals to provide
additional reset status to software. The TSR[WRS] field of all threads is updated with the same reset status.

TSR[WRS]:

• 0b00 - No watchdog timer reset has occurred.
• 0b01 - The watchdog timer caused a type 1 reset.
• 0b10 - The watchdog timer caused a type 2 reset.
• 0b11 - The watchdog timer caused a type 3 reset.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 163 of 864

4.4 Initialization Software Requirements

After a reset operation occurs, the A2 core is initialized to a minimum configuration to enable the fetching and
execution of the software initialization code and to guarantee deterministic behavior of the core during the
execution of this code. Initialization software is necessary to complete the configuration of the processor core
and the rest of the on-chip and off-chip system.

The system must provide nonvolatile memory (or memory initialized by some mechanism other than the A2
core) at the real address corresponding to the initial effective address that is scanned into the boot configura-
tion ring during hardware reset, and at the rest of the initial program memory page. The instruction at the
initial address must be an unconditional branch backwards to the beginning of the initialization software
sequence.

The initialization software functions described in this section perform the configuration tasks required to
prepare the A2 core to boot an operating system and subsequently execute an application program.

The initialization software must also perform functions associated with hardware resources that are outside
the A2 core, and hence that are beyond the scope of this manual. This section refers to some of these func-
tions, but their full scope is described in the user’s manual for the specific chip and/or system implementation.

Initialization software should perform the following tasks to fully configure the A2 core. For more information
about the various functions referenced in the initialization sequence, see the corresponding chapters of this
document.

1. Branch backwards from the initial effective address (which is scanned into the instruction address register
from the boot configuration ring during hardware reset) to the start of the initialization sequence.

Figure 4-1. Software-Initiated Reset Request Overview

C h ip R eset C o n tro ls

D eb u g Statu s
D B SR[M R R]
(p er th read)

D eb u g C trl 0
D B C R0[R ST]
(p er th read)

A 2 C ore

T imer Statu s
T SR[W R S]

(p er th read)

SC OM
Satellite

F IR

SC O M In terface

an _ac _ reset _1 _co m p lete

an _ac _reset _2_ co m p lete

an _ac _ reset _3 _co m p lete

ac _ an _reset _1_ req u est
OR

OR

OR
ac _ an _reset _2_ req u est

ac _ an _reset _3_ req u est

(W D T R eset Erro rs to F IR)

4

ac _ an _ reset _w d _ req u est

4

4
4

4

4
4

an _ac _ reset _w d _ co m p lete

W atch d o g T imer
T C R [W R C]
(p er th read)

W atch d o g T im er F u n ct io n

User’s Manual

A2 Processor

Initialization

Page 164 of 864
Version 1.3

October 23, 2012

2. Invalidate the instruction cache (ici).

3. Invalidate the data cache (dci).

4. Synchronize memory accesses (msync).

This step forces any data operations that might have been in progress before the reset operation to com-
plete, thereby allowing subsequent data accesses to be initiated and completed properly.

5. Clear DBCR0 and DBCR0 registers (disable all debug events).

Although the A2 core is defined to reset the DBCR0 and DBCR0 debug event enable bits during the reset
operation (as specified in Table 4-1 on page 155), this is not required by the architecture. Hence, the ini-
tialization software should not assume this behavior. Software should disable all debug events to prevent
nondeterministic behavior resulting from debug exceptions.

6. Clear DBSR register (initialize all debug event status).

Although the A2 core is defined to reset the DBSR debug event status bits during the reset operation (as
specified in Table 4-1 on page 155), this is not required by the architecture. Hence, the initialization soft-
ware should not assume this behavior. Software should clear all such status to prevent nondeterministic
behavior resulting from debug exceptions.

7. Set up a TLB entry to cover initial program memory page. This description applies to the MMU mode of
operation with backing TLB. The sequence is similar for the ERAT-only mode of operation, except that the
target of TLB updates (using eratwe instructions) is the I-ERAT and/or D-ERAT arrays (with
MMUCR0[TLBSEL] = 2 or 3).

The A2 core initializes two architecturally-invisible shadow TLB entries during the reset operation (two
entries in both the I-ERAT and D-ERAT, only one of which is protected against invalidations). In addition,
all shadow TLB entries with ExtClass = 0 are invalidated upon any context synchronization at this point
(MMUCR1[CSINV] = 00). Therefore, special care must be taken during the initialization sequence to pre-
vent any such context synchronizing operations (such as interrupts and the isync instruction) until after
this step is completed and a backing entry has been established in the TLB. Note that the ERAT water-
mark register values are not affected by context synchronizing events and will remain at the reset values
(the maximum entry number minus 2) unless otherwise changed. Particular care should be taken to avoid
store operations, because write permission is disabled upon reset and an attempt to execute any store
operation results in a data storage interrupt, thereby invalidating the unprotected shadow TLB entry.

a. Fully initialize the TLB (executing tlbre from TLB entries that are not fully initialized can result in parity
error exceptions).

• Set MAS0[ATSEL] = 0, MAS0[HES] = 0, and MAS1[V] = 0 using mtspr instructions.

• Initialize all TLB congruence classes and ways in a loop using MAS2[EPN] as a congruence
class pointer and MAS0[ESEL] as the way, and using tlbwe to write the chosen entry.

• Although setting valid bits to zero in TLB entries normally generates back-invalidations to the
shadow copies, the initial shadow copies are either initialized to be protected or will not match for
the EPNs being used to initialize the TLB.

b. Initialize MMUCR3 using an mtspr instruction.

• Specify ExtClass = 0 or else future context synchronizations will not clear the shadow copies of
this TLB entry in the ERATs (that is, the entry will be “pinned” in ERATs).

• Specify the thread sharing mask (ThdID) = 0b1111 for all threads to share this entry; otherwise,
only a subset of threads will use this entry, and a unique entry must be configured for the other
threads.

effective page number

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 165 of 864

• Specify the invalidation class for the entry (can be used by subsequent erativax instructions).

• Disable the exclusion range function (X = 0); otherwise, one or more TLB entries must be config-
ured to fit within the exclusion range.

c. Setup MAS0 to select the TLB as the target structure using an mtspr instruction.

• Set MAS0[ATSEL] = 0 to target the TLB.

• Set MAS0[HES] = 0 to install the entry in a particular congruence class and way, or = 1 to allow
hardware to select the placement of the entry in the TLB.

d. Write the MAS registers to setup the RPN portion of the TLB entry (using mtspr instructions) for the
initial program memory page.

• Specify RPN as appropriate for the system.

• Specify storage attributes (W, I, M, G, E, U0–U3) as appropriate for the system.

• Enable supervisor mode fetch, read, and write access (SX, SR, SW).

• Clear any unused or reserved attribute fields.

e. Write the MAS registers to setup the EPN portion of the TLB entry (using mtspr instructions) for ini-
tial program memory page.

• Specify TGS, TS, and TID fields to be written to the TLB entries.

• Specify TGS = 0 (for hypervisor state entries) or 1 (for guest level entries).

• Specify TS = 0 (system address space); otherwise, MSR[IS,DS] must be set to correspond to TS
= 1.

• Specify TID = 0 (disable comparison to PID); otherwise, initialize the PID register to a matching
value.

• Specify EPN and SIZE as appropriate for the system.

• Set the valid bit (V).

f. Issue the tlbwe instruction. This atomically updates the entire TLB entry (EPN and RPN portions)
with the MAS registers contents.

g. Initialize the PID register to match the TID field of the TLB entry (unless using TID = 0).

h. Set up for subsequent MSR[IS,DS] initialization to correspond to the TS field of the TLB entry is only
necessary if the TS field of the TLB entry is being set to 1 (MSR[IS,DS] already reset to 0).

• Write the new MSR value into SRR1.

• Write the address from which to continue execution into the SRR0.

i. Set up for subsequent change in instruction fetch address is only necessary if the EPN field of the
TLB entry changed from the initial value (EPN0:51  configuration ring boot value, normally
0x0000_0000_FFFF_F for a 32-bit initial compute mode value).

• Write the initial or new MSR value into SRR1.

• Write the address from which to continue execution into SRR0.

j. Context synchronize to invalidate the shadow TLB (I-ERAT and D-ERAT) contents and cause the new
TLB contents to take effect.

• Use isync if not changing the MSR contents and not changing the effective address of the rest of
the initialization sequence.

real page number

User’s Manual

A2 Processor

Initialization

Page 166 of 864
Version 1.3

October 23, 2012

• Use rfi if changing the MSR to match the new TS field of the TLB entry. (SRR1 will be copied into
the MSR, and program execution will resume at the value in SRR0.)

• Use rfi if changing the next instruction fetch address to correspond to new EPN field of the TLB
entry. (SRR1 will be copied into the MSR, and program execution will resume at the value in
SRR0.)

Instruction and data caches will now begin to be used if the corresponding TLB entry has been set up
with the caching inhibited storage attribute set to 0. Initialization software can now branch outside of
the initial 4 KB memory region as controlled by the address and size of the new TLB entry and/or any
other TLB entries that have been setup.

8. Setup or modify any desired “pinned” entries in the shadow TLBs using eratwe instructions to target the
I-ERAT and/or D-ERAT arrays (with MMUCR0[TLBSEL] = 2 or 3).

a. Write the targeted ERAT LRU watermark level to an appropriate value (using eratwe with WS = 3) to
allow for extra pinned entries to be inserted above the watermark. The watermark register values are
not affected by context synchronizing events and remain at the reset values (the maximum entry
number minus 2) unless otherwise changed.

b. Initialize MMUCR0.

• Specify TGS, TS, TID, and ExtClass fields to be written to ERAT entries (EPN portion).

• Specify TGS = 0 (for hypervisor state entries) or 1 (for guest level entries).

• Specify TS = 0 (system address space); otherwise, MSR[IS,DS] must be set to correspond to TS
= 1.

• Specify TID = 0 (automatically clears TID_NZ and disables comparison to PID); otherwise, initial-
ize the PID register to a matching nonzero value.

• Specify ExtClass = 1 to ensure future context synchronizations will not clear the shadow copies
of this entry (that is, the entry will be “pinned” in ERATs).

• Specify the TLBSEL field to target the appropriate ERAT.

c. Write the RPN portion of the ERAT entry (eratwe with WS = 1 and WS = 2 when in 32-bit mode) for
the appropriate real page.

• Specify RPN as appropriate for the system.

• Specify the storage attributes (W, I, M, G, E, U0–U3) as appropriate for system.

• Enable the appropriate fetch, read, and write access (UX, SX, UW, SW, UR, SR).

• Clear any unused or reserved attribute fields.

d. Write the EPN portion of the ERAT entry (eratwe with WS = 0) for the appropriate effective page.
Writing the EPN portion atomically updates the entire ERAT entry (EPN and RPN portions).

• Specify EPN and SIZE as appropriate for the system.

• Set the valid bit (V).

• Specify the thread sharing mask (ThdID) = 0b1111 for all threads to share this entry; otherwise,
only a subset of threads will use this entry, and a unique entry must be configured for the other
threads.

• Specify the invalidation class for the entry (used for subsequent eratilx and/or erativax instruc-
tions).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Initialization

Page 167 of 864

• Disable the exclusion range function (X = 0); otherwise, one or more ERAT entries needs to be
configured to fit within the exclusion range.

9. Initialize interrupt resources.

a. Initialize IVPR and GIVPR to specify high-order addressing of interrupt handling routines. Make sure
that the corresponding address regions are covered by a “pinned” ERAT entry or a TLB entry (or
entries).

b. Set up corresponding memory contents with the interrupt handling routines.

c. Initialize EPCR to determine how interrupts should be directed (hypervisor state or guest state).

d. Synchronize any program memory changes as required. (See Self-Modifying Code on page 172 for
more information about the instruction sequence necessary to synchronize changes to program
memory before executing the new instructions.)

10. Configure debug facilities as required.

a. Write DBCR1-DBCR3 to specify IAC and DAC event conditions.

b. Write IMMR and IMR to specify instruction value matching conditions.

c. Initialize IAC1–IAC4, DAC1–DAC4, and DVC1–DVC2 registers to desired values.

d. Write PCCR0[DBA] to enable the required external debug mode actions.

e. Initialize EPCR to determine if debug events can occur in the hypervisor state.

f. Write DBCR0 and DBCR3 to enable the required debug modes and events.

g. Context synchronize to establish the new debug facility context (isync).

11. Configure timer facilities as required.

a. Disable the timer clock enable input to the A2 core if timebase synchronization among multiple cores
is required.

b. Write DEC and UDEC to 0 to prevent decrementer exceptions after the TSR is cleared.

c. Write TBL to 0 to prevent fixed interval timer and watchdog timer exceptions after the TSR is cleared
and to prevent increment into TBH before full initialization.

d. XUCR0[TCS] (Timer Clock Select) can be initialized here or earlier with the rest of XUCR0.

e. Clear the TSR to clear all timer exception status.

f. Write the TCR to configure and enable timers as desired.

g. Software must take care with respect to the enabling of the watchdog timer reset function, because
after this function is enabled, it cannot be disabled except by reset itself.

h. Initialize the TBH value as required.

i. Initialize the TBL value as required.

j. Initialize the DECAR to the required value (if enabling the auto-reload function).

k. Initialize any timers (DEC, UDEC, and FIT) to their required values.

l. When timer facilities on all cores are initialized, enable timer clock enable input to the A2 core, if
required for timebase synchronization among multiple cores.

12. Initialize facilities outside the processor core that are possible sources of asynchronous interrupt requests
(including memory-mapped resources).

This must be done before enabling asynchronous interrupts in the MSR.

User’s Manual

A2 Processor

Initialization

Page 168 of 864
Version 1.3

October 23, 2012

13. Initialize the MSR to enable interrupts as desired.

a. Set MSR[CE] to enable or disable critical input, watchdog timer, guest processor doorbell critical, and
processor doorbell critical interrupts.

b. Set MSR[EE] to enable or disable external input, decrementer, fixed interval timer, processor door-
bell, guest processor doorbell, and embedded performance monitor interrupts.

c. Set MSR[DE] to enable or disable debug interrupts.

d. Set MSR[ME] to enable or disable machine check interrupts.

e. Context synchronize to establish the new MSR context (isync).

14. Initialize any other processor core resources as required by the system (GPRs, SPRGs, and so on).

15. Initialize the fault isolation register masks to enable error reporting.

a. Clear the Fault Isolation Registers (SCOM access to FIR0, FIR1 and FIR2) to remove any error bits
that might have been inadvertently set. Even though the Fault Isolation Registers should have been
initialized to 0s during the POR scan sequence, this action ensures that no FIR bits are active before
enabling error reporting.

b. Clear the fault isolation register masks (SCOM access to FIR0M, FIR1M, and FIR2M). This removes
masking of the corresponding FIR error bits and enables error reporting outside of the core through
the chip level error facilities.

16. Initialize any other facilities outside the processor core as required by the system.

17. Initialize system memory as required by the system software.

Synchronize any program memory changes as required. (See Self-Modifying Code on page 172 for more
information about the instruction sequence necessary to synchronize changes to program memory
before executing the new instructions).

18. Start the system software.

System software is generally responsible for initializing and/or managing the rest of the MSR fields,
including:

a. MSR[FP] to enable or disable the execution of floating-point instructions

b. MSR[FE0,FE1] to enable/disable floating-point enabled exception type of program interrupts

c. MSR[PR] to specify user mode or supervisor mode

d. MSR[IS,DS] to specify application address space or system address space for instructions and data

System software can also enable and disable other threads through the CCR0, TENS, and TENC SPRs;
see Section 2.3.2 Thread Run State on page 71 for details on their usage.

general purpose register

special purpose registers general

power-on reset

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 169 of 864

5. Instruction and Data Caches

The A2 core provides separate instruction and data cache controllers and arrays, which allow concurrent
access and minimize pipeline stalls. The storage capacity of the cache arrays is 16 KB each. Both cache
controllers have 64-byte lines. Both are set associative, with the data cache having 8-way set-associativity,
and the instruction cache having 4-way set associativity. The Power ISA instruction set provides a rich set of
cache management instructions for software-enforced coherency. The cache controllers interface to the
processor interface for connection to the system-on-a-chip environment.

Both the data and instruction caches support a 42-bit real address, and both are parity protected against soft
errors. The details of suggested interrupt handling are described in Instruction Cache Controller on page 170
and in Data Cache Controller on page 173

The rest of this chapter provides more detailed information about the operation of the instruction and data
cache controllers and arrays.

5.1 Data Cache Array Organization and Operation

The data cache is 8-way set-associative, with 32 sets and a 64-byte line size.

Table 5-1 illustrates generically the ways and sets of the cache arrays, while Table 5-2 provides specific
values for the parameters used in Table 5-1. As shown in Table 5-2, the tag field for each line in each way
holds the high-order address bits associated with the line that currently resides in that way. The middle-order
address bits form an index to select a specific set of the cache, while the six lowest-order address bits form a
byte-offset to choose a specific byte (or bytes, depending on the size of the operation) from the 64-byte cache
line.

Table 5-1. Data Cache Array Organization

Way 0 Way 1  Way w – 2 Way w – 1

Set 0 Line 0 Line n  Line (w – 2)n Line (w – 1)n

Set 1 Line 1 Line n + 1  Line (w – 2)n + 1 Line (w – 1)n + 1

























Set n – 2 Line n – 2 Line 2n – 2  Line (w – 1)n – 2 Line wn – 2

Set n – 1 Line n – 1 Line 2n – 1  Line (w – 1)n – 1 Line wn – 1

Table 5-2. Cache Size and Parameters

 Array Size w (Ways) n (Sets) Tag
Address Bits

Set
Address Bits

Byte Offset
Address Bits

16 KB 8 32 A22:52 A53:57 A58:63

User’s Manual

A2 Processor

Instruction and Data Caches

Page 170 of 864
Version 1.3

October 23, 2012

5.2 Instruction Cache Array Organization and Operation

The instruction is 4-way set-associative, with 64 sets and a 64-byte line size.

Table 5-3 illustrates generically the ways and sets of the cache arrays, while Table 5-4 provides specific
values for the parameters used in Table 5-3. As shown in Table 5-4, the tag field for each line in each way
holds the high-order address bits associated with the line that currently resides in that way. The middle-order
address bits form an index to select a specific set of the cache, while the six lowest-order address bits form a
byte-offset to choose the specific bytes from the 64-byte cache line.

5.3 Cache Line Replacement Policy

Memory addresses are specified as being cacheable or caching inhibited on a page basis, using the caching
inhibited (I) storage attribute (see Caching Inhibited (I) on page 196). When a program references a cache-
able memory location and that location is not already in the cache (a cache miss), the line can be brought into
the cache (a cache line fill operation) and placed into any one of the ways within the set selected by the
middle portion of the address (the specific address bits that select the set are specified in Table 5-2 and
Table 5-4). If the particular way within the set already contains a valid line from some other address, the
existing line is removed and replaced by the newly referenced line from memory. The line being replaced is
referred to as the victim.

The way selected to be the victim for replacement is controlled by a pseudo LRU policy. The L1 data directory
uses a pseudo LRU replacement algorithm, which allocates on data reload. The valid bits and the LRU are
used to determine which way will be replaced. The way that is determined for replacement is then invalidated
and updated.

5.4 Instruction Cache Controller

The instruction cache controller (ICC) delivers up to four instructions per cycle to the instruction unit of the A2
core. The ICC uses a 128-bit interface. The ICC frequency is always 1:1 with the A2 core.

Table 5-3. Instruction Cache Array Organization

Way 0 Way 1  Way w – 2 Way w – 1

Set 0 Line 0 Line n  Line (w – 2)n Line (w – 1)n

Set 1 Line 1 Line n + 1  Line (w – 2)n + 1 Line (w – 1)n + 1

























Set n – 2 Line n – 2 Line 2n – 2  Line (w – 1)n – 2 Line wn – 2

Set n – 1 Line n – 1 Line 2n – 1  Line (w – 1)n – 1 Line wn – 1

Table 5-4. Cache Size and Parameters

 Array Size w (Ways) n (Sets) Tag
Address Bits

Set
Address Bits

Byte Offset
Address Bits

16 KB 4 64 A22:51 A52:57 A58:63

least recently used

level 1

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 171 of 864

The ICC provides a speculative prefetch mechanism that automatically prefetches up to one line per thread
upon any fetch request that misses in the instruction cache.

The ICC also handles the execution of the Power ISA instruction cache management instructions, for invali-
dating cache lines or for flash invalidation of the entire cache. Resources for controlling and debugging the
instruction cache operation are also provided.

The rest of this section describes each of these functions in more detail.

5.4.1 ICC Operations

When the ICC receives an instruction fetch request from the instruction unit of the A2 core, the ICC simulta-
neously searches the instruction cache array for the cache line associated with the virtual address of the fetch
request and translates the virtual address into a real address (see Memory Management on page 185 for
information about address translation). If the requested cache line is found in the array (a cache hit), the four
instructions at the requested address are returned to the instruction unit. If the requested cache line is not
found in the array (a cache miss), the ICC sends a request for the entire cache line (64 bytes) to the A2 core
interface, using the real address. If the caching inhibited (I) storage attribute is set for the memory page
containing that cache line (see Caching Inhibited (I) on page 196) the ICC sends a request for 16 bytes.

As the ICC receives each portion of the cache line from the A2 core interface, it is written directly to the
instruction cache. If the memory page containing the line is caching inhibited, the instructions are sent directly
to the instruction unit.

After a request for a cache line read has been requested on the A2 core interface, the entire line read is
performed and the line is written into the instruction cache (assuming no error occurs on the read), regardless
of whether or not the instruction stream branches (or is interrupted) away from the line being read. This
behavior is due to the nature of the A2 core interface and the fact that, once started, a cache line read request
type cannot be abandoned. The ICC does not wait for this cache line read to complete before responding to a
new request from the instruction unit on the same thread (due, perhaps, to a branch redirection or an inter-
rupt). Instead, the ICC immediately accesses the cache to determine if the cache line at the new address
requested by the instruction unit is already in the cache. If so, the requested four instructions from this line are
immediately forwarded to the instruction unit, while the ICC in parallel continues to fill the previously
requested cache line. In other words, the instruction cache is completely nonblocking.

Programming Note: It is a programming error for an instruction fetch request to reference a valid cache line
in the instruction cache if the caching inhibited storage attribute is set for the memory page containing the
cache line. The result of attempting to execute an instruction from such an access is undefined. After proces-
sor reset, hardware automatically sets the caching inhibited storage attribute for the memory page containing
the reset address and also automatically flash invalidates the instruction cache. Subsequently, lines will not
be placed into the instruction cache unless they are accessed by reference to a memory page for which the
caching inhibited attribute has been turned off. If software subsequently turns on the caching inhibited stor-
age attribute for such a page, software must make sure that no lines from that page remain valid in the
instruction cache before attempting to fetch and execute instructions from the (now caching inhibited) page.

5.4.2 Instruction Cache Coherency

In general, the A2 core does not automatically enforce coherency between the instruction cache, data cache,
and memory. Automatic enforcement of coherency is a function of the L2 cache or the SOC. See the chip
specification to determine if instruction cache coherency is maintained by the hardware implementation.
When not maintained by hardware, if the contents of the memory location are changed either within the data

level 2

system-on-a-chip

User’s Manual

A2 Processor

Instruction and Data Caches

Page 172 of 864
Version 1.3

October 23, 2012

cache or within memory itself, by the A2 core through the execution of store instructions or by some other
mechanism in the system writing to memory, software must use cache management instructions to ensure
that the instruction cache is made coherent with these changes. This involves invalidating any obsolete
copies of these memory locations within the instruction cache so that they will be reread from memory the
next time they are referenced by program execution.

5.4.2.1 Self-Modifying Code

To illustrate the use of the cache management instructions to enforce instruction cache coherency, consider
the example of self-modifying code, whereby the program executing on the A2 core stores new data to
memory with the intention of later branching to and executing this new “data,” which are actually instructions.

The following code example illustrates the required sequence for software to use when writing self-modifying
code. This example assumes that addr1 references a cacheable memory page.

stw regN, addr1 # Store the data (an instruction) in regN to addr1 in the data cache.
dcbst addr1 # Write the new instruction from the data cache to memory.
msync # Wait until the data actually reaches the memory.
icbi addr1 # Invalidate addr1 in the instruction cache if it exists.
msync addr1 # Wait for the instruction cache invalidation to take effect.
isync # Flush any prefetched instructions within the ICC and instruction

unit and refetch them (an older copy of the instruction at addr1
might have already been fetched).

At this point, software can begin executing the instruction at addr1 and be guaranteed that the new instruction
will be recognized.

5.4.2.2 Instruction Cache Synonyms

A synonym is a cache line that is associated with the same real address as another cache line that is in the
cache array at the same time. Such synonyms can occur when different virtual addresses are mapped to the
same real address, and the virtual address is used either as an index to the cache array (a virtually-indexed
cache) or as the cache line tag (a virtually-tagged cache).

The instruction cache on the A2 core is real-indexed and real-tagged. It is not possible for synonyms to exist
in the cache.

5.4.3 Instruction Cache Control and Debug

The A2 core provides various registers and instructions to control instruction cache operation and to help
debug instruction cache problems.

5.4.3.1 Instruction Cache Management and Debug Instruction Summary

In the instruction descriptions, the term “block” describes the unit of storage operated on by the cache block
instructions. For the A2 core, this is the same as a cache line.

The following instructions are used by software to manage the instruction cache.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 173 of 864

5.4.3.2 Instruction Cache Parity Operations

The instruction cache contains parity bits to protect against soft data errors. Both the instruction tags and data
are protected. Instruction cache lines consist of a tag field, 512 bits of data, and parity on each group of 8 or
less bits. The tag, data and parity bits are stored in normal RAM cells. The instruction cache is real-indexed
and real-tagged.

Two types of errors can be detected by the instruction cache parity logic. In the first type, the parity bits stored
in the RAM array are checked against the appropriate data in the instruction cache line when the RAM line is
read for an instruction fetch.

A parity error that is detected within the instruction directory array causes only the way with parity problems to
be invalidated. The instruction fetch that caused the lookup to occur does not take any other actions. This
also causes bit 33 of Fault Isolation Register 0 (FIR0) to be set.

Any parity error that is detected on the data array causes the directory to be invalidated for the way that had
the error, and also flushes if the way in error is for the current real address. This also causes bit 32 of FIR0 to
be set.

5.4.3.3 Simulating Instruction Cache Parity Errors for Software Testing

Because parity errors occur in the cache infrequently and unpredictably, it is desirable to provide users with a
way to simulate the effect of an instruction cache parity error so that interrupt handling software can be exer-
cised. See Section 15.3.2 Error Injection Register (ERRINJ) on page 706.

5.5 Data Cache Controller

The data cache controller (DCC) handles the execution of the storage access instructions, moving data
between memory and the data cache. The DCC interfaces to the A2 core interface using a shared command
interface, a 128-bit data interface for read operations (shared with instruction fetches) and a 256-bit data
interface for writes. The DCC frequency is always 1:1 with the A2 core.

The DCC also handles the execution of the Power ISA data cache management instructions, for touching
(perfecting), flushing, invalidating, or zeroing cache lines, or for flash invalidation of the entire cache.
Resources for controlling and debugging the data cache operation are also provided.

The DCC interfaces to the auxiliary execution unit (AXU) port to provide direct load/store access to the data
cache for AXU load and store operations, as well as for floating-point load and store instructions. AXU load
and store instructions can access up to 32 bytes (one double quadword) in a single cycle.

icbi Instruction Cache Block Invalidate
Invalidates a cache block.

icbt Instruction Cache Block Touch
CT = 0 is treated as a no-op.

ici Instruction Cache Invalidate
Flash invalidates the entire instruction cache. Execution of this instruction is privileged.

icread Not supported. Use scan operations to access the I-cache.

random access memory

User’s Manual

A2 Processor

Instruction and Data Caches

Page 174 of 864
Version 1.3

October 23, 2012

Extensive load, store, and flush queues are also provided, such that up to eight outstanding load misses with
the DCC continuing to service subsequent load and store hits in an in-order fashion.

The rest of this section describes each of these functions in more detail.

5.5.1 DCC Operations

When the DCC executes a load, store, or data cache management instruction, the DCC first translates the
effective address specified by the instruction into a real address (see Memory Management on page 185 for
more information about address translation). Next, the DCC accesses the data cache array for the cache line
associated with the real address of the requested data. If the cache line is found in the array (a cache hit),
that cache line is used to satisfy the request, according to the type of operation (load, store, and so on).

If the cache line is not found in the array (a cache miss), the next action depends upon the type of instruction
being executed, as well as the storage attributes of the memory page containing the data being accessed.
For most operations, and assuming the memory page is cacheable (see Caching Inhibited (I) on page 196),
the DCC sends a request for the entire cache line (64 bytes) to the system interface. The request to the
system interface is sent using the specific byte address requested by the instruction, so that the memory
subsystem can read the cache line target word first (if it supports such operation) and supply the specific
bytes requested before retrieving the rest of the cache line.

While the DCC is waiting for a cache line read to complete, it can continue to process subsequent instructions
and handle those accesses that hit in the data cache. That is, the data cache is completely nonblocking.

As the DCC receives each portion of the cache line from the data read A2 core interface, data can be
bypassed to the GPR file to satisfy load instructions, without waiting for the entire cache line to be filled. Data
is written into the data cache immediately.

Once a data cache line read request has been made, the entire line read is performed and the line is written
into the data cache. The DCC never aborts any A2 core interface request once it has been made, except
when a processor reset occurs while the request is being made.

The DCC does not initiate speculative loads. Load requests to memory are always initiated in program order.
Write requests to memory cannot be initiated speculatively.

If the guarded storage attribute is set for the memory page being accessed, then the memory request will not
be initiated until it is guaranteed that the access is required by the SEM. Once initiated, the access will not be
abandoned, and the instruction is guaranteed to complete before any change in the instruction stream. That
is, if the instruction stream is interrupted, then upon return the instruction execution resumes after the instruc-
tion that accessed guarded storage, such that the guarded storage access will not be re-executed.

See Guarded (G) on page 196 for more information about accessing guarded storage.

Programming Note:

It is a programming error for a load, store, or dcbz instruction to reference a valid cache line in the data
cache if the caching inhibited storage attribute is set for the memory page containing the cache line. The
result of such an access is undefined. After processor reset, hardware automatically sets the caching
inhibited storage attribute for the memory page containing the reset address. Software should flash inval-
idate the data cache (using dci; see Data Cache Management Instruction Summary on page 177) before
executing any load, store, or dcbz instructions. Subsequently, lines are not placed into the data cache
unless they are accessed by reference to a memory page for which the caching inhibited attribute has
been turned off. If software subsequently turns on the caching inhibited storage attribute for such a page,

sequential execution model

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 175 of 864

software must make sure that no lines from that page remain valid in the data cache (typically by using
the dcbf instruction) before attempting to access the (now caching inhibited) page with load, store, or
dcbz instructions.

The only instructions that are permitted to reference a caching inhibited line that is a hit in the data cache
are the cache management instructions dcbst, dcbf, dcbi, dci. The dcbt, dcbtst, dcbtls, dcbtstls and
dcblc instructions have no effect if they reference a caching inhibited address, regardless of whether the
line exists in the data cache.

5.5.1.1 Load and Store Alignment

The DCC implements all of the integer load and store instructions defined for 64-bit implementations by the
Power ISA. These include byte, halfword, and word loads and stores, and doubleword loads and stores, as
well as load and store string (0 to 127 bytes) and load and store multiple (1 to 32 registers) instructions.
Integer byte, halfword, word, and doubleword loads and stores are performed with a single access to memory
if the entire data operand is contained within an aligned 32-byte (double quadword) block of memory, regard-
less of the actual operand alignment within that block. If the data operand crosses a double quadword
boundary, the load or store is performed using two or more accesses to memory.

The load and store string and multiple instructions are performed using one memory access for each byte,
until the end of the load or store string or multiple is reached.

The DCC handles all misaligned integer load and store accesses in hardware, without causing an alignment
exception. However, the control bit XUCR0[FLSTA] can be set to force all misaligned storage access instruc-
tions to cause an alignment exception. When this bit is set, all integer storage accesses must be aligned on
an operand-size boundary, or an alignment exception results. Load and store multiple instructions must be
aligned on a 4-byte boundary, while load and store string instructions can be aligned on any boundary (these
instructions are considered to reference byte strings, and hence the operand size is a byte).

The DCC also supports load and store operations over the AXU interface. These can include floating-point
load and store instructions (as defined by the Power ISA), as well as AXU load and store instructions for
auxiliary processors. While floating-point loads and stores can access either 4 or 8 bytes, AXU loads and
store can access up to a 32 bytes.

The DCC handles all misaligned floating-point and AXU loads and stores with a single memory access, as
long as they do not cross a double quadword boundary. If such an access crosses a quadword boundary, the
DCC signals an alignment exception, and an interrupt results.

The AXU interface also supports other options with regards to the handling of misaligned AXU and floating-
point loads and stores. The AXU interface can specify that the DCC handle any AXU or floating-point load or
store access that is not aligned on either an operand-size boundary or a word boundary as specified in Table
2-2 Alignment Effects for Storage Access Instructions on page 63. Alternatively, the AXU interface can
specify that the DCC should force the storage access to be aligned on an operand-size boundary by zeroing
the appropriate number of low-order address bits.

Floating-point and AXU loads and stores are also subject to the function of XUCR0[AFLSTA].

5.5.1.2 Load Operations

Load instructions that reference cacheable memory pages and miss in the data cache result in cache line
read requests being presented to the system interface. Load operations to caching inhibited memory pages,
however, only access the bytes specifically requested, according to the type of load instruction. This behavior

User’s Manual

A2 Processor

Instruction and Data Caches

Page 176 of 864
Version 1.3

October 23, 2012

(of only accessing the requested bytes) is only architecturally required when the guarded storage attribute is
also set, but the DCC enforces this requirement on any load to a caching inhibited memory page. Subsequent
load operations to the same caching inhibited locations cause new requests to be sent to the data read A2
core interface.

The DCC also includes a 8-entry load miss queue (LMQ), which holds up to eight outstanding load instruc-
tions that have either missed in the data cache or access caching inhibited memory pages. A load instruction
in the LMQ remains there until the requested data arrives, at which time the data is delivered to the register
file, the data cache is updated (if cacheable), and the instruction is removed from the LMQ.

5.5.1.3 Store Operations

The processing of store instructions in the DCC is not affected by the following storage attribute bits: write-
through (W) and guarded (G). All store instructions are treated in a similar manner; the data is written directly
to memory. The DCC never gathers memory write operations caused by separate store instructions into one
simultaneous access to memory. The DCC never allocates data in the cache for store instructions.

The processing of store instructions in the DCC is affected by the caching inhibited (I) storage attribute. If the
store is cacheable and hits in the data cache, the data cache is updated.

5.5.1.4 Data Read and Instruction Fetch Interface Requests

When an A2 core interface read request results from an access to a cacheable memory location, the request
is always for a 64-byte line read, regardless of the type and size of the access that prompted the request. The
address presented is for the first byte of the target of the access.

On the other hand, when an A2 core interface read request results from an access to a caching-inhibited
memory location, only the bytes specifically accessed are requested from the interface, according to the type
of instruction prompting the access. Based on the type of storage access instructions (including integer,
floating-point, and AXU), and based on the mechanism for handling misaligned accesses that cross a quad-
word boundary (see Load and Store Alignment on page 175), the following types of read requests can occur
due to caching inhibited requests:

• 1-byte read (any byte address 0–31 within a double quadword)
• 2-byte read (any byte address 0–30 within a double quadword)
• 4-byte read (any byte address 0–28 within a double quadword)
• 8-byte read (any byte address 0–24 within a double quadword)
• 16-byte read (any byte address 0–16 within a double quadword)

This request can only occur due to a quadword AXU load instruction or an I = 1 instruction fetch.

5.5.1.5 Data Write Interface Requests

When an A2 core interface write request results from store operations, the type and size of the request can
be any one of the following

• 1-byte write request (any byte address 0–31 within a double quadword)

• 2-byte write request (any byte address 0–30 within a double quadword)

• 4-byte write request (any byte address 0–28 within a double quadword)

• 8-byte write request (any byte address 0–24 within a double quadword)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 177 of 864

• 16-byte write request (any byte address 0–16 within a double quadword)
Only possible due to an AXU quadword store.

• 32-byte write request (must be to byte address 0 of a double quadword)
Only possible due to an AXU double quadword store.

5.5.1.6 Storage Access Ordering

In general, the DCC performs load and store operations in-order with respect to the instruction stream. That
is, the memory accesses associated with a sequence of load and store instructions are performed at the A2
core system interface in the order that was implied by the order of the instructions. However, stores can be
processed ahead of earlier loads. Also, later loads and stores that hit in the data cache can be processed
before earlier loads that miss in the data cache.

The DCC does enforce the requirements of the SEM, such that the net result of a sequence of load and store
operations is the same as that implied by the order of the instructions. This means, for example, that if a later
load reads the same address written by an earlier store, the DCC guarantees that the load will use the data
written by the store, and not the older “pre-store” data.

If a write request conflicts with an earlier read request, the DCC withholds the write request until the data has
been returned for the read request.

The A2 core provides storage synchronization instructions to enable software to control the order in which the
memory accesses associated with a sequence of instructions are performed. See Storage Ordering and
Synchronization on page 124 for more information about the use of these instructions.

5.5.2 Data Cache Coherency

The A2 core does not enforce the coherency of the data cache with respect to alterations of memory
performed by entities other than the A2 core. Similarly, if entities other than the A2 core attempt to read
memory locations that currently exist within the A2 core data cache, the A2 core does not recognize such
accesses and thus will not respond to such accesses. In other words, the data cache on the A2 core is not a
snooping data cache, and there is no hardware enforcement of data cache coherency with memory with
respect to other entities in the system that access memory.

It is either the responsibility of software to manage this coherency through the appropriate use of the caching
inhibited storage attribute and/or the data cache management instructions, or it is the responsibility of an
entity outside the A2 core (such as an L2 cache controller) to provide cache coherency. The A2 core interface
provides an input bus for such an entity to invalidate cache lines in the L1 data cache.

5.5.3 Data Cache Control

The A2 core provides various registers and instructions to control data cache operation and to help debug
data cache problems.

5.5.3.1 Data Cache Management Instruction Summary

For detailed descriptions of the dcbf[ep] instruction, see Data Cache Block Flush by External PID on
page 524

In the instruction descriptions, the term “block” describes the unit of storage operated on by the cache block
instructions. For the A2 core, this is the same as a cache line.

User’s Manual

A2 Processor

Instruction and Data Caches

Page 178 of 864
Version 1.3

October 23, 2012

Section 2.12.1 Privileged Instructions on page 121 summarizes which data cache management instructions
are privileged.

The following instructions are used by software to manage the data cache.

5.5.3.2 dcbt and dcbtst Operation

The dcbt instruction is typically used as a “hint” to the processor that a particular block of data is likely to be
referenced by the executing program in the near future. Thus, the processor can begin filling that block into
the data cache, so that when the executing program eventually performs a load from the block it will already
be present in the cache, thereby improving performance.

The dcbtst instruction is typically used for a similar purpose, but specifically for cases where the executing
program is likely to store to the referenced block in the near future. The differentiation in the purpose of the
dcbtst instruction relative to the dcbt instruction is only relevant within shared-memory systems with hard-
ware-enforced support for cache coherency. In such systems, the dcbtst instruction attempts to establish the
block within the data cache in such a fashion that the processor can most readily subsequently write to the
block (for example, in a processor with a MESI-protocol cache subsystem, the block might be obtained in the
exclusive state).

dcba Data Cache Block Allocate
This instruction is implemented as a no-op on the A2 core.

dcbf
dcbfep

Data Cache Block Flush
Invalidate the cache block. CT indicates the targeted cache. Always send dcbf to the A2 core interface except
when L = 3. See Section 12.6 Data Cache Block Flush on page 523.

dcbi Data Cache Block Invalidate
Invalidates a cache block and then send dcbi to the A2 core interface.

dcbst
dcbstep

Data Cache Block Store
Send the dcbst to the A2 core interface.

dcbt
dcbtep

Data Cache Block Touch
Initiates a cache block fill, enabling the fill to begin before the executing program requiring any data in the block.
The program can subsequently access the data in the block without incurring a cache miss.
Send the dcbt to the A2 core interface. CT indicates the targeted cache. The instruction is a no-op for CT values
other than 0 or 2.

dcbtst
dcbtstep

Data Cache Block Touch for Store
Send the dcbtst to the A2 core interface. CT indicates the targeted cache. The instruction is a no-op for CT values
other than 0 or 2.

dcbz
dcbzep

Data Cache Block Set to Zero
Invalidate the block and send the dcbz to the A2 core interface.

dci Data Cache Congruence Class Invalidate
Flash invalidates the entire data cache.

dcread Not supported. Use scan operations to access the data cache.

dcbtls Data Cache Block Touch and Lock Set
This instruction is similar in nature to the dcbt, but in addition locks the cache line in the data cache

dcbtstls Data Cache Block Touch for Store and Lock Set
This instruction is similar in nature to the dcbtst, but in addition locks the cache line in the data cache

dcblc Data Cache Block Lock Clear

modified, exclusive, shared, invalid

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 179 of 864

The dcbt instruction can also be used as a convenient mechanism for setting up a fixed, known environment
within the data cache. This is useful for deterministic performance on a particular sequence of code or even
for debugging of low-level hardware and software problems.

When being used for these latter purposes, it is important that the dcbt instruction deliver a deterministic
result, namely the guaranteed establishment in the cache of the specified line. Accordingly, the execution of
dcbt(TH = 0) is guaranteed to establish the specified cache line in the data cache (assuming that a TLB entry
for the referenced memory page exists and has read permission, and that the caching inhibited storage
attribute is not set). The cache line fill associated with such a guaranteed dcbt occurs regardless of any
potential instruction execution-stalling circumstances within the DCC.

5.5.3.3 Cache Locking Mechanisms

A2 supports the embedded cache locking instruction category. In addition the data cache supports way
locking for transient data.

L1 Data Cache Way Locking

Setting XUCR0[WLK] = 1 enables data cache way locking. See Section 14.5.130 XUCR0 - Execution Unit
Configuration Register 0 on page 690. The data cache way locking mechanism alters the data caches normal
LRU replacement policy. This LRU mode is used to indicate that one or more of the eight ways of the 8-way
set associative data cache is not eligible to be replaced. Memory pages are mapped to one of four ClassIDs
by the TLB[WLC] bits in the ERAT/TLB.

• TLB[WLC] = 00 indicates ClassID 0 / RMT entry 0 when XUCR0[WLK] = 1.
• TLB[WLC] = 11 indicates ClassID 1 / RMT entry 1 when XUCR0[WLK] = 1.
• TLB[WLC] = 10 indicates ClassID 2 / RMT entry 2 when XUCR0[WLK] = 1.
• TLB[WLC] = 11 indicates ClassID 3 / RMT entry 3 when XUCR0[WLK] = 1.

A typical usage might be to use ClassID 1 to identify transient data and limit transient data to one way in the
data cache. ClassID 0 is then used for all other data and limited to ways 0 - 6 in the data cache.

The ClassID is used to select a replacement management table (RMT) entry. A RMT entry indicates which
sets are eligible for replacement for a given data cache miss. Each RMT entry is 8 bits, with 1 bit corre-
sponding to each way in the data cache. The value of each bit indicates the following:

• 0 = Way is not eligible for replacement.
• 1 = Way is eligible for replacement.

If the RMT entry = all zeros, then all ways are locked, which results in an overlocking situation. The new line
is not placed in the cache, and the data cache overlock bit XUCR0[CLO] is set. This does not cause an
exception condition.

Embedded Cache Locking

User-mode instructions perform cache line locking and unlocking based on the cache line address. dcblc,
dcbtls, and dcbtstls are for data cache locking and unlocking, and icblc and icbtls are for instruction cache
locking. Instruction cache locking is not supported in the instruction cache.

The CT operand is used to indicate the cache target of the cache line locking instruction.

For locking instructions:

effective to real address translation

translation lookaside buffer

replacement management table

User’s Manual

A2 Processor

Instruction and Data Caches

Page 180 of 864
Version 1.3

October 23, 2012

• CT = 0 indicates L1 only. Note that icbtls CT = 0 is treated the same as icbt CT = 0 because instruction
cache locking/unlocking is not supported.

• CT = 2 indicates L2 only. The cache line is not placed in the L1 if it does not exist and is not locked in the
L1.

For unlocking instructions:

• CT = 0 indicates L1 only. Note that icblc CT = 0 is not sent to the L2.

• CT = 2 indicates L2 only.

Lock instructions are treated as loads when translated by the data TLB, and they cause exceptions when
data TLB errors or data storage interrupts occur.

The user-mode cache lock enable bit, MSR[UCLE], is used to restrict user-mode cache line locking by the
operating system. If MSR[UCLE] = 0, any cache lock instruction executed in user mode (MSR[PR] = 1)
causes a cache-locking DSI exception and sets ESR[DLK]. This allows the operating system to manage and
track the locking and unlocking of cache lines by user-mode tasks. If MSR[UCLE] is set to 1, the cache-
locking instructions can be executed in user mode and do not cause a DSI for cache locking. However, they
can still cause a DSI for access violations.

XUCR0[WLK] = 0: If all of the ways are locked in a cache set due to line locking, an attempt to lock another
line in that set results in an overlocking situation. The new line is not placed in the cache, and the data cache
overlock bit XUCR0[CLO] is set. This does not cause an exception condition.

XUCR0[WLK] = 1: If all of the ways are locked in a cache set with the combination of line locking for that
cache set and way locking via the RMT table; an attempt to bring in a new line, via a data cache load miss, to
that cache set results in an overlocking situation. The new line is not placed in the cache, and the data cache
overlock bit XUCR0[CLO] is set. This does not cause an exception condition.

The following cases cause an attempted lock or unlock to fail:

• The target address is marked caching-inhibited.

• The L1 D-cache is disabled, and the CT operand of the data cache locking instruction = 0.

• The CT operand of the cache locking instruction is not equal to 0 or 2.

In these cases, the lock set instruction is treated as a no-op and the data cache unable-to-lock bit
XUCR0[CUL]) is set. This condition does not cause an exception.

It is acceptable to lock all ways of the data cache. A nonlocking line fill for a new address in a completely
locked data cache set is not put into the data cache.

Locking all ways in the L2 cache that might be shared by multiple A2 cores causes capacity evictions of
potentially locked lines. See the L2 User’s Manual for a detailed description.

The cache-locking DSI handler must decide whether to lock a given cache line based on available cache
resources.

If the locking instruction is a set lock instruction, to lock the line, the handler should do the following:

1. Add the line address to its list of locked lines.

2. Execute the appropriate set lock instruction to lock the cache line.

3. Modify Save/Restore Register 0 (SRR0) to point to the instruction immediately after the locking instruc-
tion that caused the DSI.

data storage interrupt

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 181 of 864

4. Execute an rfi.

If the locking instruction is a clear lock instruction, to unlock the line, the handler should do the following:

1. Remove the line address from its list of locked lines.

2. Execute the appropriate clear lock instruction to unlock the cache line.

3. Modify SRR0 to point to the instruction immediately after the locking instruction that caused the DSI.

4. Execute an rfi.

Failure to update SRR0 to point to the instruction after the locking/unlocking instruction causes the exception
handler to be repeatedly invoked for the same instruction.

Effects of Other Cache Instructions on Locked Lines

The following cache instructions do not affect the state of a cache line's lock bit:

• dcbt (CT = 0)

• dcbtst (CT = 0)

If dcbt is performed to a line that is locked in the cache, dcbt takes no action. However, if the line is invalid
and therefore not locked, dcbt executes normally.

If a dcbtst (CT = 0) is performed to a line that is locked in the cache, dcbtst takes no action. If the line is
invalid and therefore not locked, dcbtst executes normally.

The following instructions invalidate and unlock a line in the data cache of the current processor. These
instructions are sent to the A2 system interface and can flush/invalidate and unlock caches on this processor
and caches in other processors in a multiprocessor system (See the system user’s manual.)

• dcbf
• dcbi
• dcbz
• lwarx
• ldarx
• stwcx.
• stdcx.

Flash Clearing of Lock Bits:

The A2 core allows flash clear of the data cache lock bits under software control. The cache's lock bits can be
flash cleared through the CLFC control bit in XUCR.

Lock bits in both caches are cleared automatically upon power-up. A subsequent soft reset operation does
not clear the lock bits automatically. Software must use the CLFC controls if flash clearing of the lock bits is
desired after a soft reset. Setting the CLFC bit causes a flash clearing to be performed in a single CPU cycle,
after which the CLFC bit is automatically cleared (CLFC bits are not sticky).

User’s Manual

A2 Processor

Instruction and Data Caches

Page 182 of 864
Version 1.3

October 23, 2012

Instructions:

Notes:

• In the L1 data cache, the A2 implements a lock bit for every index and way, allowing a line locking granu-
larity. Setting CT = 0 specifies the L1 cache.

• The A2 supports CT = 0 and CT = 2.

• If the CT value is not supported, the instruction is treated as a no-op.

• Setting XUCR0[CLFC] flash clears all data cache lock bits, allowing system software to clear all cache
locking in the L1 cache without knowing the addresses of the lines locked.

• Overlocking occurs when dcbtls, dcbtstls, or icbtls is performed to an index in either the L1 or L2 cache
that already has all ways locked. In the A2, overlocking does not generate an exception. Instead, if a
touch and lock set is performed with CT = 0 to an index in which all cache ways are already locked,
XUCR0[CLO] is set indicating an overlock. The new line is not locked or cached.

To precisely detect an overlock condition in the data cache, system software must perform the following code
sequence:

dcbtls
msync
mfspr (XUCR0)
(check XUCR0[CUL] for data cache index unable-to-lock condition)
(check XUCR0[CLO] for data cache index overlock condition)

Cache locking in the instructions cache (CT = 0) is not supported.

Touch and lock set instructions (icbtls, dcbtls and dcbtstls) are always executed and are not treated as
hints. When one of these instructions is performed to an index and the way cannot be locked, XUCR0[CUL] is
set to indicate an unable-to-lock condition. This occurs if the instruction must be no-op’ed.

Name Mnemonic Syntax Implementation Details

Data Cache Block
Lock Clear

dcblc CT,rA,rB If CT = 0 and the line is in the L1 data cache, the data cache lock bit for that line is
cleared, making it eligible for replacement.
if CT = 2 and the line is in the L2 cache, the lock bit for that line is cleared, making it eligi-
ble for replacement. The line is unlocked in the L1 data cache if it exists.

Data Cache Block
Touch and Lock
Set

dcbtls CT,rA,rB If CT = 0, the line is loaded and locked into the L1 data cache and the L2 cache. If CT = 0
and the block is already in the data cache, the line is locked in the data cache and the L2
cache.
If CT = 2, the line is loaded and locked in the unified L2 cache. If CT = 2 and the block is
already in the L2 cache, the line is locked in the L2 cache.

Data Cache Block
Touch for Store
and Lock Set

dcbtstls CT,rA,rB If CT = 0, the line is loaded and locked into the L1 data cache and the L2 cache. If CT = 0
and the block is already in the data cache, the line is locked in the data cache and the L2
cache.
If CT = 2, the line is loaded and locked in the unified L2 cache. If CT = 2 and the block is
already in the L2 cache, the line is locked in the L2 cache.

Instruction Cache
Block Lock Clear

icblc CT,rA,rB If CT = 0, it is treated the same as CT = 2 because instruction cache locking/unlocking is
not supported.
If CT = 2 and the line is in the L2 cache, the lock bit for that line is cleared.

Instruction Cache
Block Touch and
Lock Set

icbtls CT,rA,rB If CT = 0, it is treated the same as CT = 2 because instruction cache locking/unlocking is
not supported.
If CT = 2, the line is loaded into the unified L2 cache and the line is locked into the L2
cache. If CT = 2 and the block already exists in the L2 cache, the line is locked into the L2
cache.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction and Data Caches

Page 183 of 864

The A2 implements a flash clear for all data cache lock bits (using XUCR0[CLFC]). This allows system soft-
ware to clear all data cache locking bits without knowing the addresses of the lines locked.

5.5.3.4 Data Cache Parity Operations

The data cache contains parity bits to protect against soft data errors. Both the data cache tags and data are
protected. Data cache lines consist of a tag field, 512 bits of data, and parity on each 8 or less bits. The tag
field, data, and parity bits are stored in normal RAM cells. The data cache is physically tagged and indexed,
so that the tag field contains a real address that is compared to the real address produced by the translation
hardware when a load, store, or other cache operation is executed.

Parity bits stored in the RAM array are checked against the appropriate data in the RAM line any time the
RAM line is read. The RAM data can be read by a directory lookup that matches the tag address, such as a
load, dcbf, dcbi, or dcbst.

Parity error recovery is handled by flushing newer instructions for that thread, invalidating the cache line, and
converting the load hit to a load miss by inserting it into the load miss queue and removing any load misses
from the queue that are being flushed due to the parity error.

5.5.3.5 Simulating Data Cache Parity Errors for Software Testing

Because parity errors occur in the cache infrequently and unpredictably, it is desirable to provide users with a
way to simulate the effect of a data cache parity error so that interrupt handling software can be exercised.

See Section 15.3.2 Error Injection Register (ERRINJ) on page 706. The error injection is performed by raising
the error indication signal, not by multiplexing actual bad data into the dataflow path.

5.5.3.6 Data Cache Disable

The data cache can be disabled by setting XUCR0[DC_DIS]. When the data cache is disabled; no accesses
to the cache occur, translation still occurs, exceptions scenarios cause an interrupt to occur, and the current
state of the cache remains. All load/store operations miss the cache, all cache line management instructions

Table 5-5. XUCR Bits

XUCR Bits Description

CSLC Cache snoop lock clear. A sticky bit is set by hardware if a dcbi snoop (either internally or externally generated)
invalidated a locked cache block. Note that the lock bit for that line is cleared whenever the line is invalidated. This
bit can be cleared only by software.
0 The cache has not encountered a dcbi snoop that invalidated a locked line.
1 The cache has encountered a dcbi snoop that invalidated a locked line.

CUL Cache unable to lock. A sticky bit is set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock set instruction was effective in the cache.
1 Indicates a lock set instruction was not effective in the cache.

CLO Cache lock overflow. A sticky bit is set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock overflow condition was not encountered in the cache.
1 Indicates a lock overflow condition was encountered in the cache.

CLFC Cache lock bits flash clear. Writing a 1 during a flash clear operation causes an undefined operation. Writing a 0
during a flash clear operation is ignored. Clearing occurs regardless of the data cache enable XUCR0[DC_DIS]
value.
0 Default.
1 Hardware initiates a cache lock bits flash clear operation. CLFC clears to 0 when the operation completes.

User’s Manual

A2 Processor

Instruction and Data Caches

Page 184 of 864
Version 1.3

October 23, 2012

are treated as misses and do not update the contents of the directory, and back-invalidates from the L2 do
not invalidate any cache lines. A dci instruction does however invalidate the entire data cache directory
contents including valid, line locked indicator, and watchbit for all threads. A wclr instruction with L[0] = 0
does not invalidate the issuing threads directory watch contents, but does update the STM_WATCHLOST
indicator. The wchkall instruction ignores the state of XUCR0[DC_DIS]; it executes as normal and updates
the CR register with the contents of the STM_WATCHLOST indicator.

When turning on the data cache after it has been disabled, the cache is in a noncoherent state. It is the
responsibility of software to execute the following instruction sequence before setting XUCR0[DC_DIS] to 0:

sync
dci
sync
wclr 0,r0,r0
isync
mtspr xucr0, CACHE_EN

This guarantees that the contents of the data cache have been cleared and will reset the STM_WATCHLOST
indicator.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 185 of 864

6. Memory Management

The A2 core supports a uniform, 264 bytes (64 bits) effective address (EA) space and a 4 TB (42-bit) real
address (RA) space. The A2 memory management unit (MMU) performs address translation between virtual
and real addresses, as well as protection functions. With appropriate system software, the MMU supports:

• Translation of an 88-bit virtual address (1-bit guest space identifier, 8-bit logical partition identifier, 1-bit
address space (AS) identifier, 14-bit process ID (PID), and 64-bit effective address) into the 42-bit real
address (note that the indirect entry identifier [IND] is not considered part of the virtual address).

• Software control of the page replacement strategy.

• Page-level access control for instruction and data accesses.

• Page-level storage attribute control.

6.1 MMU Overview

The A2 address translation facility operates in one of two modes: MMU mode or “ERAT-only” mode
(controlled by CCR2[NOTLB]). The MMU mode assumes an underlying hardware MMU containing a transla-
tion lookaside buffer (TLB). The “ERAT-only” mode assumes no underlying TLB. For a detailed description of
the “ERAT-only” mode of operation, see Section 6.14 on page 232. Unless otherwise noted, what follows is a
description of this implementation’s MMU mode. Also, unless otherwise noted, this description is assumed to
be the 64-bit mode operational description.

The A2 core generates effective addresses for instruction fetches and data accesses. An effective address is
a 64-bit address formed by adding an index or displacement to a base address (see Effective Address Calcu-
lation on page 64). Instruction effective addresses are for sequential instruction fetches and for fetches
caused by changes in program flow (branches and interrupts). Data effective addresses are for load, store,
and cache management instructions. The MMU expands effective addresses into virtual addresses (VAs)
and then translates them into real addresses (RAs); the instruction and data caches use real addresses to
access memory.

The A2 MMU supports demand-paged virtual memory and other management schemes that depend on
precise control of effective to real address mapping and flexible memory protection. Translation misses and
protection faults cause precise interrupts. The hardware provides sufficient information to correct the fault and
restart the faulting instruction.

The A2 MMU supports hardware page table walking. The MMU uses software installed indirect translation
entries (tagged with IND = 1 designations) in the TLB to assist the hardware in finding hardware page table
entries (PTEs). These page table entries are fetched and used to form and install direct (IND = 0) TLB entries
that are subsequently used for virtual to real address translation. See Section 6.16 Hardware Page Table
Walking (Category E.PT) for a description of this function.

The MMU divides storage into pages. The page represents the granularity of address translation, access
control, and storage attribute control. The Power ISA MAV 2.0 architecture defines 32 page sizes, of which
the A2 MMU supports five (for direct IND = 0 entries). These five page sizes (4 KB, 64 KB, 1 MB, 16 MB, and
1 GB) are simultaneously supported. The A2 MMU also supports indirect (IND = 1) page sizes of 1 MB and
256 MB. See Section 6.16.2 Indirect TLB Entry Page and Sub-Page Sizes for a description of indirect page
size usage. A valid entry for a page referenced by an effective address must be in the TLB for the address to
be accessed. An attempt to access an address for which no direct or indirect TLB entry exists causes an
instruction or data TLB error interrupt, depending on the type of access (instruction or data). See CPU Inter-
rupts and Exceptions on page 293 for more information about these and other interrupt types.

terabyte

effective to real address translation

MMU Architecture version

kilobyte

megabyte

gigabyte

User’s Manual

A2 Processor

Memory Management

Page 186 of 864
Version 1.3

October 23, 2012

The TLB is parity protected against soft errors. The details of parity checking are described in the following
sections.

6.1.1 Support for Power ISA MMU Architecture

The A2 memory management unit is based on Power ISA Book III-E Embedded MMU Architecture Version
2.0 (MAV 2.0). Unless otherwise noted, the A2 MMU conforms to this architecture and the following additional
categories: Embedded.Hypervisor (E.HV), Embedded.Hypervisor.LRAT (E.HV.LRAT), Embedded.TLB Write
Conditional (E.TWC), and Embedded.Page Table (E.PT).

Extensions

The Power ISA defines specific requirements for MMU implementations, but also leaves the details of several
features implementation-dependent. The A2 core is fully compliant with the required MMU mechanisms
defined by the Power ISA, but a few optional mechanisms are not supported. These are:

• Page Sizes

The Power ISA for MAV 2.0 defines 32 different page sizes, but does not require that an implementation
support all of them. Accordingly, the A2 core supports five of these page sizes, from 4 KB up to 1 GB
(nonconsecutive), as mentioned in MMU Overview on page 185 and as listed in Table 6-1 Page Size and
Effective Address to EPN Comparison on page 191. The Power ISA page sizes are defined as power of 2
 1 KB sizes and represented by a 5-bit value. The page sizes supported by A2 all happen to be power of
4  1 KB sizes. For this reason, the LSB of the architected page size encoding is assumed to be zero
always and is not implemented in the A2 MMU.

• Address Space

The A2 effective page number (EPN) field varies from 34 to 52 bits, depending on page size. The real
page number (RPN) field varies from 12 to 30 bits, depending on page size. The total 42 bits of the real
address is the combination of the RPN with the page offset portion of the effective address. See Address
Translation on page 191 for a more detailed explanation of these fields and the formation of the real
address.

6.2 Page Identification

The TLB is the hardware resource that controls page identification and address translation; it contains page
protection and storage attributes. The Valid (V), Effective Page Number (EPN), Translation Guest Space
identifier (TGS), Translation Logical Partition identifier (TLPID), Translation Space identifier (TS), Translation
ID (TID), and Page Size (SIZE) fields of a particular TLB entry identify the page associated with that TLB
entry. In addition, the indirect (IND) bit of a TLB entry identifies it as a direct virtual to real translation entry
(IND = 0) or an indirect (IND = 1) hardware page table pointer entry that requires additional processing.
Except as noted, all comparisons using these fields must succeed to validate this entry for subsequent trans-
lation and access control processing. Failure to locate a matching direct or indirect TLB entry based on this
criteria for instruction fetches causes a TLB miss exception that results in an instruction TLB error interrupt.
Failure to locate a matching direct or indirect TLB entry based on this criteria for data storage accesses
causes a TLB miss exception that might result in a data TLB error interrupt, depending on the type of data
storage access (certain cache management instructions do not result in an interrupt if they cause an excep-
tion; they simply result in a no-op).

Instruction Set Architecture

least significant byte

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 187 of 864

6.2.1 Virtual Address Formation

The first step in page identification is the expansion of the effective address into a virtual address. Again, the
effective address is the 64-bit address calculated by a load, store, or cache management instruction, or as
part of an instruction fetch. The virtual address is formed by prepending the effective address with a 1-bit
guest space identifier, an 8-bit logical partition identifier, a 1-bit address space identifier, and a 14-bit process
identifier. The resulting 88-bit value forms the virtual address, which is then compared to the virtual addresses
contained in the TLB entries (note that the “IND” bit, or indirect entry identifier, is not formally considered part
of the virtual address, although it does participate in entry identification and invalidation).

For instruction fetches, cache management operations, and for nonexternal PID storage accesses, these
parameters are obtained as follows. The guest space identifier is provided by MSR[GS]. The logical partition
identifier is provided by the Logical Partition ID (LPID) Register. The process identifier is contained in the
Process ID (PID) Register. The address space identifier is provided by MSR[IS] for instruction fetches and by
MSR[DS] for data storage accesses and cache management operations, including instruction cache manage-
ment operations.

For external PID type load and store accesses, these parameters are obtained from the External PID Load
Context (EPLC) or External PID Store Context (EPSC) Registers. The guest space identifier is provided by
the EPLC or EPSC[EGS] field. The logical partition identifier is provided by the EPLC or EPSC[ELPID] field.
The process identifier is provided by the EPLC or EPSC[EPID] field, and the address space identifier is
provided by EPLC or EPSC[EAS].

The tlbsx[.] instruction also forms a virtual address for software controlled searches of the TLB. This instruc-
tion calculates the effective address in the same manner as a data access instruction, but the guest space
and address space identifiers, as well as the process and logical partition identifiers, are provided by fields in
the MAS5 and MAS6 registers, rather than by the MSR, PID, and LPID registers (see TLB Search Instruction
(tlbsx[.]) on page 215 and Section 6.17 Storage Control Registers (Architected) on page 244).

Likewise, the eratsx[.] instruction also forms a virtual address for software controlled searches of the ERAT
structures. This instruction calculates the effective address in the same manner as a data access instruction,
but the guest space and address space identifiers, as well as the process identifier, are provided by fields in
the MMUCR0 register, rather than by the MSR and PID registers (see Section 12.3.3 ERAT Search Indexed
(eratsx[.]) on page 502 and Section 6.18 Storage Control Registers (Non-Architected) on page 277). Note
that the ERAT entries, unlike the TLB, do not contain the LPID value. Hence, the LPID does not participate in
the search of the ERAT.

6.2.2 Address Space Identifier Convention

The address space identifier differentiates between two distinct virtual address spaces, one generally associ-
ated with interrupt-handling and other system-level code and/or data, and the other generally associated with
application-level code and/or data.

Typically, user mode programs run with MSR[IS,DS] both set to 1, allowing access to application-level code
and data memory pages. Then, on an interrupt, MSR[IS,DS] are both automatically cleared to 0, so that the
interrupt handler code and data areas can be accessed using system-level TLB entries (that is, TLB entries
with the TS field = 0). It is also possible that an operating system could set up certain system-level code and
data areas (and corresponding TLB entries with the TS field = 1) in the application-level address space,
allowing user mode programs running with MSR[IS,DS] set to 1 to access them (system library routines, for
example, which can be shared by multiple user mode and/or supervisor mode programs). System-level code
that needs to use these areas must first set the corresponding MSR[IS,DS] field to use the application-level
TLB entries, or must set up alternative system-level TLB entries.

Machine State Register

Machine State Register

Machine State Register

Machine State Register

User’s Manual

A2 Processor

Memory Management

Page 188 of 864
Version 1.3

October 23, 2012

By convention, application-level code runs with MSR[IS,DS] set to 1 and uses corresponding TLB entries with
the TS = 1. Conversely, system-level code runs with MSR[IS,DS] set to 0 and uses corresponding TLB
entries with TS = 0. It is possible to run in user mode with MSR[IS,DS] set to 0, and conversely to run in
supervisor mode with MSR[IS,DS] set to 1, with the corresponding TLB entries being used. The only fixed
requirement is that, because MSR[IS,DS] are cleared on an interrupt, there must be a TLB entry for the
system-level interrupt handler code with TS = 0 to be able to fetch and execute the interrupt handler itself.
Whether or not other system-level code switches MSR[IS,DS] and creates corresponding system-level TLB
entries depends upon the operating system environment.

Programming Note: Software must ensure that there is always a valid TLB entry with TS = 0 and with
supervisor mode execute access permission (SX = 1) corresponding to the effective address of the interrupt
handlers. Otherwise, an instruction TLB error interrupt might result upon the fetch of the interrupt handler for
some other interrupt type. The registers holding the state of the routine that was executing at the time of the
original interrupt (SRR0/SRR1) might be corrupted. See CPU Interrupts and Exceptions on page 293 for
more information.

6.2.3 Exclusion Range (X-bit) Operation

One limiting property of the TLB and ERAT entries is that, for a given page size, the page start address must
be aligned to the page size. This is problematic when using a mix of small and large page sizes because it
requires either that the large pages are adjacent to one another or that the “gaps” between large pages are
filled in with numerous smaller pages. This, in turn, requires using more TLB and/or ERAT entries to define a
large, contiguous range of memory that is subject to translation. The exclusion range (X bit) function of the
TLB and ERAT entries can be used to relax the requirement of starting large pages (> 4 KB) on the page size
alignment.

The X bit of a TLB or ERAT entry is used to enable the creation of a variable sized “hole” at the base of the
current large page (> 4 KB) entry that does not provide a match for the EPN being compared against.
Normally, the least significant bits of the entry EPN for large pages do not participate in the page number
address compare; they are ordinarily set to zero. When the X bit of a translation entry is set, a subset of the
entry’s EPN least significant bits can be set to one to define an address match exclusion range such that any
effective address low enough in the page to fall into the exclusion range will not compare. This allows for
large pages to be defined that possess a subregion that can be filled in with smaller page sizes, which would
normally overlap (coexist within) the larger page. This allows for more efficient use of entries (especially in
ERAT-only mode) because the user does not need to “fill in” with small pages up to a larger page alignment
in the system memory map (potentially using more entries with this approach). It also provides for more flexi-
bility in mixing large and small page organization in the overall system memory map.

The rules for configuring an exclusion range “hole” for a given TLB entry and placing one or more pages
within the “hole” are as follows:

1. Only TLB entries with page sizes greater than 4 KB can have an exclusion range hole enabled via X = 1.

2. A virtual address to be translated that falls within the hole will not match this TLB entry.

3. The size of the hole configured must be smaller than the page size of this TLB entry.

4. The size of the hole is configurable to 2n  4 KB, where n = 0 to log2 (entry size in bytes) - 13.

5. The legal binary values of the unused EPN bits of a given TLB entry are contained in the set defined by
2n - 1, where n = 0 to log2 (entry size in bytes) - 13.

6. Other TLB entries of valid page sizes (less than or equal to the hole size) can be mapped into the hole.

7. Multiple other TLB entries can be mapped into the hole simultaneously.

Supervisor Mode Execute Enable

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 189 of 864

8. Not all of the address space defined by the hole needs to be mapped by other entries.

9. Pages mapped in the hole must be page-size aligned.

10. Pages mapped in the hole must not overlap.

11. Pages mapped in the hole must be collectively fully contained within the hole.

For example, for a 64 KB page size, the EPN bits 48:51 is ordinarily set to zero because they do not partici-
pate in the virtual address matching. The set of legal values for EPN(48:51) representing the hole size would
be {0000, 0001, 0011, 0111}. If software needs to create a 16 KB exclusion range at the base of the 64 KB
page, it sets X = 1 and the EPN bits 48:49 = ‘00’ and 50:51 = ‘11’ (EPN bit 50 is the MSB of the 16 KB
address base to exclude). Addresses above the first 16 KB, but still within the 64 KB page, match. Addresses
within the first 16 KB of the 64 KB do not match. Software is then free to create four additional 4 KB virtual
pages overlaying the 16 KB hole within the 64 KB page in question.

6.2.4 TLB Match Process

This virtual address is used to locate the associated entry in the TLB. The guest state identifier, logical parti-
tion identifier, address space identifier, the process identifier, and a portion of the effective address of the
storage access are compared to the TGS, TLPID, TS, TID, and EPN fields, respectively, of each TLB entry.

The virtual address matches a TLB entry if the following conditions are met:

• The valid (V) field of the TLB entry is 1, and

• The thread ID (ThdID) field of the TLB entry has the bit corresponding to the issuing hardware thread set
to 1, and

• The value of the guest state identifier is equal to the value of the TGS field of the TLB entry, and

• Either the value of the logical partition identifier is equal to the value of the TLPID field of the TLB entry
(partition page) or the value of the TLPID field is 0 (nonguest page), and

• The value of the address space identifier is equal to the value of the TS field of the TLB entry, and

• Either the value of the process identifier is equal to the value of the TID field of the TLB entry (private
page) or the value of the TID field is 0 (globally shared page), and

• Either the value of the TLB entry X-bit is 0, or the value of bits n:51 of the effective address (where
n = 64–log2 (page size in bytes), and page size is specified by the value of the SIZE field of the TLB
entry) is greater than the value of bits n:51 of the EPN field in the TLB entry that are set to 1 (that is, the
EA is “above” the exclusion region of the page), and

• The value of bits 0:n–1 of the effective address is equal to the value of bits 0:n-1 of the EPN field of the
TLB entry (where n = 64–log2 (page size in bytes), and page size is specified by the value of the SIZE
field of the TLB entry). See Table 6-1 Page Size and Effective Address to EPN Comparison on page 191.

A TLB miss exception occurs if there is no matching direct or indirect entry in the TLB for the page specified
by the virtual address (except for the tlbsx[.] instruction, which simply returns certain default or undefined
values to the MMU Assist Registers (MAS), and for tlbsx., which sets CR[CR0]2 to 0). See TLB Search
Instruction (tlbsx[.]) on page 215.

Programming Note: Although it is possible for software to create multiple TLB entries that match the same
virtual address, doing so is a programming error and the results are undefined.

most-significant byte

User’s Manual

A2 Processor

Memory Management

Page 190 of 864
Version 1.3

October 23, 2012

Figure 6-1 illustrates the criteria for a virtual address to match a specific direct or indirect TLB entry, while
Table 6-1 defines the page sizes associated with each SIZE field value and the associated comparison of the
effective address to the EPN field.

Figure 6-1. Virtual Address to TLB Entry Match Process

TLB entry matches virtual address

MSR[IS] for instruction fetches, or
MSR[DS] for data storage accesses, or
MAS6[SAS] for tlbsx[.]

AS

Legend:

EA effective address
64 – log2(page size)N

{=0?

private page

shared page

=?

=?

PID register for storage accesses
Process ID

TLBentry[V]

TLBentry[TS]

AS

Process ID

TLBentry[TID]

TLBentry[EPN]0:N-1

EA0:N-1 {

=?

MAS6[SPID] for tlbsx[.]

>?

=0?TLBentry[X]

TLBentry[EPN]N:51

EAN:51

=?
TLBentry[TGS]

GS

=0?

partition page

nonguest page

Logical Partition ID

TLBentry[TLPID]

=?

MSR[GS] for storage accesses, or
GS {

LPID register for storage accesses, orLogical { MAS5[SLPID] for tlbsx[.]

MAS5[SGS] for tlbsx[.]

Partition ID

TLBentry[ThdID(t)]

Thread t valid

thread number (0 to 3)t

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 191 of 864

6.3 Address Translation

After a direct (IND = 0) TLB entry is found that matches the virtual address associated with a given storage
access, as described in Section 6.2 Page Identification on page 186, the virtual address is translated to a real
address according to the procedures described in this section. If a matching direct entry is not found, but a
matching indirect entry is found, the hardware page table walker is invoked for further processing. See
Section 6.16 Hardware Page Table Walking (Category E.PT) for a description of this process.

The RPN field of the matching direct TLB entry provides the page number portion of the real address. Let n =
64–log2 (page size in bytes) where page size is specified by the SIZE field of the matching TLB entry. Bits
n:63 of the effective address (the “page offset”) are appended to bits 22:n–1 of the RPN field to produce the
42-bit real address (that is, RA = RPN22:n–1 || EAn:63).

Depending on the page size, some number of the entry RPN least-significant bits are required to be set to 0
(as shown in Table 6-2). This is because the logic that produces the final RPN result is a logical OR between
some number of bits contained in the entry RPN and the corresponding bits contained in the EA. This elimi-
nates the need to know the page size for this calculation, which might not be readily available to logic external
to the physical embodiment of the translation entries themselves.

Figure 6-2 illustrates the address translation process, while Table 6-2 defines the relationship between the
different page sizes and the real address formation.

Table 6-1. Page Size and Effective Address to EPN Comparison

SIZE1 Page Size EA to EPN Comparison

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

not supported
4 KB

not supported
64 KB

not supported
1 MB2

not supported
16 MB

not supported
256 MB3

1 GB
not supported
not supported
not supported
not supported
not supported

not supported
EPN0:51 =? EA0:51

not supported
EPN0:47 =? EA0:47

not supported
EPN0:43 =? EA0:43

not supported
EPN0:39 =? EA0:39

not supported
EPN0:35 =? EA0:35
EPN0:33 =? EA0:33

not supported
not supported
not supported
not supported
not supported

1. The Power ISA page sizes are defined as power of 2  1 KB sizes and represented by a 5-bit value. The page sizes supported by
A2 all happen to be power of 4  1 KB sizes. For this reason, the LSB of the architected page size encoding is assumed to be zero
always and is not implemented in A2.

2. This page size is supported for both direct and indirect translation entries.
3. This page size is supported for indirect translation entries only.

real page number

User’s Manual

A2 Processor

Memory Management

Page 192 of 864
Version 1.3

October 23, 2012

Figure 6-2. Effective-to-Real Address Translation Flow

Table 6-2. Page Size and Real Address Formation

SIZE1 Page Size RPN Bits Required to be 0 Real Address

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

not supported
4 KB

not supported
64 KB

not supported
1 MB

not supported
16 MB

not supported
not supported

1 GB
not supported
not supported
not supported
not supported
not supported

not supported
None

not supported
RPN48:51 = 0
not supported
RPN44:51 = 0
not supported
RPN40:51 = 0
not supported
not supported
RPN34:51 = 0
not supported
not supported
not supported
not supported
not supported

not supported
RPN22:51 || EA52:63

not supported
RPN22:47 || EA48:63

not supported
RPN22:43 || EA44:63

not supported
RPN22:39 || EA40:63

not supported
not supported

RPN22:33 || EA34:63
not supported
not supported
not supported
not supported
not supported

1. The Power ISA page sizes are defined as a power of 2  1 KB sizes and represented by a 5-bit value. The page sizes supported by
A2 all happen to be power of 4  1 KB sizes. For this reason, the LSB of the architected page size encoding is assumed to be zero
always and is not implemented in A2.

64-bit Effective Address

42-Bit Real Address

88-bit Virtual Address

Note: n = 64–log2(page size)

PID Effective Page Number (EPN) Offset

0 n 63

Real Page Number (RPN) Offset

n 63

512-entry TLB

MSR[IS] for instruction fetch

A
S

MSR[DS] for data storage accesses

RPN0:n-1

n–1

n–10 13

22

LPIDG
S

0 7

MSR[GS]

Compare Virtual Page Number

Matching Entry RPN

Page Access Control

Virtual Page Number

and Attributes

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 193 of 864

6.4 Access Control

After a matching TLB entry has been identified and the address has been translated, the access control
mechanism determines whether the program has execute, read, and/or write access to the page referenced
by the address, as described in the following sections.

6.4.1 Execute Access

The User State Execute Enable (UX) or Supervisor State Execute Enable (SX) bit of a TLB entry controls
execute access to a page of storage, depending on the operating mode (user or supervisor) of the processor.

• User mode (MSR[PR] = 1)

• Supervisor mode (MSR[PR] = 0)

Instructions can be fetched and executed from a page in storage while in supervisor mode if the SX access
control bit for that page is equal to 1. If the SX access control bit is equal to 0, instructions from that page are
not fetched and are not placed into any cache as the result of a fetch request to that page while in supervisor
mode.

Furthermore, if the sequential execution model calls for the execution in supervisor mode of an instruction
from a page that is not enabled for execution in supervisor mode (that is, SX = 0 when MSR[PR] = 0), an
execute access control exception type of instruction storage interrupt is taken. See CPU Interrupts and
Exceptions on page 293 for more information.

6.4.2 Write Access

The User State Write Enable (UW) or Supervisor State Write Enable (SW) bit of a TLB entry controls write
access to a page, depending on the operating mode (user or supervisor) of the processor.

• User mode (MSR[PR] = 1)

Store operations (including the store-class cache management instruction in Table 6-3) are permitted to a
page in storage while in user mode if the UW access control bit for that page is equal to 1. If execution of
a store operation is attempted in user mode to a page for which the UW access control bit is 0, a write
access control exception occurs. If the instruction is an stswx with string length 0, no interrupt is taken
and no operation is performed (see Section 6.4.4 Access Control Applied to Cache Management Instruc-
tions on page 194). For all other store operations, execution of the instruction is suppressed and a data
storage interrupt is taken.

• Supervisor mode (MSR[PR] = 0)

Store operations (including the store-class cache management instructions in Table 6-3) are permitted to
a page in storage while in supervisor mode if the SW access control bit for that page is equal to 1. If exe-
cution of a store operation is attempted in supervisor mode to a page for which the SW access control bit
is 0, a write access control exception occurs. If the instruction is an stswx with string length 0, no inter-
rupt is taken and no operation is performed (see Access Control Applied to Cache Management Instruc-
tions on page 194). For all other store operations, execution of the instruction is suppressed and a data
storage interrupt is taken.

User’s Manual

A2 Processor

Memory Management

Page 194 of 864
Version 1.3

October 23, 2012

6.4.3 Read Access

The User State Read Enable (UR) or Supervisor State Read Enable (SR) bit of a TLB entry controls read
access to a page, depending on the operating mode (user or supervisor) of the processor.

• User mode (MSR[PR] = 1)

Load operations (including the load-class cache management instructions in Table 6-3) are permitted
from a page in storage while in user mode if the UR access control bit for that page is equal to 1. If execu-
tion of a load operation is attempted in user mode to a page for which the UR access control bit is 0, then
a read access control exception occurs. If the instruction is a load (not including lswx with string length
0), execution of the instruction is suppressed and a data storage interrupt is taken. On the other hand, if
the instruction is an lswx with string length 0, no interrupt is taken and no operation is performed (see
Access Control Applied to Cache Management Instructions).

• Supervisor mode (MSR[PR] = 0)

Load operations (including the load-class cache management instructions in Table 6-3) are permitted
from a page in storage while in supervisor mode if the SR access control bit for that page is equal to 1. If
execution of a load operation is attempted in supervisor mode to a page for which the SR access control
bit is 0, a read access control exception occurs. If the instruction is a load (not including lswx with string
length 0), execution of the instruction is suppressed and a data storage interrupt is taken. On the other
hand, if the instruction is an lswx with string length 0, no interrupt is taken and no operation is performed
(see Access Control Applied to Cache Management Instructions).

6.4.4 Access Control Applied to Cache Management Instructions

This section summarizes how each of the cache management instructions is affected by the access control
mechanism. Any cache management instruction that causes a protection exception that does not result in a
data storage interrupt is treated as a no-op.

Any cache management instruction that is privileged and execution is attempted in user mode causes a privi-
leged instruction exception type of program interrupt to occur instead of a data storage interrupt.

Table 6-3 summarizes the effect of access control on each of the cache management instructions. Unless
otherwise noted in this table, a protection exception causes a data storage interrupt.

Table 6-3. Access Control Applied to Cache Management Instructions (Sheet 1 of 2)

Instruction
Treated as a Read

Might Cause a Protection Violation
Exception

Treated as a Write
Might Cause a Protection

Violation Exception
Virtualization Fault

dcba No Yes1 No

dcbf Yes No Yes

dcbfep Yes No Yes

dcbi No Yes Yes

dcblc Yes No Yes

1. dcba, dcbtst, and dcbtstep can cause a write access control exception but do not result in a data storage interrupt. The instruc-
tion is nop’ed.

2. dcbt, dcbtep, or icbt can cause a read access control exception but do not result in a data storage interrupt. The instruction is
nop’ed.

3. icbtls and icblc require either execute or read access.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 195 of 864

6.5 Storage Attributes

Each TLB entry specifies a number of storage attributes for the memory page with which it is associated.
Storage attributes affect the manner in which storage accesses to a given page are performed. The storage
attributes (and their corresponding TLB entry fields) are:

• Write-through (W)
• Caching inhibited (I)
• Memory coherence required (M)
• Guarded (G)
• Endianness (E)
• User-definable (U0, U1, U2, U3)

All combinations of these attributes are supported except combinations that simultaneously specify a region
as write-through and caching inhibited.

dcbst Yes No Yes

dcbstep Yes No Yes

dcbt Yes2 No No

dcbtep Yes2 No No

dcbtls Yes No Yes

dcbtst No Yes1 No

dcbtstep No Yes1 No

dcbtstls No Yes Yes

dcbz No Yes Yes

dcbzep No Yes Yes

dci No No No

icbi Yes No Yes

icbiep Yes No Yes

icblc Yes3 No Yes

icbt Yes2 No No

icbtls Yes3 No Yes

ici No No No

icswx No Yes Yes

icswepx No Yes Yes

Table 6-3. Access Control Applied to Cache Management Instructions (Sheet 2 of 2)

Instruction
Treated as a Read

Might Cause a Protection Violation
Exception

Treated as a Write
Might Cause a Protection

Violation Exception
Virtualization Fault

1. dcba, dcbtst, and dcbtstep can cause a write access control exception but do not result in a data storage interrupt. The instruc-
tion is nop’ed.

2. dcbt, dcbtep, or icbt can cause a read access control exception but do not result in a data storage interrupt. The instruction is
nop’ed.

3. icbtls and icblc require either execute or read access.

User’s Manual

A2 Processor

Memory Management

Page 196 of 864
Version 1.3

October 23, 2012

6.5.1 Write-Through (W)

The A2 core data cache ignores the write-through attribute. The data for all store operations is written to
memory, as opposed to only being written into the data cache. If the referenced line also exists in the data
cache (that is, the store operation is a “hit”), the data is also written into the data cache. An alignment excep-
tion occurs if a dcbz instruction targets a memory page that is either write-through required or caching inhib-
ited. A data storage exception occurs if an lwarx, ldarx, stwcx., or stdcx. instruction targets a memory page
that is either write-through required or caching inhibited.

See Instruction and Data Caches on page 169 for more information about the handling of accesses to write-
through storage.

6.5.2 Caching Inhibited (I)

If a memory page is marked as caching inhibited (I = 1), all load, store, and instruction fetch operations
perform their access in memory, as opposed to in the respective cache. If I = 0, the page is cacheable; and
the operations can be performed in the cache. An alignment exception occurs if a dcbz instruction targets a
memory page that is either write-through required or caching inhibited. A data storage exception occurs if an
lwarx, ldarx, stwcx., or stdcx. instruction targets a memory page that is either write-through required or
caching inhibited.

It is a programming error for the target location of a load, store, dcbz, or fetch access to caching inhibited
storage to be in the respective cache; the results of such an access are undefined. It is not a programming
error for the target locations of the other cache management instructions to be in the cache when the caching
inhibited storage attribute is set. The behavior of these instructions is defined for both I = 0 and I = 1 storage.

See Instruction and Data Caches on page 169 for more information about the handling of accesses to
caching inhibited storage.

6.5.3 Memory Coherence Required (M)

The memory coherence required (M) storage attribute is defined by the architecture to support cache and
memory coherency within multiprocessor shared memory systems. If a TLB entry is created with M = 1, any
storage accesses to the page associated with that TLB entry are indicated, using the corresponding transfer
attribute interface signal, as being memory coherence required. However, the setting has no effect on the
operation within the A2 core.

6.5.4 Guarded (G)

The guarded storage attribute is provided to control “speculative” access to “non-well-behaved” memory loca-
tions. Storage is said to be “well-behaved” if the corresponding real storage exists and is not defective, and if
the effects of a single access to it are indistinguishable from the effects of multiple identical accesses to it. As
such, data and instructions can be fetched out-of-order from well-behaved storage without causing undesired
side effects.

In general, storage that is not well-behaved should be marked as guarded. Because such storage might
represent a control register on an I/O device or might include locations that do not exist, an out-of-order
access to such storage might cause an I/O device to perform unintended operations or might result in a
machine check exception. For example, if the input buffer of a serial I/O device is memory-mapped, an out-of-
order or speculative access to that location might result in the loss of an item of data from the input buffer, if
the instruction execution is interrupted and later re-attempted.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 197 of 864

A data access to a guarded storage location is performed only if either the access is caused by an instruction
that is known to be required by the sequential execution model, or the access is a load and the storage loca-
tion is already in the data cache. After a guarded data storage access is initiated, if the storage is also
caching inhibited, only the bytes specifically requested are accessed in memory, according to the operand
size for the instruction type. Data storage accesses to guarded storage that is marked as cacheable can
access the entire cache block, either in the cache itself or in memory.

Instruction fetch is not affected by guarded storage. While the architecture does not prohibit instruction
fetching from guarded storage, system software should generally prevent such instruction fetching by
marking all guarded pages as “no-execute” (UX/SX = 0). Then, if an instruction fetch is attempted from such a
page, the memory access will not occur and an execute access control exception type of instruction storage
interrupt results if and when execution is attempted for an instruction at any address within the page.

See Instruction and Data Caches on page 169 for more information about the handling of accesses to
guarded storage. Also see Partially Executed Instructions on page 299 for information about the relationship
between the guarded storage attribute and instruction restart and partially executed instructions.

6.5.5 Endian (E)

The endian (E) storage attribute controls the byte ordering with which load, store, and fetch operations are
performed. Byte ordering refers to the order in which the individual bytes of a multiple-byte scalar operand are
arranged in memory. The operands in a memory page with E = 0 are arranged with big-endian byte ordering,
which means that the bytes are arranged with the most-significant byte at the lowest-numbered memory
address. The operands in a memory page with E = 1 are arranged with little-endian byte ordering, which
means that the bytes are arranged with the least-significant byte at the lowest-numbered address.

See Byte Ordering on page 66 for a more detailed explanation of big-endian and little-endian byte ordering.

6.5.6 User-Definable (U0–U3)

The A2 core provides four user-definable (U0–U3) storage attributes that can be used to control system-
dependent behavior of the storage system. By default, these storage attributes do not have any effect on the
operation of the A2 core, although all storage accesses indicate to the memory subsystem the values of U0–
U3 using the corresponding transfer attribute interface signals. The specific system design can then take
advantage of these attributes to control some system-level behaviors.

6.5.7 Supported Storage Attribute Combinations

Storage modes where both W = 1 and I = 1 (which would represent write-through but caching inhibited
storage) are not supported. For all supported combinations of the W and I storage attributes, the G, E, and
U0-U3 storage attributes can be used in any combination.

6.5.8 Aliasing

For multiple pages that are mapped to the same real address, the following rules apply:

1. If the multiple pages exist on a single processor, then:

• The I bits must match the corresponding I bits on all pages (see note below).

• The W bits do not need to match on all pages.

User’s Manual

A2 Processor

Memory Management

Page 198 of 864
Version 1.3

October 23, 2012

• The M bits do not need to match on all pages; however, it is then software’s responsibility to maintain
data coherency.

2. If the multiple pages exist on multiple processors, then:

• The I bits do not need to match on all pages.

• The W bit must match on all pages (Book III-E requirement).

• The M bits do not need to match on all pages; however, it is then software’s responsibility to maintain
data coherency.

Note: For multiple pages that exist on a single processor which map to the same real address, the I bits do
not need to match under the following conditions, which must be guaranteed by software:

1. For those pages where the I bit is zero, the page must be marked as Guarded and no execute to prevent
speculative accesses.

2. For those addresses where the calculability attributes are different, software must ensure that only those
pages where all I bits are the same access the overlapped real address. (Alternatively, software could
manage the cache appropriately between different calculability accesses to guarantee that an access to
any I = 1 is not found in the associated cache. When the architected I bit is a one, the data must not be in
any level of cache.)

For example, consider a cacheable 64 K page and a noncacheable 4 K page that both map to the same real
address (that is, the 4 K page maps to the last 4 K of real addresses that the 64 K page maps to). In this case,
the 64 K page is marked as guarded as well as cacheable. In addition, software must ensure that, when oper-
ating in the 64 K page, no accesses are performed to the last 4 K addresses.

6.6 Translation Lookaside Buffer

The translation lookaside buffer (TLB) is the hardware resource that controls page identification and address
translation, and contains protection and storage attributes. A single unified 512-entry, 4-way set-associative
TLB is used for both instruction and data accesses. In addition, the A2 core implements two separate, fully-
associative, smaller “shadow” TLB arrays: one for instruction fetch accesses and one for data accesses.
These shadow TLBs are also referred to as “ERATs” (effective to real address translation arrays). The
shadow TLBs, or ERATs, improve performance by lowering the latency for address translation and by
reducing contention for the main unified TLB between instruction fetching and data storage accesses. See
Effective to Real Address Translation Arrays on page 203 for additional information about the operation of the
shadow TLB arrays.

Maintenance of TLB entries is under software control. System software determines the TLB entry replace-
ment strategy and the format and use of any page table information (that is, in the absence of Category
Embedded.Page Table, or E.PT, which infers hardware-based page table walking). A TLB entry contains all
of the information required to identify the page, to specify the address translation, to control the access
permissions, and to designate the storage attributes.

A TLB entry is written by copying information from the MAS register fields, using the tlbwe instruction with
MAS0[ATSEL] = 0. (That is, the tlbwe instructions are targeting the TLB array.) A TLB entry is read by
copying the information into the MAS register fields using the tlbre instruction. Software can also search for
specific TLB entries using the tlbsx[.] instruction. See TLB Management Instructions (Architected) on
page 212 for more information about these instructions.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 199 of 864

Each TLB entry identifies a page and defines its translation, access controls, and storage attributes. Accord-
ingly, fields in the TLB entry fall into four categories:

• Page identification fields (information required to identify the page to the hardware translation mecha-
nism)

• Address translation fields

• Access control fields

• Storage attribute fields

Table 6-4. TLB Entry Fields (Sheet 1 of 5)

TLB
Word1 Bit2 Field Description

Page Identification Fields

0 0:51 EPN Effective Page Number (variable size, from 34 - 52 bits)
Bits 0:n–1 of the EPN field are compared to bits 0:n–1 of the EA of the storage access (where n =
64–log2 (page size in bytes), and page size is specified by the SIZE field of the TLB entry).

0 52:53 Class5 Class (2 bits)
This field is used to uniquely identify entries for invalidation. The local tlbilx instruction contains
extended settings for the “T” type field that are conditionally used to match against this field to select
entries to be invalidated.

0 54 V Valid (1 bit)
This bit indicates that this TLB entry is valid and can be used for translation. The Valid bit for a given
entry can be set or cleared with a tlbwe instruction, and can be cleared by a tlbivax instruction.

0 55 X5 Exclusion Range Enable (1 bit)
This bit enables the creation of a variable sized “hole” at the base of large page sizes (> 4 KB). For
large pages, the unused LSBs of the EPN field are ordinarily set to zero. When the X bit is set, a
subset of LSBs of the EPN can be set to ‘1’ to define an exclusion range that prevents an effective
address match for this entry. For a more detailed description of this function, see Section 6.2.3
Exclusion Range (X-bit) Operation.

0 56:59 SIZE Page Size (4 bits)
The SIZE field specifies the size of the page associated with the TLB entry as 4SIZEKB, where
SIZE = 1, 3, 5, 7, or 10. This field is recoded to a 3-bit field in the ERAT shadow copies.

0 60:63 ThdID5 Thread ID (4 bits)
These bits indicate for which threads this TLB entry is valid; one bit for each processing thread. Bit
60 corresponds to thread 0, and bit 63 to thread 3. The ThdID bit for a given thread can be set or
cleared with the tlbwe instruction.

0 64 ExtClass5 Extended Class (1 bit)
This field is used as an extension to the Class field to uniquely identify entries for invalidations. This
field will be set to a zero value when tlbwe completes with MAS1[IPROT] = 0. For a more detailed
description of this function, see the ECL field description in Section 6.18.4 Memory Management
Unit Control Register 3 (MMUCR3).

0 65 TID_NZ5 Translation ID Non-Zero (1 bit)
This field is used to denote when the TID field is nonzero. This field is set to a ‘1’ value when tlbwe
completes with MAS1[TID] /= 0; otherwise, it is cleared. It is used by TLB shadow copies that can
contain less than the full 14-bit TID value. For a more detailed description of this function, see the
TID_NZ field description in Section 6.18.1 Memory Management Unit Control Register 0
(MMUCR0).

0 66 TGS Translation Guest State (1 bit)
This bit differentiates between guest operating system and hypervisor state translations.

User’s Manual

A2 Processor

Memory Management

Page 200 of 864
Version 1.3

October 23, 2012

0 67 TS Translation Address Space (1 bit)
This bit indicates the address space with which this TLB entry is associated. For instruction storage
accesses, MSR[IS] must match the value of TS in the TLB entry for that TLB entry to provide the
translation. Likewise, for data storage accesses, MSR[DS] must match the value of TS in the TLB
entry. For the tlbsx[.] instruction, the MMUCR0[TS] field must match the value of TS.

0 68:81 TID3 Translation ID (14 bits)
Field used to identify a globally shared page (TID = 0) or the process ID of the owner of a private
page (TID <> 0).

0 82:89 TLPID4 Translation Logical Partition ID (8 bits)
Field used to identify a nonguest page (TLPID = 0) or the logical partition ID of a guest page
(TLPID <> 0).

0 90 IPROT6 Invalidate Protect (1 bit)
This bit protects the TLB entry from local or global invalidations. This is bit also influences the deter-
mination of the LRU algorithm for the TLB.

0 91 IND7 Indirect (1 bit)
When set, this bit indicates that this entry is an indirect virtual linear page table (VLPT) pointer entry
used for hardware page table walking (used with category E.PT implementations only).

Storage Attribute Fields

1 0:7 - Reserved (8 bits)
Set to 0.

1 8:9 WLC5 D-Cache Way Locking Class Attribute (2 bits)
L1 data-cache way locking class attribute bit used in conjunction with XUCR0[WLK] enable bit to
determine the D-cache replacement management table entry to use.

1 10 ResvAttr5 Reserved Attribute (1 bit)
Extended page attribute bit with function reserved by the A2 core.

1 11 - Reserved (1 bit)
Set to 0.

1 12 U0 User-Definable Storage Attribute 0 (1 bit)
Specifies the U0 storage attribute for the page associated with the TLB entry. The function of this
storage attribute is system-dependent and has no effect within the A2 core.

1 13 U1 User-Definable Storage Attribute 1 (1 bit)
Specifies the U1 storage attribute for the page associated with the TLB entry. The function of this
storage attribute is system-dependent and has no effect within the A2 core.

1 14 U2 User-Definable Storage Attribute 2 (1 bit)
Specifies the U2 storage attribute for the page associated with the TLB entry. The function of this
storage attribute is system-dependent and has no effect within the A2 core.

1 15 U3 User-Definable Storage Attribute 3 (1 bit)
Specifies the U3 storage attribute for the page associated with the TLB entry. The function of this
storage attribute is system-dependent and has no effect within the A2 core.

1 16 R5 Reference (1 bit)
Software-managed page referenced (was accessed) attribute bit. See Section 6.12 Page Reference
and Change Status Management for more details.

1 17 C5 Change (1 bit)
Software-managed page changed (was updated) attribute bit. SeeSection 6.12 Page Reference
and Change Status Management for more details.

Table 6-4. TLB Entry Fields (Sheet 2 of 5)

TLB
Word1 Bit2 Field Description

least recently used

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 201 of 864

Address Translation Fields

1 18:21 - Reserved (4 bits)
Reserved for real page number extension.

1 22:51 RPN9 Real Page Number (variable size, from 18 - 30 bits)
Bits 22:n–1 of the RPN field are used to replace bits 0:n–1 of the effective address to produce a por-
tion of the real address for the storage access (where n = 64–log2(page size in bytes) and page size
is specified by the SIZE field of the TLB entry). Software must set unused low-order RPN bits (that
is, bits n:51) to 0.

Additional Storage Attribute Fields

1 52 W Write-Through (1 bit) (See also the WL1 attribute.)

0 The page is not write-through (that is, the page is copy-back) in the L2 cache, and the L1
cache is always write-through.

1 The page is write-through in both the L1 and L2 cache.

1 53 I Caching Inhibited When this bit is set, bits 12, 13, 14, and 15 of word 2 can be set.

0 The page is not caching inhibited (that is, the page might be cacheable).

1 The page is caching inhibited in all cache levels.

1 54 M Memory Coherence Required (1 bit)

0 The page is not memory coherence required.

1 The page is memory coherence required.

Note: L2 cache provides MESI support; I = 0 (architecturally cacheable), and M = 1 (Memory
Coherence Required).]

1 55 G Guarded (1 bit)

0 The page is not guarded.

1 The page is guarded.

1 56 E Endian (1 bit).

0 All accesses to the page are performed with big-endian byte ordering, which means that
the byte at the effective address is considered the most-significant byte of a multibyte
scalar.

1 All accesses to the page are performed with little-endian byte ordering, which means that
the byte at the effective address is considered the least-significant byte of a multibyte
scalar.

Access Control Fields

1 57 VF8 Virtualization Fault (1 bit)

0 The page access is controlled by the user and supervisory access control bits.

1 Load, store, or cache management accesses to this page always result in a virtualization
fault exception (which can lead to a data storage interrupt).

1 58 UX (IND = 0)
SPSIZE0
(IND = 1)

User State Execute Enable (IND = 0) or SPSIZE0 (IND = 1)9 (1 bit).

0 (IND = 0) Instruction fetch is not permitted from this page while MSR[PR] = 1, and the
attempt to execute an instruction from this page while MSR[PR] = 1 will cause an execute
access control exception type of instruction storage interrupt.

1 (IND = 0) Instruction fetch and execution is permitted from this page while MSR[PR] = 1.

Table 6-4. TLB Entry Fields (Sheet 3 of 5)

TLB
Word1 Bit2 Field Description

modified, exclusive, shared, invalid

User’s Manual

A2 Processor

Memory Management

Page 202 of 864
Version 1.3

October 23, 2012

1 59 SX (IND = 0)
SPSIZE1
(IND = 1)

Supervisor State Execute Enable (IND = 0) or SPSIZE1 (IND = 1)9 (1 bit)

0 (IND = 0) Instruction fetch is not permitted from this page while MSR[PR] = 0, and the
attempt to execute an instruction from this page while MSR[PR] = 0 will cause an execute
access control exception type of instruction storage interrupt.

1 (IND = 0) Instruction fetch and execution is permitted from this page while MSR[PR] = 0.

1 60 UW (IND = 0)
SPSIZE2
(IND = 1)

User State Write Enable (IND = 0) or SPSIZE2 (IND = 1)9 (1 bit)

0 (IND = 0) Store operations and the dcbz instruction are not permitted to this page when
MSR[PR] = 1 and will cause a write access control exception type of data storage inter-
rupt.

1 (IND = 0) Store operations and the dcbz instruction are permitted to this page when
MSR[PR] = 1.

1 61 SW (IND = 0)
SPSIZE3
(IND = 1)

Supervisor State Write Enable (IND = 0) or SPSIZE3 (IND = 1)9 (1 bit)

0 (IND = 0) Store operations and the dcbz and dcbi instructions are not permitted to this
page when MSR[PR] = 0 and will cause a write access control exception type of data
storage interrupt.

1 (IND = 0) Store operations and the dcbz and dcbi instructions are permitted to this page
when MSR[PR] = 0.

1 62 UR (IND = 0)
SPSIZE4
(IND = 1)

User State Read Enable (IND = 0) or SPSIZE4 (IND = 1)9, 10 (1 bit)

0 (IND = 0) Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions
are not permitted from this page when MSR[PR] = 1 and will cause a read access control
exception. Except for the dcbt, dcbtst, and icbt instructions, a data storage interrupt will
occur.

1 (IND = 0) Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions
are permitted from this page when MSR[PR] = 1.

Table 6-4. TLB Entry Fields (Sheet 4 of 5)

TLB
Word1 Bit2 Field Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 203 of 864

6.7 Effective to Real Address Translation Arrays

The A2 core implements two fully-associative effective to real address translation (ERAT) arrays also called
shadow TLB arrays): one for instruction fetches and one for data accesses. These arrays “shadow” the value
of a subset of the entries in the main, unified TLB (the UTLB in the context of this discussion). This subset of
TLB entries contained in the ERAT arrays is referred to as “TLB lookaside information” in the architecture.
The purpose of the ERAT arrays is to reduce the latency of the address translation operation and to avoid
contention for the UTLB array between instruction fetches and data accesses.

The instruction ERAT (I-ERAT) contains 16 entries, while the data ERAT (D-ERAT) contains 32 entries, and
all entries are shared between the four A2 processing threads. There is no latency associated with accessing
the ERAT arrays, and instruction execution continues in a pipelined fashion as long as the requested address
is found in the ERAT. If the requested address is not found in the ERAT, the instruction fetch or data storage
access is automatically stalled while the address is looked up in the UTLB. If the address is found in a direct
entry (IND = 0) residing in the UTLB, the penalty associated with the miss in the I-ERAT shadow array is 12
cycles, and the penalty associated with a miss in the D-ERAT shadow array is 19 cycles. If the address

1 63 SR
(IND = 0)
RPN52

(IND = 1)

Supervisor State Read Enable (IND = 0) or RPN52 (IND = 1)9, 11 (1 bit)

0 (IND = 0) Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions
are not permitted from this page when MSR[PR] = 0 and will cause a read access control
exception. Except for the dcbt, dcbtst, and icbt instructions, a data storage interrupt will
occur.

1 (IND = 0) Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions
are permitted from this page when MSR[PR] = 0.

Notes:

1. “TLB Word” for TLB entries refers to a functional grouping of the fields into page identification fields. For ERAT entries, this refers
to not only a functional grouping of fields, but also to the eratwe and eratre instruction word select (WS) field in 64-bit mode.

2. The “Bit” value in this column for TLB entries is for reference only, because these fields are transferred via tlbwe and tlbre instruc-
tions using the MMU Assist Registers (MAS), and the values in this column have no correlation to the bit numbering of the MAS
registers. For ERAT entries, the contents of this column indicate bit assignments in the source (RS) or target register (RT) for the
eratwe and eratre instructions respectively, in 64-bit mode.

3. The TID field contains 14 bits in TLB entries to fully and uniquely identify them with respect to the current process ID or the EPLC
or EPSC registers EPID values. For ERAT entries, only 8 bits of the TID field are implemented (for certain settings of the MMUCR1
register). When an ERAT miss is resolved from the TLB, the least significant 8 bits of the TLB TID field are stored into the ERAT
TID field. Supervisory software must guarantee uniqueness in the 8-bit TID field in the ERAT arrays to the extent necessary to
avoid multihit scenarios. Refer also to Section 6.18.2 Memory Management Unit Control Register 1 (MMUCR1) for a description of
the ICTID, ITTID, DCTID, and DTTID bits that affect this ERAT function.

4. The TLPID field does not exist in the ERAT entries (that is, ERAT entries are not tagged with the logical partition ID). Supervisory
software must guarantee that the ERAT entries contain translations from only one logical partition at a time.

5. These fields are implementation specific (nonarchitected) fields.
6. The IPROT bit exists in addition to the ExtClass field in TLB entries. ERAT entries are protected by using the ExtClass field only

(that is, the IPROT bit is not implemented in shadow copies).
7. The IND bit exists only in TLB entries; it is not implemented in ERAT shadow copies.
8. The Virtualization Fault (VF) bit exists only in TLB and D-ERAT entries; it is not implemented in the I-ERAT.
9. The function of these bits is dependent on if this entry is a direct (IND = 0) or indirect (IND = 1) type entry.

10. The SPSIZE4 function for indirect (IND = 1) is treated as reserved for this implementation because sub-page sizes are a power of 4
subset of the architected power of 2 sub-page sizes.

11. This bit is used to store the RPN52 LSB for indirect (IND = 1) entries in this implementation, which correlates to the MAS3RPNL[52]
field.

Table 6-4. TLB Entry Fields (Sheet 5 of 5)

TLB
Word1 Bit2 Field Description

data ERAT

instruction ERAT

unified translation lookaside buffer

User’s Manual

A2 Processor

Memory Management

Page 204 of 864
Version 1.3

October 23, 2012

lookup finds no direct entries, but does find an indirect entry (IND = 1), then the address is forwarded to the
hardware page table walker for page table lookup. If the address also misses the indirect entry lookup in the
UTLB, an instruction or data TLB miss exception is reported.

When operating in MMU mode, the on-demand replacement of entries in the ERATs is managed by hardware
in a pseudo least-recently-used (LRU) fashion. Upon an ERAT miss that leads to a UTLB hit, the hardware
automatically casts-out the oldest entry in the ERAT and replaces it with the new translation.

An ERAT entry can be written directly by hypervisor level software by copying information from a GPR and
the MMUCR0 fields, using a series of two eratwe instructions (assuming 64-bit operation). An ERAT entry is
read by copying the information into a GPR and the MMUCR0 fields, using a series of two eratre instructions.
Software can also search for specific ERAT entries using the eratsx[.] instruction. See TLB Management
Instructions (Architected) on page 212 for more information about these instructions.

The eratwe instruction with the WS = 3 setting is used in the A2 implementation to set a hardware LRU
watermark register for each of the ERAT facilities. This can be leveraged directly in certain kernel applications
to “reserve” some number of translation entries for the kernel to be “immune” to replacement, especially with
a backing hardware MMU TLB replacement scheme. This feature allows for “pinning” of some number of
ERAT entries above the watermark value that are managed by software. The entries at or below the water-
mark are candidates for hardware replacement via normal LRU selection. See Section 6.7.5 ERAT LRU
Replacement Watermark for more details on this feature.

6.7.1 ERAT Context Synchronization

In MMU mode (CCR2[NOTLB] = 0) where the ERATs are backed by the unified TLB, the hardware can condi-
tionally invalidate all entries of extended class zero (ExtClass = 0) in both of the ERATs upon execution of
certain ERAT context-altering instructions. This set of instructions includes: sc, ehpriv, mtmsr, mtpid,
mtlpidr, rfi, rfci, rfmci, rfgi, and isync.

In MMU mode (CCR2[NOTLB] = 0), the conditional invalidation of ERAT entries (with ExtClass = 0) in the
event of ERAT context-altering instructions is controlled by the configuration bits MMUCR1[CSINV]. Software
can choose to prevent any context-altering invalidations, allow all ERAT context-altering instructions to flush
all nonprotected entries, or can allow for the isync instruction to be excluded from the set of events that flush
nonprotected entries. In ERAT-only mode (CCR2[NOTLB] = 1), the ERAT entries are not invalidated as the
result of these instructions, and the MMUCR1[CSINV] field is effectively disabled. See Section 6.18.2
Memory Management Unit Control Register 1 (MMUCR1) on page 280 for a detailed description of these
register bits.

This context-altering invalidation disable feature was added to A2 because, unlike some previous generation
processors, the ERAT entries are tagged with certain context-specific information (GS, AS, and 8 PID bits,
but not LPID), and therefore overly generous invalidations of all nonprotected ERAT entries due to context
synchronizing events might not be required by the system software.

Note that there are other “context changing” operations that do not cause automatic context synchronization
in the hardware. For example, execution of a tlbwe instruction can change the UTLB contents, but is not one
of the ERAT context-altering instructions listed above and does not necessarily invalidate or otherwise update
the ERAT entries. (A tlbwe instruction might, however, back-invalidate certain ERAT entries; see
Section 6.7.6 ERAT (TLB Lookaside Information) Coherency and Back-Invalidation for details.) For changes
to the entries in the UTLB (or to other address-related resources such as the PID) to be definitely reflected in
the ERATs, software must ensure that either a context-synchronizing operation that leads to ERAT invalida-
tion occurs before any attempt to use any address associated with the updated UTLB entries (either the old or
new contents of those entries), or that the corresponding ERAT entries are invalidated by use of the tlbilx or

general purpose register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 205 of 864

eratilx instructions. By invalidating the ERAT arrays, a context-altering instruction forces the hardware to
refresh the ERAT entries with the updated information in the UTLB as each memory page is accessed (when
enabled by the appropriate MMUCR1[CSINV] setting).

Programming Note: Of the items in the preceding list of ERAT invalidating operations, the machine check
interrupt is not architecturally required to be context synchronizing, and thus is not guaranteed to cause inval-
idation of any ERAT arrays on implementations other than the A2 core. Consequently, software that is
intended to be portable to other implementations should not depend on this behavior and should insert the
appropriate architecturally-defined context synchronizing operation as necessary for desired operation.

6.7.2 ERAT Reset Behavior

During reset, the instruction and data ERATs are first flushed and then loaded with two initial entries that
perform the following functions:

• Map the reset code and data page and set I = 1, G = 1.

• Map the first 4 K page of effective address space (“page 0”) that contains the initial exception vector
addresses and set ExtClass = 1.

The LRU watermark registers for both ERATs are also loaded with an initial value just below the two boot
entries. See Section 4.2 A2 Core State After Reset on page 154 for details regarding the boot entry contents,
and so forth

After reset, both of the ERAT LRU pointers are set to 0 (the first nonvalid entry). The LRU pointer (or simply
“LRU”) is physically different from the LRU watermark register. The LRU value is subsequently incremented
toward the watermark value until there are no nonvalid slots left in the ERAT. At this point, and as long as all
slots at or below the watermark value in the ERAT are occupied by valid entries, normal pseudo-LRU
replacement policy takes effect for those entry numbers at or below the watermark.

6.7.3 Atomic Update of ERAT Entries

In previous embedded implementations, carefully planned software sequences and/or software locking was
required when updating TLB entries because of the partial updates to the entries that occur when writing two
or more parts of the entry. In the A2 design, each of the ERAT caches include four (1 per thread) 64-bit RPN
registers that are updated upon eratwe of the RPN portion (WS = 1). Both halves of the ERAT entry are then
updated atomically when eratwe is executed with WS = 0 (EPN portion). The value written into the RPN
portion of the entry is the data most recently written to the RPN holding register. This allows two or more
processing threads to update ERAT entries simultaneously (as long as the entry indexes are different, or
when the round-robin increment mode described below is enabled).

6.7.4 ERAT LRU Round-Robin Replacement Mode

Both of the ERAT entities contain a physical LRU mechanism for hardware replacement from the optional
MMU TLB. Two configuration mode bits (MMUCR1[IRRE] and MMUCR1[DRRE]) are used to change the
behavior of the I-ERAT and D-ERAT LRUs, the eratwe instruction, and the TLB reloads in the round-robin
replacement mode. In this mode, the LRU behaves as an atomically incrementing entry index for the eratwe
instruction, rather than using the RA register as the entry index. The ERAT LRU index number is incremented
(the mod number of entries below the watermark is described in Section 6.7.5) in a round-robin fashion each
time the effective (WS = 0) portion of the entry is written. In this way, multiple threads can update ERAT
entries in the same hardware structure without the need for software locking between threads for this shared
resource. Likewise, the LRU behaves as an atomically incrementing entry index for TLB reload events that

User’s Manual

A2 Processor

Memory Management

Page 206 of 864
Version 1.3

October 23, 2012

occur in MMU mode. The ERAT LRU index number is incremented (the mod number of entries below the
watermark is described Section 6.7.5) in a round-robin fashion each time an entry is written as the result of a
TLB reload.

6.7.5 ERAT LRU Replacement Watermark

The eratwe instruction with a WS = 3 setting is used in the A2 implementation to set a hardware LRU water-
mark register for each of the ERAT facilities. This can be leveraged directly in certain kernel applications to
reserve some number of translation entries for the kernel to be immune to replacement, especially with a
backing hardware MMU TLB replacement scheme. This feature allows for pinning of some number of ERAT
entries above the watermark value, which are managed by software and are subject to the atomic update
property of the threadwise RPN holding registers mentioned in Section 6.7.3. The entries at or below the
watermark are candidates for hardware replacement through normal LRU selection or through round-robin
replacement as described in Section 6.7.4. For example, hypervisor software can choose to set up a shared
entry for all threads above the watermark for the interrupt vector code that remains resident in the ERATs.

All unprotected entries in the ERAT arrays can be invalidated as the result of an ERAT context-altering
instruction (such as an isync, and so forth, when enabled by MMUCR1[CSINV]) or as the result of a local
eratilx with the T = 0 (invalidate all in the partition) setting. Note that the ERAT watermark register values
themselves are not affected by context-synchronizing events. In addition, certain groups of entries can be
invalidated using other settings for the eratilx or tlbilx instruction “T” field or as the result of other invalidation
events dependent on ERAT-only versus MMU mode of operation. For the entries to be truly pinned above the
watermark such that they are immune to such invalidations, the entries must be created with a nonzero
extended class setting (using MAS1[IPROT] = 1 and MMUCR3[ECL] = 1 for tlbwe insertion or
MMUCR0[ECL] = 1 for eratwe insertion).

Programming Note: It is recommended that the watermark value never be set lower than the value of n,
where n equals the number of threads allowed to run software on this implementation, minus one. Normally,
with four threads running, the watermark value should not be set below a value of 3. This allows for all
threads to make forward progress when running in disjoint pages. Setting the watermark to a value too low
results in multiple threads contending for too few hardware resources (particularly in TLB mode where TLB
reloads into the ERATs are targeting entries below the watermark) and can result in poor system perfor-
mance and/or livelock (no forward progress).

Programming Note: Writing the ERAT LRU replacement watermark value by executing eratwe with the WS
= 3 setting has the effect of clearing the LRU replacement algorithm such that the LRU points to entry zero.
This guarantees that the LRU points to an entry number less than or equal to the new watermark value. After
this, the LRU resumes normal operation and is limited to values at or below the new watermark value.

6.7.6 ERAT (TLB Lookaside Information) Coherency and Back-Invalidation

There is considerable flexibility in establishing ERAT entries that are immune to back-invalidations caused by
TLB state modifications. ERAT entries created with ExtClass = 1 are generally immune to such back-invalida-
tions (except in the specific tlbwe back-invalidate scenario described below). Such entries can be installed
directly by executing an eratwe instruction with MMUCR0[ECL] = 1 or can be installed by a reload from the
TLB of an entry that has both IPROT = 1 and ExtClass = 1. The latter creates “sticky” ERAT entries with
ExtClass = 1 at or below the watermark pointer that are immune to tlbilx, tlbivax, eratilx, and erativax inval-
idations, but that can be overwritten by new TLB reloads (as determined by the ERAT LRU) or by eratwe
execution. If volatility of the ERAT entries installed via TLB reloads is desired, the corresponding TLB entries
should be created via tlbwe instructions with MMUCR3[ECL] = 0. This ensures that ERAT entries are always

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 207 of 864

installed with ExtClass = 0 regardless of the value of the TLB entry IPROT bit. TLB entries created via page
table translation (that is, by the hardware page table walker) are always created with IPROT = 0 and
ExtClass = 0; hence, the resulting ERAT entries are created with ExtClass = 0.

The subset of TLB entries contained in the ERAT arrays is referred to as “TLB lookaside information” in the
architecture. There are certain architectural requirements regarding the coherency of ERAT entries with
respect to the TLB entries that they shadow. This coherency largely depends on the value of the
TLBnCFG[HES] bit associated with a given implementation’s TLB. If TLBnCFG[HES] = 0, lookaside informa-
tion for the associated TLB is kept coherent with the TLB and is invisible to software. If TLBnCFG[HES] = 1,
lookaside information is not required to be kept coherent with the TLB.

In the case of the A2 processor, TLB0CFG[HES] = 1, and the ERAT lookaside information is not necessarily
kept coherent with the entries residing in the TLB. Only under the following conditions is the corresponding
ERAT lookaside information kept coherent with the TLB:

1. Writing the MMUCSR0[TLB0_FI] to a ‘1’ value invalidates all unprotected (ExtClass = 0) lookaside infor-
mation (in addition to all IPROT = 0 TLB entries).

2. Executing tlbilx or tlbivax instructions invalidates unprotected (ExtClass = 0) lookaside entries corre-
sponding to the TLB entry values that they are specified to invalidate, as well as those TLB entries that
would have been invalidated except for their IPROT = 1 value (when the corresponding ERAT entry was
created with ExtClass = 0).

3. Executing a tlbwe instruction in hypervisor state (MSR[PR] = 0 and MSR[GS] = 0) that does not result in
an exception back-invalidates a corresponding lookaside ERAT entry (regardless of the state of the ERAT
entry ExtClass field) when all of the following conditions are true:

a. MMUCR1[TLBWE_BINV] = 1.

b. MAS0[HES] = 0.

c. MAS0[ESEL] is selecting a target TLB entry to be overwritten that is currently valid (V = 1) and that is
a direct TLB entry (IND = 0). Note that only direct TLB entries have shadow ERAT copies.

d. Either of the following conditions are met:

(1) The MAS0[WQ] used by the tlbwe instruction is 0b00 or 0b11 (write always).
(2) The MAS0[WQ] used by the tlbwe instruction is 0b01 (TLB write conditional) and the TLB reser-

vation for the thread executing the tlbwe exists.

e. The ERAT entry TGS and TS values match those of the TLB entry being overwritten.

f. The ERAT entry EPN[0:m] matches EPN[0:m] of the TLB entry being overwritten, where m = 63 -
log2(ERAT entry page size in bytes).

g. The ERAT entry X = 0, or the EPN[n:51] of the TLB entry being overwritten, is greater than the ERAT
entry EPN[n:51], where n = 64 - log2(ERAT entry page size in bytes).

h. The ERAT entry TID field matches the TID[6:13] value of the TLB entry being overwritten.

i. The ERAT entry THDID field matches the TID[2:5] value of the TLB entry being overwritten, or
MMUCR1[I/DTTID] = 0.

j. The ERAT entry CLASS field matches the TID[0:1] value of the TLB entry being overwritten, or
MMUCR1[I/DCTID] = 0.

k. The ERAT entry TID_NZ field equals the logical OR of all of the TID[0:13] bits of the TLB entry being
overwritten.

User’s Manual

A2 Processor

Memory Management

Page 208 of 864
Version 1.3

October 23, 2012

The tlbwe with MAS0[HES] = 0 back-invalidate scenario above is intended to represent software overwriting
a specific, valid TLB entry whose virtual address matches that of a shadow ERAT copy. This is particularly
useful when invalidating a TLB entry with IPROT = 1 by executing tlbwe with MAS1[V] = 0. However, context
synchronizing invalidation of the entire ERAT is not desirable by system software because the shadow ERAT
copy might have been created by a TLB reload with ExtClass = 1. This function is controlled by
MMUCR1[TLBWE_BINV]. Setting this bit low allows for modification of a specific TLB entry with an installed,
valid ERAT shadow copy representing a page from which instructions are currently being fetched (that is,
modifying the TLB page where software is executing) without back-invalidating the ERAT copy. This is some-
times done at system software initialization time (a hand off from firmware to the hypervisor, for example).

6.7.7 ERAT External PID (EPID) Context and Instruction Dependencies

There are certain virtual address ambiguities associated with the A2 ERAT entries that can lead to unin-
tended translation results (including multihit error scenarios and unintended sharing of entries), particularly
when using the external PID load and store context registers (EPLC and EPSC) and the associated external
PID instruction set. The A2 ERAT entries do not contain the TLPID (logical partition ID) and, under certain
conditions, might contain only a subset of the TID value from the associated UTLB entries (see
Section 6.18.2 Memory Management Unit Control Register 1 (MMUCR1) for descriptions of the ITTID,
DTTID, ICTID, and DCTID bits). Because of these ambiguities, it is possible for the ERAT structures to
contain alias entries when the TLPID and/or the upper bits of the TID are ignored. To mitigate these types of
ERAT ambiguities, the Class field is used in the D-ERAT to differentiate entries that were created as the
result of external PID loads and stores versus those created as the result of normal, nonexternal PID loads
and stores. Because of this, the use of external PID loads and stores by software is considered to be a mutu-
ally exclusive function to software using the Class field as part of the TID (by setting MMUCR1[DCTID] = 1).

When an ERAT entry is created by using the eratwe instruction, software has full control over setting the
value of the ERAT entry Class field. When an ERAT entry is created due to a reload from the UTLB, the hard-
ware sets the ERAT Class value depending on the type of operation that caused the reload. The MMUCR1
register ICTID, DCTID, and DCCD bits also affect this behavior. Table 6-5 summarizes the UTLB to ERAT
reload Class field values as a function of operation type and MMUCR1 configuration bits.

Table 6-5. ERAT Class Field Reload Value For UTLB Hits

Operation Type1 MMUCR1
[ICTID]

MMUCR1
[DCTID]

MMUCR1
[DCCD] I-ERAT/D-ERAT Class Reload Value2

 I-ERAT fetch 0 - - TLBE.Class[0:1]

 I-ERAT fetch 1 - - TLBE.TID[0:1]

D-ERAT non-EPID load/store - 0 0 0b0 || TLBE.Class[1]

D-ERAT non-EPID load/store - 0 1 TLBE.Class[0:1]

D-ERAT non-EPID load/store - 1 - TLBE.TID[0:1]

D-ERAT EPID load - 0 0 0b10

D-ERAT EPID store - 0 0 0b11

D-ERAT EPID load/store - 0 1 TLBE.Class[0:1]

D-ERAT EPID load/store - 1 - TLBE.TID[0:1]

1. This is the original operation type that caused an ERAT miss request to the UTLB, resulting in a UTLB hit reload.
2. This is the value loaded into the appropriate ERAT structure Class field as the result of a UTLB hit reload. Values written to the

UTLB entry Class field as the result of page table translation might be different from that shown here. See Table 6-14 TLB Update
After Page Table Translation on page 242 for UTLB entry values after a page table translation.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 209 of 864

When translations occur in the I-ERAT due to instruction fetches, the Class field is not used as part of the
compare function (assuming MMUCR1[ICTID] = 0). When translations occur in the D-ERAT, however, the
Class field is used as part of the compare function (assuming MMUCR1[DCCD] = 0). When a D-ERAT trans-
lation occurs due to a normal, non-EPID load or store, the Class field compare value is set to 0b0x (where
x = don’t care). When a D-ERAT translation occurs due to an EPID load execution, the Class field compare
value is set to 0b10. Finally, when a D-ERAT translation occurs due to an EPID store execution, the Class
field compare value is set to 0b11. In this way, translations in the D-ERAT avoid aliasing across entries
intended for normal load/stores versus those intended for external PID loads versus those for external PID
stores.

Updating the EPLC and EPSC registers via mtspr instructions have an associated impact on the D-ERAT
contents as well. Updating the EPLC or EPSC registers has the side affect of generating an immediate class-
based invalidate to the D-ERAT structure. Updating the EPLC register generates a Class = 2 invalidate of all
nonprotected (ExtClass = 0) D-ERAT entries containing a Class value of 2. Likewise, updating the EPSC
register generates a Class = 3 invalidate of all nonprotected (ExtClass = 0) D-ERAT entries containing a
Class value of 3. For both of these D-ERAT invalidate events, the ThdID field of each respective D-ERAT
entry is compared against the thread ID of the processing thread executing the mteplc or mtepsc instruction.

Even with these hardware mechanisms in place, D-ERAT entry aliases are still possible without certain soft-
ware restrictions and the use of programming techniques to avoid such aliases. An ERAT alias scenario can
occur in the D-ERAT, for example, when two different processing threads execute an external PID load
instruction and their respective EPLC registers contain similar virtual addresses, differing only by the ELPID
value. The first thread to execute its external PID load could result in a UTLB reload of a D-ERAT entry (with
Class = 2, and ThdID=0b1111) that happens to be alias for the second thread’s external PID load instruction,
resulting in an unintended translation of the second thread’s load instruction.

It is considered a programming error to install two or more identical UTLB entries with respect to the virtual
address. It is also the responsibility of system software to avoid the ERAT aliasing described above. Some
possible software solutions to the ERAT aliasing problem include (but are not limited to) the following:

1. Software locking between threads when using external PID load and stores, such that it is impossible for
two or more threads to unintentionally share an EPID load or store entry.

2. Ensuring uniqueness in the virtual address components of the threadwise EPLC and/or EPSC registers
outside of the ELPID and nonrepresented bits of the EPID.

3. Enforcing a policy of intentional sameness in all EPLC[ELPID] fields, and/or all EPSC[ELPID] fields (so
that sharing of Class = 2 or Class = 3 entries between threads is an intentional phenomenon, and so
forth).

4. Using software installed UTLB entries with unique ThdID fields intended specifically for external PID load
or store instructions issued by a specific thread or group of threads (assuming MMUCR1[DTTID] = 0).

It should be noted that supervisory software has the availability of the eratilx T = 4, 5, 6, or 7 instruction to
assist in removing ERAT entries containing a particular Class field while using the techniques listed above, or
for other appropriate applications.

6.8 Logical to Real Address Translation Array (Category E.HV.LRAT)

This processor supports the Power ISA category Embedded.Page Table (E.PT) and the embedded MMU
Architecture Version 2.0 (MAV 2.0). Because this processor also supports the Embedded.Hypervisor (E.HV)
category, the Embedded.Hypervisor.LRAT (E.HV.LRAT) category is also required and supported. Because of

User’s Manual

A2 Processor

Memory Management

Page 210 of 864
Version 1.3

October 23, 2012

this, hypervisor software must always ensure that at least one valid logical to real address translation (LRAT)
entry exists. The A2 core implements an 8-entry, fully-associative logical to LRAT array in support of
E.HV.LRAT.

When an implementation supports Category Embedded.Hypervisor (as the A2 does), only the hypervisor
knows about the actual real address allocation in the system, and the guest operating system view of real
addresses becomes an intermediate level of translation termed “logical” addresses. The purpose of the LRAT
array is to provide a structure in which the hypervisor can assign mappings from these “logical” addresses to
the actual real addresses. The LRAT structure is the primary implementation component in support of the
architecture’s Category Embedded.Hypervisor.LRAT.

The LRAT array allows a guest operating system to avoid the performance penalty of always having to trap to
the hypervisor when the guest needs to install guest-specific translation entries into the unified TLB array. In
some cases, the logical to real translation happens when guest supervisory code executes a tlbwe instruc-
tion. The MAS3[RPNL] and MAS7[RPNU] fields that were setup by the guest are interpreted by hardware as
a logical page number (LPN) and used to initiate a fully-associative lookup in the LRAT entries (previously
setup by the hypervisor). If the logical page is found to be resident in the LRAT, the logical page number is
translated to a real page number (using the RPN contents of the matching LRAT entry) before finally being
written into the TLB entry. If the logical page is not found in the LRAT, or if multiple matching LRAT entries
are found, an LRAT miss exception occurs.

The logical to real translation can also happen when a page table entry (PTE) translation occurs as the result
of a guest installed (TGS = 1) indirect entry (IND = 1). With the LRAT, the guest operating system can directly
manage its own page table. In this case, if the associated indirect TLB entry contains TGS = 1, a translation
that finds a matching PTE results in the RPN field of the PTE being treated as an LPN, and the LPN is trans-
lated via the LRAT. In this case, the resulting RPN from the LRAT is loaded into the TLB in place of the LPN
from the page table. If there is an LRAT miss on this LPN translation, or if multiple matching LRAT entries are
found, an LRAT miss exception occurs. When this exception occurs, the LPN and the associated size infor-
mation from the PTE are saved in the Logical Page Exception Register (LPER). With this LPER information,
the hypervisor can load the missing LRAT entry and the instruction that caused the exception can be re-
executed.

The logical page number taken from MAS7[RPNU] and MAS3[RPNL] for tlbwe instructions, or from the
PTE[ARPN] for page table translations, matches an LRAT entry if the following conditions are met:

• The valid (V) field of the LRAT entry is 1, and

• Either the value of the logical partition identifier is equal to the value of the LPID field of the LRAT entry
(partition entry), or the value of the LRAT entry LPID field is 0 (shared entry), and

• Either the value of the LRAT entry X-bit is 0, or the value of bits n:43 of the logical page number (where
n = 64–log2(page size in bytes) and page size is specified by the value of the SIZE field of the LRAT
entry) is greater than the value of bits n:43 of the LPN field in the LRAT entry that are set to 1 (that is, the
logical address is “above” the exclusion region of the logical page), and

• The value of bits 22:n–1 of the logical page number is equal to the value of bits 22:n-1 of the LPN field of
the LRAT entry (where n = 64–log2(page size in bytes) and page size is specified by the value of the
SIZE field of the LRAT entry).

The LRAT entries are configured by hypervisor level software using tlbwe instructions with MAS0[ATSEL] = 1
(that is, the tlbwe instructions are targeting the LRAT array). The MAS registers are used in much the same
manner as they are when writing TLB entries, with the exception that MAS2[EPN] is interpreted as the LPN
field of the LRAT entries. There is also a different set of page sizes associated with the LRAT entries than
those used for the TLB (or ERAT) entries. These logical page sizes, also termed logical “sector” sizes,

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 211 of 864

include: 1 MB, 16 MB, 256 MB, 1 GB, 4 GB, 16 GB, 256 GB, and 1 TB. These logical pages, or sectors, can
be sized by the hypervisor to encompass a single large effective page or many smaller effective pages
mapped within the larger logical sector.

The page access control and storage attributes associated with the TLB and effective address pages are not
contained in the LRAT entries (the LRAT performs only logical page identification and real page address
translation at the logical page or “sector” size). The LRAT entries do, however, implement an exclusion range
(X-bit) feature, similar to that of the TLB and ERAT entries.

Table 6-6. LRAT Entry Fields (Sheet 1 of 2)

LRAT
Word1 Bit2 Field Description

Logical Page Identification Fields

0 0:21 — Reserved (22 bits)
Not used in the A2 implementation.

0 22:43 LPN Logical Page Number (variable size, from 12- 22 bits)
Bits 22:n–1 of the LPN field are compared to bits 22:n–1 of the LPN contained in MAS3.RPNL and
MAS7.RPNU for tlbwe instructions, or contained in the page table entry for page table translations
(where n = 64–log2(page size in bytes, and page size is specified by the SIZE field of the LRAT
entry).

0 44:53 — Reserved (10 bits)
Not used in the A2 implementation.

0 54 V Valid (1 bit)
This bit indicates that this LRAT entry is valid and can be used for translation. The Valid bit for a
given entry can be set or cleared with a tlbwe instruction with MAS0[ATSEL] = 1.

0 55 X3 Exclusion Range Enable (1 bit)
This bit enables the creation of a variable sized “hole” at the base of large page sizes (> 1 MB). For
large pages, the unused LSBs of the LPN field are ordinarily set to zero. When the X bit is set, a
subset of LSBs of the LPN can be set to ‘1’ to define an exclusion range that prevents a logical
address match for this entry. For a more detailed description of this function, see Section 6.2.3
Exclusion Range (X-bit) Operation.

0 56:59 SIZE Page Size (4 bits)
The SIZE field specifies the size of the page associated with the LRAT entry as 4SIZEKB, where
SIZE = 5, 7, 9, 10, 11, 12, 14, or 15.

0 60:81 — Reserved (22 bits)
Not used in the A2 implementation.

0 82:89 LPID Logical Partition ID (8 bits)
Field used to identify the logical partition ID of this LRAT entry. A value of 0 in this field provides for
a “wildcard” match of any LPID value for a given tlbwe or page table translation.

0 90:91 — Reserved (2 bits)
Not used in the A2 implementation.

Notes:

1. “LRAT Word” for LRAT entries refers to a functional grouping of the fields into page identification fields.
2. The “Bit” value in this column for LRAT entries is for reference only because these fields are transferred via tlbwe and tlbre instruc-

tions using the MMU Assist Registers (MAS), and the values in this column have no correlation to the bit numbering of the MAS
registers.

3. These fields are implementation specific (nonarchitected) fields.

User’s Manual

A2 Processor

Memory Management

Page 212 of 864
Version 1.3

October 23, 2012

6.9 TLB Management Instructions (Architected)

To enable software to manage the TLB, a set of TLB management instructions is implemented within the A2
core. These instructions are described briefly in the sections that follow, and in detail in Section 12 Implemen-
tation Dependent Instructions on page 481. In addition, the interrupt mechanism provides resources to assist
with software handling of TLB-related exceptions. One such resource is Save/Restore Register 0 (SRR0),
which provides the exception-causing address for instruction TLB error and instruction storage interrupts.
Another resource is the Data Exception Address Register (DEAR), which provides the exception-causing
address for data TLB error and data storage interrupts. Finally, the Exception Syndrome Register (ESR)
provides bits to differentiate amongst the various exception types that can cause a particular interrupt type.
See CPU Interrupts and Exceptions on page 293 for more information about these mechanisms.

All of the TLB management instructions are supervisor or hypervisor privileged to prevent user mode
programs from affecting the address translation and access control mechanisms. Table 6-7 on page 212
shows the privilege levels of the various TLB management instructions.

Address Translation Fields

1 0:21 — Reserved (22 bits)
Not used in the A2 implementation.

1 22:43 RPN Real Page Number (variable size, from 12 - 22 bits)
Bits 22:n–1 of the RPN field are used to replace bits 22:n–1 of the LPN to produce a portion of the
real address for the storage access (where n = 64–log2(page size in bytes) and page size is speci-
fied by the SIZE field of the TLB entry). Software must set unused low-order RPN bits (that is, bits
n:43) to 0.

1 44:63 — Reserved (20 bits)
Not used in the A2 implementation.

Table 6-7. TLB Management Instruction Privilege Levels (Sheet 1 of 2)

Instruction Privilege1 Notes

tlbre hypervisor TLB entry real addresses that can be returned are hypervisor privileged data.

tlbwe supervisor Guest operating system supervisory code can install guest TLB entries that “hit” in the LRAT facility with-
out hypervisor intervention.

tlbsx[.] hypervisor TLB entry real addresses that can be returned in the event of a search “hit” are hypervisor privileged
data.

1. Because these instructions depend on data in the MAS registers, these instructions are executable only in MMU mode
(CCR[NOTLB] = 0). Any attempt to execute one of these instructions while in ERAT-only mode (CCR2[NOTLB] = 1) results in an
illegal instruction exception.

Table 6-6. LRAT Entry Fields (Sheet 2 of 2)

LRAT
Word1 Bit2 Field Description

Notes:

1. “LRAT Word” for LRAT entries refers to a functional grouping of the fields into page identification fields.
2. The “Bit” value in this column for LRAT entries is for reference only because these fields are transferred via tlbwe and tlbre instruc-

tions using the MMU Assist Registers (MAS), and the values in this column have no correlation to the bit numbering of the MAS
registers.

3. These fields are implementation specific (nonarchitected) fields.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 213 of 864

This processor is compliant with Category E.PT, and the size and location of the hardware page tables and
format of the associated hardware page table entries are well defined. Aside from this, this processor can
also maintain software-managed page tables, and this document does not imply any format for these soft-
ware page tables or the associated page table entries. Software has significant flexibility in organizing the
size, location, and format of software page tables, and in implementing a custom TLB entry replacement
strategy. For example, software can lock TLB entries that correspond to frequently used storage, so that
those entries are never cast out of the TLB, and TLB miss exceptions to those pages never occur.

Note: The descriptions in the following sections are based on 64-bit mode of operation. See Section 6.11 32-
Bit Mode Memory Management Behavior on page 224 for a description of how these instructions behave dif-
ferently for 32-bit mode operation.

6.9.1 TLB Read and Write Instructions (tlbre and tlbwe)

TLB entries can be read and written by the tlbre and tlbwe instructions, respectively, using the MMU Assist
(MAS) Registers for entry data transfer. Certain implementation-specific fields in the TLB entries are trans-
ferred via the MMUCR3 register. (See Section 6.18.4 Memory Management Unit Control Register 3
(MMUCR3) on page 290 for a description of these fields). Because a TLB entry contains more than 64 bits,
multiple mtspr and mfspr instructions must be executed to and from the MAS registers (and MMUCR3
register) to transfer all of the TLB entry information.

In previous embedded implementations, carefully planned software sequences and/or software locking was
required when updating TLB entries because of the partial updates to the entries that occur when writing two
or more parts of the entry. In the A2 design, the TLB includes four sets of MAS registers (one per thread) and
four MMUCR3 registers (one per thread) that are updated upon tlbre. Both halves of a TLB entry (the effec-
tive and real portions) are updated atomically with the data most recently written to the MAS and MMUCR3
registers when tlbwe is executed.

When targeting the TLB (with MAS0[ATSEL] = 0), the tlbre instruction uses the MAS1[TID], MAS1[TSIZE],
and MAS2[EPN] fields to define the hashed congruence class of the TLB entry. The ESEL field of MAS0
designates which way of the 4-way TLB array is to be read. Finally, the contents of the selected TLB entry are
transferred to the appropriate MAS registers and MMUCR3.

When targeting the TLB (with MAS0[ATSEL] = 0), the tlbwe instruction uses the MAS1[TID], MAS1[TSIZE],
and MAS2[EPN] fields to define the hashed congruence class of the TLB entry. The ESEL field of MAS0 can
designate which way of the 4-way TLB array is to be written. Alternately, the hardware can automatically
calculate the way location of the targeted TLB entry. This feature is controlled by the MAS0[HES] bit. When
MAS0[HES] = 0, the ESEL field of MAS0 designates into which way of the 4-way TLB array is to be trans-

tlbsrx. supervisor Guest operating system supervisor code can receive search results without entry contents and set a TLB
reservation before installing entries.

tlbivax hypervisor Only hypervisor code can invalidate global entries across processors or logical partitions.

tlbilx supervisor Guest operating system supervisor code can invalidate guest state entries. An attempt to invalidate a
hypervisor state entry while MSR[GS] = 1 results in an embedded hypervisor privilege exception.

Table 6-7. TLB Management Instruction Privilege Levels (Sheet 2 of 2)

Instruction Privilege1 Notes

1. Because these instructions depend on data in the MAS registers, these instructions are executable only in MMU mode
(CCR[NOTLB] = 0). Any attempt to execute one of these instructions while in ERAT-only mode (CCR2[NOTLB] = 1) results in an
illegal instruction exception.

User’s Manual

A2 Processor

Memory Management

Page 214 of 864
Version 1.3

October 23, 2012

ferred. When MAS0[HES] = 1, the entry way is defined by the hardware LRU mechanism (which always
excludes entries with IPROT = 1). Finally, the contents of the selected TLB entry are transferred from the
appropriate MAS registers and MMUCR3 when the tlbwe completes.

The TLB 7-bit congruence class hash function is shown in Table 6-8. The table describes how each individual
TLB index bit (that is, congruence class address bit) is formed by XORing different sets of EPN bits (and
possibly PID bits) based on the page size. This function is used whenever an entry is being searched for
(either due to servicing an ERAT miss, or for tlbsx[.], a specific virtual address based invalidation, or when
either the tlbre or tlbwe instructions are executed). For example, when searching for a 4 K page containing a
nonzero TID value, TLB congruence class index bit 6 is determined by the following function:
TLB_CC_INDEX(6) = EPN(51) XOR EPN(44) XOR EPN(37) XOR PID(15).

Writing TLB entries with tlbwe can also be made conditional (that is, dependent on the existence of a reser-
vation held by the executing thread) by using the write qualifier field MAS0[WQ]. The reservation, which is
tagged with a specific virtual address, can be established by the tlbsrx. instruction. The TLB write conditional
form is enabled by setting MAS0[WQ] = 01. Alternately, the tlbwe can be made to ignore the reservation and
always write (MAS0[WQ] = 00) or can simply clear the reservation without writing the TLB contents
(MAS0[WQ] = 10). See Section 6.15 TLB Reservations and TLB Write Conditional (Category E.TWC) for
more details.

Table 6-8. TLB Congruence Class Hashing Function (of EPN Address Bits)

TID1 TLB CC
Index Bit

PID
Bits2

Page Size

4 KB 64 KB 1 MB3 16 MB 256 MB3 1 GB

TID  0
Entries

6 13 51 44 37 47 37 43 36 39 35 33

5 12 50 43 36 46 36 42 35 38 34 32

4 11 49 42 35 45 35 41 34 37 33 31

3 10 48 41 34 44 34 40 33 36 32 32 30

2 9 47 40 33 43 40 33 39 32 35 31 31 29

1 8 46 39 32 42 39 32 38 31 34 30 30 28 28

0 7 45 38 31 41 38 31 37 30 33 29 29 27 27

TID = 0
Entries

6 - 51 44 37 47 37 43 36 39 35 33

5 - 50 43 36 46 36 42 35 38 34 32

4 - 49 42 35 45 35 41 34 37 33 31

3 - 48 41 34 44 34 40 33 36 32 32 30

2 - 47 40 33 43 40 33 39 32 35 31 31 29

1 - 46 39 32 42 39 32 38 31 34 30 30 28 28

0 - 45 38 31 41 38 31 37 30 33 29 29 27 27

1. The entry’s translation ID used to match PID can be either nonzero, in which case the PID is included in the hash, or can be zero,
which is a wildcard match for any PID value, and therefore PID is not included in the hash.

2. For all page sizes, when the ENTRY.TID value is known or assumed to be nonzero, the 7 LSBs of the 14-bit PID value (bits 7:13 of
PID bits 0:13) are XORed with the resulting EPN hash function to determine the final congruence class (CC).

3. Only these page sizes are valid for indirect (IND = 1) entries. All page sizes are valid for direct entries, except for 256 MB.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 215 of 864

Writing TLB entries with tlbwe is supervisory privileged and is executable by either the hypervisor or a guest
operating system (MSR[GS] = 1). The guest’s view of real addresses are actually termed “logical addresses”
and must be converted to the actual system real addresses (that the hypervisor controls). This conversion is
controlled by the LRAT facility (Category E.HV.LRAT). When a tlbwe is executed in guest mode, the fully
associative LRAT entries are searched for a matching logical address, and, if found, the guest’s logical
address is converted to a real address before being written into the TLB. If a match is not found in the LRAT,
an embedded hypervisor exception is raised. See Section 6.8 Logical to Real Address Translation Array
(Category E.HV.LRAT) on page 209 for a detailed description of this facility.

When executing a tlbwe, the hardware calculates the parity to be recorded in the entry using the contents of
the MAS registers and MMUCR3. If the parity bits stored for the particular entry that is read by the tlbre indi-
cate a parity error, the parity error machine check exception is generated. See Section 6.13.1 Parity Errors
Generated from tlbre or eratre for more information about the parity operation.

6.9.2 TLB Search Instruction (tlbsx[.])

The tlbsx[.] instruction can be used to locate an entry in the TLB that is associated with a particular virtual
address. This instruction forms an effective address for which the TLB is to be searched, in the same way
data storage access instructions perform their address calculation, by adding the contents of registers RA (or
the value 0 if RA = 0) and RB together. The MAS5[SGS], MAS5[SLPID], MAS6[SAS], and MAS6[SPID] fields
then provide the guest state, logical partition ID, address space, and process ID portions of the virtual
address, respectively. The MAS6[SIND] is also used to differentiate between direct versus indirect TLB
entries. Next, the TLB is searched for this virtual address; the search process disables the comparison to the
process ID if the TID field of a given TLB entry is 0 (see Section 6.2.4 TLB Match Process on page 189).
Finally, the EPN, TID, TSIZE, and TLB way index of the matching entry are written into the MAS2[EPN],
MAS1[TID], MAS1[TSIZE], and MAS0[ESEL] fields respectively. These values can then serve as the source
values to calculate the congruence class index hash for a subsequent tlbre or tlbwe instruction, to read or
update the entry. If no matching entry is found, the target MAS register contents are set to default values (see
Section 6.17.28 MAS Register Update Summary on page 275).

The “record form” of the instruction (tlbsx.) updates CR[CR0]2 with the result of the search. If a match is
found, CR[CR0]2 is set to 1; otherwise, it is set to 0.

When the TLB is searched using a tlbsx instruction, if a matching entry is found, the parity calculated for the
tag (EPN portion) is compared to the parity stored in the entry. A mismatch causes a parity error exception.
Parity errors in word 1 (the RPN portion) of the entry do not cause parity error exceptions when executing a
tlbsx instruction.

6.9.3 TLB Search and Reserve Instruction (tlbsrx.)

The tlbsrx. instruction can be used to search for the existence of an entry in the TLB that is associated with a
particular virtual address. This instruction forms a virtual address for which the TLB is to be searched, in the
same manner as the tlbsx[.] instruction. However, the tlbsrx. instruction does not return the entry contents to
the MAS registers, but rather sets a reservation associated with the virtual address that can be used to qualify
(enable) subsequent tlbwe instructions. This TLB write conditional property of the tlbwe instruction is
controlled by the MAS0[WQ] field. See Section 6.15 TLB Reservations and TLB Write Conditional (Category
E.TWC) for more details.

Finally, an indication is provided in CR[CR0]2 as to the search results so that software can decide how to
proceed if a duplicate entry already exists for the virtual address associated with the search. This can occur
due to multiple threads racing to install the same TLB entry for a similar page miss.

User’s Manual

A2 Processor

Memory Management

Page 216 of 864
Version 1.3

October 23, 2012

6.9.4 TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax)

The tlbivax instruction is used to invalidate TLB and ERAT entries that contain the virtual page number asso-
ciated with the effective address of this instruction. This is a global version of invalidation that affects all
processors containing TLB entries tagged with the same logical partition ID. The MAS6[ISIZE] field contains
the invalidation page size. The MAS5[SGS] and MAS5[SLPID] fields are used as the invalidation guest state
and target logical partition ID. The MAS6[SPID] and MAS6[SAS] fields are used as the invalidation process
ID and address space. The MAS6[SIND] is also used to differentiate between direct versus indirect TLB
entries.

The IPROT value (and ExtClass value for the ERATs) of the tlbivax instruction is always assumed to be “0”.
TLB entries that have been established with IPROT = 1 (and ERAT entries with ExtClass = 1) are not invali-
dated by the tlbivax instruction. This allows privileged software running on the local core to establish an addi-
tional level of masking or “immunization” against invalidations for a unique set of entries.

Programming Note: Only one processing thread per core can issue a tlbivax and/or a tlbsync at a time.
Failure to observe these limitations might result in an unrecoverable system hang. This is usually accom-
plished via software locking.

Engineering Note: It is assumed that two or more A2 processor cores (including the local core) can issue
simultaneous tlbivax operations targeting the same or different logical partitions. It is a requirement of this
processor, however, that the memory subsystem that provides the back invalidate snoops for these transac-
tions must serialize the invalidate snoops such that the A2 core receives only one snoop at a time (that is,
until the required core-sourced handshaking operation is sent for the current snoop operation). It is also a
requirement that the memory subsystem provides a locally sourced versus remotely sourced indication to the
core as part of the invalidation snoop transaction. This is necessary for the local core to differentiate between
a snoop that is the result of a tlbivax instruction issued by a thread on this core (that is stalled at issue and
waiting for a locally sourced snoop to complete) and one that originated from a remote core (which does not
release a locally stalled thread).

These restrictions are not assumed for the local version tlbilx instruction. Because a local tlbilx instruction
does not go to the bus, it does not formally require software locking. Therefore, the MMU needs to know the
difference between a locally originated invalidate operation and a nonlocally generated invalidate.

All TLB entries are tagged with the logical partition ID (LPID), and the tlbivax invalidation snoops from the
bus contain a target LPID value. The handling of the invalidation snoops based on this LPID value is depen-
dent on the configured mode of the receiving core. Although a heterogeneous MMU mode system is not envi-
sioned (that is, one in which some cores are configured for MMU mode, while others are configured as ERAT-
only mode), it might be possible for some system configurations and is therefore described.

When this core is operating in MMU mode (CCR2[NOTLB] = 0), the MMUCR1[TLBI_REJ] bit controls the
behavior of the snoop handling hardware based on the LPID value. If MMUCR1[TLBI_REJ] = ‘0’, the MMU
accepts all incoming invalidation snoop operations regardless of the current LPIDR register contents, and it
includes the incoming LPID snoop value in its TLB entry invalidation match criteria. There is no rejection of
the transaction by the MMU in this case, and a TLBI_COMPLETE is issued to the memory subsystem after
the TLB and ERAT copies have been invalidated. Conversely, when MMUCR1[TLBI_REJ] = ‘1’ and an
incoming invalidation snoop operation is targeted for a different partition from that contained in the local
LPIDR register, the MMU issues an immediate rejection of the transaction to the memory subsystem, and no
TLBI_COMPLETE is issued.

When this core is operating in ERAT-only mode (CCR2[NOTLB] = 1) and an incoming invalidation snoop
operation is targeted for a different partition from that contained in the local LPIDR register, the MMU issues
an immediate rejection of the transaction to the memory subsystem and no TLBI_COMPLETE is issued. If the

Logical Partition ID Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 217 of 864

incoming invalidation snoop LPID value matches the current value of the LPIDR[LPID] field, there is no rejec-
tion of the transaction by the MMU; and a TLBI_COMPLETE is issued to the memory subsystem as after the
appropriate ERAT entries have been invalidated.

For this description, the term “AS” refers to the current addressing space as determined by MSR[IS] for
instruction fetches and by MSR[DS] for data accesses. The term “GS” refers to the current guest state deter-
mined by MSR[GS], and LPID is the value of the LPIDR register. This implementation supports an 88-bit
virtual address (1-bit GS || 8-bit LPID || 1-bit AS || 14-bit PID || 64-bit EA). For the tlbivax instruction, the
MAS5[SGS], MAS5[SLPID], MAS6[SAS], and MAS6[SPID] register fields are concatenated with bits [0:(63-
p), where p = log2(page size)] of the effective address (EA) and are used to form the VPN to match. This
results in a selective invalidation in the TLB and (and shadow copies in the ERATs) based on the VPN, the
page size, and potentially other attributes. In other words, any entry in the TLB with matching TGS, TLPID,
TS, TID, and effective page number (EPN) is invalidated.

When global tlbivax operations are sent over certain system bus structures (such as the PBus), some of the
information associated with the invalidate transaction needs to be condensed to conform to the bus width.
This processor condenses EPN[27:51], the TS and TID, and the page size into a single 42-bit physical
address bus (w = 27, the MSb of the EPN encoding on the A2 core downbound request address bus). The
TGS, IND, and L parameters, along with the targeted LPID value, are sent in the data payload as part of the
downbound invalidation request from the core. This can lead to aliasing when using global invalidations. The
ability to transfer a complete virtual address and other information for global tlbivax transactions is depen-
dent on the manner in which a particular system bus encodes this information and the number of EPN bits
necessary to support a given application and/or logical partition. The PBus, for example, uses this information
for transmission to remote processors as a TLBI_OP bus transaction using a 46-bit physical address bus that
includes the LPID value.

The GS, IND, and L parameters from the tlbivax instruction are extracted from the downbound request data
payload sent from the core to the memory subsystem and transported in the secondary type field of the PBus
TLBI_OP transaction. When the page size is greater than 4 KB (L = 1), the page size is placed in the least
significant 4 bits of the EPN field being sent on the address bus to the system (EPN[48:51]). The EA[27:30]
bits are placed on unused EPN[44:47] bits on the address bus to the system for certain larger page sizes
(used in the hardware hashing function to determine the targeted TLB’s congruence class).

The target TLB and ERAT effective address comparison (entry[EPNw:63-p] =? EPNw:63-p, where p = log2(page
size)) is subject to the limitations imposed by the physical core to memory subsystem address bus width (and
potentially other physical system address bus bottlenecks). The A2 core supports two configurations options
for determination of the MSB of the tlbivax bus transaction EPN field (based on the difference between the
limited EPN width supported by the PBus transaction and other possible bus structures that could support the
full A2 core request bus interface EPN width). MMUCR1[TLBI_MSB] controls this selection.

The EPN encoding of the A2 core request bus interface supports a variable value for “w” based on supported
page sizes and MMUCR1[TLBI_MSB]. This value of w is used directly for the EPN comparison for TLB
entries. For the ERAT shadow copies, a constant value of w = 31 is used that results in potentially more
generous invalidations than those of the TLB depending on page size.

For the downbound core generated tlbivax request to the memory subsystem, certain large page sizes
contain unused LSBs of the EPN field. These unused bits are overlaid with more significant EPN bits in
certain cases. The downbound request EPN field encoding is implemented as shown in Table 6-9.

virtual page number

User’s Manual

A2 Processor

Memory Management

Page 218 of 864
Version 1.3

October 23, 2012

6.9.5 TLB Invalidate Local (Indexed) Instruction (tlbilx)

The tlbilx instruction is used to invalidate TLB and ERAT entries that contain the virtual page number associ-
ated with the effective address of this instruction. This is a local version of invalidation that affects only the
local processor’s TLB and ERAT entries. The “T” parameter of this instruction dictates how selective (or
specific) the invalidation is to be. The MAS6[ISIZE] field contains the invalidation page size. The MAS6[SPID]
and MAS6[SAS] fields are used as the invalidation process ID and address space. The MAS6[SIND] is used
to differentiate between direct versus indirect TLB entries for T = 1 and T = 3 invalidations. MAS6[SIND] is
used as a literal IND bit match value for T = 3 (invalidate by VA), or alternately it is used as the IND bit match
enable (when set to ‘1’) with the match value being ‘0’ for T = 1 (invalidate by PID). This second usage allows
for invalidation of only direct entries when invalidating based on process ID.

The IPROT value (and ExtClass value for the ERATs) of the tlbilx instruction is always assumed to be “0”.
TLB entries that have been established with IPROT = 1 (and ERAT entries with ExtClass = 1) are not invali-
dated by the tlbilx instruction. This allows privileged software running on the local core to establish an addi-
tional level of masking, or “immunization” against invalidations for a unique set of entries. This includes
requests to invalidate all entries or all entries of a certain process ID or class.

6.9.6 TLB Sync Instruction (tlbsync)

The tlbsync instruction is used to synchronize software TLB management operations in a multiprocessor
environment with hardware-enforced coherency. It is provided in support of software compatibility between
Power ISA-based systems.

Table 6-9. Supported EPN[27:51] Field Values in Downbound TLBIVAX Request

Page Size MMUCR1
[TLBI_MSB] EPN[27:30]2 EPN[31:33] EPN[34:35] EPN[36:39] EPN[40:43] EPN[44:47] EPN[48:51] TLB “w”

Value3

4 KB (L = 0) 0 EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] EA[48:51] 31

64 KB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] 0b0011 31

1 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[27:30] 0b0101 27

16 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[23:26] EA[27:30] 0b0111 23

256 MB1 (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[19:22] EA[23:26] EA[27:30] 0b1001 19

1 GB (L = 1) EA[27:30] EA[31:33] EA[17:18] EA[19:22] EA[23:26] EA[27:30] 0b1010 17

4 KB (L = 0) 1 EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] EA[48:51] 27

64 KB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] 0b0011 27

1 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[23:26] 0b0101 23

16 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[19:22] EA[23:26] 0b0111 19

256 MB1 (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[15:18] EA[19:22] EA[23:26] 0b1001 15

1 GB (L = 1) EA[27:30] EA[31:33] EA[13:14] EA[15:18] EA[19:22] EA[23:26] 0b1010 13

1. This page size is for supported only for IND = 1 invalidations.
2. These EPN bits are not supported in the PBus TLBIVAX_OP address definition (Category B.E.TWC), but might be supported by

other bus structures.
3. The “w” value for ERAT shadow copies in this implementation is always 31 (that is, ERAT arrays do not benefit from additional EA

bits being transported and are subject to more generous EPN aliasing).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 219 of 864

The tlbsync instruction can be used (in memory subsystems that support this behavior) to ensure that the
effects of global tlbivax and erativax operations have been made globally visible. Generally, this behavior
depends on the processor waiting for the memory subsystem to deliver a sync acknowledgment after the
tlbsync has been completed on the bus fabric. In A2, this behavior is controlled by a bit in the XUCR0
register.

6.10 ERAT Management Instructions (Non-Architected)

To enable hypervisor (or “bare-metal” operating system) software to manipulate the ERAT entries directly, a
set of nonarchitected ERAT management instructions is implemented within the A2 core. These instructions
are described briefly in the sections that follow and in detail in Section 12 Implementation Dependent Instruc-
tions on page 481. All of the ERAT management instructions are hypervisor privileged to prevent user and
guest mode programs from affecting the shadow TLB address translation and access control mechanisms.

The processor does not imply any format for the page tables or the page table entries. Software has signifi-
cant flexibility in organizing the size, location, and format of the page table, and in implementing a custom
ERAT entry replacement strategy. For example, software can lock certain ERAT entries that correspond to
frequently used storage so that those entries are never cast out of the ERATs and TLB miss exceptions to
those pages never occur.

Note: The descriptions in the following sections are based on 64-bit mode of operation. See Section 6.11 32-
Bit Mode Memory Management Behavior on page 224 for a description of how these instructions behave dif-
ferently for 32-bit mode operation.

All of the ERAT management instructions are embedded hypervisor privileged to prevent user mode
programs and guest operating system code from directly affecting the ERAT shadow copies. Table 6-10
shows the privilege levels of the various ERAT management instructions.

6.10.1 ERAT Read and Write Instructions (eratre and eratwe)

ERAT entries can be read and written by the eratre and eratwe instructions, respectively. Because an ERAT
entry contains more than 64 bits, multiple eratre/eratwe instructions must be executed to transfer all of the
ERAT entry information. An ERAT entry is divided into two portions: ERAT word 0 and ERAT word 1. The RA
field of the eratre and eratwe instructions designates a GPR from which the low-order bits are used to specify
the index of the ERAT entry to be read or written. An immediate field (WS) designates which word of the

Table 6-10. ERAT Management Instruction Privilege Levels

Instruction Privilege1 Notes

eratre hypervisor ERAT entry real addresses that can be returned are hypervisor privileged data.

eratwe hypervisor Installing ERAT entries is not conditioned by the LRAT facility without hypervisor intervention.

eratsx[.] hypervisor ERAT entry real address contents that can be returned in the event of a search “hit” are hypervisor privi-
leged data.

erativax hypervisor2 Only hypervisor code can invalidate global entries across processors or logical partitions.

eratilx hypervisor Hypervisor code can invalidate guest state ERAT entries when re-assigning logical partitions.

1. Because these instructions do not depend on data in the MAS registers, these instructions (with the exception of erativax) can be
executed in either MMU mode (CCR[NOTLB] = 0) or ERAT-only mode (CCR[NOTLB] = 1).

2. Any attempt to execute the erativax instruction while in MMU mode (CCR2[NOTLB] = 0) results in an illegal instruction exception.

User’s Manual

A2 Processor

Memory Management

Page 220 of 864
Version 1.3

October 23, 2012

ERAT entry is to be transferred (that is, WS = 0 specifies ERAT word 0, and so on). Finally, the contents of
the selected ERAT word are transferred to or from a designated target or source GPR (and the MMUCR0 GS,
TS, TID, ExtClass, and TID_NZ fields, for TLB word 0; see Figure 6-3), respectively.

In previous embedded implementations, carefully planned software sequences and/or software locking was
required when updating entries because of the partial updates to the entries that occur when writing two or
more parts of the entry. In the A2 design, each of the ERAT caches includes four (one per thread) 64-bit RPN
registers that are updated upon eratwe of the RPN portion (WS = 1). Both halves of the ERAT entry are then
updated atomically when eratwe is executed with WS = 0 (EPN portion). The value written into the RPN
portion of the entry is the data most recently written to the RPN holding register.

The fields in each ERAT word are illustrated in Figure 6-3. The bit numbers indicate which bits of the target or
source GPR correspond to each ERAT field. Note that the GS, TS, TID, ExtClass, and TID_NZ fields of ERAT
word 0 are transferred to or from the MMUCR0[TGS], [TS], [TID], [ECL], and [TID_NZ] fields respectively,
rather than to or from the target or source GPR.

When executing an eratwe, the hardware calculates the parity to be recorded in the entry. If the parity bits
stored for the particular word that is read by the eratre indicate a parity error, the parity error machine check
exception is generated. See Section 6.13.1 Parity Errors Generated from tlbre or eratre on page 230 for more
information about parity operation.

6.10.2 ERAT Search Instruction (eratsx[.])

The eratsx[.] instruction can be used to locate an entry in the I-ERAT or D-ERAT that is associated with a
particular virtual address. This instruction forms an effective address for which the selected ERAT is to be
searched, in the same way data storage access instructions perform their address calculation, by adding the
contents of registers RA (or the value 0 if RA = 0) and RB together. The MMUCR0[TGS], MMUCR0[TS], and
MMUCR0[TID] fields then provide the guest state, address space, and process ID portions of the virtual
address, respectively (the logical partition ID portion is not contained in the ERATs in the A2 implementation).
Next, the ERAT is searched for this virtual address; the search process disables the comparison to the
process ID if the TID_NZ field of a given ERAT entry is 0 (see Section 6.2.4 TLB Match Process on

Figure 6-3. ERAT Entry Word Definitions

ERAT Word 0 (WS = 0)

EPN

51 52 53

12

5654 6059 63 75

TIDThdIDSIZEVClass

0

ERAT Word 1 (WS = 1)

RPN

22 51118

ResvAttr U0

63

SR

62

UR

61

SW

60

UW

59

SX

58

UX

5756

E

55

G

54

M

53

I

52

W

15

U3

14

U2

13

U1

68

X

6455

ExtClass TSGS

65 66 670

7 17

C

16

R

18 21 52 63

WLC

9 10

VF

TID_NZ

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 221 of 864

page 189). Finally, the index of the matching entry is written into the target register (RT). This index value can
then serve as the source value for a subsequent eratre or eratwe instruction, to read or update the entry. If
no matching entry is found, the target register contents are undefined.

Note: Only the RA = 0 variation of this instruction is supported for searching the I-ERAT array (that is, EA is
calculated as RA = 0 + (RB) when MMUCR0[TLBSEL] = 2).

The “record form” of the instruction (eratsx.) updates CR[CR0]2 with the result of the search: if a match is
found, CR[CR0]2 is set to 1; otherwise it is set to 0.

When the ERAT is searched using an eratsx[.] instruction, if a matching entry is found, the parity calculated
for the tag (EPN portion) is compared to the parity stored in the entry. A mismatch causes a parity error
exception. Parity errors in word 1 (RPN portion) of the entry will not cause parity error exceptions when
executing an eratsx[.] instruction (that is, the search operation only relies on the integrity of the EPN portion).

6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruction (erativax)

The erativax instruction is used to invalidate ERAT entries that contain the virtual page number associated
with the effective address of this instruction. The erativax instruction can be executed in “ERAT-only” mode
(CCR2[NOTLB] = ‘1’). Execution of this instruction in MMU mode results in an illegal instruction exception.
This is a global version of invalidation that affects all processors in the same logical partition. The RS[ISIZE]
field contains the invalidation page size. The MMUCR0[TGS] and LPIDR[LPID] fields are used as the invali-
dation guest state and logical partition ID. The MMUCR0[TID] and MMUCR0[TS] fields are used as the inval-
idation process ID and address space.

The extended class (ExtClass) of the erativax instruction is always assumed to be “0”. Entries that have been
established with ExtClass = 1 are not invalidated by this instruction. This allows privileged software running
on the local core to establish an additional level of masking, or “immunization” against invalidations for a
unique set of entries. This includes requests to invalidate all entries or all entries of a certain process ID or
class.

This implementation requires that only one processor at a time can issue an erativax that targets a specific
logical partition (that is, a unique LPIDR[LPID] value) and that only one processing thread per core can issue
an erativax at a time. Failure to observe these limitations might result in an unrecoverable system hang. This
is usually accomplished via software locking. Therefore, it is not possible to have a locally originated erativax
and an erativax from the bus for the same logical partition simultaneously. It is assumed that two or more A2
processor cores (including the local core) can issue simultaneous erativax operations targeting different
logical partitions. It is a requirement of this processor, however, that the memory subsystem that provides the
back invalidate snoops for these transactions must serialize the invalidate snoops such that the A2 core
receives only one snoop at a time (that is, until the required core-sourced handshaking operation is sent for
the current snoop operation). It is also a requirement that the memory subsystem provides a locally sourced
versus remotely sourced indication to the core as part of the invalidation snoop transaction. This is necessary
for the local core to differentiate between an invalidation snoop that is the result of an instruction issued by a
thread on this core (that can be stalled at issue) or that originated from a remote core. Because the ERAT
entries are not tagged with the translation logical partition ID (TLPID), all entries are assumed to reside in the
same logical partition at any one time. If an incoming erativax operation is targeted for a different logical
partition (as determined by the LPIDR register), the MMU rejects it back to the bus. These restrictions are not
assumed for the local version eratilx instruction. Because a local eratilx instruction does not go to the bus, it
does not formally require software locking. Therefore, the MMU needs to know the difference between a
locally originated invalidate operation and a nonlocally generated invalidate.

User’s Manual

A2 Processor

Memory Management

Page 222 of 864
Version 1.3

October 23, 2012

The erativax invalidation snoops from the bus contain a target LPID value. The handling of the invalidation
snoops based on this LPID value is dependent on the configured mode of the receiving core. While a hetero-
geneous MMU mode system is not envisioned (that is, one in which some cores are configured for MMU
mode, while others are configured as ERAT-only mode), it might be possible for some system configurations
and is therefore described.

When the receiving core is operating in MMU mode (CCR2[NOTLB] = 0), the MMUCR1[TLBI_REJ] bit
controls the behavior of the snoop handling hardware based on the LPID value. If MMUCR1[TLBI_REJ] = ‘0’,
the MMU accepts all incoming invalidation snoop operations, regardless of the current LPIDR register
contents, and includes the incoming LPID snoop value in its TLB entry invalidation match criteria. There is no
rejection of the transaction by the MMU in this case, and a TLBI_COMPLETE is issued to the memory
subsystem after the TLB and ERAT copies have been invalidated. Conversely, when MMUCR1[TLBI_REJ] =
‘1’ and an incoming invalidation snoop operation is targeted for a different partition from that contained in the
local LPIDR register, the MMU issues an immediate rejection of the transaction to the memory subsystem,
and no TLBI_COMPLETE is issued.

When the receiving core is operating in ERAT-only mode (CCR2[NOTLB] = 1) and an incoming invalidation
snoop operation is targeted for a different partition from that contained in the local LPIDR register, the MMU
issues an immediate rejection of the transaction to the memory subsystem, and no TLBI_COMPLETE is
issued. If the incoming invalidation snoop LPID value matches the current value of the LPIDR[LPID] field,
there is no rejection of the transaction by the MMU, and a TLBI_COMPLETE is issued to the memory
subsystem after the appropriate ERAT entries have been invalidated.

For this discussion, the term “AS” refers to the current addressing space as determined by MSR[IS] for
instruction fetches and by MSR[DS] for data accesses. This implementation supports a 88-bit virtual address
(1-bit GS || 8-bit LPID || 1-bit AS || 14-bit PID || 64-bit EA). For the erativax instruction, the MMUCR0[TGS],
[TS], [TID], and the LPIDR[LPID] register fields (TGS || LPID || TS || TID) are concatenated with bits [0:(63-p)]
of the EA, where p = log2(page size), and are used to form the VPN to match. In other words, any nonpro-
tected entry in an ERAT in the same logical partition with matching TGS, TS, TID, effective page number
(EPN), and page size, or conditionally matching only page class, or conditionally matching only page TID, or
conditionally all non-protected entries is invalidated. The IS (invalidation select) field controls this, and is
provided in RS[56:57] of the erativax instruction. Table 6-11 gives details of the implementation of the IS
field.

Table 6-11. Summary of Supported IS Field Values in ERATIVAX

MMU Mode IS Field Local/Global Behavior

ERAT-only 00 Global INVAL_ALL
All nonprotected entries associated with the logical partition “lpid” are invalidated.

ERAT-only 01 Global INVAL_TID
All nonprotected entries associated with logical partition “lpid” that match TID are invali-
dated.

ERAT-only 10 Global INVAL_CLASS
All nonprotected entries associated with logical partition “lpid” that match CLASS are
invalidated.

ERAT-only 11 Global The logic is as selective as possible when invalidating nonprotected entries associated
with logical partition “lpid”. The invalidation match criteria is EPN[31:(63-p)], TGS, TS,
TID, and SIZE.

TLB mode - - Not supported; illegal instruction exception

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 223 of 864

When global erativax operations are sent over certain system bus structures (such as the PBus), some of the
information associated with the invalidate transaction needs to be condensed to conform to the bus width.
This processor condenses EPN[27:51], the TS and TID, and the page size into a single 42-bit physical
address bus (w = 27, the MSb of the EPN encoding on the A2 core downbound request address bus). The
TGS, IND, and L parameters, along with the targeted LPID value, are sent in the data payload as part of the
downbound invalidation request from the core. This can lead to aliasing when using global invalidations. The
ability to transfer complete virtual address and other information for global erativax transactions is dependent
on the manner in which a particular system bus encodes this information and the number of EPN bits neces-
sary to support a given application and/or logical partition. The PBus, for example, uses this information for
transmission to remote processors as a TLBI_OP bus transaction using a 46-bit physical address bus that
includes the LPID value.

The GS, IND, and L parameters from the erativax instruction (of course, IND = 0 always for this instruction)
are extracted from the downbound request data payload sent from the core to the memory subsystem and
transported in the secondary type field of the PBus TLBI_OP transaction. When the page size is greater than
4 KB (L = 1), the page size is placed in the least significant 4 bits of the EPN field being sent on the address
bus to the system (EPN[48:51]). The EA[27:30] bits are placed on unused EPN[44:47] bits on the address
bus to the system for certain larger page sizes (to be used to complete the hardware hashing function to
determine the targeted TLBs congruence class).

The target ERAT effective address comparison (entry[EPNw:63-p] =? EPNw:63-p, where p = log2(page size)) is
subject to the limitations imposed by the physical core to memory subsystem address bus width (and poten-
tially other physical system address bus bottlenecks). The A2 core supports two configurations options for
determination of the MSB of the erativax bus transaction EPN field (based on the difference between the
limited EPN width supported by the PBus transaction and other possible bus structures that could support the
full A2 core request bus interface EPN width). MMUCR1[TLBI_MSB] controls this selection.

The EPN encoding of the A2 core request bus interface supports a variable value for “w” based on supported
page sizes and MMUCR1[TLBI_MSB]. This value of w is used directly for the EPN comparison for TLB
entries (for example, in MMU mode tlbivax instructions). For the ERAT shadow copies, a constant value of w
= 31 is used, which results in potentially more generous invalidations than those of the TLB-based hardware
configurations depending on page size. The constant value w = 31 is a limitation imposed by the ERAT array
hardware in this implementation.

For the downbound core generated erativax request to the memory subsystem, certain large page sizes
contain unused LSBs of the EPN field. These unused bits are overlaid with more significant EPN bits in
certain cases. The downbound request EPN field encoding is implemented as shown in Table 6-12.

User’s Manual

A2 Processor

Memory Management

Page 224 of 864
Version 1.3

October 23, 2012

6.10.4 ERAT Invalidate Local (Indexed) Instruction (eratilx)

The eratilx instruction is used to invalidate local ERAT entries that contain the virtual page number associ-
ated with the effective address of this instruction, or alternately, that contain certain specific values of param-
eters such as process ID, class, and so forth. This instruction can be executed in either ERAT-only mode or
MMU mode; it has no effect on the underlying TLB structure (if it exists in a particular MMU implementation).
The RS source register contains the page size and class of the invalidation, along with an invalidation select
(IS) field that determines how specific (or selective) the invalidation transaction is to be.

The extended class (ExtClass) of the eratilx instruction is always assumed to be “0”. Entries that have been
established with ExtClass = 1 are not invalidated by this instruction. This allows privileged software running
on the local core to establish an additional level of masking, or “immunization” against invalidations for a
unique set of entries. This includes requests to invalidate all entries, or all entries of a certain class or process
ID.

This instruction is not globally broadcast to other processors in the system.

6.11 32-Bit Mode Memory Management Behavior

When this processor’s machine state is changed to operate in 32-bit mode, the virtual address translation
mechanism operates essentially the same as described elsewhere in this document for 64-bit mode, but
there are nuances that users need to be aware of. The effective addresses for data loads and stores that are
seen by the D-ERAT, and the instruction fetch addresses as seen by the I-ERAT, are modified such that the
upper 32-bits of the effective address are zeroed before being compared in the ERAT logic. This means that
entries installed for 32-bit processes either directly by management instructions in ERAT-only mode, or by

Table 6-12. Supported EPN[27:51] Field Values in Downbound erativax Request

Page Size MMUCR1
[TLBI_MSB] EPN[27:30]1 EPN[31:33] EPN[34:35] EPN[36:39] EPN[40:43]3 EPN[44:47] EPN[48:51] ERAT “w”

Value2

4 KB (L = 0) 0 EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] EA[48:51] 31

64 KB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] 0b0011 31

1 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[27:30] 0b0101 31

16 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[23:26] EA[27:30] 0b0111 31

1 GB (L = 1) EA[27:30] EA[31:33] EA[17:18] EA[19:22] EA[23:26] EA[27:30] 0b1010 31

4 KB (L = 0) 1 EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] EA[48:51] 31

64 KB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[44:47] 0b0011 31

1 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[40:43] EA[23:26] 0b0101 31

16 MB (L = 1) EA[27:30] EA[31:33] EA[34:35] EA[36:39] EA[19:22] EA[23:26] 0b0111 31

1 GB (L = 1) EA[27:30] EA[31:33] EA[13:14] EA[15:18] EA[19:22] EA[23:26] 0b1010 31

1. These EPN bits are not supported in the PBus TLBIVAX_OP address definition (Category B.E.TWC), but might be supported by
other bus structures.

2. The “w” value for ERAT shadow copies in this implementation is always 31 (that is, ERAT arrays do not benefit from additional EA
bits being transported and are subject to more generous EPN aliasing).

3. For IS = ‘10’ (invalidate by class), EPN bits 42:43 contain the class value to be targeted, which is derived from RS(58:59).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 225 of 864

TLB hit reloads in MMU mode, need to have the upper 32 bits of the effective page number zeroed at the time
of installation to have effective addresses compare successfully on these entries. This is done automatically
in hardware to the source operand when using the tlbwe instruction in 32-bit mode.

The upper 32 bits of the A2 processor’s 64-bit GPR hardware structures are undefined in 32-bit mode (that is,
the upper 32 bits can contain undefined data left over from a 64-bit to 32-bit state transition). Because the
TLB management instructions rely on GPRs as source and target registers, these instructions operate some-
what differently in 32-bit mode. These differences are described below.

6.11.1 32-Bit Mode TLB Read and Write Instructions (tlbre and tlbwe)

The TLB entries are read from and written to using the tlbre and tlbwe instructions, respectively. The MMU
Assist Registers (MAS) are used as destination or source for these instructions. However, in 32-bit mode
operation, the upper 32 bits of EPN(0:31) are treated as zeros. This means that the TLB entry EPN(0:31) bits
are set to zeros when tlbwe is executed in 32-bit mode. Likewise, the upper 32 bits of MAS2[EPN] are set to
zeros when tlbre is executed in 32-bit mode. Because the real page number is broken up into disjoint 32-bit
registers (MAS3[RPNL] and MAS7[RPNU]), the full real page number (RPN) is transferred between the TLB
entry and the appropriate MAS registers.

Note: The A2 hardware structures that embody the TLB and ERATs physically contain 52 bits that represent
the EPN in 64-bit mode. In 32-bit mode, the upper 32 bits of the EPN (EPN[0:31]) are zeroed in the source
operand of the tlbwe instruction (source data from MAS2[EPN] in this case). This is not the case when creat-
ing entries via the tlbwe instruction in 64-bit mode. When 64-bit mode supervisory software creates entries
intended to be used in the 32-bit machine state, it must create such entries with the upper 32-bits of the EPN
zeroed for 32-bit mode translation compares to succeed.

6.11.2 32-Bit Mode TLB Search Instruction (tlbsx[.])

The tlbsx[.] instruction is used to locate an entry in the TLB that is associated with a particular virtual
address. This instruction forms an effective address for which the TLB is to be searched, in the same way
data storage access instructions perform their address calculation, by adding the contents of registers RA (or
the value 0 if RA = 0) and RB together. In 32-bit mode, this instruction operates essentially the same as the
64-bit mode version (that is, bits 0 to 51 of the EPN are still compared to the contents of the ERAT or TLB
entry’s EPN, assuming a 4 KB page size). However, in 32-bit mode, address bits 0-31 of the effective
address are forced to zero before comparison. This implies that the effective page number (EPN) in the TLB
entries that pertain to the current 32-bit process need to have been created with zeros in the upper 32-bits for
a search EPN compare to succeed.

6.11.3 32-Bit Mode TLB Search and Reserve Instruction (tlbsrx.)

The tlbsrx. instruction can be used to search for the existence of an entry in the TLB that is associated with a
particular virtual address. This instruction operates essentially the same as the 64-bit mode version.
However, in 32-bit mode, address bits 0-31 of the effective address are forced to zero before comparison.
This implies that the effective page number (EPN) in the TLB entries that pertain to the current 32-bit process
needs to have been created with zeros in the upper 32-bits for a search compare to succeed and a reserva-
tion to be established. Assuming a reservation is successfully established, the upper 32-bits of the reserva-
tion EPN are set to zeros. Any subsequent tlbwe conditional (with MAS0[WQ] = ‘01’) succeeds only if
MAS2[EPN] bits 0:31 appear to be zero as well (either set to zeros via a 64-bit mode mtspr, or the tlbwe
conditional is also executed in 32-bit mode).

User’s Manual

A2 Processor

Memory Management

Page 226 of 864
Version 1.3

October 23, 2012

6.11.4 32-Bit Mode TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax)

The tlbivax instruction is used to invalidate TLB (and ERAT) entries that contain the virtual page number
associated with the effective address of this instruction. This instruction operates essentially the same as the
64-bit mode version. However, in 32-bit mode, address bits 0:31 of the effective address are forced to zero
before forwarding the invalidation snoops to target processors. This implies that the effective page number
(EPN) in the TLB (and ERAT) entries that pertain to the current 32-bit process need to have been created
with zeros in the upper 32-bits for an invalidate EPN compare to succeed and invalidation to occur.

6.11.5 32-Bit Mode TLB Invalidate Local (Indexed) Instruction (tlbilx)

The tlbilx instruction is used to invalidate local TLB (and ERAT) entries that contain the virtual page number
associated with the effective address of this instruction or, alternately, that contain certain specific values of
parameters such as process ID.

This instruction operates essentially the same as the 64-bit mode version. However, in 32-bit mode, address
bits 0:31 of the effective address are forced to zero before comparison. This implies that the effective page
number (EPN) in the TLB (and ERAT) entries that pertain to the current 32-bit process need to have been
created with zeros in the upper 32-bits for an invalidate EPN compare to succeed and invalidation to occur.

6.11.6 32-Bit Mode TLB Sync Instruction (tlbsync)

The 32-bit mode tlbsync instruction behavior is identical to 64-bit mode.

6.11.7 32-Bit Mode ERAT Read and Write Instructions (eratre and eratwe)

In 32-bit mode operation, the ERAT entries are read from and written to using the eratre and eratwe instruc-
tions, respectively. However, because an ERAT entry contains more than 32 bits, multiple eratre/eratwe
instructions must be executed to transfer all of the entry information. In 32-bit mode, an ERAT entry is divided
into three portions: ERAT word 0, word 1, and word 2. The immediate field (WS), which designates which
word of the ERAT entry is to be transferred (that is, WS = 0 specifies ERAT word 0, and so on), is modified to
use three values instead of only two in 64-bit mode.

In the A2 design, each of the ERAT caches includes four (one per thread) 64-bit RPN registers that are
updated upon eratwe of the RPN or attribute portion (WS = 1 or WS = 2). All three portions of the ERAT entry
are then updated atomically when eratwe is executed with WS = 0 (EPN portion). The value written into the
RPN portion of the entry is the data most recently written to the RPN holding register.

The fields in each ERAT word are illustrated in Figure 6-4. The bit numbers indicate which bits of the target or
source GPR correspond to each ERAT field. Note that the GS, TS, TID, and ExtClass fields of ERAT word 0
are transferred to or from the MMUCR0[TGS], [TS], [TID], and [ECL] fields respectively, rather than to or from
the target/source GPR.

Note: The A2 hardware structures that embody the ERATs physically contain 52 bits that represent the EPN
in 64-bit mode. In 32-bit mode, the upper 32 bits of the EPN (EPN[0:31]) are zeroed in the source operand of
the eratwe instruction. This is not the case when creating entries via the eratwe instruction in 64-bit mode.
When 64-bit mode supervisory software creates entries intended to be used in 32-bit machine state, it must
create such entries with the upper 32-bits of the EPN zeroed for 32-bit mode translation compares to suc-
ceed.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 227 of 864

6.11.8 32-Bit Mode ERAT Search Instruction (eratsx[.])

In 32-bit mode, the eratsx[.] instruction is used to locate an entry in the I-ERAT or D-ERAT that is associated
with a particular virtual address. This instruction forms an effective address for which an ERAT is to be
searched, in the same way data storage access instructions perform their address calculation, by adding the
contents of registers RA (or the value 0 if RA = 0) and RB together. This instruction operates essentially the
same as the 64-bit mode version (that is, bits 0 to 51 of the EPN are still compared to the contents of the
ERAT entry’s EPN, assuming a 4 KB page size). However, in 32-bit mode, address bits 0:31 of the effective
address are forced to zero before comparison. This implies that the effective page number (EPN) in the
ERAT entries that pertain to the current 32-bit process need to have been created with zeros in the upper 32-
bits for a search EPN compare to succeed.

6.11.9 32-Bit Mode ERAT Invalidate Virtual Address (Indexed) Instruction (erativax)

The erativax instruction is used to invalidate ERAT entries that contain the virtual page number associated
with the effective address of this instruction. This instruction operates essentially the same as the 64-bit mode
version. However, in 32-bit mode, address bits 0-31 of the effective address are forced to zero before

Figure 6-4. ERAT Entry Word Definitions for 32-Bit Mode

ERAT Word 0 (WS = 0)

4432

ERAT Word 2 (WS = 2)

50 514340

ResvAttr U0

63

SR

62

UR

61

SW

60

UW

59

SX

58

UX

5756

E

55

G

54

M

53

I

52

W

47

U3

46

U2

45

U1

39 49

C

48

R

52 63

WLC

41

32

ERAT Word 1 (WS = 1)

RPN(32:51)

51 52 6354

RPN(22:31)

53

42

VF

EPN

51 52 53 5654 6059 63 75

TIDThdIDSIZEVClass

68

X

6455

ExtClass TSGS

65 66 6732

TID_NZ

User’s Manual

A2 Processor

Memory Management

Page 228 of 864
Version 1.3

October 23, 2012

forwarding invalidation snoops to target processors. This implies that the effective page number (EPN) in the
ERAT entries that pertain to the current 32-bit process need to have been created with zeros in the upper 32-
bits for an invalidate EPN compare to succeed and invalidation to occur.

6.11.10 32-Bit Mode ERAT Invalidate Local (Indexed) Instruction (eratilx)

The eratilx instruction is used to invalidate local ERAT entries that contain the virtual page number associ-
ated with the effective address of this instruction or, alternately, that contain certain specific values of param-
eters such as process ID, class, and so forth. This instruction has no effect on the underlying TLB structure (if
it exists in a particular MMU implementation).

This instruction operates essentially the same as the 64-bit mode version. However, in 32-bit mode, address
bits 0:31 of the effective address are forced to zero before comparison. This implies that the effective page
number (EPN) in the ERAT entries that pertain to the current 32-bit process needs to have been created with
zeros in the upper 32-bits for an invalidate EPN compare to succeed and invalidation to occur.

6.12 Page Reference and Change Status Management

When performing page management, it is useful to know whether a given memory page has been referenced,
and whether its contents have been modified. Note that this might be more involved than determining whether
a given TLB entry has been used to reference or change memory, because multiple TLB entries can translate
to the same memory page. If it is necessary to replace the contents of some memory page with other
contents, a page that has been referenced (accessed for any purpose) is more likely to be maintained than a
page that has never been referenced. If the contents of a given memory page are to be replaced and the
contents of that page have been changed, the current contents of that page must be written to backup phys-
ical storage (such as a hard disk) before replacement.

Similarly, when performing TLB management, it is useful to know whether a given TLB entry has been refer-
enced. When making a decision about which entry of the TLB to replace to make room for a new entry, an
entry that has never been referenced is a more likely candidate to be replaced.

The A2 core does not automatically record references or changes to a page or TLB entry. Instead, the inter-
rupt mechanism can be used by system software to maintain reference and change information for TLB
entries and their associated pages, respectively.

Execute, read and write access control exceptions can be used to allow software to maintain reference and
change information for a TLB entry and for its associated memory page. The following description explains
one way in which system software can maintain such reference and change information.

The TLB entry is originally written into the TLB with its access control bits (UX, SX, UR, SR, UW, and SW) off.
The first attempt of application code to use the page therefore causes an access control exception and a
corresponding instruction or data storage interrupt. The interrupt handler can choose to record the reference
to the TLB entry and to the associated memory page in a software table, and then turns on the appropriate
access control bit and referenced bit, thereby indicating that the particular TLB entry has been referenced. An
initial read from the page is handled by turning on the appropriate UR or SR access control bit and setting the
R bit, leaving the page “read-only” and referenced. Subsequent read accesses to the page via that TLB entry
proceed normally.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 229 of 864

If a write access is later attempted, a write access control exception type of data storage interrupt occurs. The
interrupt handler can choose to record the change status to the memory page in a software table, and then
turns on the appropriate UW or SW access control bit and the C bit, thereby indicating that the memory page
associated with the particular TLB entry has been changed. Subsequent write accesses to the page via that
TLB entry proceed normally.

Alternately, software can choose to generate access control exceptions based additionally on the status of
the reference and change bits by setting the MMUCR1[REE] (reference exception enable) and/or
MMUCR1[CEE] (change exception enable) configuration bits. Software can then initialize TLB entries with
appropriate execute, read, and write access controls enabled ahead of time with the reference and change
bits set to 0. The first attempt to execute, load, or store into the associated memory page then generates the
appropriate instruction or data storage interrupt. The handler then needs only to update the reference or
change bits for the entry. Certain touch and lock set and clear instructions are excluded from the set of load
and store instructions that can cause the REE and CEE related storage interrupts. This is done to maintain
consistency with architectural special cases of access-control exception generation. The excluded set of
instructions is: dcbt, dcbtep, dcbtst, dcbtstep, icbt, dcbtls, dcbtstls, dcblc, icbtls, and icblc.

Because the reference and change (R and C) bits are maintained in the TLB entries, recording page manage-
ment changes to a software table in memory is optional. The R and C bits are transferred to and from TLB
entries using the MMUCR3[R,C] fields. The tlbsx[.] instruction can be used by page management software to
find a TLB entry matching a particular virtual address, followed by a tlbre of that entry. Then the R and C bits
can be inspected to determine if the page had been previously referenced or changed.

6.13 TLB and ERAT Parity Operations

The TLB and ERAT devices are parity protected against soft errors in the TLB and ERAT memory arrays that
are caused by alpha particle impacts. If such errors are detected, the CPU can be configured to vector to the
machine check interrupt handler, which can restore the corrupted state of the TLB (or ERAT) from the page
tables in system memory.

The TLB is a 512-entry 4-way set associative RAM with 92 tag bits, 56 data bits, and 20 parity bits (168 bits)
per entry. Tag bits are parity protected with 13 parity bits for the 92-bit tag, and 7 parity bits for 56 bits of data.
The parity bits are stored in the TLB entries in fields not accessible to software.

The ERATs are 16-entry and 32 -entry, fully associative CAMs with 75 tag bits, 51 data bits, and 17 parity bits
(143 bits) per entry. Tag bits are parity protected with 10 parity bits for the 75-bit tag (that is, those read and
written as word 0 by the eratre and eratwe instructions) and 7 parity bits for 51 bits of data (that is, those read
and written as word 1 by the eratre and eratwe instructions). The parity bits are stored in the ERAT entries in
fields not accessible to software. The ERAT entry width does not necessarily match the TLB entry width due
to the abbreviated form of tag and data contents, and the absence of reserved bits, in the ERATs.

TLB parity bits are set any time the TLB is updated, which is always done either via a tlbwe instruction, or by
hardware page table translation. TLB parity is checked each time the TLB is searched or read; that is, either
refilling the I-ERAT or D-ERAT, or as a result of a tlbsx[.] or tlbre instruction. When executing an I-ERAT or
D-ERAT refill, parity is checked for the tag and data words. When executing a tlbsx[.], the data side outputs
(RPN, attribute, and access protection bits) are not used for the search translation, so only the tag parity is
checked. When executing a tlbre, parity is checked for both tag and data components.

Similarly, ERAT parity bits are set any time the ERAT is updated, which is done via either loading an ERAT
entry from the TLB, or as the result of an eratwe instruction (for software-managed ERAT entries). ERAT
parity is checked each time the ERAT is searched or read (that is, either during an address translation, or as

central processing unit

random access memory

content addressable memory

User’s Manual

A2 Processor

Memory Management

Page 230 of 864
Version 1.3

October 23, 2012

a result of an eratsx or eratre instruction). When executing an I-ERAT or D-ERAT translation, parity is
checked for the tag and data words. When executing an eratsx, only the tag parity is checked. When
executing an eratre, parity is checked only for the word specified in the WS field of the eratre instruction.

When a parity error is detected during an address translation, the subsequent actions taken by hardware are
dependent on the setting of the CCR2[NOTLB] and XUCR4[MMU_MCHK] configuration bits. When config-
ured as CCR2[NOTLB] = 0 and XUCR4[MMU_MCHK] = 0, the structure that detects a translation parity (or
multihit) error is flash invalidated (including protected entries) for all entries (in the case of ERATs) or all
entries in the congruence class (in the case of the TLB). The offending instruction is flushed and replayed.
The TLB and ERAT caches subsequently treat the instruction replay like a miss and proceed to either reload
the entry with correct parity (in the case of an ERAT miss, TLB hit), or generate a TLB exception where soft-
ware can take appropriate action (TLB miss). When this processor is configured as CCR2[NOTLB] = 0 and
XUCR4[MMU_MCHK] = 1, or when in ERAT-only mode with CCR2[NOTLB] = 1, translation parity (or multihit)
error detection causes a machine check exception. If MSR[ME] is set (which is the usual case), the processor
takes a machine check interrupt. Similarly, detection of a parity error as the result of a tlbre, tlbsx[.], eratre,
or eratsx[.] instruction also causes a machine check exception; if MSR[ME] is set, the processor takes a
machine check interrupt. See Section 14.5.5 CCR2 - Core Configuration Register 2 and Section 14.5.130
XUCR0 - Execution Unit Configuration Register 0 for a detailed description of the NOTLB and MMU_MCHK
configuration bits.

6.13.1 Parity Errors Generated from tlbre or eratre

Because a tlbre or eratre that detects a parity error causes a machine check exception, the target data
facility can only be updated with the TLB or ERAT entry data if the MSR[ME] bit is cleared, preventing the
machine check interrupt. Thus, the usual flow of code that detects a parity error in the TLB (or ERAT) and
then finds out which entry is erroneous proceeds as follows:

1. A tlbre or eratre instruction is executed from hypervisor code, resulting in a parity exception. The excep-
tion sets MCSR[TLBPE], MCSR[IEPE], or MCSR[DEPE], depending on the source of the parity error
(TLB, I-ERAT, or D-ERAT).

2. MSR[ME] = 1, so the CPU vectors to the machine check handler (that is, takes the machine check inter-
rupt) and resets the MSR[ME] bit. Note that even though the parity error causes an asynchronous inter-
rupt, that interrupt is guaranteed to be taken before the tlbre or ieratre instruction completes, and so the
MAS registers (in the case of tlbre) or the target register (RT in the case of eratre) are not updated.

3. The machine check handler code includes a series of tlbre (or eratre) instructions to query the state of
the TLB (or ERAT) and find the erroneous entry. When a tlbre (or eratre) encounters an erroneous entry
and MSR[ME] = 0, the parity exception still happens, setting the MCSR[TLBPE] bits (or MCSR[I/DEPE]
bits). Finally, the instruction completes, since no interrupt is taken because MSR[ME] = 0, updating the
target register with data from the TLB (or ERAT).

As is the case for any machine check interrupt, after vectoring to the machine check handler, the MCSRR0
contains the value of the oldest “uncommitted” instruction in the pipeline at the time of the exception and
MCSRR1 contains the old (MSR) context. The interrupt handler is able to query the Machine Check Status
Register (MCSR) to find out that it was called due to a TLB (or ERAT) parity exception, and then use tlbre (or
eratre) instructions to find the error in the TLB (or ERAT) and restore it from a known good copy in main
memory.

Engineering Note: A parity error on the TLB entry that maps the machine check exception handler code
prevents recovery. In effect, one of the 512 TLB entries is unprotected, in that the machine cannot recover
from an error in that entry. It is possible to add logic to get around this problem, but the reduction in SER

Machine Check Status Register

soft error rate

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 231 of 864

achieved by protecting 511 out of 512 TLB entries is sufficient. Further, the software technique of simply dedi-
cating a TLB entry to the page that contains the machine check handler and periodically refreshing that entry
from a known good copy can reduce the probability that the entry will be used with a parity error to near zero.

Programming Note: In ERAT-only mode (CCR2[NOTLB] = 1), because an ERAT parity error during transla-
tion is treated as a machine check exception, a parity error on the I-ERAT entry that maps the machine check
error exception handler code can prevent recovery. In effect, one of the 16 I-ERAT entries is unprotected
such that the machine cannot recover from an error in that entry. The machine check error handler can expe-
rience recursive re-entrance due to this error. Continued looping in this scenario should result in a watchdog
timeout critical exception, which exits the recursive looping if the critical handler is mapped via a separate 4 K
page ERAT entry. A similar re-entrance error can occur for eratre generated parity errors in the ERAT entry
that maps the machine check handler code. Furthermore, the software technique of simply dedicating a
“pinned” ERAT entry to the page that contains either the miss handler or machine check handler, or both, and
periodically refreshing that entry from a known good copy can reduce the probability that the entry will be
used with a parity error to near zero.

Programming Note: As mentioned above, any tlbre, tlbsx[.], eratre, or eratsx[.] instruction that causes a
machine check interrupt is flushed from the pipeline before it completes. Furthermore, any instruction that
causes a D-ERAT or I-ERAT reload that causes a TLB parity error is flushed before it completes, and is
retried after the miss has been resolved.

6.13.2 Simulating TLB and ERAT Parity Errors for Software Testing

Because parity errors occur in the TLB and ERATs infrequently and unpredictably, it is desirable to provide
users with a way to simulate the effect of a TLB or ERAT parity error so that interrupt handling software can
be exercised. This is exactly the purpose of the 6-bit MMUCR1[PEI] parity error inject field.

Usually, parity is calculated as the even parity for each set of bits to be protected, which the checking hard-
ware expects. This calculation is done as the TLB or ERAT data is stored with a tlbwe and eratwe instruc-
tions, or when the ERAT is reloaded from the TLB. However, if any of the MMUCR1[PEI] bits are set, the
calculated parity for the corresponding bits of the data being stored are inverted and stored as odd parity.
Then, when the data stored with odd parity is subsequently used to refill the D-ERAT or I-ERAT, or accessed
by a tlbsx or tlbre instruction, it causes a parity error exception type of machine check interrupt and exer-
cises the interrupt handling software. The following pseudo-code is an example of how to use the
MMUCR1[PEI] field to simulate a parity error on a TLB entry:

mtspr MASn, Rx ; Setup MAS for EPN, ESEL, and so forth.
mtspr MMUCR1,Rx ; Set some MMUCR1[PEI] bits.
isync ; Wait for the MMUCR1 context to update.
tlbwe ; Transfer MAS data to TLB data.
isync ; Wait for the tlbwe to finish.
mtspr MMUCR1, Rz ; Reset MMUCR1[PEI].
isync ; Wait for the MMUCR1 context to update.
tlbre ; tlbre with bad parity causes interrupt.
...
mfspr Rt,MMUCR1 ; Handler reads MMUCR1[TEEN] entry with bad parity.

The following pseudo-code is an example of how to use the MMUCR1[PEI] field to simulate a parity error on
an ERAT entry:

User’s Manual

A2 Processor

Memory Management

Page 232 of 864
Version 1.3

October 23, 2012

mtspr MMUCR1,Rx ; Set some MMUCR1[PEI] bits, and [CSINV]=11.
isync ; Wait for the MMMUR1 context to update.
eratwe Rs,Ra,1 ; Set up real portion word 1 of ERAT data.
eratwe Rs,Ra,0 ; Write some data to the ERAT with bad parity.
isync ; Wait for the eratwes to finish.
mtspr MMUCR1, Rz ; Reset MMUCR1[PEI].
isync ; Wait for the MMUCR1 context to update.
eratre Rt,Ra,WS ; eratre with bad parity causes interrupt.
...
mfspr Rt,MMUCR1 ; Handler reads MMUCR1[I/DEEN] entry with bad parity.

6.14 ERAT-Only Mode Operation

Two modes of operation are possible for the A2 address translation depending on whether or not a hardware
MMU (TLB based) is present to realize a second-level translation facility. These two modes are termed “MMU
mode” and “ERAT-only mode”. This mode controlled by the CCR2[NOTLB] bit. The MMU mode assumes an
underlying hardware MMU containing a software-managed TLB. The ERAT-only mode assumes no under-
lying MMU TLB and relies solely on the ERAT contents (or shadow TLB arrays) for translation. In either mode,
minimal hardware MMU support exists on the A2 processor for interprocessor invalidation snooping,
assuming the memory subsystem supports these operations.

In MMU mode, the instruction and data ERAT entries (or shadow TLB entries) are ordinarily maintained by
hardware via substitution of aging entries with recently requested replacement entries from the unified TLB
(UTLB, or unified for both instruction and data translations) in the MMU. In ERAT-only mode, the ERAT
entries are directly managed by software, and there is no hardware source for replacement entries (that is,
there is no backing UTLB structure assumed).

The TLB management instructions (which use the MAS registers) are dependent on the existence of a hard-
ware UTLB. The ERAT management instructions are not dependent on the existence of a hardware UTLB.
These instructions have a direct effect on the ERAT entries in ERAT-only mode of operation. The Power ISA
embedded TLB management instructions are implemented to support software management of cached TLB
entries in MMU mode. These instructions include: tlbre, tlbwe, tlbsx[.], tlbsrx., tlbivax, and tlbilx. See
Section 6.9 TLB Management Instructions (Architected) for a detailed description of these instructions.

A set of ERAT management instructions are implemented to support hypervisor software management of
cached ERAT entries in either the ERAT-only mode or MMU mode. These instructions rely on the
MMUCR0[TLBSEL] selection field to determine the targeted hardware structure for the software management
operations (I-ERAT or D-ERAT). These instructions include: eratre, eratwe, eratsx[.], erativax, and eratilx.
See Section 6.10 ERAT Management Instructions (Non-Architected) for a detailed description of these
instructions.

6.15 TLB Reservations and TLB Write Conditional (Category E.TWC)

A TLB write conditional facility exists on the A2 processor to improve performance of TLB miss handling in a
multiprocessor or multithreaded case. Without the TLB write conditional facility, software must hold a soft-
ware lock to prevent other processors or threads from updating a shared TLB or invalidating a TLB entry. A
TLB reservation can be set by a new tlbsrx. instruction before software searches the software page table for
the entry to translate the virtual address that got the TLB miss. Because the page size is not known before the
page table search, the TLB reservation is defined in terms of a VA, not a VPN. A TLB write is conditional

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 233 of 864

based on this TLB reservation. Because TLB writes by other threads reset the reservation and the tlbsrx.
instruction can be used to detect TLB entries created by other threads, there is protection against duplicate
entries. Also, TLB invalidations by other processors and threads reset the reservation, thereby ensuring that
a stale, invalid TLB entry is not created. Because the TLB reservation is set without the page size information,
the tlbivax and tlbilx instructions are defined to specify the page size when the TLB write conditional facility
is supported. The tlbsrx. instruction is executable by a guest operating system. A guest operating system
that uses this instruction on an implementation that supports a logical-to-real-address-translation capability
(as the A2 processor does) can handle a TLB miss without trapping to the hypervisor.

The tlbsrx. instruction and tlbwe instruction with MAS0WQ = 0b01 (termed a “TLB write conditional” opera-
tion) together allow for software to write a TLB entry while ensuring that the entry is not a duplicate entry and
is not a stale or invalid entry. The tlbsrx. instruction has two side effects that occur at the same time:

1. A TLB reservation is established for the virtual address and the associated IND value, and

2. A search of the TLB array is performed for the virtual address.

The TLB reservation is used by a subsequent tlbwe instruction that writes a TLB entry (that is, MAS0ATSEL =
0 or MSRGS = 1) with MAS0WQ = 0b01. The TLB is only written by this tlbwe if the TLB reservation still exists
at the instant the TLB is written. A tlbwe that writes the TLB is said to “succeed.” TLB write conditional cannot
be used for the LRAT.

In this processor, a TLB reservation is composed of a hardware lookaside latch that captures the virtual
address and the IND value associated with the tlbsrx. instruction. The contents of the TLB reservation latch
are shown in Table 6-13. There is a separate TLB reservation latch for each hardware processing thread on
the A2 processor (that is, a total of four TLB reservation latches are implemented on A2).

Table 6-13. TLB Reservation Fields

Field Width
(Bits) Notes

GS 1 Guest State
Set to the value of MAS8TGS when the reservation is established.1

LPID 8 Logical Partition Identifier
Set to the value of MAS8TLPID when the reservation is established.1

AS 1 Address Space
Set to the value of MAS1TS when the reservation is established.1

PID 14 Process Identifier
Set to the value of MAS1TID when the reservation is established.1

EPN 52 Effective Page Number
Set to the value of tlbsrx. instruction’s EA0:51 when the reservation is established.1

IND 1 Indirect
Set to the value of MAS1IND when the reservation is established.1

Class3 2 Class
Set to the value of MMUCR3CLASS when the reservation is established.1

V 1 Valid
Set to ‘1’ when the reservation is established.1
Set to ‘0’ when the reservation is cleared.2

1. A TLB reservation is established only by execution of the tlbsrx. instruction.
2. A TLB reservation can be cleared by several events described elsewhere in this section.
3. These fields are nonarchitected, implementation-specific fields.

User’s Manual

A2 Processor

Memory Management

Page 234 of 864
Version 1.3

October 23, 2012

A TLB reservation is established or set (the reservation latch fields are updated and the valid bit is set to ‘1’),
only by execution of the tlbsrx. instruction. The result of the search of the TLB is irrelevant with respect to the
establishment of the reservation. There is no specific page size associated with the TLB reservation. The TLB
reservation applies to any virtual page that contains the virtual address.

A TLB reservation is cleared by any of the following events:

1. The thread holding the TLB reservation executes another tlbsrx. This clears the first TLB reservation and
establishes a new one.

2. A tlbivax is executed by any thread in the system, and all the following conditions are met:

a. The MAS5SGS and MAS5SLPID values used by the tlbivax match the GS and LPID values associated
with the TLB reservation.

b. The MAS6SPID and MAS6SAS values used by the tlbivax match the PID and AS values associated
with the TLB reservation.

c. The EA31:n-1 values of the tlbivax match the EPN31:n-1 values associated with the TLB reservation,
where n = 64-log2(page size in bytes) and page size is specified by the MAS6ISIZE. The subset of
EA31:n-1 (not EA0:n-1) is used because only this subset of EA bits is transferred with tlbivax transac-
tions for all supported page sizes over the system bus structure.

MAS6SIND is part of the tlbivax invalidation criteria so that unnecessary invalidation of entries, especially
indirect entries, can be avoided. However, this bit is not part of the criteria for a tlbivax clearing a TLB
reservation. A matching TLB reservation needs to be cleared by tlbivax regardless of the IND bit to facil-
itate hypervisor searches of a guest page table for some LRAT miss cases.

3. The thread holding the TLB reservation, or another thread that shares the TLB with this thread, executes
an mtspr to MMUCSR0 that performs a TLB invalidate all operation; and the LPIDR contents of the
thread executing the mtspr matches the LPID value associated with the TLB reservation.

4. If a tlbilx with T = 0 (invalidate all in logical partition) is executed by the thread holding the TLB reserva-
tion, or by a thread that shares the TLB with this thread, and the MAS5SLPID value used by the tlbilx
matches the LPID value associated with the TLB reservation.

5. If a tlbilx with T = 1 (invalidate by PID in logical partition) is executed by the thread holding the TLB reser-
vation, or by a thread that shares the TLB with this thread, and the MAS5SLPID and MAS6SPID values
used by the tlbilx match the LPID and PID values associated with the TLB reservation.

6. If a tlbilx with T = 3 (invalidate by VA in logical partition) is executed by the thread holding the TLB reser-
vation, or by a thread that shares the TLB with this thread, the MAS5SGS, MAS5SLPID, MAS6SPID, and
MAS6SAS values used by the tlbilx match the GS, LPID, PID, and AS values associated with the TLB res-
ervation, and EA0:n-1 values of the tlbilx match the EPN0:n-1 values associated with the TLB reservation,
where n = 64-log2(page size in bytes) and page size is specified by the MAS6ISIZE.

7. A tlbwe instruction is executed by the thread holding the TLB reservation, or by a thread that shares the
TLB with this thread, and all the following are true:

a. An interrupt does not occur as a result of the tlbwe instruction.

b. The MAS8TLPID value used by the tlbwe matches the LPID value associated with the TLB reserva-
tion.

c. The MAS8TGS value used by the tlbwe matches the GS value associated with the TLB reservation.

d. The MAS1TID value used by the tlbwe matches the PID value associated with the TLB reservation.

e. The MAS1IND value used by the tlbwe matches the IND value associated with the TLB reservation.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 235 of 864

f. The MAS1TS value used by the tlbwe matches the AS value associated with the TLB reservation.

g. Bits 0:(n-1) of MAS2EPN used by the tlbwe match the EPN0:n-1 values associated with the TLB reser-
vation, where n = 64-log2(page size in bytes) and page size is specified by the MAS1TSIZE used by
the tlbwe.

h. Either of the following conditions are met:

(1) The MAS0WQ used by the tlbwe instruction is 0b00 (write always).

(2) The MAS0WQ used by the tlbwe instruction is 0b01 (TLB write conditional), and the TLB reserva-
tion for the thread executing the tlbwe exists.

8. The thread that has the TLB reservation or another thread that shares the TLB with this thread, as a
result of a Page Table translation, writes a TLB entry; and all the following conditions are met:

a. The TS and EPN0:n-1 values for the new TLB entry match the corresponding values associated with
the TLB reservation, where n = 64-log2(page size in bytes) and page size is specified by the SIZE
value written to the TLB entry.

b. The TLPID for the new TLB entry matches the LPID associated with the TLB reservation.

c. The TGS for the new TLB entry matches the GS associated with the TLB reservation.

d. The TID for the new TLB entry matches the PID associated with the TLB reservation.

e. The Valid bit for the new TLB entry is 1.

f. The IND value associated with the TLB reservation is 0 (that is, page table translations do not affect
established “indirect” reservations).

Implementations are allowed to clear a TLB reservation for conditions other than those specified above. The
architecture ensures that a TLB reservation is cleared when required per the above requirements, but does
not guarantee that these are the only conditions for clearing a TLB reservation. However, the occurrence of
an interrupt does not clear a TLB reservation.

Aside from the EA31:n-1 aliases that occur for tlbivax operations, the A2 processor defines the following addi-
tional, implementation-specific TLB reservation clear events:

1. A tlbwe instruction is executed by the thread holding the TLB reservation or by a thread that shares the
TLB with this thread, and all the following are true.

a. An interrupt does not occur as a result of the tlbwe instruction.

b. The MAS8TLPID value used by the tlbwe matches the LPID value associated with the TLB reserva-
tion.

c. The MAS8TGS value used by the tlbwe matches the GS value associated with the TLB reservation.

d. The MAS1TID value used by the tlbwe matches the PID value associated with the TLB reservation.

e. The MAS1IND value used by the tlbwe matches the IND value associated with the TLB reservation.

f. The MAS1TS value used by the tlbwe matches the AS value associated with the TLB reservation.

g. Bits 0:(n-1) of MAS2EPN used by the tlbwe match the EPN0:n-1 values associated with the TLB reser-
vation, where n = 64-log2(page size in bytes) and page size is specified by the MAS1TSIZE used by
the tlbwe.

h. Either of the following conditions are met.

(1) The MAS0WQ used by the tlbwe instruction is 0b10 (clear reservation without writing TLB).

User’s Manual

A2 Processor

Memory Management

Page 236 of 864
Version 1.3

October 23, 2012

(2) The MAS0WQ used by the tlbwe instruction is 0b11 (this MAS0WQ reserved setting is treated the
same as the setting of 0b00, or write TLB always).

2. A tlbilx instruction is executed by the thread holding the TLB reservation or by a thread that shares the
TLB with this thread, and any of the following are true:

a. T = 4 and the Class value associated with the TLB reservation equals 0.
b. T = 5 and the Class value associated with the TLB reservation equals 1.
c. T = 6 and the Class value associated with the TLB reservation equals 2.
d. T = 7 and the Class value associated with the TLB reservation equals 3.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 237 of 864

6.16 Hardware Page Table Walking (Category E.PT)

This processor supports the Power ISA Category Embedded.Page Table (E.PT) and the embedded MMU
Architecture Version 2.0 (MAV 2.0). Because this processor also supports the Embedded. Hypervisor (E.HV)
category, the Embedded.Hypervisor.LRAT (E.HV.LRAT) category is also required and supported. Because of
this, hypervisor software must always ensure that at least one valid logical to real address translation (LRAT)
entry exists.

Software can manage translation directly by installing TLB entries, and indirectly by setting up hardware page
tables in memory, which the TLB hardware page table walker can subsequently fetch and cache in the TLB
array. A hardware page table is a variable-sized data structure that specifies the mapping between virtual
page numbers and real page numbers. There can be many hardware page tables. Each page table is defined
by an indirect TLB entry. An indirect TLB entry is an entry that contains the parameter IND = 1.

6.16.1 Searching the TLB for Direct and Indirect Entries

A direct (IND = 0) or an indirect TLB entry (IND = 1) matches the virtual address if all fields match per
Section 6.2.4 TLB Match Process. The TLB is searched for matching direct entries first according to the page
size order dictated by MMUCR2. If no matching direct TLB entries are found, the TLB is then searched for
1 MB indirect entries, followed by 256 MB indirect entries. If a valid 1 MB indirect entry is found, the search
process is discontinued. If there is one and only one matching indirect entry in the associated TLB congru-
ence class being searched, the indirect entry is used to access a page table entry (PTE). If the PTE is valid
(V bit equals “1”), the PTE is installed in the TLB and used to translate the virtual address. The PTE entry
format is described in Section 6.16.3 Hardware Page Table Entry Format. The abbreviated real page number
(ARPN) from the PTE is treated as a logical page number (LPN), and this LPN is subsequently translated by
the LRAT into an RPN before being installed into the TLB. If there is more than one matching direct TLB entry
or more than one matching indirect TLB entry for any calculated TLB congruence class, a machine check
exception is generated.

User’s Manual

A2 Processor

Memory Management

Page 238 of 864
Version 1.3

October 23, 2012

6.16.2 Indirect TLB Entry Page and Sub-Page Sizes

Each indirect TLB entry represents a hardware page table in memory, and there can be many disjoint page
tables existing in various areas of real memory. Each indirect entry has an associated page size (the size of
the virtual address area covered by this indirect entry, or the entry TSIZE field) and a sub-page size (denoting
smaller, same-sized “chunks” of the parent indirect entry page size). This processor supports two combina-
tions of page and sub-page sizes: 1 MB page size with 4 KB sub-page sizes, and 256 MB page size with
64 KB sub-page sizes. These combinations are indicated by the read-only EPTCFG register.

The overall size of each hardware page table is determined by the associated indirect entry page size and
sub-page size. Each of the page table entries (PTEs) of a particular hardware page table is 8 bytes (64 bits)
in length. For this processor, hardware page tables are either 2 KB bytes in length or 32 KB bytes in length.
This calculation is shown in Figure 6-5.

The starting address of a given page table must be aligned to the page table’s size. This virtual linear page
table placement with a given page size and sub-page size results in the page table’s starting real address
LSB being determined by a certain bit of the indirect entry’s RPN field. For the 1 MB/4 KB combination (a
2 KB page table size), the indirect entry RPN[52] is used as the LSB of the base real address of this page
table (that is, RA[53:60] is a given PTE’s offset within that page table). For the 256 MB/64 KB combination (a
32 KB page table size), the indirect entry RPN[48] is used as the LSB of the base real address of this page
table (that is, RA[49:60] is a given PTE’s offset within that page table). For this implementation, the indirect
entry RPN[53] is not required and is therefore treated as a reserved bit in both the TLB and MAS3.

Note: Even though each of the sub-page regions of a given indirect entry are represented by a backing PTE,
each PTE within a page table contains a variable page size field (see for the PTE format). This means that a
given PTE page size does not necessarily have to match the sub-page size of the indirect entry used to find
this PTE (that is, IND = 1 Entry[SPSIZE] does not necessarily equal PTE[Page Size]). For example, an oper-
ating system might choose to use 16 MB pages (a supported direct page size for this processor) in a particu-

Figure 6-5. Indirect Entry to Page Table Size Calculation

. . .
Indirect Entry A
SIZE0 = 1 MB

Sub-pages of
SPSIZE0 = 4 KB

Virtual Memory

1 MB

4 KB
= 256 entries in page table A

Each sub-page
region has an
associated PTE

256 entries  8 bytes/entry = 2 KB (page table A size)

. . .
Indirect Entry B

SIZE1 = 256 MB

Sub-pages of
SPSIZE1 = 64 KB 256 MB

64 KB
= 4 K entries in page table B

Each sub-page
region has an
associated PTE

4 K entries  8 bytes/entry = 32 KB (page table B size)

Embedded Page Table Configuration Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 239 of 864

lar page table. To accomplish this, the operating system needs to install 16 MB/64 KB = 256 duplicates of the
16 MB size PTE so that the first virtual address falling in this 1/16 “chunk” of the 256 MB indirect page will
fetch and install one of the 16 MB PTE duplicates. Subsequently, any virtual address falling in this 16 MB
range is translated by the installed direct 16 MB entry. Installing PTEs in a page table with page sizes smaller
than the associated indirect entry’s sub-page size is considered a programming error and should be avoided
(that is, it results in certain “holes” in virtual memory that cannot be translated via the hardware page table).

6.16.3 Hardware Page Table Entry Format

The format of the 64-bit hardware PTE is shown in Figure 6-6. The PTE contains a logical page number (or,
under certain circumstances, a real page number) and other page-related attribute and protection informa-
tion. When valid, the PTE is combined with the virtual address tag information from the original transaction
that requested this page table entry fetch before being passed through the LRAT facility and finally being
stored in the TLB cache.

Figure 6-6. Page Table Entry Format

ARPN Field The abbreviated real page number. Because this processor supports a 42-bit real
address range, ARPN[12:21], or bits 0 to 9 of the PTE, are assumed to be zero and
are ignored. ARPN[22:51] are used in the determination of the logical address for
this implementation. Bit 51 is the LSb for the ARPN because PTEs must specify a
page size of 4 K or larger per the architecture.

WIMGE Field Storage control attributes associated with this page.

R and C Fields Reference and Change bits. The R and C bits in a given PTE are not updated by
hardware in any way. See Section 6.16.5 Hardware Page Table Errors and Excep-
tions to see how the base access permission bits are modified by the R and C bits to
form the storage access control bits that are actually stored into the TLB entry.

U0:U3 Field User definable storage control bits.

SW0 and SW1 Fields Available for software defined use.

PS Field Page Size for this entry. This 4-bit field is prepended with 0b0 to form a 5-bit, power
of 2  1 K page size encoding (0b0 || PS), and PS must specify a page size of 4 K or
larger. This processor supports only a subset of power of 4  1 K page sizes. There-
fore, bit 55 of the PTE (the LSb of the power of 2  1 K page size) is treated as zero
always and ignored. Supported values of the PS field for this implementation include:
0b0010 (4 KB for sub-page size of 4 KB only), 0b0110 (64 KB), 0b1010 (1 MB), and
0b1110 (16 MB).

ARPN(12:51) WIMGE R U0:U3
S

W
0

S
W

1

C PS

0 39 40 44 45 46 49 50 51 52 55 56 61 62 63

VBAP[0:5]

User’s Manual

A2 Processor

Memory Management

Page 240 of 864
Version 1.3

October 23, 2012

6.16.4 Calculation of Hardware Page Table Entry Real Address

Although this processor implements only power of 4  1 K page sizes and sub-page sizes, for the sake of this
example, TSIZE and SPSIZE are interpreted as a power of 2  1 K page size and sub-page size (as archi-
tected). The page table entry that is used to translate the virtual address is selected by a real address formed
from a combination of RPN bits from the indirect TLB entry and some EA bits. The low-order m bits of the
RPN(0:53) field in the indirect TLB entry must be zeros, where m is the larger of 0 and (TSIZE + 8 - SPSIZE).
For this processor, m = 16 (TSIZE = 10 for 1 MB indirect entries, and SPSIZE = 2 for 4 KB), or m = 20 (TSIZE
= 18 for 256 MB indirect entries, and SPSIZE = 6 for 64 KB).

The TSIZE and SPSIZE fields of the indirect TLB entry determine which bits of the RPN and EA are used in
the following manner:

1. EA23:51 are shifted right q bits, according to a decode of SPSIZE, to produce a 29-bit result S. The value
of q is (SPSIZE -2). Bits shifted out of the rightmost bit position are lost.

For this processor, q = 0 or 4 (for SPSIZE of 2 or 6). Therefore, S0:28 = EA23:51 or S0:28 = 4 0 || EA23:47.

2. A 21-bit EA mask is formed based on a decode of TSIZE and SPSIZE. The EA mask M is (29 - (TSIZE -

SPSIZE))0 || (TSIZE - SPSIZE)-8 1.

For this processor, M = 21 0 || 0 1, or M = 17 0 || 4 1.

3. The EA mask M from step 2 is ANDed with the high-order 21 bits of the shifted EA result (S0:20) from step
1 to form a 21-bit result W.

For this processor, W = 21 0, or W = 17 0 || S17:20 = 17 0 || EA36:39.

4. RPN32:52 from the indirect TLB entry is ORed with the 21 bits of the result W from step 3 to form a 21-bit
result R.

For this processor, R = RPN32:52, or R = RPN32:48 || S17:20 = RPN32:48 || EA36:39 .

5. The 64-bit real address of the PTE is formed as follows: RAPTE = TLBERPN[0:31] || R || S21:28 || 0b000

For this processor, the 42-bit real address truncation of the page table entry real address RAPTE is:

RAPTE = TLBERPN[22:31] || TLBERPN[32:52] || EA44:51 || 0b000 (for 1 MB / 4 KB combination), or

RAPTE = TLBERPN[22:31] || TLBERPN[32:48] || EA36:39 || EA40:47 || 0b000 (for 256 MB / 64 KB combination).

The doubleword addressed by the real address result from step 5 is the PTE used to translate the VA if
the PTE is valid (valid bit is “1”). The logical address (LA) result is formed by concatenating 0x000 with
the ARPN12:51-p from the PTE and with the low-order p bits of EA, where p equals log2(page size speci-
fied by PTEPS), or LA = 0x000 || ARPN12:51-p || EA64-p:63.

BAP[0:5] Field Base access permission bits. BAP[0] = UX, BAP[1] = SX, BAP[2] = UW, BAP[3] =
SW, BAP[4] = UR, BAP[5] = SR. See Section 6.16.5 Hardware Page Table Errors
and Exceptions to see how the base access permission bits are modified by the R
and C bits to form the storage access control bits that are actually stored into the
TLB entry.

V Field The valid bit. The PTE entry is valid when V = 1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 241 of 864

For this processor, the 42-bit truncated logical address LA becomes:

LA = PTEARPN[22:51-p] || EA64-p:63, where p = log2(page size specified by PTEPS).

Finally, if the indirect entry’s TGS = 1 (a guest page table), this 42-bit logical address is converted to a real
address by translation through the LRAT before being stored in the TLB cache. If there is no matching entry
in the LRAT for this logical address, an LRAT miss exception occurs. If the page table entry that is accessed
is invalid (valid bit V = 0), a page table fault exception occurs.

6.16.5 Hardware Page Table Errors and Exceptions

There are architected and implementation-specific errors associated with hardware page table utilization that
can result in certain exceptions being generated. As a result of page table translation, a corresponding TLB
entry is created if no exception occurs, and is not created if certain exceptions occur as described below.

A TLB entry is not written as a result of a page table translation if a page table fault exception occurs. A page
table fault exception occurs when the hardware page table walker logic encounters a page table entry with
PTEV = 0 before writing the TLB entry.

A TLB entry is not written as a result of a page table translation if a TLB ineligible exception occurs. A TLB
ineligible exception occurs upon an attempt to translate via the hardware page table if any of the following
conditions are met:

1. The TLB array cannot be loaded from the page table (that is, TLB0CFGPT = 0) based on a particular sys-
tem boot configuration setting, or

2. The TLB array does not support the page size specified by PTEPS, or

3. The TLB congruence class chosen for entry insertion contains four valid entries, all with IPROT = 1 (that
is, all entries are protected and cannot be overwritten).

A TLB entry is not written as a result of a page table translation if an LRAT miss exception occurs. An LRAT
miss exception occurs when the hardware page table walker logic requests LRAT translation of the PTEARPN
value before writing the TLB entry, and there is no matching LRAT entry found. This LRAT translation request
can happen when a PTE translation occurs as the result of a guest installed (TGS = 1) indirect TLB entry (IND
= 1).

A TLB entry is written, assuming none of the above exceptions occurred, regardless of the existence of a
virtualization fault exception, or an execute, read, or write access control exception. The PTE entry is installed
in the TLB regardless of the state of the associated VF bit, or the derived access control values (UX, SX, UW,
SW, UR, and SR). It is the subsequent “replay” of the instruction fetch, or data load or store, or cache
management operation that will eventually encounter and generate a virtualization fault exception (when the
matching D-ERAT entry’s VF bit is set), or an execute, read, or write access control exception (if warranted by
the matching ERAT entry’s access control bits).

6.16.6 Hardware Page Table Storage Control Attributes

A page table must be located in storage that is big-endian (E = 0), memory coherence required (M = 1), not
caching inhibited (I = 0) and not guarded (G = 0). If the translation of a virtual address matches an indirect
TLB entry that has its storage control attribute E bit equal to 1, M bit equal to 0, I bit equal to 1, or G bit equal
to 1, the transaction is performed without hardware flagging an error. That is, the storage control attributes for
the page table that are present in the indirect entry’s WIMGE bits are presented unmodified to the memory

write-through, caching-inhibited, memory coherency required, guarded, and endianness attributes

User’s Manual

A2 Processor

Memory Management

Page 242 of 864
Version 1.3

October 23, 2012

subsystem when the hardware walker fetches a PTE entry. It is the responsibility of software installing the
indirect TLB entry to ensure that the WIMGE settings are valid. Execution of a tlbwe with MAS1IND = 1 and
an invalid combination of MAS2WIMGE results in an illegal instruction exception.

6.16.7 TLB Update After Hardware Page Table Translation

The architected and implementation-specific fields of the resulting entry that is written to the TLB after hard-
ware page table translation is shown in Table 6-14.

Table 6-14. TLB Update After Page Table Translation (Sheet 1 of 2)

TLB Field Architected? New Value after Page Table Translation

EPN0:p-1 Y EA0:p-1, where p = 64 - log2(page size in bytes as specified by PTEPS). Any low-order EPN bits in the
TLB entry that correspond to byte offsets within the page are set to zero.

TS Y TS from the indirect entry.

TGS Y TGS from the indirect entry.

TID Y TID from the indirect entry.

TLPID Y TLPID from the indirect entry.

V Y PTEV

SIZE1 Y 0b0 || PTEPS[52:54]

IND Y 0

IPROT Y 0

VF Y 0

RPN22:p-1 Y LPN22:p-1 = PTEARPN[22:p-1], where p = 64 - log2(page size in bytes as specified by PTEPS).
RPN22:p-1 = result of LRAT translation of LPN and PTEPS. Any low-order RPN bits in the TLB entry that
correspond to byte offsets within the page are set to zero.

WIMGE Y PTEWIMGE

U0:U3 Y PTEU0:U3

UX Y Logical AND of PTEBAP[0] and PTER (that is, UX = BAP[0] and R).

SX Y Logical AND of PTEBAP[1] and PTER (that is, SX = BAP[1] and R).

UW Y Logical AND of PTEBAP[2] and PTER and PTEC (that is, UW = BAP[2] and R and C).

SW Y Logical AND of PTEBAP[3] and PTER and PTEC (that is, SW = BAP[3] and R and C).

UR Y Logical AND of PTEBAP[4] and PTER (that is, UR = BAP[4] and R).

SR Y Logical AND of PTEBAP[5] and PTER (that is, SR = BAP[5] and R).

ThdID N THDID from the indirect entry.

Class N 0b10 when the TLB update is caused by an external PID load, or 0b11 when the TLB update is caused
by an external PID store; otherwise, 0b00.

ExtClass N 0

TID_NZ N Logical OR of all TID bits from indirect entry (or_reduce(TID0:13)).

X N 0

R N PTER

1. The TLB page size field supported by this implementation is defined as a power of 4  1 KB; hence, the LSB of the PTEPS field
(which is a power of 2 based field) is dropped before installing the TLB entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 243 of 864

C N PTEC

WLC N 0b00

ResvAttr N 0

Table 6-14. TLB Update After Page Table Translation (Sheet 2 of 2)

TLB Field Architected? New Value after Page Table Translation

1. The TLB page size field supported by this implementation is defined as a power of 4  1 KB; hence, the LSB of the PTEPS field
(which is a power of 2 based field) is dropped before installing the TLB entry.

User’s Manual

A2 Processor

Memory Management

Page 244 of 864
Version 1.3

October 23, 2012

6.17 Storage Control Registers (Architected)

This section describes the specific implementation of the architected storage control related registers. In addi-
tion to the registers described below, the MSR[IS,DS] bits specify which of the two address spaces the
respective instruction or data storage accesses are directed towards. Also, the MSR[PR] bit is used by the
access control mechanism. See Machine State Register (MSR) on page 301 for more detailed information
about the MSR and the function of each of its bits.

Note: The A2 reserved, unimplemented fields in architected MMU registers include: MAS0.TLBSEL,
MAS0.NV, MAS2.ACM, MAS2.VLE, MAS4.TLBSELD, MAS4.TIDSELD, MAS4.ACMD, MAS4.VLED,
MMUCFG.NPIDS (Category: Phased Out), MMUCSR0.TLBn_PS (n = 0 to 3), MMUCSR0.TLBn_FI (n = 1 to
3), TLB0CFG.MINSIZE, TLB0CFG.MAXSIZE, TLB0CFG.AVAIL, TLB1CFG.MINSIZE, TLB1CFG.MAXSIZE,
and TLB1CFG.AVAIL.

6.17.1 Process ID Register (PID)

The PID is a 64-bit register, although only the lower 14 bits are defined in the A2 core. The 14-bit PID value is
used as a portion of the virtual address for accessing storage (see Section 6.2.1 Virtual Address Formation
on page 187). The PID value is compared against the TID field of a TLB entry to determine whether or not the
entry corresponds to a given virtual address. If an entry’s TID field is 0 (signifying that the entry defines a
“global” as opposed to “private” page), the PID value is ignored when determining whether the entry corre-
sponds to a given virtual address. See Section 6.2.4 TLB Match Process on page 189 for a more detailed
description of the use of the PID value in the TLB match process.

The PID is written from a GPR using mtspr, and can be read into a GPR using mfspr. The following table
illustrates the PID register.

Register Short Name: PID Read Access: Priv

Decimal SPR Number: 48 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:63 PID 0x0 Process ID

Process ID Register is used by system software to specify which TLB entries are used by
the processor to accomplish address translation for loads, stores, and instruction fetches.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 245 of 864

6.17.2 Logical Partition ID Register (LPIDR)

The LPIDR is written from a GPR using mtspr and can be read into a GPR using mfspr. This register is
shared between all processing threads. Therefore, software locking is recommended to access this register.

The LPIDR register contains the 8-bit logical partition identifier (LPID) for this core. All processing threads on
a core are, by default, in the same logical partition at any point in time. The LPID value is forwarded to the
memory subsystem for certain off-core transactions. In the case of ERAT-only mode memory management,
the LPID value is used to tag outgoing global ERAT invalidation requests and to filter incoming global invali-
dation snoops (that is, only allow invalidations to be seen by targeted processors if they reside in the same
partition as the source processor). In MMU mode (that is, TLB exists), the MAS5[SLPID] value is used to tag
outgoing TLB invalidation requests and, normally, all global invalidation snoops are accepted. However, this
register’s contents is used to filter incoming global invalidation snoops when MMUCR1[TLBI_REJ] = 1. See
Section 6.18.2 Memory Management Unit Control Register 1 (MMUCR1) for a description of this function.

Register Short Name: LPIDR Read Access: Hypv

Decimal SPR Number: 338 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:55 /// 0x0 Reserved

56:63 LPID 0x0 Logical Partition ID

The LPID is part of the virtual address and is used during address translation comparing
LPID to the TLPID field in the TLB entry to determine a matching TLB entry.

User’s Manual

A2 Processor

Memory Management

Page 246 of 864
Version 1.3

October 23, 2012

6.17.3 External PID Load Context (EPLC) Register

The EPLC is written from a GPR using mtspr and can be read into a GPR using mfspr. The EPLC register
contains fields that provide the context for external PID load instructions. The external versions of the address
space, guest state, logical partition ID, and process ID (EAS, EGS, ELPID, and EPID) are substituted as a
portion of the virtual address when accessing storage using external PID load instructions (see Section 6.2.1
Virtual Address Formation on page 187). The external problem state bit (EPR) is also substituted for
MSR[PR] when using external PID loads.

Register Short Name: EPLC Read Access: Priv

Decimal SPR Number: 947 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EPR 0b0 External Load Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID load instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Load Context AS Bit

Used in place of MSR[DS] for translation when an external process ID load instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Load Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID load instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Load Context Logical Process ID Value HO

Used in place of LPID register value for load translation when an external PID load instruc-
tion is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Load Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
load instruction is executed.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 247 of 864

6.17.4 External PID Store Context (EPSC) Register

The EPSC is written from a GPR using mtspr and can be read into a GPR using mfspr. The EPSC register
contains fields that provide the context for external PID store instructions. The external versions of the
address space, guest state, logical partition ID, and process ID (EAS, EGS, ELPID, and EPID) are substituted
as a portion of the virtual address when accessing storage using external PID store instructions (see
Section 6.2.1 Virtual Address Formation on page 187). The EPR is also substituted for MSR[PR] when using
external PID stores.

Register Short Name: EPSC Read Access: Priv

Decimal SPR Number: 948 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EPR 0b0 External Store Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID store instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Store Context AS Bit

Used in place of MSR[DS] for translation when an external process ID store instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Store Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID store instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Store Context Logical Process ID Value HO

Used in place of the LPID register value for load translation when an external PID store
instruction is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Store Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
store instruction is executed.

User’s Manual

A2 Processor

Memory Management

Page 248 of 864
Version 1.3

October 23, 2012

6.17.5 MMU Assist Register 0 (MAS0)

The MAS0 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS0 is used to define which array should be targeted (the TLB or the
LRAT) for the TLB management instructions, and it is also used to parameterize and condition certain
management instructions. The architected fields MAS0.TLBSEL and MAS0.NV are reserved in this imple-
mentation (there is only one TLB, and TLB next victim support is not implemented). The MAS0.ESEL field
implements only 3 bits (a 4-way set-associative TLB and a maximum of eight fully-associative LRAT entries
are supported in this implementation).

Register Short Name: MAS0 Read Access: Priv

Decimal SPR Number: 624 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ATSEL 0b0 Array Type Select

TLB or LRAT structure selection. When in guest mode (MSR[GS] = 1), ATSEL is treated as
if it were zero such that the TLB is always selected.
0 TLB
1 LRAT

33:44 /// 0x0 Reserved

45:47 ESEL 0b000 Entry Select

TLB and LRAT entry selection. Identifies an entry in the selected array to be used for tlbwe
and tlbre. Valid values for ESEL are from 0 to TLBnCFG[ASSOC] - 1. When
MAS0[ATSEL] = 0 (TLB), ESEL becomes effectively a TLB way select and valid values are
0 - 3 (bit 45 is treated as reserved). When MAS0[ATSEL] = 1 (LRAT), valid values are 0 - 7.

48 /// 0b0 Reserved

49 HES 0b0 Hardware Entry Select

Determines how the TLB entry way is selected by tlbwe when MAS0[ATSEL] = 0 (TLB).
This bit must be set to ‘0’ when MAS0[ATSEL] = 1 (LRAT) or an illegal instruction exception
can occur for tlbwe.
0 The TLB entry way is selected by MAS0.ESEL[1:2].
1 The TLB entry way is selected by the hardware LRU replacement algorithm.

50:51 WQ 0b00 Write Qualifier

Qualifies the TLB write operation performed by tlbwe when MAS0.ATSEL = 0 (TLB). This
field must be set to ‘00’ or ‘11’ when MAS0.ATSEL = 1 (LRAT) or an illegal instruction
exception might occur for tlbwe.
00 The selected TLB entry is written regardless of the TLB reservation.
01 The selected TLB entry is written if and only if the TLB reservation exists (see

Section 12.2.4 TLB Search and Reserve Indexed (tlbsrx.) on page 506). A tlbwe
with this value is called a TLB write conditional.

10 The TLB reservation is cleared; no TLB entry is written.
11 The selected TLB entry is written regardless of the TLB reservation.

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 249 of 864

6.17.6 MMU Assist Register 1 (MAS1)

The MAS1 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS1 is used by certain TLB management instructions to transfer
contents to and from TLB or LRAT entries. This register provides for setting the IPROT protection bit of TLB
entries. See the programming notes at the end of this section for restrictions regarding this bit.

Register Short Name: MAS1 Read Access: Priv

Decimal SPR Number: 625 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 V 0b0 Valid

TLB or LRAT Valid bit:
0 This TLB or LRAT entry is invalid.
1 This TLB or LRAT entry is valid.

33 IPROT 0b0 Invalidate Protect

Indicates that this TLB entry is protected from invalidate operations due to tlbivax or tlbilx
instructions or remote invalidate snoops from other processors. IPROT is not implemented
in the LRAT array entries.
0 This TLB entry is not protected.
1 This TLB entry is protected.

34:47 TID 0x0 Translation Identifier

This TLB entry's identifier used to compare against the current value of the PID during
translations, or against the MAS6.SPID value for searches.

48:49 /// 0b00 Reserved

50 IND 0b0 Indirect

Designates this TLB entry as an indirect entry that is used by the hardware table walker
(HTW) to compute real addresses into the page table. IND is not implemented in the LRAT
array entries.
0 This TLB entry is used to directly translate virtual to real addresses.
1 This TLB entry is used by the HTW as an indirect page table pointer.

51 TS 0b0 Translation Space

This TLB entry's address space identifier used to compare against the current value of the
MSR.IS or DS bit during translations, or against the MAS6.SAS value for searches. TS is
not implemented in the LRAT array entries.

User’s Manual

A2 Processor

Memory Management

Page 250 of 864
Version 1.3

October 23, 2012

Programming Note 1: This register provides for setting the IPROT protection bit of TLB entries. For this
implementation, it is recommended that no more than two entries in any single congruence class of the TLB
be written with IPROT = 1. Setting three out of four entries in any TLB congruence class can lead to two or
more threads contending to use one unprotected TLB entry to service ERAT misses that map to the same
congruence class. This might lead to thrashing of the single unprotected TLB entry and poor system perfor-
mance. Depending on the timing of these misses, an unrecoverable livelock could occur while the hardware
page table translation attempts to resolve two or more outstanding ERAT misses using one available TLB
entry. Setting all four entries in a congruence class with IPROT = 1 generally leads to an eventual TLB ineli-
gible exception.

Programming Note 2: This register provides for setting the IPROT protection bit of TLB entries. For this
implementation, it is a requirement that protected entries (IPROT = 1) be placed in either way 2 or 3 of the
TLB (using tlbwe instructions with MAS0[HES] = 0 and MAS0[ESEL] = 2 or 3) to guarantee that they will not
be overwritten. This is because of the way the hardware LRU mechanism selects TLB way 0 or 1 by default
for certain combinations of valid and nonvalid entries within a TLB congruence class. Protected entries in
ways 0 or 1 could be erroneously overwritten by subsequent tlbwe instructions with MAS0[HES] = 1 or by
hardware page table translation that both use the hardware LRU way selection. This does not pertain to inval-
idation of TLB entries (that is, protected entries will always be immune to invalidation caused by tlbivax and

52:55 TSIZE 0b0000 Translation Size

The selected TLB entry (when MAS0.ATSEL = 0) or LRAT entry (when MAS0.ATSEL = 1)
page size value.
This implementation supports five page sizes for direct TLB entries (IND = 0). All other non-
specified page size encodings are treated as reserved.
IND = 0 direct TLB entries:
0001 4 KB
0011 64 KB
0101 1 MB
0111 16 MB
1010 1 GB
Others Reserved
This implementation supports two page sizes for indirect TLB entries (IND = 1). All other
nonspecified page size encodings are treated as reserved.
IND = 1 indirect TLB entries:
0101 1 MB
1001 256 MB
Others Reserved
This implementation supports 8 page sizes for LRAT entries. All other nonspecified page
size encodings are treated as reserved.
LRAT entries:
0101 1 MB
0111 16 MB
1001 256 MB
1010 1 GB
1011 4 GB
1100 16 GB
1110 256 GB
1111 1 TB
Others Reserved

56:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 251 of 864

tlbilx instructions regardless of where they are placed within a TLB congruence class). As such, when imple-
menting a totally software-managed TLB system, using only tlbwe with MAS0[HES] = 0 to install TLB entries
and no hardware page table walking, this restriction can be ignored.

6.17.7 MMU Assist Register 2 (MAS2)

The MAS2 register is written from a GPR using mtspr, and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS2 is used by certain TLB management instructions to transfer
contents to and from TLB or LRAT entries. The architected fields MAS2.ACM and MAS2.VLE are reserved in
this implementation.

Register Short Name: MAS2 Read Access: Priv

Decimal SPR Number: 626 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 EPN 0x0 Effective Page Number

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the entry effective page
number. Only bits associated with a page size boundary are significant. The other bits are
treated as an offset within this page and ignored.
This field is treated as a logical page number (LPN) for LRAT entries (MAS0.ATSEL = 1)
and used to transfer the LRAT.LPN value.
The upper EPN[0:31] bits are instantiated in the 64-bit A2 implementation.

52:58 /// 0x0 Reserved

59 W 0b0 Write Through

This page's write-through storage attribute.
0 This page is not write-through required storage.
1 This page is write-through required storage.

60 I 0b0 Caching Inhibited

This page's caching inhibited storage attribute.
0 This page is not caching inhibited required storage.
1 This page is caching inhibited required storage.

61 M 0b0 Memory Coherence Required

This page's memory coherence required storage attribute.
0 This page is not memory coherence required storage.
1 This page is memory coherence required storage.

62 G 0b0 Guarded

This page's guarded storage attribute.
0 This page is not guarded storage.
1 This page is guarded storage.

63 E 0b0 Endianess

This page's endianess storage attribute.
0 This page is accessed in big-endian byte order.
1 This page is accessed in little-endian byte order.

User’s Manual

A2 Processor

Memory Management

Page 252 of 864
Version 1.3

October 23, 2012

6.17.8 MMU Assist Register 2 Upper (MAS2U)

The MAS2U register is written from a GPR using mtspr and can be read into a GPR using mfspr. This
register is replicated for all processing threads. MAS2U is used by certain 32-bit machine state
(MSR[CM] = 0) TLB management instructions to transfer to and from TLB or LRAT entries.

Register Short Name: MAS2U Read Access: Priv

Decimal SPR Number: 631 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 EPNU 0x0 Effective Page Number (Upper Bits 0:31)

This field is an alias to MAS2.EPN[0:31] and is primarily for use by 32-bit machine state
(CM = 0) software.
For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the entry effective page
number upper bits 0:31.
For LRAT entries (MAS0.ATSEL = 1), this field is treated as a logical page number (LPN)
and used to transfer the LRAT.LPN[22:31] value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 253 of 864

6.17.9 MMU Assist Register 3 (MAS3)

The MAS3 register is written from a GPR using mtspr, and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS3 is used by certain TLB management instructions to transfer
contents to and from TLB or LRAT entries.

Register Short Name: MAS3 Read Access: Priv

Decimal SPR Number: 627 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:52 RPNL 0x0 Real Page Number (Lower Bits 32:52)

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the LSbs of the entry real
page number. RPNL[52] is only significant for indirect TLB entries (IND = 1) and is unused
for direct TLB entries (IND = 0) and LRAT entries. That is, the TLB entry RPNL[52] bit can
only be written to a ‘1’ by a tlbwe instruction when MAS1.IND = 1 and MAS0.ATSEL = 0.
This bit is always set to '0' after a tlbre instruction if the chosen TLB entry contains IND = 0.
RPNL[32:51] is treated as a TLB direct entry logical page number (LPNL) when an LRAT is
present and enabled. RPNL[32:51] is treated as a real page number (RPNL) for LRAT
entries (MAS0.ATSEL = 1) and used to transfer the LRAT.RPN[32:51] value. Only bits
associated with a particular TLB or LRAT entry page size boundary are significant. The
other bits are treated as an offset within this page and ignored. The upper RPNU[22:31]
bits are instantiated in the 64-bit A2 implementation in MAS7.

53 /// 0b0 Reserved

54 U0 0b0 User Definable Storage Attribute 0

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

55 U1 0b0 User Definable Storage Attribute 1

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

56 U2 0b0 User Definable Storage Attribute 2

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

57 U3 0b0 User Definable Storage Attribute 3

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

58 UX/SPSIZE0 0b0 User Mode Execute Enable (IND = 0) / SPSIZE0 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) execute access per-
mission. See Section 6.4 Access Control on page 211 for the definition of execute access.
0 This page does not have execute access permission in user mode (problem

state).
1 This page has execute access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 0.

User’s Manual

A2 Processor

Memory Management

Page 254 of 864
Version 1.3

October 23, 2012

59 SX/SPSIZE1 0b0 Supervisor Mode Execute Enable (IND = 0) / SPSIZE1 (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) execute access
permission. See Section 6.4 Access Control on page 211 for the definition of execute
access.
0 This page does not have execute access permission in supervisor mode (privi-

leged state).
1 This page has execute access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 1.

60 UW/SPSIZE2 0b0 User Mode Execute Enable (IND = 0) / SPSIZE2 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) write access permis-
sion. See Section 6.4 Access Control on page 211 for the definition of execute access.
0 This page does not have execute access permission in user mode (problem

state).
1 This page has execute access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 2.

61 SW/SPSIZE3 0b0 Supervisor Mode Write Enable (IND = 0) / SPSIZE3 (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) write access
permission. See Section 6.4 Access Control on page 211 for the definition of write access.
0 This page does not have write access permission in supervisor mode (privileged

state).
1 This page has write access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 3.

62 UR/SPSIZE4 0b0 User Mode Read Enable (IND = 0) / SPSIZE4 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) read access permis-
sion. See Section 6.4 Access Control on page 211 for the definition of read access.
0 This page does not have read access permission in user mode (problem state).
1 This page has read access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 4 (treated as reserved by A2,
which implements only power of 4  1 K sub-page sizes).

63 SR/UND 0b0 Supervisor Mode Read Enable (IND = 0) / UND (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) read access per-
mission. See Section 6.4 Access Control on page 211 the definition of read access.
0 This page does not have read access permission in supervisor mode (privileged

state).
1 This page has read access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, this bit is undefined (UND).

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 255 of 864

6.17.10 MMU Assist Register 4 (MAS4)

The MAS4 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS4 is used by certain events to transfer default contents to other
MAS registers. The architected fields MAS4.TLBSELD, MAS4.TIDSELD, MAS4.ACMD, and MAS4.VLED are
reserved in this implementation because the associated nondefault fields are not implemented.

Register Short Name: MAS4 Read Access: Priv

Decimal SPR Number: 628 Write Access: Priv

Initial Value: 0x0000000000000100 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:47 /// 0x0 Reserved

48 INDD 0b0 Default Indirect Value

Specifies the default value loaded into MAS1.IND and MAS6.SIND on a TLB miss excep-
tion.

49:51 /// 0b000 Reserved

52:55 TSIZED 0b0001 Default Translation Size Value

Specifies the default value loaded into MAS1.TSIZE on a TLB miss exception. If
MMUCFG.TWC = 1, TSIZED is also the default value loaded into MAS6.ISIZE upon the
exception.

56:58 /// 0b000 Reserved

59 WD 0b0 Default Write Through Value

Specifies the default value loaded into MAS2.W on a TLB miss exception.

60 ID 0b0 Default Caching Inhibited Value

Specifies the default value loaded into MAS2.I on a TLB miss exception.

61 MD 0b0 Default Memory Coherence Required Value

Specifies the default value loaded into MAS2.M on a TLB miss exception.

62 GD 0b0 Default Guarded Value

Specifies the default value loaded into MAS2.G on a TLB miss exception.

63 ED 0b0 Default Endianess Value

Specifies the default value loaded into MAS2.E on a TLB miss exception.

User’s Manual

A2 Processor

Memory Management

Page 256 of 864
Version 1.3

October 23, 2012

6.17.11 MMU Assist Register 5 (MAS5)

The MAS5 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS5 is used to supply hypervisor-related parameters for certain TLB
management instructions.

Register Short Name: MAS5 Read Access: Hypv

Decimal SPR Number: 339 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 SGS 0b0 Search Guest State

Specifies the GS value used when searching the TLB during execution of tlbsx and tlbsrx.
and for selecting TLB entries to be invalidated by tlbivax or tlbilx. The SGS field is com-
pared with the TGS field of each TLB entry to find a matching entry.

33:55 /// 0x0 Reserved

56:63 SLPID 0x0 Search Logical Partition Identifier

Specifies the LPID value used when searching the TLB during execution of tlbsx and
tlbsrx. and for selecting TLB entries to be invalidated by tlbivax or tlbilx. The SLPID field
is compared with the TLPID field of each TLB entry to find a matching entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 257 of 864

6.17.12 MMU Assist Register 6 (MAS6)

The MAS6 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS6 is used to supply search and invalidate parameters for certain
TLB management instructions.

Register Short Name: MAS6 Read Access: Priv

Decimal SPR Number: 630 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:47 SPID 0x0 Search Process Identifier

Specifies the value of PID used when searching the TLB during execution of tlbsx. It also
defines the PID of the TLB entry to be invalidated by tlbilx with T = 1 or T = 3 and tlbivax.

48:51 /// 0b0000 Reserved

52:55 ISIZE 0b0000 Invalidate Size

Specifies the page size of the TLB entry to be invalidated by tlbilx T = 3 or tlbivax.

56:61 /// 0x0 Reserved

62 SIND 0b0 Search Indirect

Specifies the value of IND used when searching the TLB during execution of tlbsx. It also
defines the IND of the TLB entry to be invalidated by tlbilx T = 3 and tlbivax.

63 SAS 0b0 Search Address Space

Specifies the value of AS used when searching the TLB during execution of tlbsx. It also
defines the AS of the TLB entry to be invalidated by tlbilx T = 3 and tlbivax.

User’s Manual

A2 Processor

Memory Management

Page 258 of 864
Version 1.3

October 23, 2012

6.17.13 MMU Assist Register 7 (MAS7)

The MAS7 register is written from a GPR using mtspr, and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS7 is used to transfer the MSBs of the real page number to and
from the TLB or LRAT entries.

Register Short Name: MAS7 Read Access: Priv

Decimal SPR Number: 944 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:63 RPNU 0x0 Real Page Number (Upper Bits 22:31)

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the MSbs of the entry real
page number. This value is treated as a TLB entry logical page number (LPNU) when an
LRAT is present and enabled. This field is treated as a real page number (RPNU) for LRAT
entries (MAS0.ATSEL = 1) and used to transfer the LRAT.RPN[22:31] value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 259 of 864

6.17.14 MMU Assist Register 8 (MAS8)

The MAS8 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This register
is replicated for all processing threads. MAS8 is used to transfer hypervisor-related parameters to and from
the TLB entries.

Register Short Name: MAS8 Read Access: Hypv

Decimal SPR Number: 341 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 TGS 0b0 Translation Guest Space

Specifies the value that is written to the TLB entry TGS bit by the execution of tlbwe. This
bit is loaded from the TLB entry TGS by the execution of tlbre and by the execution of
tlbsx that finds a matching entry. The TLB entry TGS identifies that value of the guest state
associated with the TLB entry.

33 VF 0b0 Translation Virtualization Fault

Specifies the value that is written to TLB entry VF bit by the execution of tlbwe. This bit is
loaded from the TLB entry VF bit by the execution of tlbre and by the execution of tlbsx
that finds a matching entry. VF identifies that the TLB entry is used to provide virtualized
memory mapped I/O. A data access that uses a TLB entry with the VF field equal to 1
causes a data storage interrupt, regardless of the settings of the permission bits. The
resulting data storage interrupt is always directed to the embedded hypervisor state,
regardless of the EHCSR.DSIGS value.

34:55 /// 0x0 Reserved

56:63 TLPID 0x0 Translation Logical Partition Identifier

Specifies the value that is written to the TLB entry TLPID field by the execution of tlbwe.
This field is loaded from the TLB entry TLPID by the execution of tlbre and by the execu-
tion of tlbsx that finds a matching entry. The TLB entry TLPID identifies the logical partition
associated with the TLB entry.

User’s Manual

A2 Processor

Memory Management

Page 260 of 864
Version 1.3

October 23, 2012

6.17.15 MAS0_MAS1 Register

The MAS0_MAS1 register is written from a 64-bit GPR using mtspr and can be read into a 64-bit GPR using
mfspr. This register is replicated for all processing threads. MAS0_MAS1 is used as a 64-bit register alias for
the MAS0 and MAS1 registers combined. It allows software to configure or read both the MAS0 and MAS1
with one 64-bit move to or from operation. The MAS0 and MAS1 field formats of this register are identical to
those of the 32-bit versions of these registers (array and entry selection, and entry contents).

Register Short Name: MAS0_MAS1 Read Access: Priv

Decimal SPR Number: 373 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS0 0x0 MMU Assist Register 0

This field is an alias of MAS0[32:63].

32:63 MAS1 0x0 MMU Assist Register 1

This field is an alias of MAS1[32:63].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 261 of 864

6.17.16 MAS5_MAS6 Register

The MAS5_MAS6 register is written from a 64-bit GPR using mtspr and can be read into a 64-bit GPR using
mfspr. This register is replicated for all processing threads. MAS5_MAS6 is used as a 64-bit register alias for
the MAS5 and MAS6 registers combined. It allows software to configure or read both the MAS5 and MAS6
with one 64-bit move to or from operation. The MAS5 and MAS6 field formats of this register are identical to
those of the 32-bit versions of these registers (search and invalidate operation parameters).

Register Short Name: MAS5_MAS6 Read Access: Hypv

Decimal SPR Number: 348 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS5 0x0 MMU Assist Register 5

This field is an alias of MAS5[32:63].

32:63 MAS6 0x0 MMU Assist Register 6

This field is an alias of MAS6[32:63].

User’s Manual

A2 Processor

Memory Management

Page 262 of 864
Version 1.3

October 23, 2012

6.17.17 MAS7_MAS3 Register

The MAS7_MAS3 register is written from a 64-bit GPR using mtspr and can be read into a 64-bit GPR using
mfspr. This register is replicated for all processing threads. MAS7_MAS3 is used as a 64-bit register alias for
the MAS7 and MAS3 registers combined. It allows software to configure or read both the MAS7 and MAS3
with one 64-bit move to or from operation. The MAS7 and MAS3 field formats of this register are identical to
those of the 32-bit versions of these registers (real or logical address and attributes).

Register Short Name: MAS7_MAS3 Read Access: Priv

Decimal SPR Number: 372 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS7 0x0 MMU Assist Register 7

This field is an alias of MAS7[32:63].

32:63 MAS3 0x0 MMU Assist Register 3

This field is an alias of MAS3[32:63].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 263 of 864

6.17.18 MAS8_MAS1 Register

The MAS8_MAS1 register is written from a 64-bit GPR using mtspr and can be read into a 64-bit GPR using
mfspr. This register is replicated for all processing threads. MAS8_MAS1 is used as a 64-bit register alias for
the MAS8 and MAS1 registers combined. It allows software to configure or read both the MAS8 and MAS1
with one 64-bit move to or from operation. The MAS8 and MAS1 field formats of this register are identical to
those of the 32-bit versions of these registers (entry contents).

Register Short Name: MAS8_MAS1 Read Access: Hypv

Decimal SPR Number: 349 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS8 0x0 MMU Assist Register 8

This field is an alias of MAS8[32:63].

32:63 MAS1 0x0 MMU Assist Register 1

This field is an alias of MAS1[32:63].

User’s Manual

A2 Processor

Memory Management

Page 264 of 864
Version 1.3

October 23, 2012

6.17.19 MMU Configuration Register (MMUCFG)

The MMUCFG register is a read-only register that can be read into a GPR using mfspr. MMUCFG is used to
provide implementation-specific parameters to a guest operating system or hypervisor. The implemented
format of this register follows that defined for MAV 2.0.

Register Short Name: MMUCFG Read Access: Hypv

Decimal SPR Number: 1015 Write Access: None

Initial Value: 0x0000000008558341 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36:39 LPIDSIZE 0b1000 Logical Partition Identifier Size

Indicates the number of bits in the LPID register that are implemented by the processor.
This field will always be set to ‘1000’ for this processor (8 bits).

40:46 RASIZE 0x2A Real Address Size

Indicates the number of real address (RA) bits that are implemented by the processor. This
field will always be set to ‘0101010’ for this processor (42 bits).

47 LRAT 0b1 Logical to Real Address Translation

Indicates whether the Embedded.Hypervisor.LRAT category is supported by this proces-
sor. This bit is part of the boot configuration ring for this processor.
0 LRAT array is not supported and RPN fields are treated as real page numbers (not

logical addresses).
1 LRAT array is supported and logical address are translated to real addresses as

required.

48 TWC 0b1 TLB Write Conditional

Indicates whether the Embedded.TLB Write Conditional category is supported by this pro-
cessor. This bit is part of the boot configuration ring for this processor.
0 TLB write conditional operations and reservations are not supported.
1 TLB write conditional operations and reservations are supported.

49:52 /// 0b0000 Reserved

53:57 PIDSIZE 0xD Process Identifier Size

Indicates one less than the number of bits in the PID register that are implemented by the
processor. This field will always be set to ‘01101’ for this processor (14 bits in PID).

58:59 /// 0b00 Reserved

60:61 NTLBS 0b00 Number of TLBs

Indicates one less than the number of TLB structures that are implemented by this proces-
sor. This field will always be set to ‘00’ for this processor (1 TLB).

62:63 MAVN 0b01 MMU Architecture Version Number

Indicates the version number of the architecture of the MMU implemented by the proces-
sor. This field will always be set to ‘01’ for this processor (Version 2.0).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 265 of 864

6.17.20 MMU Control and Status Register 0 (MMUCSR0)

The MMUCSR0 register is written from a GPR using mtspr and can be read into a GPR using mfspr.
MMUCSR0 is used to provide a register-based invalidate all function for the TLB. The implemented format for
this register follows that defined for MAV 2.0. The architected fields MMUCSR0.TLBn_FI (n = 1 to 3) are
reserved in this implementation.

Register Short Name: MMUCSR0 Read Access: Hypv

Decimal SPR Number: 1012 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:60 /// 0x0 Reserved

61 TLB0_FI 0b0 TLB 0 Full Invalidate

This bit controls or indicates when an invalidate all function is requested or in progress.
0 When this bit is read as a '0', there is no invalidate all operation in progress. Writ-

ing this bit to a zero while an invalidate all operation is in progress is ignored.
1 When this bit is read as a '1', there is an invalidate all operation in progress. Hard-

ware sets this bit to a zero when the invalidate all operation is completed. Writing
this bit to a '1' initiates the invalidate all operation (unless one is already in
progress, in which case writing this bit to a '1' is ignored).

62:63 /// 0b00 Reserved

User’s Manual

A2 Processor

Memory Management

Page 266 of 864
Version 1.3

October 23, 2012

6.17.21 TLB 0 Configuration Register (TLB0CFG)

The TLB0CFG register is a read-only register that can be read into a GPR using mfspr. TLB0CFG is used to
provide implementation-specific parameters regarding the TLB to a guest operating system or hypervisor.
The implemented format of this register follows that defined by MAV 2.0. See the engineering note at the end
of this section.

Register Short Name: TLB0CFG Read Access: Hypv

Decimal SPR Number: 688 Write Access: None

Initial Value: 0x000000000407A200 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:39 ASSOC 0x4 Associativity

Indicates the number of ways that are implemented in this processor's TLB0. This field is
always set to ‘00000100’ for this processor (4 ways).

40:44 /// 0x0 Reserved

45 PT 0b1 Page Table

Indicates whether this TLB can be loaded from the hardware page table. This bit is part of
the boot configuration ring for this processor.
0 TLB is not eligible to be loaded from the hardware page table (attempts to install

page table entries by the hardware walker result in TLB Ineligible exceptions).
1 TLB can be loaded from the hardware page table.

46 IND 0b1 Indirect

Indicates that an indirect entry can be created in this TLB and that there is a corresponding
EPTCFG register that defines the page sizes and sub-page sizes. This bit is part of the
boot configuration ring for this processor.
0 Indirect entries are not supported and this TLB treats the IND bit as reserved (this

infers software TLB management only).
1 Indirect entries are supported (infers that hardware page table walking is sup-

ported).

47 GTWE 0b1 Guest TLB Write Enable

Indicates that a guest supervisor can write to this TLB because an LRAT array exists for
this TLB. This bit is part of the boot configuration ring for this processor.
0 Guest cannot write TLB entries without hypervisor intervention.
1 Guest can write TLB entries, which will be translated via the LRAT.

48 IPROT 0b1 Invalidate Protect

Indicates whether invalidation protection is implemented by this processor's TLB 0. This bit
is always set to '1' for this processor (the A2 does support the invalidate protect bit in TLB 0
entries).

49 /// 0b0 Reserved

50 HES 0b1 Hardware Entry Select

Indicates whether hardware entry selection is supported by this processor's TLB 0. This bit
is always set to '1' for this processor (the A2 does support hardware calculation of the entry
number for TLB 0 for tlbwe instructions when MAS0.HES = 1).

51 /// 0b0 Reserved

52:63 NENTRY 0x200 Number of Entries

Indicates the number of entries that are implemented in this processor's TLB 0. This field is
always set to ‘0010_0000_0000’ for this processor (512 entries).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 267 of 864

Engineering Note: The TLB0CFG[PT] and [IND] bits are both resident on the boot configuration scan chain.
Therefore, it is possible to set these bits independently. For A2, because there is only one shared TLB physi-
cally resident on this processor, it is recommended that both of these bits be set to the same value (0b00 for
software table walking only or 0b11 to support hardware table walking). Setting IND = 0 and PT = 1 has a
similar effect as setting both bits low (that is, indirect entries are assumed to not be supported; therefore, no
hardware table walking occurs). Setting IND = 1 and PT = 0 has the effect of allowing indirect entry recogni-
tion, and hardware table walking can occur. However, when the subsequent attempt to write the page table
entry into the TLB occurs, the results depend on the page table entry valid bit setting. When PTE.V = 1 in this
mode, it is deemed as a valid attempt to write a TLB entry and a TLB ineligible exception occurs because PT
= 0. When PTE.V = 0, it is not deemed as a valid attempt to write a TLB entry; therefore, no exception occurs
as the result of PT = 0. In either of these cases, no TLB entry is written.

User’s Manual

A2 Processor

Memory Management

Page 268 of 864
Version 1.3

October 23, 2012

6.17.22 TLB 0 Page Size Register (TLB0PS)

The TLB0PS register is a read-only register that can be read into a GPR using mfspr. TLB0PS is used to
provide additional implementation-specific parameters regarding the supported TLB page sizes to a guest
operating system or hypervisor. This processor supports only power of 4  1 K page sizes for the TLB, but the
architecture defines this register based on power of 2  1 K page sizes.

Register Short Name: TLB0PS Read Access: Hypv

Decimal SPR Number: 344 Write Access: None

Initial Value: 0x0000000000104444 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:42 /// 0x0 Reserved

43 PS20 0b1 Page Size 20

Indicates whether a 220 KB (1 GB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (the A2 supports 1 GB page sizes for TLB 0).

44:48 /// 0x0 Reserved

49 PS14 0b1 Page Size 14

Indicates whether a 214 KB (16 MB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (the A2 supports 16 MB page sizes for TLB 0).

50:52 /// 0b000 Reserved

53 PS10 0b1 Page Size 10

Indicates whether a 210 KB (1 MB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (A2 supports 1 MB page sizes for TLB 0).

54:56 /// 0b000 Reserved

57 PS6 0b1 Page Size 6

Indicates whether a 26 KB (64 KB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (A2 supports 64 KB page sizes for TLB 0).

58:60 /// 0b000 Reserved

61 PS2 0b1 Page Size 2

Indicates whether a 22 KB (4 KB) page size is supported by this processor's TLB 0. This bit
is always set to '1' for this processor (A2 supports 4 KB page sizes for TLB 0).

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 269 of 864

6.17.23 LRAT Configuration Register (LRATCFG)

The LRATCFG register is a read-only register that can be read into a GPR using mfspr. LRATCFG is used to
provide implementation-specific parameters regarding the LRAT to the hypervisor.

Register Short Name: LRATCFG Read Access: Hypv

Decimal SPR Number: 342 Write Access: None

Initial Value: 0x0000000000542008 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:39 ASSOC 0x0 Associativity

Indicates the number of ways that are implemented in this processor's LRAT. This field is
always set to ‘00000000’ for this processor (fully associative LRAT).

40:46 LASIZE 0x2A Logical Address Size

Indicates the number of logical address (LA) bits that are implemented by this processor's
LRAT. This field is always set to ‘0101010’ for this processor (42 bits).

47:49 /// 0b000 Reserved

50 LPID 0b1 Logical Partition ID

Indicates that the LPID field is supported in the LRAT entries. This bit is always set to '1' for
this processor (the A2 does implement the LPID field in LRAT entries).

51 /// 0b0 Reserved

52:63 NENTRY 0x8 Number of Entries
Indicates the number of entries that are implemented in this processor's LRAT. This field is
always set to ‘0000_0000_1000’ for this processor (8 entries).

User’s Manual

A2 Processor

Memory Management

Page 270 of 864
Version 1.3

October 23, 2012

6.17.24 LRAT Page Size Register (LRATPS)

The LRATPS register is a read-only register that can be read into a GPR using mfspr. LRATPS is used to
provide additional implementation-specific parameters about the supported LRAT page sizes to the hyper-
visor. This processor supports only power of 4  1 K page sizes for the LRAT, but the architecture defines this
register based on power of 2  1 K page sizes.

Register Short Name: LRATPS Read Access: Hypv

Decimal SPR Number: 343 Write Access: None

Initial Value: 0x0000000051544400 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 /// 0b0 Reserved

33 PS30 0b1 Page Size 30

Indicates whether a 230 KB (1 TB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 TB page sizes for the LRAT).

34 /// 0b0 Reserved

35 PS28 0b1 Page Size 28

Indicates whether a 228 KB (256 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 256 GB page sizes for the LRAT).

36:38 /// 0b000 Reserved

39 PS24 0b1 Page Size 24

Indicates whether a 224 KB (16 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 16 GB page sizes for the LRAT).

40 /// 0b0 Reserved

41 PS22 0b1 Page Size 22

Indicates whether a 222 KB (4 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 4 GB page sizes for the LRAT).

42 /// 0b0 Reserved

43 PS20 0b1 Page Size 20

Indicates whether a 220 KB (1 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 GB page sizes for the LRAT).

44 /// 0b0 Reserved

45 PS18 0b1 Page Size 18

Indicates whether a 218 KB (256 MB) page size is supported by this processor's LRAT.
This bit is always set to ‘1’ for this processor (the A2 supports 256 MB page sizes for the
LRAT).

46:48 /// 0b000 Reserved

49 PS14 0b1 Page Size 14

Indicates whether a 214 KB (16 MB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 16 MB page sizes for the LRAT).

50:52 /// 0b000 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 271 of 864

53 PS10 0b1 Page Size 10

Indicates whether a 210 KB (1 MB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 MB page sizes for the LRAT).

54:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Memory Management

Page 272 of 864
Version 1.3

October 23, 2012

6.17.25 Embedded Page Table Configuration Register (EPTCFG)

The EPTCFG register is a read-only register that can be read into a GPR using mfspr. EPTCFG is used to
provide additional implementation-specific parameters regarding the supported TLB indirect entry page sizes
and sub-page sizes to the operating system. This processor supports only two combinations of page and sub-
page sizes for the TLB IND = 1 entries; hence, the architected fields PS2 and SPS2 are treated as reserved
in this implementation. This processor supports only power of 4  1 K page and sub-page sizes for the TLB
indirect entries, but the architecture defines this register based on power of 2  1 K sizes.

Register Short Name: EPTCFG Read Access: Hypv

Decimal SPR Number: 350 Write Access: None

Initial Value: 0x0000000000091942 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:43 /// 0x0 Reserved

44:48 PS1 0x12 Page Size 1

Indicates whether an indirect entry with page size 2PS1 KB combined with the sub-page
size indicated by SPS1 is supported by the TLB. (The A2 supports an indirect page size of
256 MB with a sub-page size of 64 KB.)

49:53 SPS1 0x6 Sub-Page Size 1

Indicates whether an indirect entry with sub-page size 2SPS1 KB combined with the page
size indicated by PS1 is supported by the TLB. (The A2 supports an indirect page size of
256 MB with a sub-page size of 64 KB.)

54:58 PS0 0xA Page Size 0

Indicates whether an indirect entry with page size 2PS0 KB combined with the sub-page
size indicated by SPS0 is supported by the TLB. (The A2 supports an indirect page size of
1 MB with a sub-page size of 4 KB.)

59:63 SPS0 0x2 Sub-Page Size 0

Indicates whether an indirect entry with sub-page size 2SPS0 KB combined with page size
indicated by PS0 is supported by the TLB. (The A2 supports an indirect page size of 1 MB
with a sub-page size of 4 KB.)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 273 of 864

6.17.26 Logical Page Exception Register (LPER)

The LPER register captures the logical page number and page size of a page table entry (PTE) logical-to-real
translation that results in an LRAT miss exception.

Register Short Name: LPER Read Access: Hypv

Decimal SPR Number: 56 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:21 /// 0x0 Reserved

22:51 ALPN 0x0 Abbreviated Logical Page Number

This field is used to capture the abbreviated logical page number from the PTE translation
that caused an LRAT miss exception.

52:59 /// 0x0 Reserved

60:63 LPS 0b0000 Logical Page Size

This field is used to capture the logical page size from the PTE translation that caused an
LRAT miss exception.

User’s Manual

A2 Processor

Memory Management

Page 274 of 864
Version 1.3

October 23, 2012

6.17.27 Logical Page Exception Register Upper (LPERU)

The LPERU register captures the most-significant bits of the logical page number of a PTE logical-to-real
translation that results in an LRAT miss exception.

Note: The ALPNU field of this register is an alias for bits 22:31 of the ALPN field in the LPER register to sup-
port 32-bit accesses (that is, the same physical register bits are used as the source and destination for both
LPER and LPERU registers).

Register Short Name: LPERU Read Access: Hypv

Decimal SPR Number: 57 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:63 ALPNU 0x0 Abbreviated Logical Page Number (Upper Bits 22:31)

This field is used to capture the MSbs of the abbreviated logical page number from a PTE
translation that caused an LRAT miss exception (supports 32-bit accesses).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 275 of 864

6.17.28 MAS Register Update Summary

Table 6-15 summarizes how this implementation’s MAS registers are modified by instruction TLB error inter-
rupts, data TLB error interrupts, and the TLB management instructions.

Table 6-15. MAS Register Update Summary (Sheet 1 of 2)

MAS Field Updated

Value Loaded on Event

Data or Instruction TLB
Error Interrupt2 tlbsx hit tlbsx miss tlbre

MAS0ATSEL 0 0 0 —

MAS0TLBSEL
3 reserved field reserved field reserved field —

MAS0ESEL hardware hint Way of entry that hit hardware hint —

MAS0HES TLB0CFGHES TLB0CFGHES TLB0CFGHES —

MAS0WQ 0b01 0b01 0b01 —

MAS0NV
3 reserved field reserved field reserved field reserved field

MAS1V 1 1 0 TLBV
4

MAS1IPROT 0 TLBIPROT 0 TLBIPROT

MAS1TID PID or EPLCEPID
8 or

EPSCEPID
9

TLBTID MAS6SPID TLBTID

MAS1IND MAS4INDD TLBIND MAS4INDD TLBIND

MAS1TS MSRDS or MSRIS or
EPLCEAS

8 or EPSCEAS
9

TLBTS MAS6SAS TLBTS

MAS1TSIZE MAS4TSIZED TLBSIZE MAS4TSIZED TLBSIZE
4

MAS2EPN EA0:51
1 TLBEPN MAS2EPN TLBEPN

4

MAS2ACM
3 reserved field reserved field reserved field reserved field

MAS2VLE
3 reserved field reserved field reserved field reserved field

MAS2W I M G E MAS4WD ID MD GD ED TLBW I M G E MAS4WD ID MD GD ED TLBW I M G E

MAS3RPNL[32:51] 0 TLBRPN[32:51] 0 TLBRPN[32:51]
4

MAS3RPNL[52] 0 TLBSR | 05 0 TLBSR | 05

MAS3U0:U3 UX SX UW SW
UR SR

0 TLBU0:U3 UX SX UW SW UR
0|SR

6
0 TLBU0:U3 UX SX UW SW UR

0|SR
6

MAS5 and MAS4 —7 — — —

MAS6SPID PID or EPLCEPID
8 or

EPSCEPID
9

— — —

MAS6ISIZE MAS4TSIZED — — —

1. If MSRCM = 0 (32-bit mode) at the time of the exception, EPN0:31 are set to 0.
2. If EHCSRDMIUH = 0; otherwise, the interrupt is directed to the guest state.
3. These fields are not implemented and are shown for reference only.
4. The respective LRAT fields are returned when MAS0ATSEL = 1.
5. MAS3RPNL[52] is loaded with TLBSR when TLBIND = 1; otherwise, it receives ‘0’.
6. MAS3SR is loaded with ‘0’ when TLBIND = 1; otherwise, it receives TLBSR.
7. MAS5 and MAS8 are not updated on a data or instruction TLB error interrupt. The hypervisor must ensure that they already con-

tain values appropriate to the partition.
8. EPLC values are used for data TLB error interrupts for external process ID loads (category E.PD).
9. EPSC values are used for data TLB error interrupts for external process ID stores (category E.PD).

User’s Manual

A2 Processor

Memory Management

Page 276 of 864
Version 1.3

October 23, 2012

MAS6SAS MSRDS or MSRIS or
EPLCEAS

8 or EPSCEAS
9

— — —

MAS7RPNU 0 TLBRPN[22:31] 0 TLBRPN[22:31]
4

MAS8TGS VF TLPID —7 TLBTGS VF TLPID — TLBTGS VF TLPID

Table 6-15. MAS Register Update Summary (Sheet 2 of 2)

MAS Field Updated

Value Loaded on Event

Data or Instruction TLB
Error Interrupt2 tlbsx hit tlbsx miss tlbre

1. If MSRCM = 0 (32-bit mode) at the time of the exception, EPN0:31 are set to 0.
2. If EHCSRDMIUH = 0; otherwise, the interrupt is directed to the guest state.
3. These fields are not implemented and are shown for reference only.
4. The respective LRAT fields are returned when MAS0ATSEL = 1.
5. MAS3RPNL[52] is loaded with TLBSR when TLBIND = 1; otherwise, it receives ‘0’.
6. MAS3SR is loaded with ‘0’ when TLBIND = 1; otherwise, it receives TLBSR.
7. MAS5 and MAS8 are not updated on a data or instruction TLB error interrupt. The hypervisor must ensure that they already con-

tain values appropriate to the partition.
8. EPLC values are used for data TLB error interrupts for external process ID loads (category E.PD).
9. EPSC values are used for data TLB error interrupts for external process ID stores (category E.PD).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 277 of 864

6.18 Storage Control Registers (Non-Architected)

This section describes the implementation-specific (nonarchitected) storage control registers.

6.18.1 Memory Management Unit Control Register 0 (MMUCR0)

The MMUCR0 register is written from a GPR using mtspr and can be read into a GPR using mfspr. In addi-
tion, the MMUCR0[TGS], [TS] and [TID] fields are updated with the TGS, TS, and TID fields of the selected
ERAT entry when an eratre instruction is executed. Conversely, the TGS, TS, and TID fields of the selected
ERAT entry are updated with the value of the MMUCR0[TGS], [TS], and [TID] fields when an eratwe instruc-
tion is executed. Other functions associated with fields of the MMUCR0 are described in more detail in the
sections that follow.

Extended Class (ECL) Field

The ECL field is used to designate the value to transfer for the ExtClass field of the ERAT entries for eratre
and eratwe instructions. The ECL field serves as an auxiliary extension to the class identifier field in the
ERAT entries, but is decoupled from the RS source register class field used in the ERAT management
instructions. The eratilx and tlbilx and the erativax and tlbivax instructions assume an ExtClass value of

Register Short Name: MMUCR0 Read Access: Hypv

Decimal SPR Number: 1020 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ECL 0b0 Extended Class

Used to transfer the ExtClass field of the selected ERAT entry.

33 TID_NZ 0b0 Translation ID Non-Zero

Used to transfer the TID_NZ field of the selected ERAT entry.

34 TGS 0b0 Translation Guest State

Used to transfer the TGS bit of the selected ERAT entry.

35 TS 0b0 Translation Space

Used to transfer the TS bit of the selected ERAT entry.

36:37 TLBSEL 0b00 TLB Select

ERAT structure selection:
00 Reserved.
01 Reserved.
10 I-ERAT.
11 D-ERAT.

38:49 /// 0x0 Reserved

50:63 TID 0x0 Translation ID

Used to transfer the TID field of the selected ERAT entry.

User’s Manual

A2 Processor

Memory Management

Page 278 of 864
Version 1.3

October 23, 2012

zero by default. The MMUCR0[ECL] field can be used by supervisory software to create ERAT entries that
are “immune” to the local or global invalidations and context synchronizing event invalidations that would
normally affect all entries.

Translation ID Non-Zero (TID_NZ) Field

The MMUCR0[TID_NZ] field is used to transfer the ERAT entry’s TID_NZ field on eratre and eratwe instruc-
tions that target ERAT word 0. Depending on the settings of MMUCR1[ICPID], [ITPID], [DCPID], and [DTPID]
bits, the ERAT entries might contain less than the full 14 bits of the translation ID. This presents an ambiguity
about whether the entry’s full TID is actually zero or not (zero being the “don’t care” value translation ID for
matching). The ERAT compare logic uses the TID_NZ field to resolve this ambiguity.

For an mtspr to this register, the source register data bit 33 is not used directly as the update data for this bit.
The MMUCR0[TID_NZ] bit is written to a value dependent on the data being written to the MMUCR0[TID]
field (that is, new value for MMUCR0[TID_NZ] = OR_REDUCE(new value for MMUCR0[TID])). The most
recently updated value of this bit is used as the new value for the ERAT entry’s TID_NZ field upon completion
of an eratwe instruction. This register bit is also updated to the chosen ERAT entry’s TID_NZ field after
completion of an eratre instruction. In this regard, this bit is treated like a read-only bit.

Translation Guest State (TGS) Field

The MMUCR0[TGS] field is used to transfer the ERAT entry’s TGS field on eratre and eratwe instructions
that target ERAT word 0. For instruction fetch and data storage accesses, the TGS field of the ERAT entries
is compared with the MSR[GS] bit. For eratsx[.] however, the MMUCR0[TGS] bit is used, allowing the ERAT
to be searched for entries with a TGS field that references a guest state entry while in hypervisor privilege
level.

Translation Space (TS) Field

The TS field is used by the eratsx[.] instruction to designate the value against which the TS field of the ERAT
entries is to be matched. For instruction fetch and data storage accesses, the TS field of the ERAT entries is
compared with the MSR[IS] bit or the MSR[DS] bit, respectively. For eratsx[.] however, the MMUCR0[TS]
field is used, allowing the ERAT to be searched for entries with a TS field that references an address space
other than the one being used by the currently executing process.

The MMUCR0[TS] field is also used to transfer the ERAT entry’s TS field on eratre and eratwe instructions
that target ERAT word 0. There are two reasons for this: there are not enough bits in the GPR used for trans-
ferring the other fields so that it can hold this field as well, and this allows software to set up entries with a TS
field that references an address space other than the one being used by the currently executing process.

See Section 6.2.2 Address Space Identifier Convention on page 187 for more information about the TS field.

Translation ID (TID) Field

The TID field is used by the eratsx[.] instruction to designate the process identifier value to be compared with
the TID field of the ERAT entries. For instruction fetch and data storage accesses and cache management
operations, the TID field of the ERAT entries is compared with the value in the PID register (see
Section 6.17.1 Process ID Register (PID) on page 244). For eratsx[.], however, the MMUCR0[TID] field is
used, allowing the ERAT to be searched for entries with a TID field that does not match the process ID of the
currently executing process.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 279 of 864

The MMUCR0[TID] field is also used to transfer the ERAT entry’s TID field on eratre and eratwe instructions
that target ERAT word 0. There are two reasons for this: there are not enough bits in the GPR used for trans-
ferring the other fields so that it can hold this field as well, and this allows software to setup entries with a TID
field that references a process identifier other than the one being used by the currently executing process.

This field is 14 bits to provide consistency with other 14-bit PID values used elsewhere on this processor.
Depending on the settings of the MMUCR1[ICTID], [ITTID], [DCTID], and [DTTID] configuration bits, the 6
MSbs of this field might or might not be used directly by the ERAT structures (which can contain the 6 MSbs
of the TID value in their respective Class and ThdID fields when configured for this). The 6 MSbs of this field
are used to transfer the Class and/or ThdID fields of the chosen ERAT entry for eratre and eratwe instruc-
tions when these fields are configured to serve as additional TID bits via MMUCR1 settings. Likewise, the 6
MSbs of this field can be used to compare against the Class and/or the ThdID fields of the chosen ERAT
entry for eratsx[.] instructions. See Section 6.18.2 Memory Management Unit Control Register 1 (MMUCR1)
for a description of how these bits can be configured for 14-bit ERAT TID operation.

The entire 14 bits of this field are always used in the determination of the value of the TID_NZ bit when this
register is written.

See Section 6.2.4 TLB Match Process on page 189 for more information about the TID field and the address
matching process. Also see Section 6.10.1 ERAT Read and Write Instructions (eratre and eratwe) on
page 219 for more information about how the MMUCR0[TID] field is used by these instructions.

User’s Manual

A2 Processor

Memory Management

Page 280 of 864
Version 1.3

October 23, 2012

6.18.2 Memory Management Unit Control Register 1 (MMUCR1)

The MMUCR1 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This
register is shared between all processing threads. Therefore, software locking is recommended to access this
register.

The MMUCR1[IRRE] and [DRRE] bits separately enable the instruction or data ERAT LRU round-robin (that
is, atomically increment mod watermark) mode of operation. The MMUCR1[PEI] bits are used to enable
parity error injection when the TLB or ERATs are written using the tlbwe instruction. This is used for parity
error exception handler testing as described in Section 6.13.2 Simulating TLB and ERAT Parity Errors for
Software Testing. In addition, the MMUCR1[IEEN], [DEEN], or [TEEN] error entry number field is updated
with the entry number of the selected TLB or ERAT entry when a tlbre instruction is executed and a parity
error occurs. Other functions associated with the fields of the MMUCR1 are described in more detail in the
sections that follow.

Register Short Name: MMUCR1 Read Access: Hypv

Decimal SPR Number: 1021 Write Access: Hypv

Initial Value: 0x000000000C000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32 IRRE 0b0 I-ERAT LRU Round-Robin Enable

0 LRU normal operation.
1 LRU atomically increments upon eratwe.

33 DRRE 0b0 D-ERAT LRU Round-Robin Enable

0 LRU normal operation.
1 LRU atomically increments upon eratwe.

34 REE 0b0 Reference Exception Enable

0 Not enabled.
1 Translation hit with R bit cleared generates an instruction storage interrupt or a

data storage interrupt.

35 CEE 0b0 Change Exception Enable

0 Not enabled.
1 Translation hit with C bit cleared generates an instruction storage interrupt or a

data storage interrupt.

36:37 CSINV 0b11 Context Sync Invalidate

This field controls how certain ERAT context affecting instructions affect the invalidation of
nonprotected (EXTCLASS = 0) I-ERAT and D-ERAT entries. See the CSINV field descrip-
tion for a definition of the set of ERAT context affecting instructions.
Bit 36:
 0 ERAT context-affecting instructions other than isync invalidate nonprotected

ERAT entries (enabled).
 1 ERAT context-affecting instructions other than isync do not invalidate ERAT

entries (disabled).
Bit 37:
 0 The isync instruction invalidates nonprotected ERAT entries (enabled).
 1 The isync instruction does not invalidate ERAT entries (disabled).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 281 of 864

38:43 PEI 0x0 Parity Error Inject

Parity Error Inject Bits:
0 Normal parity calculation.
1 Invert parity (when writing).
38 I-ERAT WS = 0 parity error inject.
39 I-ERAT WS = 1 parity error inject.
40 D-ERAT WS = 0 parity error inject.
41 D-ERAT WS = 1 parity error inject.
42 TLB parity error inject.
43 TLB LRU parity error inject.

44 ICTID 0b0 I-ERAT Class Translation ID Enable

0 I-ERAT Class field operates as a class ID.
1 I-ERAT Class field operates as TID[0:1] bits (of TID[0:13] total value).

45 ITTID 0b0 I-ERAT ThdID Translation ID Enable

0 I-ERAT ThdID field operates as a thread ID.
1 I-ERAT ThdID field operates as TID[2:5] bits (of TID[0:13] total value).

46 DCTID 0b0 D-ERAT Class Translation ID Enable

0 D-ERAT Class field operates as a class ID.
1 D-ERAT Class field operates as TID[0:1] bits (of TID[0:13] total value).

47 DTTID 0b0 D-ERAT ThdID Translation ID Enable

0 D-ERAT ThdID field operates as a thread ID.
1 D-ERAT ThdID field operates as TID[2:5] bits (of TID[0:13] total value).

48 DCCD 0b0 D-ERAT Class Compare Disable

0 D-ERAT Class field is used for normal and external PID translation compares.
1 D-ERAT Class field is ignored for translation compares (mutually exclusive to

using external PID operations).

49 TLBWE_BINV 0b0 TLBWE Back Invalidate

0 No back invalidates are generated to the ERATs for tlbwe instructions.
1 When tlbwe with MAS0[HES] = 0 instruction overwrites a valid, direct TLB entry

without an exception being generated, send a back invalidate to the ERATs target-
ing the old virtual address.

50 TLBI_MSB 0b0 TLB Invalidate Most Significant Bit

0 TLB invalidate snoops from bus assume EPN[31:51] is significant (EPN[27:30] is
ignored).

1 TLB invalidate snoops from bus assume EPN[27:51] is significant.

51 TLBI_REJ 0b0 TLB Invalidate Reject

0 TLB invalidate snoops from bus are accepted and compared against LPID values
in the TLB.

1 TLB invalidate snoops from bus compare against LPIDR.LPID value for accep-
tance or rejection.

52 IERRDET 0b0 I-ERAT Error Detect

0 No error detected.
1 I-ERAT error detected and the EEN field contains a snapshot of the first entry

number with an error detected.

53 DERRDET 0b0 D-ERAT Error Detect

0 No error detected.
1 D-ERAT error detected and the EEN field contains a snapshot of the first entry

number with an error detected.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Memory Management

Page 282 of 864
Version 1.3

October 23, 2012

sa8ui LRU Round-Robin Enable (IRRE) Bit

The MMUCR1[IRRE] bit is used to enable the I-ERAT LRU round-robin mode of operation. See Section 6.7.4
ERAT LRU Round-Robin Replacement Mode for a description of this behavior.

D-ERAT LRU Round-Robin Enable (DRRE) Bit

The MMUCR1[DRRE] bit is used to enable the D-ERAT LRU round-robin mode of operation. See
Section 6.7.4 ERAT LRU Round-Robin Replacement Mode for a description of this behavior.

Reference Exception Enable (REE) Bit

The MMUCR1[REE] bit is used to enable the generation of a read access control DSI exception or an
execute access control ISI exception, when a matching TLB or ERAT entry with R = 0 is accessed via a load
or instruction fetch. See Section 6.12 Page Reference and Change Status Management for a description of
this behavior.

Change Exception Enable (CEE) Bit

The MMUCR1[CEE] bit is used to enable the generation of a write access control DSI exception when a
matching TLB or ERAT entry is accessed with C = 0 via a store. See Section 6.12 Page Reference and
Change Status Management for a description of this behavior.

Context Sync Invalidate (CSINV) Field

The MMUCR1[CSINV] field is used to control the invalidation of nonprotected (ExtClass = 0) entries in the
I-ERAT and D-ERAT as the result of executing certain ERAT context-altering instructions in MMU mode
(CCR2[NOTLB] = 0). This set of instructions includes: sc, ehpriv, mtmsr, mtpid, mtlpidr, rfi, rfci, rfmci,
rfgi, and isync. In ERAT-only mode (CCR2[NOTLB] = 1), the ERAT entries are not invalidated as the result
of these instructions, and this field is effectively disabled. This field has no impact on the TLB and LRAT
structures in this implementation, nor does it affect the operation of any invalidate instructions. Bit 36 of this
field impacts the non-isync instructions of this set, and bit 37 controls the behavior of isync. Setting this field
to “00” allows the entire defined set of ERAT context-altering instructions to flush nonprotected entries from
the ERATs. Setting this field to “01” allows the defined set of ERAT context-altering instructions other than
isync to flush nonprotected entries from the ERATs. Setting this field to “10” allows the non-isync instruc-
tions to complete without invalidating ERAT entries, but the isync instruction will flush the ERAT nonpro-
tected entries. Setting this field to “11” effectively immunizes the ERAT nonprotected entries from invalidation
as the result of any of these context-altering instructions.

54 TERRDET 0b0 TLB Error Detect

0 No error detected.
1 TLB error detected and the EEN field contains a snapshot of the first entry number

with an error detected.

55:63 EEN 0x0 Error Entry Number

I-ERAT, D-ERAT, or TLB entry number for which the first error was found after a read of
this register.

Bits Field Name Initial
Value Description

data storage interrupt

instruction storage interrupt

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 283 of 864

Parity Error Inject (PEI) Field

The MMUCR1[PEI] field is used to inject parity errors into the I-ERAT, D-ERAT, and/or the TLB entry targeted
by a subsequent eratwe or tlbwe instruction. One bit is provided for each array and word select combination
to individually test the parity error logic of the tag and data portion of each structure and the resulting software
handling of each error.

I-ERAT Class Translation ID (ICTID) Field

The MMUCR1[ICTID] field is used to control the behavior of the I-ERAT entries Class field. When this bit is
zero, the Class field of the I-ERAT entries behaves normally as a Class value as described in other sections
of this document (that is, it responds to class-based invalidations, and so forth). The I-ERAT Class field is
loaded from RS[52:53] upon execution of the eratwe with WS = 0 when this bit is zero.

When this bit is set to a ‘1’, the I-ERAT logic treats the Class field of each entry as 2 additional bits of the
translation ID (TID). In this mode, the 2-bit Class field is used as TID[0:1] of the full TID[0:13] value (that is,
the 2 MSbs of the 14-bit TID). The I-ERAT Class field is compared against the PID[50:51] value for transla-
tions. The I-ERAT Class field is loaded from MMUCR0[50:51] upon execution of the eratwe with WS = 0.
MMUCR0[50:51] are used to compare against the I-ERAT Class field for eratsx[.] instructions when this bit is
set. Class-based invalidations of the I-ERAT in this mode are ignored. It is recommended that supervisory
software only set this bit when the MMUCR1[ITTID] bit is also set (providing for the full 14-bit PID compare) to
avoid a noncontiguous TID value being used in the I-ERAT compare logic.

I-ERAT ThdID Translation ID (ITTID) Field

The MMUCR1[ITTID] field is used to control the behavior of the I-ERAT entries ThdID field. When this bit is
zero, the ThdID field of the I-ERAT entries behave normally as a thread identifier value as described in other
sections of this document (that is, compares ThdID against thread valid for the fetch, and so forth). The
I-ERAT ThdID field is loaded from RS[60:63] upon execution of the eratwe with WS = 0 when this bit is zero.

When this bit is set to a ‘1’, the I-ERAT logic treats the ThdID field of each entry as 4 additional bits of the TID.
In this mode, the 4-bit ThdID field is used as TID(2:5) of the full TID(0:13) value (that is, the 4 MSbs of a trun-
cated 12-bit TID value). The I-ERAT ThdID field is loaded from MMUCR0[52:55] upon execution of the
eratwe with WS = 0. MMUCR0[52:55] are used to compare against the I-ERAT ThdID field for eratsx[.]
instructions when this bit is set. The full 14-bit TID value can be realized by setting both this bit and the ICTID
bit of this register.

Setting the ITTID bit disables any thread-based assignment of translation entries to a specific hardware
thread or groups of threads (that is, thread ID is not a factor in determining hit or miss for any entry). This
function is provided for operating systems that might realize a performance benefit from housing a larger
subset (greater than 8 bits) of the 14-bit TID value in I-ERAT entries, or which would otherwise always set
ThdID = ‘1111’ for all entries.

D-ERAT Class Translation ID (DCTID) Field

The MMUCR1[DCTID] field is used to control the behavior of the D-ERAT entries Class field. When this bit is
zero, the Class field of the D-ERAT entries behaves normally as a Class value as described in other sections
of this document (that is, responds to class-based invalidations, and so forth). The D-ERAT Class field is
loaded from RS[52:53] upon execution of the eratwe with WS = 0 when this bit is zero.

User’s Manual

A2 Processor

Memory Management

Page 284 of 864
Version 1.3

October 23, 2012

When this bit is set to a ‘1’, the D-ERAT logic treats the Class field of each entry as 2 additional bits of the
TID. In this mode, the 2-bit Class field is used as TID[0:1] of the full TID[0:13] value (that is, the 2 MSbs of the
14-bit TID). The D-ERAT Class field is compared against the PID[50:51] value for translations. The D-ERAT
Class field is loaded from MMUCR0[50:51] upon execution of the eratwe with WS = 0. MMUCR0[50:51] are
used to compare against the D-ERAT Class field for eratsx[.] instructions when this bit is set. Class-based
invalidations of the D-ERAT in this mode are ignored. It is recommended that supervisory software only set
this bit when the MMUCR1[DTTID] bit is also set (providing for the full 14-bit PID compare) to avoid a noncon-
tiguous TID value being used in the D-ERAT compare logic.

Note: Care must be exercised when overriding the function of the Class field in the D-ERAT. In addition to
normal load, store, and cache management operations, the D-ERAT structure is used for translation of exter-
nal PID load and store instructions that inherently override, among other things, the PID and LPID values.
Because the D-ERAT entries are not tagged with the LPID value, ambiguities might occur with multiple
D-ERAT entries with the same (or similar) TID values, but that pertain to different logical partitions (that is, the
TLPID value in the TLB is different for these entries, and the LPID values in the LPIDR, EPLC, and EPSC
registers are unique). The D-ERAT Class values of 2 and 3 are normally used by hardware to denote external
load and external store associated entries respectively to overcome this LPID ambiguity. It is the responsibil-
ity of the operating system and/or hypervisor to resolve this external PID operation ambiguity when DCTID =
‘1’. Some ways of avoiding such ambiguities include simply not using external loads and stores that target dif-
ferent LPID values or maintaining a unique set of process IDs assigned to each logical partition ID currently
referenced by this processor, and so forth.

D-ERAT ThdID Translation ID (DTTID) Field

The MMUCR1[DTTID] field is used to control the behavior of the D-ERAT entries ThdID field. When this bit is
zero, the ThdID field of the D-ERAT entries behaves normally as a thread identifier value as described in
other sections of this document (that is, it compares ThdID against thread valid for loads, stores, and cache
management operations, and so forth). The D-ERAT ThdID field is loaded from RS[60:63] upon execution of
the eratwe with WS = 0 when this bit is zero.

When this bit is set to a ‘1’, the D-ERAT logic treats the ThdID field of each entry as 4 additional bits of the
TID. In this mode, the 4-bit ThdID field is used as TID(2:5) of the full TID(0:13) value (that is, the 4 MSbs of a
truncated 12-bit TID value). The D-ERAT ThdID field is loaded from MMUCR0[52:55] upon execution of the
eratwe with WS = 0. MMUCR0[52:55] are used to compare against the D-ERAT ThdID field for eratsx[.]
instructions when this bit is set. The full 14-bit TID value can be realized by setting both this bit and the
DCTID bit of this register.

Setting the DTTID bit disables any thread-based assignment of translation entries to a specific hardware
thread or groups of threads (that is, the thread ID is not a factor in determining hit or miss for any entry). This
function is provided for operating systems that might realize a performance benefit from housing a larger
subset (greater than 8 bits) of the 14-bit TID value in I-ERAT entries, or which would otherwise always set
ThdID = ‘1111’ for all entries.

D-ERAT Class Compare Disable (DCCD) Bit

The MMUCR1[DCCD] field is used to control the behavior of the D-ERAT entries Class field compare enable.
When this bit is zero, the Class field of the D-ERAT entries behaves normally as described in other sections
of this document (that is, it responds to class-based invalidations, or can be part of the TID value, and so
forth). When this bit is set, the D-ERAT Class field is ignored for normal load/store translations and for

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 285 of 864

external PID load/store translations. This puts the D-ERAT into a mode of operation similar to that of the
I-ERAT in which the Class field is used only for invalidation compares (caused by invalidation instructions or
context-altering operations, and so forth) and is ignored for translation activity.

This bit also impacts the value of the Class field data that is written into a D-ERAT entry as the result of a
unified TLB entry reload. See Table 6-5 ERAT Class Field Reload Value For UTLB Hits for details on how this
bit affects the Class field for UTLB reloads. This bit has no direct impact on D-ERAT invalidation operations of
any kind.

TLB Write Entry Back Invalidate Enable (TLBWE_BINV) Bit

The MMUCR1[TLBWE_BINV] is used is used to enable ERAT shadow-copy back invalidation when a valid
TLB entry is being overwritten by a tlbwe instruction. When this bit is zero, no tlbwe-sourced back invalidates
to the ERATs are allowed. When this bit is set, virtual-address-based back invalidates are sent to both ERAT
structures as the result of certain tlbwe operations. See Section 6.7.6 ERAT (TLB Lookaside Information)
Coherency and Back-Invalidation for the exact tlbwe instruction parameters that can cause a back invalida-
tion when this bit is set and the ERAT entry matching parameters for this back invalidation.

TLB Invalidate Most Significant Bit (TLBI_MSB) Bit

The MMUCR1[TLBI_MSB] bit is used to determine the behavior of tlbivax back-invalidate snoop handling of
the EPN field by the TLB invalidation hardware. This bit is an override for the invalidation snoop handling logic
to behave as though it were placed in a system that supports the full EPN[27:51] width of the A2 to L2 request
bus interface EPN definition (PBus Category B.E supports only EPN[31:51]). This bit also controls the format
of the A2 core’s downbound tlbivax and erativax request EPN field. See Section 6.9.4 TLB Invalidate Virtual
Address (Indexed) Instruction (tlbivax) and Section 6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruc-
tion (erativax) for a detailed descriptions of this format.

TLB Invalidate Reject (TLBI_REJ) Bit

The MMUCR1[TLBI_REJ] bit is used to determine the behavior of tlbivax back-invalidate snoop handling by
the TLB invalidation hardware. This bit is an override for the invalidation snoop handling logic to behave as
though it were placed in ERAT-only mode (even though there is a TLB resident and the hardware is otherwise
operating in MMU mode).

When this bit is zero, the invalidation hardware assumes all tlbivax snoops are intended for this processor,
and accepts and processes all snoops. The snoop LPID value is used in the TLB invalidation compare to
determine if an entry should be invalidated. There is no snoop “filtering” based on the LPIDR[LPID] value. All
invalidation snoops are completed to the bus by sending a downbound TLBI_COMPLETE transaction.

When this bit is set to a ‘1’, the invalidation hardware assumes tlbivax snoops are only intended for this
processor when the snoop LPID value matches this processor’s LPIDR[LPID] value. If there is a mismatch, a
snoop reject is delivered immediately to the bus. Otherwise, the matching invalidation snoop will be
completed to the bus by sending a downbound TLBI_COMPLETE transaction.

User’s Manual

A2 Processor

Memory Management

Page 286 of 864
Version 1.3

October 23, 2012

I-ERAT Error Detect (IERRDET) Bit

The MMUCR1[IERRDET] bit is set to a ‘1’ by hardware when the I-ERAT detects a multihit error or parity
error, and the current values of the IERRDET, DERRDET, and TERRDET bits are all zero. A read of this
register returns the current state of this bit, clears this bit, and re-enables the capture property of this bit and
that of the EEN field. When this bit (or any of the other ERRDET bits) is set to a ‘1’, the EEN field retains its
current state, as do all of the ERRDET bits.

D-ERAT Error Detect (DERRDET) Bit

The MMUCR1[DERRDET] bit is set to a ‘1’ by hardware when the D-ERAT detects a multihit error or parity
error, and the current values of the IERRDET, DERRDET, and TERRDET bits are all zero. A read of this
register returns the current state of this bit, clears this bit, and re-enables the capture property of this bit and
that of the EEN field. When this bit (or any of the other ERRDET bits) is set to a ‘1’, the EEN field retains its
current state, as do all of the ERRDET bits.

TLB Error Detect (TERRDET) Bit

The MMUCR1[TERRDET] bit is set to a ‘1’ by hardware when the TLB detects a multihit error or parity error,
and the current values of the IERRDET, DERRDET, and TERRDET bits are all zero. A read of this register
returns the current state of this bit, clears this bit, and re-enables the capture property of this bit and that of
the EEN field. When this bit (or any of the other ERRDET bits) is set to a ‘1’, the EEN field retains its current
state, as do all of the ERRDET bits.

Error Entry Number (EEN) Field

The MMUCR1[EEN] field is used to capture the I-ERAT, D-ERAT, or TLB entry number that corresponds to
the first multihit error or parity error occurrence after this register is read by software. A read of this register
returns the current state of this field, clears this field, and re-enables the capture mode for this field, as
described above for the ERRDET bits. This is provided for software parity and/or multihit error handling and
debugging assistance.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 287 of 864

6.18.3 Memory Management Unit Control Register 2 (MMUCR2)

The MMUCR2 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This
register is shared between all processing threads. Therefore, software locking is recommended to access this
register.

The MMUCR2[PSn] fields are used to control the MMU TLB page size sequencer hardware. The TLB is
probed multiple times for the supported page sizes during ERAT miss servicing. The page size is used in the
calculation of the congruence class selection in the TLB array. The MMUCR2 register provides a means to
configure how many of the page sizes should be used (that is, software can choose to use less than the
maximum number of supported page sizes) and in which order the page sizes should be applied in TLB
congruence class calculation (that is, one page size is used more often than others, therefore check it first).

Setting a PSn field to ‘0000’ disables checking for that page size probe. The PSn fields of this register should
be used in a strictly monotonic fashion, meaning software needs to PS0 first (that is, set it to a valid nonzero
value), then PS1, and so forth, because page size probing ceases for the first zeroed PSn field encountered.

Note: This register has no impact on TLB probing for indirect (IND = 1) entries for hardware page table walk-
ing. Indirect entries are always searched for in order; that is, indirect page size = 1 MB, followed by indirect
page size = 256 MB.

The MMUCR2[EXT_DBG_SEL] bits are used to provide extended (or alternate) event selection for certain
debug trace and trigger groups. The MMUCR2[CLKG_CTL] bits are clock gating override bits that, when set,
provide for an override of the normal power clock gating provided in certain parts of the MMU hardware.
These bits have no noticeable impact to software or mainline MMU hardware functions.

Register Short Name: MMUCR2 Read Access: Hypv

Decimal SPR Number: 1022 Write Access: Hypv

Initial Value: 0x00000000000A7531 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:39 CLKG_CTL 0x0 MMU Clock Gating Control

Power clock gating overrides for various parts of the MMU. Setting these bits has no func-
tional impact.

40:43 EXT_DBG_SEL 0b0000 MMU Extended Debug Select

Alternate debug group selects for the MMU. See Appendix C.6 MMU and PC Debug Select
Register and Debug Group Tables on page 810.
Bit 40: Alternate debug groups 10 and 11 select.
Bit 41: Alternate debug groups 12 and 13 select.
Bit 42: Alternate debug groups 14 and 15 select.
Bit 43: Alternate debug trigger group 3.

User’s Manual

A2 Processor

Memory Management

Page 288 of 864
Version 1.3

October 23, 2012

Page Size 0 (PS0) Field

The MMUCR2[PS0] field is used to select which page size should be used first in the congruence class calcu-
lation for multiple probes of the TLB. Setting this field to ‘0000’ disables probing of the TLB for this page size
(because this is first field used by the hardware TLB probe sequencer, setting this field to all zeros guaran-
tees a TLB miss to occur).

44:47 PS4 0b1010 TLB Page Size 4 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

48:51 PS3 0b0111 TLB Page Size 3 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

52:55 PS2 0b0101 TLB Page Size 2 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

56:59 PS1 0b0011 TLB Page Size 1 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

60:63 PS0 0b0001 TLB Page Size 0 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 289 of 864

Page Size 1 (PS1) Field

The MMUCR2[PS1] field is used to select which page size should be used second in the congruence class
calculation for multiple probes of the TLB. Setting this field to ‘0000’ disables probing of the TLB for this page
size (that is, only one page size probe for PS0 occurs).

Page Size 2 (PS2) Field

The MMUCR2[PS2] field is used to select which page size should be used third in the congruence class
calculation for multiple probes of the TLB. Setting this field to ‘0000’ disables probing of the TLB for this page
size (that is, only two page size probes for PS0 and PS1 occur).

Page Size 3 (PS3) Field

The MMUCR2[PS3] field is used to select which page size should be used fourth in the congruence class
calculation for multiple probes of the TLB. Setting this field to ‘0000’ disables probing of the TLB for this page
size (that is, only three page size probes for PS0 through PS2 occur).

Page Size 4 (PS4) Field

The MMUCR2[PS4] field is used to select which page size should be used fifth in the congruence class calcu-
lation for multiple probes of the TLB. Setting this field to ‘0000’ disables probing of the TLB for this page size
(that is, only four page size probes for PS0 through PS3 occur).

User’s Manual

A2 Processor

Memory Management

Page 290 of 864
Version 1.3

October 23, 2012

6.18.4 Memory Management Unit Control Register 3 (MMUCR3)

The MMUCR3 register is written from a GPR using mtspr and can be read into a GPR using mfspr. This
register is replicated for each thread. MMUCR3 is used to transfer implementation-specific fields of the
selected TLB entry when a tlbre or tlbwe instruction is executed or when a tlbsx[.] instruction is executed
and a matching entry is found.

Extended Class (ECL) Field

The ECL field is used to designate the value to transfer for the ExtClass field of the TLB entries for tlbre and
tlbwe instructions. The ECL field serves as an auxiliary extension to the class identifier field in the TLB
entries, but decoupled from the class field used in certain management invalidation instructions. The eratilx
and tlbilx and the erativax and tlbivax instructions assume an ExtClass value of ‘0’ by default. The
MMUCR3[ECL] field can be used by supervisory software to create shadow ERAT entries that are “immune”
to the local or global invalidations. The TLB[IPROT] bit is used exclusively to determine a TLB entry’s protec-
tion status (that is, the TLB[ExtClass] field is not factored into a TLB entry’s invalidation protection).

Register Short Name: MMUCR3 Read Access: Priv

Decimal SPR Number: 1023 Write Access: Priv

Initial Value: 0x000000000000000F Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:48 /// 0x0 Reserved

49 X 0b0 Exclusion Range Enable

This bit is used to transfer the X bit to or from the selected TLB entry.

50 R 0b0 Reference

This bit is used to transfer the R bit to or from the selected TLB entry.

51 C 0b0 Change

This bit is used to transfer the C bit to or from the selected TLB entry.

52 ECL 0b0 Extended Class

This field is used to transfer the extended class field to or from the selected TLB entry.

53 TID_NZ 0b0 Translation ID Non-Zero

This field is used to transfer the TID_NZ field from the selected TLB entry.

54:55 Class 0b00 Class

This field is used to transfer the Class field to or from the selected TLB entry.

56:57 WLC 0b00 L1 D-Cache Way Locking Class Attribute

This field is used to transfer the WLC bits to or from the selected TLB entry.

58 ResvAttr 0b0 Reserved Attributes

This field is used to transfer the reserved attributes to or from the selected TLB entry.

59 /// 0b0 Reserved

60:63 ThdID 0b1111 Thread Identifier

This field is used to transfer the thread ID field to or from the selected TLB entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Memory Management

Page 291 of 864

The setting of the MAS1[IPROT] field controls how this field is used when writing TLB entries. When TLB
entries are created via tlbwe instructions while MAS1[IPROT] = 0, this field is ignored, and the ExtClass field
of the TLB entry is set to “0”. This is to prevent TLB entries intended to be volatile (that is, not protected) from
creating subsequent shadow copies that are protected. When TLB entries are created via tlbwe instructions
while MAS1[IPROT] = 1, this field is used to define the ExtClass field of the TLB entry and the subsequent
value of any shadow copies of this entry that might be created in the ERATs. This mechanism allows for
protecting TLB entries with IPROT = 1, but allowing subsequent shadow copies to be volatile (ECL = 0) or to
also be protected (ECL = 1). When a shadow copy ERAT entry is installed from the TLB, the resulting
ExtClass field of the shadow ERAT entry (hence its protection status) is a logical AND between the TLB entry
IPROT bit and this field (that is, ERAT[ExtClass] = TLB.IPROT AND MMUCR3[ECL] after TLB reload).
Setting this bit before setting up TLB entries with the tlbwe instructions provides for TLB shadow copies in the
ERATs that always have their respective ExtClass field mimic the setting of the backing TLB entry’s IPROT
setting.

Translation ID Non-Zero (TID_NZ) Field

The TID_NZ field is used to designate the value to transfer of the TID_NZ field of the TLB entries for tlbre.
The update data value for the TID_NZ field for tlbwe instructions is calculated from the MAS1[TID] field (the
TID_NZ field is updated to the value of the logical OR of the MAS1 14 TID bits for tlbwe).

The X, R, C, Class, WLC, ResvAttr, and ThdID fields of this register are simply used to transfer these imple-
mentation-specific fields to and from the TLB upon tlbwe or tlbre execution; they require no additional
description.

User’s Manual

A2 Processor

Memory Management

Page 292 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 293 of 864

7. CPU Interrupts and Exceptions

This chapter begins by defining the terminology and classification of interrupts and exceptions in Overview
and Directed Interrupts.

Interrupt Processing on page 297 explains in general how interrupts are processed, including the require-
ments for partial execution of instructions.

Several registers support interrupt handling and control. Interrupt Processing Registers on page 300
describes these registers.

Table 7-3 Interrupt and Exception Types on page 323 lists the interrupts and exceptions handled by the A2
core, in the order of interrupt offset. Detailed descriptions of each interrupt type follow, in the same order.

Finally, Interrupt Ordering and Masking on page 362 and Exception Priorities on page 365 define the priority
order for the processing of simultaneous interrupts and exceptions.

7.1 Overview

An interrupt is the action in which the processor saves its old context (Machine State Register (MSR) and
next instruction address) and begins execution at a predetermined interrupt-handler address, with a modified
MSR. The term processor in this context is a single hardware thread on the A2 core. An interrupt on one
thread does not affect the execution of another thread. Exceptions are the events that can cause the
processor to take an interrupt, if the corresponding interrupt type is enabled.

Exceptions can be generated by the execution of instructions or by signals from devices external to the A2
core, the internal timer facilities, debug events, or error conditions.

A hypervisor program is a layer of trusted software that manages other software running on different local
collections of real storage, which are called partitions. The collection of software that runs in a given partition
and its associated resources is called a guest. The guest normally includes an operating system (or other
system software) running in privileged state and its associated processes running in the problem state under
the management of the hypervisor. The processor is in the guest state when a guest is executing, and it is in
the hypervisor state when the hypervisor is executing. The processor is executing in the guest state when
MSR[GS] = 1. The processor is executing in the hypervisor state when MSR[GS,PR] = 0b00. An instruction or
register that is hypervisor privileged must be in the hypervisor state to successfully execute. If executed from
guest privileged state (MSR[GS,PR] = 0b10), an embedded hypervisor privilege exception occurs.

7.2 Directed Interrupts

Interrupts can be directed to either the guest state or the hypervisor state. The state to which interrupts are
directed determines which SPRs are used to form the vector address, which save/restore registers are used
to capture the processor state at the time of the interrupt, and which registers are used to post exception
status.

Interrupts directed to the embedded hypervisor state use the Interrupt Vector Prefix Register (IVPR) for the
upper 48 bits of the address and Interrupt Fixed Offsets to provide the lower 16. Interrupts that are directed to
the embedded hypervisor state use Save/Restore Register 0 (SRR0) and Save/Restore Register 1 (SRR1) to
save the context at interrupt time; they use the Exception Syndrome Register (ESR) to post exception

special purpose register

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 294 of 864
Version 1.3

October 23, 2012

syndrome information and the Data Exception Address Register (DEAR) to post the effective address of a
data reference. Doorbell interrupts are directed to embedded hypervisor state, but use Guest Save/Restore
Register 0 (GSRR0) and Guest Save/Restore Register 1 (GSRR1) to save context.

Interrupts directed to the guest state use the Guest Interrupt Vector Prefix Register (GIVPR) for the upper 48
bits of the address and Interrupt Fixed Offsets to provide the lower 16. Interrupts that are directed to the guest
state use Guest Save/Restore Register 0 (GSRR0) and Guest Save/Restore Register 1 (GSRR1) to save the
context at interrupt time; they use the Guest Exception Syndrome Register (GESR) to post exception
syndrome information and the Guest Data Exception Address Register (GDEAR) to post the effective
address of a data reference.

Most interrupts are directed to the embedded hypervisor state. Some interrupts can be directed to the guest
state if the interrupt is a system call interrupt or if the processor is currently executing in guest state
(MSR[GS] = 1) and the interrupt is configured by the Embedded Processor Control Register (EPCR) to be
directed to the guest state.

7.3 Interrupt Classes

All interrupts, except for machine check, can be categorized according to two independent characteristics of
the interrupt:

• Asynchronous or synchronous

• Critical or noncritical

7.3.1 Asynchronous Interrupts

Asynchronous interrupts are caused by events that are independent of instruction execution. For asynchro-
nous interrupts, the address reported to the interrupt handling routine is the address of the instruction that
would have executed next, had the asynchronous interrupt not occurred.

7.3.2 Synchronous Interrupts

Synchronous interrupts are those that are caused directly by the execution (or attempted execution) of
instructions, and are further divided into two classes, precise and imprecise.

Synchronous, precise interrupts are those that precisely indicate the address of the instruction causing the
exception that generated the interrupt; or, for certain synchronous, precise interrupt types, the address of the
immediately following instruction.

Synchronous, imprecise interrupts are those that can indicate the address of the instruction that caused the
exception that generated the interrupt, or the address of some instruction after the one that caused the
exception.

7.3.2.1 Synchronous, Precise Interrupts

When the execution or attempted execution of an instruction causes a synchronous, precise interrupt, the
following conditions exist when the associated interrupt handler begins execution:

• SRR0 (see Section 7.5.5 Save/Restore Register 0 (SRR0) on page 305, CSRR0 (see Section 7.5.9 Criti-
cal Save/Restore Register 0 (CSRR0) on page 310), or GSRR0 (see Section 7.5.7 Guest Save/Restore
Register 0 (GSRR0) on page 308) addresses either the instruction that caused the exception that gener-

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 295 of 864

ated the interrupt, or the instruction immediately following this instruction. Which instruction is addressed
can be determined from a combination of the interrupt type and the setting of certain fields of the ESR
(see Section 7.5.17 Exception Syndrome Register (ESR) on page 318) or GESR (see Section 7.5.18
Guest Exception Syndrome Register (GESR) on page 320).

• The interrupt is generated such that all instructions preceding the instruction that caused the exception
appear to have completed with respect to the executing processor. However, some storage accesses
associated with these preceding instructions might not have been performed with respect to other proces-
sors and mechanisms.

• The instruction that caused the exception might appear not to have begun execution (except for having
caused the exception), might have been partially executed, or might have completed, depending on the
interrupt type (see Partially Executed Instructions on page 299).

• Architecturally, no instruction beyond the one that caused the exception has executed.

7.3.2.2 Synchronous, Imprecise Interrupts

When the execution or attempted execution of an instruction causes a synchronous, imprecise interrupt, the
following conditions exist when the associated interrupt handler begins execution:

• SRR0, GSRR0, or CSRR0 addresses either the instruction that caused the exception that generated the
interrupt or some instruction following this instruction.

• The interrupt is generated such that all instructions preceding the instruction addressed by SRR0,
GSRR0, or CSRR0 appear to have completed with respect to the executing processor.

• If the imprecise interrupt is forced by the context-synchronizing mechanism due to an instruction that
causes another exception that generates an interrupt (for example, alignment or data storage), then
SRR0 addresses the interrupt-forcing instruction; the interrupt-forcing instruction might have been par-
tially executed (see Partially Executed Instructions on page 299).

• If the imprecise interrupt is forced by the execution-synchronizing mechanism due to executing an execu-
tion-synchronizing instruction other than msync or isync, then SRR0, CSRR0, or GSRR0 addresses the
interrupt-forcing instruction, and the interrupt-forcing instruction appears not to have begun execution
(except for its forcing the imprecise interrupt). If the imprecise interrupt is forced by an msync or isync
instruction, SRR0, CSRR0, or GSRR0 can address either the msync or isync instruction or the following
instruction.

• If the imprecise interrupt is not forced by either the context-synchronizing mechanism or the execution-
synchronizing mechanism, the instruction addressed by SRR0, CSRR0, or GSRR0 might have been par-
tially executed (see Partially Executed Instructions on page 299).

• No instruction following the instruction addressed by SRR0, CSRR0, or GSRR0 has executed.

Many synchronous, imprecise interrupts in the A2 core are the special cases of delayed interrupts, which can
result when certain kinds of exceptions occur while the corresponding interrupt type is disabled. The first of
these is the floating-point enabled exception type of program interrupt. For this type of interrupt to occur, a
floating-point unit must be attached to the auxiliary processor interface of the A2 core, and the Floating-Point
Enabled Exception Summary bit of the Floating-Point Status and Control Register (FPSCR[FEX]) must be set
while floating-point enabled exception type of program interrupts are disabled because MSR[FE0,FE1] are
both 0. If and when such interrupts are subsequently enabled by setting one or the other (or both) of
MSR[FE0,FE1] to 1 while FPSCR[FEX] is still 1, a synchronous, imprecise form of the floating-point enabled
exception type of program interrupt occurs; SRR0 is set to the address of the instruction that would have

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 296 of 864
Version 1.3

October 23, 2012

executed next (that is, the instruction after the one that updated MSR[FE0,FE1]). If the MSR was updated by
an rfi, rfci, rfgi, or rfmci instruction, SRR0 is set to the address to which the rfi, rfci, or rfmci was returning,
and not to the instruction address that is sequentially after the rfi, rfci, rfgi, or rfmci.

The second type of delayed interrupt that can be handled as a synchronous, imprecise interrupt is the debug
interrupt. Similar to the floating-point enabled exception type of program interrupt, the debug interrupt can be
temporarily disabled by an MSR bit, MSR[DE]. Accordingly, certain kinds of debug exceptions can occur and
be recorded in the Debug Status Register (DBSR) while MSR[DE] is 0, and later lead to a delayed debug
interrupt if MSR[DE] is set to 1 while a debug exception is still set in the DBSR. If and when this occurs, the
interrupt is either synchronous and imprecise or it is asynchronous, depending on the type of debug excep-
tion causing the interrupt. In either case, CSRR0 is set to the address of the instruction that would have
executed next (that is, the instruction after the one that set MSR[DE] to 1). If MSR[DE] is set to 1 by rfi, rfci,
rfgi, or rfmci, CSRR0 is set to the address to which the rfi, rfci, rfgi, or rfmci was returning, and not to the
address of the instruction that was sequentially after the rfi, rfci, rfgi, or rfmci.

Another interrupt that is handled as a synchronous, imprecise interrupt is the debug interrupt, when using the
data value compare (DVC) facility on a load instruction.

Besides these special cases of program and debug interrupts, all other synchronous interrupts are handled
precisely by the A2 core, except the FP enabled exception type of program interrupts when the processor is
operating in one of the architecturally-defined imprecise modes (MSR[FE0,FE1] != 0b00).

See Program Interrupt on page 338 and Debug Interrupt on page 347 for a more detailed description of these
interrupt types, including both the precise and imprecise cases.

7.3.3 Critical and Noncritical Interrupts

Interrupts can also be classified as critical or noncritical interrupts. Certain interrupt types demand immediate
attention, even if other interrupt types are currently being processed and have not yet had the opportunity to
save the state of the machine (that is, the return address and captured state of the MSR). To enable taking a
critical interrupt immediately after a noncritical interrupt has occurred (that is, before the state of the machine
has been saved), two sets of Save/Restore Register pairs are provided. Critical interrupts use the
Save/Restore Register pair CSRR0/CSRR1. Noncritical interrupts use Save/Restore Register pair
SRR0/SRR1 or, for interrupts directed to guest state, GSRR0/GSRR1.

7.3.4 Machine Check Interrupts

Machine check interrupts are a special case. They are typically caused by some kind of hardware or storage
subsystem failure or by an attempt to access an invalid address. A machine check can be caused indirectly
by the execution of an instruction, but not be recognized or reported until long after the processor has
executed past the instruction that caused the machine check. As such, machine check interrupts cannot
properly be classified as either synchronous or asynchronous, nor as precise or imprecise. They also do not
belong to either the critical or the noncritical interrupt class. Instead, machine check interrupts have associ-
ated with them a unique pair of save/restore registers, Machine Check Save/Restore Registers 0/1
(MCSRR0/1).

Architecturally, the following general rules apply for Machine Check interrupts:

1. No instruction after the one whose address is reported to the machine check interrupt handler in
MCSRR0 has begun execution.

2. The instruction whose address is reported to the machine check interrupt handler in MCSRR0, and all
prior instructions, might or might not have completed successfully. All those instructions that are ever

floating-point

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 297 of 864

going to complete appear to have done so already, and have done so within the context existing before
the machine check interrupt. No further interrupt (other than possible additional machine check inter-
rupts) will occur as a result of those instructions.

With the A2 core, machine check interrupts can be caused by machine check exceptions on a memory
access for an instruction fetch, for a data access, or for a translation lookaside buffer (TLB) access. Some of
the interrupts generated behave as synchronous, precise interrupts, while other are handled in an asynchro-
nous fashion.

In the case of an instruction-synchronous machine check exception, the A2 core handles the interrupt as a
synchronous, precise interrupt, assuming machine check interrupts are enabled (MSR[ME] = 1). That is, if a
machine check exception is detected during an instruction fetch, the exception is not reported to the interrupt
mechanism unless and until execution is attempted for the instruction address at which the machine check
exception occurred. If, for example, the direction of the instruction stream is changed (perhaps due to a
branch instruction), such that the instruction at the address associated with the machine check exception will
not be executed, then the exception will not be reported and no interrupt will occur. If and when an instruction
machine check exception is reported and if machine check interrupts are enabled at the time of the reporting
of the exception, the interrupt will be synchronous and precise and MCSRR0 will be set to the instruction
address that led to the exception. If machine check interrupts are not enabled at the time of the reporting of
an instruction machine check exception, a machine check interrupt will not be generated (ever, even if and
when MSR[ME] is subsequently set to 1).

Instruction asynchronous machine check, data asynchronous machine check, and TLB asynchronous
machine check exceptions, on the other hand, are handled in an asynchronous fashion. That is, the address
reported in MCSRR0 might not be related to the instruction that prompted the access that led, directly or indi-
rectly, to the machine check exception. The address might be that of an instruction before or after the excep-
tion-causing instruction, or it might reference the exception causing instruction, depending on the nature of
the access, the type of error encountered, and the circumstances of the instruction’s execution within the
processor pipeline. If MSR[ME] is 0 at the time of a machine check exception that is handled in this asynchro-
nous way, a machine check interrupt will subsequently occur if and when MSR[ME] is set to 1.

See Machine Check Interrupt on page 327 for more detailed information about machine check interrupts.

7.4 Interrupt Processing

Associated with each type of interrupt is an interrupt vector; that is, the address of the initial instruction that is
executed when the corresponding interrupt occurs.

Interrupt processing consists of saving a small part of the processor state in certain registers, identifying the
cause of the interrupt in another register, and continuing execution at the corresponding interrupt vector loca-
tion. When an exception exists and the corresponding interrupt type is enabled, the following actions are
performed, in order:

1. SRR0 (for noncritical class interrupts), CSRR0 (for critical class interrupts), GSRR0 (for interrupt directed
to guest state), or MCSRR0 (for machine check interrupts) is loaded with an instruction address that
depends on the type of interrupt; see the specific interrupt description for details.

Programming Note: The contents of SRR0, CSRR0, GSRR0, MCSRR0, DEAR, or GDEAR when an
interrupt is taken are mode dependent, reflecting the computation mode currently in use (specified by
MSR[CM]) and the computation mode entered for execution of the interrupt (specified by EPCR[ICM]).

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 298 of 864
Version 1.3

October 23, 2012

The undefined portions are defined in the A2 hardware, and the contents of these registers can be
described as follows:

• if (MSR[CM] = 0) & (EPCR[ICM] = 0) then
SRR0  320 || Addr32:63

• if (MSR[CM] = 0) & (EPCR[ICM] = 1) then
SRR0  320 || Addr32:63

• if (MSR[CM] = 1) & (EPCR[ICM] = 1) then
SRR0  Addr0:63

• if (MSR[CM] = 1) & (EPCR[ICM] = 0) then
SRR0  Addr0:63

2. The ESR or GESR (for interrupts directed to the guest state) is loaded with information specific to the
exception type. Note that many interrupt types can only be caused by a single type of exception, and thus
do not need nor use an ESR setting to indicate the cause of the interrupt. Machine check interrupts load
the MCSR.

3. SRR1 (for noncritical class interrupts), CSRR1 (for critical class interrupts), GSRR0 (for interrupt directed
to guest state), or MCSRR1 (for machine check interrupts) is loaded with a copy of the contents of the
MSR.

4. The MSR is updated as described below. The new values take effect beginning with the first instruction
following the interrupt.

• MSR[EE, PR, FP, FE0, FE1, IS, DS] are set to 0 by all interrupts.

• MSR[GS] is left unchanged when an interrupt is directed to the guest state; otherwise, it is set to 0 by
all interrupts.

• MSR bits corresponding to MSRP bits set to 1 are left unchanged when an interrupt is directed to the
guest state; otherwise, it is set to 0 by all interrupts.

• MSR[ME] is set to 0 by machine check interrupts and left unchanged by all other interrupts.

• MSR[CE,DE] is set to 0 by critical class interrupts, Debug interrupts, and machine check interrupts,
and is left unchanged by all other interrupts.

• If the interrupt is directed to the guest state, MSR[CM] is set to EPCR[GICM]; otherwise, MSR[CM] is
set to EPCR[ICM].

• Other supported MSR bits are left unchanged by all interrupts.

See Machine State Register (MSR) on page 301 for more detail on the definition of the MSR.

5. Instruction fetching and execution resumes, using the new MSR value, at the interrupt vector address,
which is specific to the interrupt type and is determined as follows:

IVPR0:51 || 12-bit Interrupt Offset or GIVPR0:51 || 12-bit Interrupt Offset

IVPR is used if MSR[GS] is set to 0; otherwise GIVPR is used, except for the guest processor doorbell inter-
rupt. Also see Interrupt Fixed Offsets on page 316, Interrupt Vector Prefix Register (IVPR) on page 318, and
Guest Interrupt Vector Prefix Register (GIVPR) on page 318.

At the end of a noncritical interrupt handling routine, execution of an rfi causes the MSR to be restored from
the contents of SRR1 and instruction execution to resume at the address contained in SRR0. Likewise,
execution of an rfci performs the same function at the end of a critical interrupt handling routine, using
CSRR0 instead of SRR0 and CSRR1 instead of SRR1. rfmci uses MCSRR0 and MCSRR1 in the same
manner. rfgi uses GSRR0 and GSRR1.

Machine State Register Protect

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 299 of 864

Programming Note: In general, at process switch, due to possible process interlocks and possible data
availability requirements, the operating system needs to consider executing the following instructions:

• stwcx. or stdcx, to clear the reservation if one is outstanding, to ensure that an lwarx in the “old” process
is not paired with an stwcx. or stdcx in the “new” process. See the instruction descriptions for lwarx,
ldarx, stwcx. and stdcx in the Power ISA specification for more information about storage reservations.

• msync, to ensure that all storage operations of an interrupted process are complete with respect to other
processors before that process begins executing on another processor.

• isync, rfi, rfci, rfgi, or rfmci, to ensure that the instructions in the “new” process execute in the “new”
context.

7.4.1 Partially Executed Instructions

In general, the architecture permits load and store instructions to be partially executed, interrupted, and then
to be restarted from the beginning upon return from the interrupt. To guarantee that a particular load or store
instruction will complete without being interrupted and restarted, software must mark the storage being
referred to as guarded, and must use an elementary (not a string or multiple) load or store that is aligned on
an operand-sized boundary.

To guarantee that load and store instructions can, in general, be restarted and completed correctly without
software intervention, the following rules apply when an instruction is partially executed and then interrupted:

• For an elementary load, no part of the target register (GPR(RT), FPR(FRT), or auxiliary processor regis-
ter) will have been altered.

• For the “update” forms of load and store instructions, the update register, GPR(RA), will not have been
altered.

On the other hand, the following effects are permissible when certain instructions are partially executed and
then restarted:

• For any store instruction, some of the bytes at the addressed storage location might have been accessed
or updated (if write access to that page in which bytes were altered is permitted by the access control
mechanism). In addition, if the address for an stwcx. instruction is not aligned on a word boundary or the
address for an stdcx. instruction is not aligned on a doubleword boundary, the value in CR[CR0] is unde-
fined. It is also undefined whether or not the reservation (if one existed) has been cleared.

• For any load, some of the bytes at the addressed storage location might have been accessed (if read
access to that page in which bytes were accessed is permitted by the access control mechanism). In
addition, if the address for an lwarx instruction is not aligned on a word boundary or the address for an
ldarx instruction is not aligned on a doubleword boundary, it is undefined whether or not a reservation
has been set.

• For load multiple and load string instructions, some of the registers in the range to be loaded might have
been altered. Including the addressing registers (GPR[RA] and possibly GPR[RB]) in the range to be
loaded is an invalid form of these instructions (and a programming error). Thus, the rules for partial exe-
cution do not protect against overwriting of these registers. Such possible overwriting of the addressing
registers makes these invalid forms of load multiple and load strings inherently nonrestartable.

In no case will access control be violated.

instruction set architecture

general purpose register

floating-point register

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 300 of 864
Version 1.3

October 23, 2012

As previously stated, the only load or store instructions that are guaranteed to not be interrupted after being
partially executed are elementary-aligned and guarded loads and stores. All others can be interrupted after
being partially executed. The following list identifies the specific instruction types for which interruption after
partial execution can occur, as well as the specific interrupt types that can cause the interruption:

1. Any load or store (except elementary-aligned and guarded):

Critical input
Machine check
Guest processor doorbell machine check
External input
Program (imprecise mode floating-point enabled)

Note: This type of interrupt can lead to partial execution of a load or store instruction under the archi-
tectural definition only; the A2 core handles the imprecise modes of the floating-point enabled excep-
tions precisely; hence, this type of interrupt does not lead to partial execution.

Embedded hypervisor privilege
Decrementer
Fixed-interval timer
Watchdog timer
Processor doorbell critical
Guest processor doorbell critical
Processor doorbell
Guest processor doorbell
User decrementer
Debug (unconditional debug event)

2. Unaligned-elementary load or store or any load or store multiple or string:
All of the above listed under item 1, plus the following:

Alignment
Data storage (if the access crosses a memory page boundary)
Debug (data address compare, data value compare)

7.5 Interrupt Processing Registers

The interrupt processing registers include:

• Machine State Register Protect (MSRP) on page 303
• Embedded Processor Control Register (EPCR) on page 304
• Embedded Processor Control Register (EPCR) on page 304
• Save/Restore Register 1 (SRR1) on page 306
• Guest Save/Restore Register 0 (GSRR0) on page 308
• Guest Save/Restore Register 0 (GSRR0) on page 308
• Critical Save/Restore Register 0 (CSRR0) on page 310
• Critical Save/Restore Register 1 (CSRR1) on page 311
• Machine Check Save/Restore Register 0 (MCSRR0) on page 313
• Machine Check Save/Restore Register 1 (MCSRR1) on page 313
• Data Exception Address Register (DEAR) on page 315
• Guest Data Exception Address Register (GDEAR) on page 316
• Interrupt Vector Prefix Register (IVPR) on page 318

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 301 of 864

• Guest Interrupt Vector Prefix Register (GIVPR) on page 318
• Exception Syndrome Register (ESR) on page 318
• Guest Exception Syndrome Register (GESR) on page 320
• Machine Check Status Register (MCSR) on page 322

Also described in this section is the Machine State Register (MSR) on page 301, which belongs to the cate-
gory of processor control registers.

7.5.1 Register Mapping

Some special purpose register (SPR) accesses in guest state are mapped to analogous registers for the
guest state. This removes the requirement for the hypervisor software to handle embedded hypervisor privi-
lege interrupts for these accesses and makes the required emulated changes by the hypervisor for these
high-use registers.

Accesses to the registers listed in Table 7-1 are changed by the processor to the registers given in the table
when the processor is in guest state (MSR[GS] = 1). Access to these registers is not mapped when not in
guest state.

7.5.2 Machine State Register (MSR)

The MSR is a register of its own unique type that controls important chip functions, such as the enabling or
disabling of various interrupt types.

The MSR can be written from a GPR using the mtmsr instruction. The contents of the MSR can be read into
a GPR using the mfmsr instruction. The MSR[EE] bit can be set or cleared atomically using the wrtee or
wrteei instructions. The MSR contents are also automatically saved, altered, and restored by the interrupt-
handling mechanism.

The following table shows the MSR bit definitions and describes the function of each bit.

Table 7-1. Register Mapping in Guest State

SPR Accessed SPR Mapped to Type of Access

SRR0 GSRR0 mtspr, mfspr

SRR1 GSRR1 mtspr, mfspr

ESR GESR mtspr, mfspr

DEAR GDEAR mtspr, mfspr

PIR GPIR mtspr, mfspr

SPRG0 GSPRG0 mtspr, mfspr

SPRG1 GSPRG1 mtspr, mfspr

SPRG2 GSPRG2 mtspr, mfspr

SPRG3 GSPRG3 mtspr, mfspr

USPRG3 GSPRG3 mtspr, mfspr

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 302 of 864
Version 1.3

October 23, 2012

Register Short Name: MSR Read Access: Priv

Decimal SPR Number: N/A Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.
MSR[GS] cannot be changed unless MSR[GS] = 0.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode; it can execute any instruction and can
access any resource (for example, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode; it cannot execute any privileged instruction and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 303 of 864

7.5.3 Machine State Register Protect (MSRP)

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Register Short Name: MSRP Read Access: Hypv

Decimal SPR Number: 311 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:36 /// 0x0 Reserved

37 UCLEP 0b0 User Cache Lock Enable Protect

0 Guest privileged state can modify MSR[UCLE].
1 Guest privileged state cannot modify MSR[UCLE].
When MSRP[UCLEP] = 1, cache locking instructions are not permitted to execute in the
guest privileged state and cause an embedded hypervisor privilege exception when exe-
cuted.

38:53 /// 0x0 Reserved

54 DEP 0b0 Debug Enable Protect

0 Guest privileged state can modify MSR[DE].
1 Guest privileged state cannot modify MSR[DE].

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 304 of 864
Version 1.3

October 23, 2012

7.5.4 Embedded Processor Control Register (EPCR)

55:63 /// 0x0 Reserved

Register Short Name: EPCR Read Access: Hypv

Decimal SPR Number: 307 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EXTGS 0b0 External Input Interrupt Directed to Guest State

Controls whether an external input interrupt is taken in the guest state or the hypervisor
state.
0 External input interrupts are directed to the hypervisor state. External input inter-

rupts pend until MSR[GS] = 1 or MSR[EE] = 1.
1 External input interrupts are directed to the guest state. External input interrupts

pend until MSR[GS] = 1 and MSR[EE] = 1.

33 DTLBGS 0b0 Data TLB Error Interrupt Directed to Guest State

Controls whether a data TLB error interrupt that occurs in the guest state is taken in the
guest state or the hypervisor state.
0 Data TLB error interrupts that occur in the guest state are directed to the hypervi-

sor state.
1 Data TLB error interrupts that occur in the guest state are directed to the guest

state.

34 ITLBGS 0b0 Instruction TLB Error Interrupt Directed to Guest State

Controls whether an instruction TLB error interrupt that occurs in the guest state is taken in
the guest state or the hypervisor state.
0 Instruction TLB error interrupts that occur in the guest state are directed to the

hypervisor state.
1 Instruction TLB error interrupts that occur in the guest state are directed to the

guest state.

35 DSIGS 0b0 Data Storage Interrupt Directed to Guest State

Controls whether a data storage interrupt that occurs in the guest state is taken in the guest
state or the hypervisor state.
0 Data storage interrupts that occur in the guest state are directed to the hypervisor

state.
1 Data storage interrupts that occur in the guest state are directed to the guest state,

except that a data storage interrupt due to a TLB ineligible exception is directed to
the hypervisor state, regardless of the existence of other exceptions that cause a
data storage interrupt.

36 ISIGS 0b0 Instruction Storage Interrupt Directed to Guest State

Controls whether an instruction storage interrupt that occurs in the guest state is taken in
the guest state or the hypervisor state.
0 Instruction storage interrupts that occur in the guest state are directed to the

hypervisor state.
1 Instruction storage interrupts that occur in the guest state are directed to the guest

state, except that an instruction storage interrupt due to a TLB ineligible exception
is directed to the hypervisor state, regardless of the existence of other exceptions
that cause an instruction storage interrupt.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 305 of 864

7.5.5 Save/Restore Register 0 (SRR0)

SRR0 is an SPR that is used to save the machine state on noncritical interrupts and to restore the machine
state when an rfi is executed. When a noncritical interrupt occurs, SRR0 is set to an address associated with
the process that was executing at the time. When rfi is executed, instruction execution returns to the address
in SRR0.

In general, SRR0 contains the address of the instruction that caused the noncritical interrupt or the address of
the instruction to return to after a noncritical interrupt is serviced. See the individual descriptions under Inter-
rupt Definitions on page 323 for an explanation of the precise address recorded in SRR0 for each noncritical
interrupt type.

SRR0 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

SRR0 is mapped to GSRR0 when in the guest state (MSR[GS] = 1).

37 DUVD 0b0 Disable Hypervisor Debug

Controls whether debug events occur in the hypervisor state.
0 Debug events can occur in the hypervisor state.
1 Debug events are suppressed in the hypervisor state.

38 ICM 0b0 Interrupt Computation Mode

Controls the computational mode of the processor when an interrupt occurs that is directed
to the hypervisor state. At interrupt time, EHCSR[ICM] is copied into MSR[CM] if the inter-
rupt is directed to the hypervisor state.
0 Interrupts that are directed to the hypervisor state execute in 32-bit mode.
1 Interrupts that are directed to the hypervisor state execute in 64-bit mode.

39 GICM 0b0 Guest Interrupt Computation Mode
Controls the computational mode of the processor when an interrupt occurs that is directed
to the guest state. At interrupt time, EHCSR[GICM] is copied into MSR[CM] if the interrupt
is directed to the guest state.
0 Interrupts that are directed to the guest state execute in 32-bit mode.
1 Interrupts that are directed to the guest state execute in 64-bit mode.

40 DGTMI 0b0 Disable TLB Guest Management Instructions

Controls whether guest state can execute any TLB management instructions.
0 tlbilx, tlbwe, and tlbsrx (for a logical-to-real-address translation hit) are allowed

to execute normally when MSR[GS,PR] = 0b10.
1 tlbilx, tlbwe, and tlbsrx always cause an embedded hypervisor privilege interrupt

when MSR[GS,PR] = 0b10.

41 DMIUH 0b0 Disable MAS Interrupt Updates for Hypervisor

Controls whether MAS registers are updated by hardware when a data or instruction TLB
error interrupt or a data or instruction storage interrupt is taken in the hypervisor.
0 MAS registers are set when a data or instruction TLB error interrupt or a data or

instruction storage interrupt is taken in the hypervisor.
1 MAS registers updates are disabled and left unchanged when a data or instruction

TLB error interrupt or a data or instruction storage interrupt is taken in the hypervi-
sor.

42:63 /// 0x0 Reserved

Register Short Name: SRR0 Read Access: Priv

Decimal SPR Number: 26 Write Access: Priv

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 306 of 864
Version 1.3

October 23, 2012

7.5.6 Save/Restore Register 1 (SRR1)

SRR1 is an SPR that is used to save the machine state on noncritical interrupts and to restore the machine
state when an rfi is executed. When a noncritical interrupt is taken, the contents of the MSR (before the MSR
is cleared by the interrupt) are placed into SRR1. When rfi is executed, the MSR is restored with the contents
of SRR1.

Bits of SRR1 that correspond to reserved bits in the MSR are also reserved.

Programming Note: An MSR bit that is reserved can be altered by rfi, consistent with the value being
restored from SRR1.

SRR1 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

SRR1 is mapped to GSRR1 when in the guest state (MSR[GS] = 1).

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSRR0 Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Save/Restore Register 0

This register is used to save the machine state on noncritical interrupts and to restore the
machine state when an rfi is executed. On a noncritical interrupt, SRR0 is set to the current
or next instruction address. When rfi is executed, instruction execution continues at the
address in SRR0. In general, SRR0 contains the address of the instruction that caused the
noncritical interrupt,or the address of the instruction to return to after a noncritical interrupt
is serviced.

62:63 /// 0b00 Reserved

Register Short Name: SRR1 Read Access: Priv

Decimal SPR Number: 27 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSRR1 Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in the hypervisor state if MSR[PR] = 0.
1 The processor is in the guest state.

36 /// 0b0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 307 of 864

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External Input, decrementer, fixed-interval timer, processor doorbell, guest pro-
cessor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (for example, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 308 of 864
Version 1.3

October 23, 2012

7.5.7 Guest Save/Restore Register 0 (GSRR0)

GSRR0 is an SPR that is used to save the machine state on interrupts directed to the guest state and to
restore the machine state when an rfgi is executed. When an interrupt occurs, GSRR0 is set to an address
associated with the process that was executing at the time. When rfgi is executed, instruction execution
returns to the address in GSRR0.

In general, GSRR0 contains the address of the instruction that caused the noncritical interrupt or the address
of the instruction to return to after a noncritical interrupt is serviced. See the individual descriptions under
Interrupt Definitions on page 323 for an explanation of the precise address recorded in GSRR0 for each
noncritical interrupt type.

GSRR0 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

GSRR0 is also accessed by reading SRR0 when in the guest state (MSR[GS] = 1).

7.5.8 Guest Save/Restore Register 1 (GSRR1)

GSRR1 is an SPR that is used to save the machine state on interrupts directed to the guest state and to
restore the machine state when an rfgi is executed. When an interrupt is taken, the contents of the MSR
(before the MSR being cleared by the interrupt) are placed into SRR1. When rfgi is executed, the MSR is
restored with the contents of GSRR1.

Bits of GSRR1 that correspond to reserved bits in the MSR are also reserved.

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Register Short Name: GSRR0 Read Access: Priv

Decimal SPR Number: 378 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

0:61 GSRR0 0x0 Guest Save/Restore Register 0

This register is used to save the machine state on interrupts directed to the guest state and
to restore the machine state when an rfgi is executed. When an interrupt is taken, the
GSRR0 is set to the current or next instruction address. When rfgi is executed, instruction
execution continues at the address in GSRR0. In general, GSRR0 contains the address of
the instruction that caused the interrupt or the address of the instruction to return to after a
critical interrupt is serviced.

62:63 /// 0b00 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 309 of 864

GSRR1 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

GSRR1 is also accessed by reading SRR1 when in the guest state (MSR[GS] = 1).

Register Short Name: GSRR1 Read Access: Priv

Decimal SPR Number: 379 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

When set, indicates that the processor is running in the guest state under the control of an
hypervisor program.
0 The processor is not running in the guest state.
1 The processor is running in the guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 310 of 864
Version 1.3

October 23, 2012

7.5.9 Critical Save/Restore Register 0 (CSRR0)

CSRR0 is an SPR that is used to save the machine state on critical interrupts and to restore the machine
state when an rfci is executed. When a critical interrupt occurs, CSRR0 is set to an address associated with
the process that was executing at the time. When rfci is executed, instruction execution returns to the
address in CSRR0.

In general, CSRR0 contains the address of the instruction that caused the critical interrupt or the address of
the instruction to return to after a critical interrupt is serviced. See the individual descriptions under Interrupt
Definitions on page 323 for an explanation of the precise address recorded in CSRR0 for each critical inter-
rupt type.

CSRR0 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 311 of 864

7.5.10 Critical Save/Restore Register 1 (CSRR1)

CSRR1 is an SPR that is used to save the machine state on critical interrupts and to restore the machine
state when an rfci is executed. When a critical interrupt is taken, the contents of the MSR (before the MSR is
cleared by the interrupt) are placed into CSRR1. When rfci is executed, the MSR is restored with the
contents of CSRR1.

Bits of CSRR1 that correspond to reserved bits in the MSR are also reserved.

Programming Note: An MSR bit that is reserved can be altered by rfci, consistent with the value being
restored from CSRR1.

CSRR1 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

Register Short Name: CSRR0 Read Access: Hypv

Decimal SPR Number: 58 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Critical Save/Restore Register 0

This register is used to save the machine state on critical interrupts and to restore the
machine state when an rfci is executed. When a critical interrupt is taken, the CSRR0 is set
to the current or next instruction address. When rfci is executed, instruction execution con-
tinues at the address in CSRR0. In general, CSRR0 contains the address of the instruction
that caused the critical interrupt,or the address of the instruction to return to after a critical
interrupt is serviced.

62:63 /// 0b00 Reserved

Register Short Name: CSRR1 Read Access: Hypv

Decimal SPR Number: 59 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.

36 /// 0b0 Reserved

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 312 of 864
Version 1.3

October 23, 2012

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode; it can execute any instruction and can
access any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode; it cannot execute any privileged instruction and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 313 of 864

7.5.11 Machine Check Save/Restore Register 0 (MCSRR0)

MCSRR0 is an SPR that is used to save the machine state on machine check interrupts and to restore the
machine state when an rfmci is executed. When a machine check interrupt occurs, MCSRR0 is set to an
address associated with the process that was executing at the time. When rfmci is executed, instruction
execution returns to the address in MCSRR0.

In general, MCSRR0 contains the address of the instruction that caused the machine check interrupt or the
address of the instruction to return to after a machine check interrupt is serviced. See the individual descrip-
tions under Interrupt Definitions on page 323 for an explanation of the precise address recorded in MCSRR0
for each machine check interrupt type.

MCSRR0 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

7.5.12 Machine Check Save/Restore Register 1 (MCSRR1)

MCSRR1 is an SPR that is used to save the machine state on machine check interrupts and to restore the
machine state when an rfmci is executed. When a machine check interrupt is taken, the contents of the MSR
(before the MSR is cleared by the interrupt) are placed into MCSRR1. When rfmci is executed, the MSR is
restored with the contents of MCSRR1.

Bits of MCSRR1 that correspond to reserved bits in the MSR are also reserved.

Programming Note: An MSR bit that is reserved can be altered by rfmci, consistent with the value being
restored from MCSRR1.

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Register Short Name: MCSRR0 Read Access: Hypv

Decimal SPR Number: 570 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Critical Save/Restore Register 0

Machine Check Save/Restore Register 0 (MCSRR0) is used to save the machine state on
machine check interrupts and to restore the machine state when an rfmci is executed.
When a machine check interrupt is taken, the MCSRR0 is set to the current or next instruc-
tion address. When rfmci is executed, instruction execution continues at the address in
MCSRR0. In general, MCSRR0 contains the address of an instruction that was executing
or about to be executed when the machine check exception occurred.

62:63 /// 0b00 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 314 of 864
Version 1.3

October 23, 2012

MCSRR1 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

Register Short Name: MCSRR1 Read Access: Hypv

Decimal SPR Number: 571 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores and moves.

1 The processor can execute floating-point instructions.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 315 of 864

7.5.13 Data Exception Address Register (DEAR)

The DEAR contains the address that was referenced by a load, store, or cache management instruction that
caused an alignment, data TLB miss, or data storage exception.

The DEAR can be written from a GPR using mtspr and can be read into a GPR using mfspr.

DEAR is mapped to GDEAR when in the guest state (MSR[GS] = 1).

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Register Short Name: DEAR Read Access: Priv

Decimal SPR Number: 61 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GDEAR Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DEAR 0x0 Data Exception Address Register

The DEAR contains the address that was referenced by a load, store or cache manage-
ment instruction that caused an alignment, data TLB miss, or data storage interrupt.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 316 of 864
Version 1.3

October 23, 2012

7.5.14 Guest Data Exception Address Register (GDEAR)

The GDEAR contains the address that was referenced by a load, store, or cache management instruction
that caused an alignment, data TLB miss, or data storage exception when the interrupt is directed to the
guest state.

The GDEAR can be written from a GPR using mtspr and can be read into a GPR using mfspr. GDEAR is
also accessed by reading DEAR when in the guest state (MSR[GS] = 1).

Interrupt Fixed Offsets

An Interrupt offset specifies the 12-bit low-order effective address offset for each interrupt type. The value is
the offset from the base address provided by either the IVPR (see Interrupt Vector Prefix Register (IVPR) on
page 318) or the GIVPR (see Guest Interrupt Vector Prefix Register (GIVPR) on page 318). The interrupt
effective address is either:

IVPR0:51 || 12-bit Interrupt Offset

or

GIVPR0:51 || 12-bit Interrupt Offset

IVPR is used if MSR[GS] is set to 0, otherwise GIVPR is used.

Table 7-2 identifies the specific interrupt offsets associated with each interrupt type.

Register Short Name: GDEAR Read Access: Priv

Decimal SPR Number: 381 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

0:63 GDEAR 0x0 Guest Data Exception Address Register

The GDEAR contains the address that was referenced by a load, store , or cache manage-
ment instruction that caused an alignment, data TLB miss, or data storage interrupt when
directed to the guest state.

Table 7-2. Interrupt Types and Associated Offsets (Sheet 1 of 2)

Offset Interrupt Type

0x040 Debug

0x020 Critical input

0x000 Machine check

0x060 Data storage

0x080 Instruction storage

0x0A0 External input

0x0C0 Alignment

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 317 of 864

0x0E0 Program

0x100 Floating-point unavailable

0x120 System call

0x140 Auxiliary processor unavailable

0x160 Decrementer

0x180 Fixed interval timer

0x1A0 Watchdog timer

0x1C0 Data TLB error

0x1E0 Instruction TLB error

0x200 Vector unavailable interrupt

0x280 Processor doorbell interrupt

0x2A0 Processor doorbell critical interrupt

0x2C0 Guest processor doorbell

0x2E0 Guest processor doorbell critical; guest processor doorbell machine check

0x300 Embedded hypervisor system call

0x320 Embedded hypervisor privilege

0x340 LRAT Error interrupt

0x360...0x7FF Reserved

0x800 User decrementer

0x820 Performance monitor

0x840...0xFFF Reserved

Table 7-2. Interrupt Types and Associated Offsets (Sheet 2 of 2)

Offset Interrupt Type

logical to real address translation

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 318 of 864
Version 1.3

October 23, 2012

7.5.15 Interrupt Vector Prefix Register (IVPR)

The IVPR provides the high-order 52 bits of the effective address of the interrupt vectors for interrupts that are
not directed to the guest state.

The IVPR can be written from a GPR using mtspr and can be read into a GPR using mfspr.

7.5.16 Guest Interrupt Vector Prefix Register (GIVPR)

The GIVPR provides the high-order 52 bits of the effective address of the interrupt vectors for interrupts that
are directed to the guest state.

The GIVPR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

7.5.17 Exception Syndrome Register (ESR)

The ESR provides a syndrome to differentiate between the different kinds of exceptions that can generate the
same interrupt type. Upon the generation of one of these types of interrupt, the bit or bits corresponding to the
specific exception that generated the interrupt is set, and all other ESR bits are cleared. Other interrupt types
do not affect the contents of the ESR. See the individual interrupt descriptions under Interrupt Definitions on
page 323 for an explanation of the ESR settings for each interrupt type, as well as a more detailed explana-
tion of the function of certain ESR fields.

Register Short Name: IVPR Read Access: Hypv

Decimal SPR Number: 63 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 IVPR 0x0 Interrupt Vector Prefix Register

Provides the high-order bits of the address of the exception processing routines.

52:63 /// 0x0 Reserved

Register Short Name: GIVPR Read Access: Priv

Decimal SPR Number: 447 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 GIVPR 0x0 Interrupt Vector Prefix Register

Provides the high-order bits of the address of the exception processing routines when in
guest state.

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 319 of 864

The ESR can be written from a GPR using mtspr and can be read into a GPR using mfspr.

The ESR is mapped to GESR when in the guest state (MSR[GS] = 1).

Register Short Name: ESR Read Access: Priv

Decimal SPR Number: 62 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GESR Scan Ring: func

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36 PIL 0b0 Illegal Instruction Exception

1 Indicates an illegal instruction exception.

37 PPR 0b0 Privileged Instruction Exception

1 Indicates a privileged instruction exception.

38 PTR 0b0 Trap Exception

1 Indicates a trap exception.

39 FP 0b0 Floating-Point Operation

1 Indicates floating-point operation.

40 ST 0b0 Store Operation

1 Indicates store operation.

41 /// 0b0 Reserved

42 DLK0 0b0 Data Locking Exception 0

1 Indicates a dcbtls, dcbtstls, or dcblc instruction was executed with MSR[PR] = 1
and MSR[UCLE] = 0.

43 DLK1 0b0 Data Locking Exception 1

1 Indicates an icbtls or icblc instruction was executed MSR[PR] = 1 and
MSR[UCLE] = 0.

44 AP 0b0 Auxiliary Processor Operation

1 Indicates auxiliary processor operation.

45 PUO 0b0 Unimplemented Operation Exception

1 Indicates an unimplemented operation exception.

46 BO 0b0 Byte Ordering Exception

1 Indicates a byte ordering exception.

47 PIE 0b0 Imprecise Exception

1 Indicates an imprecise exception.

48 /// 0b0 Reserved

49 UCT 0b0 Unavailable Coprocessor Type

1 Indicates that execution of an icswx instruction was attempted that specified a
coprocessor type that was marked as unavailable.

50:52 /// 0b000 Reserved

53 DATA 0b0 Data Access

1 Indicates if the interrupt is due to an LRAT miss resulting from a page table trans-
lation of a load, store, or cache management operand address.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 320 of 864
Version 1.3

October 23, 2012

7.5.18 Guest Exception Syndrome Register (GESR)

The GESR provides a syndrome to differentiate between the different kinds of exceptions that can generate
the same interrupt type for interrupts that are directed to the guest state. Upon the generation of one of these
types of interrupt, the bit or bits corresponding to the specific exception that generated the interrupt is set, and
all other GESR bits are cleared. Other interrupt types do not affect the contents of the GESR. See the indi-
vidual interrupt descriptions under Interrupt Definitions on page 323 for an explanation of the GESR settings
for each interrupt type, as well as a more detailed explanation of the function of certain GESR fields.

The GESR can be written from a GPR using mtspr and can be read into a GPR using mfspr.

GESR is also accessed by reading ESR when in the guest state (MSR[GS] = 1).

54 TLBI 0b0 TLB Ineligible

1 Indicates a TLB ineligible exception occurred during a page table translation for
the instruction causing the interrupt.

55 PT 0b0 Page Table

1 Indicates a page table fault or read or write access control exception occurred dur-
ing a page table translation for the instruction causing the interrupt.

56 SPV 0b0 Vector Operation

1 Indicates vector operation.

57 EPID 0b0 External Process ID Operation

1 Indicates that the instruction causing the interrupt is an external process ID
instruction.

58:63 /// 0x0 Reserved

Register Short Name: GESR Read Access: Priv

Decimal SPR Number: 383 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36 PIL 0b0 Illegal Instruction Exception

1 Indicates an illegal instruction exception.

37 PPR 0b0 Privileged Instruction Exception

1 Indicates a privileged instruction exception.

38 PTR 0b0 Trap Exception

1 Indicates a trap exception.

39 FP 0b0 Floating-Point Operation

1 Indicates floating-point operation.

40 ST 0b0 Store Operation

1 Indicates store operation.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 321 of 864

41 /// 0b0 Reserved

42 DLK0 0b0 Data Locking Exception 0

1 Indicates that a dcbtls, dcbtstls, or dcblc instruction was executed in user mode.

43 DLK1 0b0 Data Locking Exception 1

1 Indicates that an icbtls or icblc was executed in user mode.

44 AP 0b0 Auxiliary Processor Operation

1 Indicates auxiliary processor operation.

45 PUO 0b0 Unimplemented Operation Exception

1 Indicates an unimplemented operation exception.

46 BO 0b0 Byte Ordering Exception

1 Indicates a byte ordering exception.

47 PIE 0b0 Imprecise Exception

1 Indicates an imprecise exception.

48 /// 0b0 Reserved

49 UCT 0b0 Unavailable Coprocessor Type

1 Indicates that execution of an icswx instruction was attempted that specified a
coprocessor type that was marked as unavailable in the HACOP or ACOP (if
MSR[PR] = 1) registers.

50:52 /// 0b000 Reserved

53 DATA 0b0 Data Access

1 Indicates if the interrupt is due to is an LRAT miss resulting from a page table
translation of a load, store or cache management operand address.

54 TLBI 0b0 TLB Ineligible

1 Indicates that a TLB ineligible exception occurred during a page table translation
for the instruction causing the interrupt.

55 PT 0b0 Page Table

1 Indicates a that page table fault or read or write access control exception occurred
during a page table translation for the instruction causing the interrupt.

56 SPV 0b0 Vector Operation

1 Indicates vector operation.

57 EPID 0b0 External Process ID Operation

1 Indicates that the instruction causing the interrupt is an external process ID
instruction.

58:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 322 of 864
Version 1.3

October 23, 2012

7.5.19 Machine Check Status Register (MCSR)

The MCSR contains status to allow the machine check interrupt handler software to determine the cause of a
machine check exception. See Machine Check Interrupt on page 327 for more information.

The MCSR can be written from a GPR using mtspr and can be read into a GPR using mfspr.

Register Short Name: MCSR Read Access: Hypv

Decimal SPR Number: 572 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:47 /// 0x0 Reserved

48 /// 0b0 Reserved
This bit is set to 0 at reset and must not be set to 1. When read, this bit might be 1 or 0.

49 DDMH 0b0 Data Cache Directory Multihit Error

1 Indicates a multihit condition detected in the data cache directory when enabled
by XUCR4[MDDMH] = 1.

50 TLBIVAXSR 0b0 tlbivax Snoop Reject

1 Indicates that a tlbivax snoop (which is tagged with a local core indication) can be
rejected back to the L2 when the snoop's LPID mismatches the current core's
LPIDR value. This can only occur when CCR2[NOTLB] = 1 or
MMUCR1[TLBI_REJ] = 1.

51 TLBLRUPE 0b0 TLB LRU Parity Error

1 Indicates a parity error detected for TLB LRU tlbre, tlbsx, or reload.

52 IL2ECC 0b0 Instruction Cache L2 ECC Error

1 Indicates that the instruction cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for a checkstop on this error.

53 DL2ECC 0b0 Data Cache L2 ECC Error

1 Indicates that a data cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for checkstop on this error.

54 DDPE 0b0 Data Cache Directory Parity Error

1 Indicates a parity error detected in the data cache directory when enabled by
XUCR0[MDDP] = 1.

55 EXT 0b0 External Machine Check

1 Indicates that an external machine check was asserted.

56 DCPE 0b0 Data Cache Parity Error

1 Indicates a parity error detected in data cache when enabled by
XUCR0[MDCP] = 1.

57 IEMH 0b0 I-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for an I-ERAT compare.

58 DEMH 0b0 D-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for a D-ERAT compare.

translation lookaside buffer

least recently used

error-correcting code

fault isolation register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 323 of 864

7.6 Interrupt Definitions

Table 7-3 provides a summary of each interrupt type in the order corresponding to their associated offset.
The table also summarizes the various exception types that can cause that interrupt type; the classification of
the interrupt; which ESR bits can be set, if any; and which mask bits can mask the interrupt type, if any.

Detailed descriptions of each of the interrupt types follow the table.

59 TLBMH 0b0 TLB Multi-Hit Error

1 Indicates a multiple entry hit error detected for a TLB compare.

60 IEPE 0b0 I-ERAT Parity Error

1 Indicates a parity error detected for an I-ERAT eratre, eratsx, or compare.

61 DEPE 0b0 D-ERAT Parity Error

1 Indicates a parity error detected for a D-ERAT eratre, eratsx, or compare.

62 TLBPE 0b0 TLB Parity Error

1 Indicates a parity error detected for a TLB tlbre, tlbsx, or reload.

63 /// 0b0 Reserved

Table 7-3. Interrupt and Exception Types (Sheet 1 of 4)

Offset Interrupt Type Exception Type A
sy

nc
hr

on
ou

s

S
yn

ch
ro

no
us

, P
re

ci
se

S
yn

ch
ro

no
us

, I
m

pr
ec

is
e

C
rit

ic
al

ESR (GESR)
(See Note 4) M

S
R

 M
as

k
B

its

D
B

C
R

0/
T

C
R

 M
as

k
B

it

N
ot

es

0x020 Critical Input Critical Input x x CE|GS 1

0x000 Machine Check Machine Check - All Sources ME|GS 2

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 324 of 864
Version 1.3

October 23, 2012

0x060 Data Storage Read Access Control x [FP,AP,SPV]
[EPID]

Write Access Control x ST [FP,AP,SPV]
[EPID]

Cache Locking x [ST] {DLK, ILK}

Byte Ordering x BO [ST]
[FP,AP,SPV]
[EPID]

5

Storage Synchronization x [ST]

Virtualization Fault x [ST] [FP,AP,SPV]
[EPID]

Page Table Fault x PT [ST]
[FP,AP,SPV]
[EPID]

TLB Ineligible x TLBI [ST]
[FP,AP,SPV]
[EPID]

0x080 Instruction Storage Execute Access Control x

Byte Ordering x BO 6

Page Table Fault x PT

TLB Ineligible x TLBI

0x0A0 External Input External Input x EE|GS
EE&GS

1

0x0C0 Alignment Alignment x [ST] [FP,AP,SPV]
[EPID]

0x0E0 Program Illegal Instruction x PIL,[FP,AP,SPV] 7

Privileged Instruction x PPR,[FP,AP,SPV]

Trap x PTR

FP Enabled x x FP,[PIE] FE0
FE1

8

AP Enabled x AP 8

Unimplemented Operation x PUO [FP,AP,SPV]

0x100 FP Unavailable FP Unavailable x 8

0x120 System Call System Call x

0x140 AP Unavailable AP Unavailable x 8

0x160 Decrementer Decrementer x EE|GS DIE

Table 7-3. Interrupt and Exception Types (Sheet 2 of 4)

Offset Interrupt Type Exception Type A
sy

nc
hr

on
ou

s

S
yn

ch
ro

no
us

, P
re

ci
se

S
yn

ch
ro

no
us

, I
m

pr
ec

is
e

C
rit

ic
al

ESR (GESR)
(See Note 4) M

S
R

 M
as

k
B

its

D
B

C
R

0/
T

C
R

 M
as

k
B

it

N
ot

es

floating point

auxiliary processor

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 325 of 864

0x180 Fixed Interval Timer Fixed Interval Timer x EE|GS FIE

0x1A0 Watchdog Timer Watchdog Timer x x CE|GS WIE

0x1C0 Data TLB Error Data TLB Miss x [ST],[FP,AP,SPV]
[EPID]

0x1E0 Instruction TLB Error Instruction TLB Miss x

0x200 Vector Unavailable Vector Unavailable x SPV

0x040 Debug Trap x x x DE IDM 3

Instruction Address Compare x x x DE IDM 3

Data Address Compare x x x x DE IDM 3

Data Value Compare x x x x DE IDM 3

Instruction Complete x x DE IDM 3

Branch Taken x x DE IDM 3

Return x x x DE IDM 3

Interrupt x x x DE IDM 3

Unconditional x x DE IDM 3

Instruction Value Compare x x x DE IBM 3

0x280 Processor Doorbell Processor Doorbell x EE|GS

0x2A0 Processor Doorbell
Critical

Processor Doorbell Critical x x CE|GS

0x2C0 Guest Processor
Doorbell

Guest Processor Doorbell x EE&GS

0x2E0 Guest Processor
Doorbell Critical

Guest Processor Doorbell
Critical

x x CE&GS

Guest Processor
Doorbell Machine
Check

Guest Processor Doorbell
Machine Check

x x ME&GS

0x300 Embedded Hypervisor
System Call

Embedded Hypervisor Sys-
tem Call

x

0x320 Embedded Hypervisor
Privilege

Embedded Hypervisor Privi-
lege

x

0x340 LRAT Error LRAT Error x [ST] [FP,AP,SPV]
[DATA] [PT]
[EPID]

0x800 User Decrementer User Decrementer x EE|GS UDIE

0x820 Performance Monitor Performance Monitor x EE|GS

Table 7-3. Interrupt and Exception Types (Sheet 3 of 4)

Offset Interrupt Type Exception Type A
sy

nc
hr

on
ou

s

S
yn

ch
ro

no
us

, P
re

ci
se

S
yn

ch
ro

no
us

, I
m

pr
ec

is
e

C
rit

ic
al

ESR (GESR)
(See Note 4) M

S
R

 M
as

k
B

its

D
B

C
R

0/
T

C
R

 M
as

k
B

it

N
ot

es

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 326 of 864
Version 1.3

October 23, 2012

7.6.1 Critical Input Interrupt

A critical input interrupt occurs when no higher priority exception exists, a critical input exception is presented
to the interrupt mechanism, and (MSR[CE] or MSR[GS]) = 1. A critical input exception is caused by the acti-
vation of an asynchronous input to the A2 core. Although the only mask for this interrupt type within the core
is the MSR[CE] bit, system implementations typically provide an alternative means for independently masking
the interrupt requests from the various devices that collectively can activate the A2 core’s critical input inter-
rupt request input.

Note: MSR[CE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

Note: When a critical input interrupt occurs, the interrupt processing registers are updated as indicated
below (all registers not listed are unchanged), and instruction execution resumes at address
IVPR[IVP] || 0x020.

Notes:

1. Although it is not specified as part of the Power ISA, it is common for system implementations to provide, as part of the interrupt
controller, independent mask and status bits for the various sources of critical input and external input interrupts.

2. Machine check interrupts are not classified as asynchronous nor synchronous. They are also not classified as critical or noncriti-
cal, because they use their own unique set of Save/Restore Registers, MCSRR0/1. See Machine Check Interrupts on page 296,
and Machine Check Interrupt on page 327.

3. Debug exceptions have special rules regarding their interrupt classification (synchronous or asynchronous and precise or impre-
cise), depending on the particular debug mode being used and other conditions (see Debug Interrupt on page 347).

4. In general, when an interrupt causes a particular ESR(GESR) bit or bits to be set as indicated in the table, it also causes all other
ESR(GESR) bits to be cleared. If no ESR(GESR) setting is indicated for any of the exception types within a given interrupt type,
the ESR(GESR) is unchanged for that interrupt type.

The syntax for the ESR(GESR) setting indication is as follows:
[xxx] means ESR(GESR)[xxx] can be set.
[xxx,yyy,zzz] means any one (or none) of ESR(GESR)[xxx] or ESR(GESR)[yyy] or ESR(GESR)[zzz] can be set, but never more
than one.
{xxx,yyy,zzz} means that any combination of ESR(GESR)[xxx], ESR(GESR)[yyy], and ESR(GESR)[zzz] can be set, including all
or none.
xxx means ESR[xxx] will be set.

5. The byte ordering exception type of data storage interrupts can only occur when the A2 core is connected to a floating-point unit or
auxiliary processor, and then only when executing FP or AXU load or store instructions. See Data Storage Interrupt on page 330
for more detailed information about these kinds of exceptions.

6. The byte ordering exception type of instruction storage interrupts are defined by the Power ISA, but cannot occur within the A2
core. The core is capable of executing instructions from both big-endian and little-endian code pages.

7. An attempt to execute an instruction that is not provided by the implementation results in an illegal instruction program type of
interrupt.

8. Floating-point unavailable and auxiliary processor unavailable interrupts, as well as floating-point enabled and auxiliary processor
enabled exception type of program interrupts, can only occur when the A2 core is connected to a floating-point unit or an auxiliary
processor, and then only when executing instruction opcodes that are recognized by the floating-point unit or auxiliary processor,
respectively.

Table 7-3. Interrupt and Exception Types (Sheet 4 of 4)

Offset Interrupt Type Exception Type A
sy

nc
hr

on
ou

s

S
yn

ch
ro

no
us

, P
re

ci
se

S
yn

ch
ro

no
us

, I
m

pr
ec

is
e

C
rit

ic
al

ESR (GESR)
(See Note 4) M

S
R

 M
as

k
B

its

D
B

C
R

0/
T

C
R

 M
as

k
B

it

N
ot

es

floating point

auxiliary execution unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 327 of 864

Programming Note: Software is responsible for taking any actions that are required by the implementation
to clear any critical input exception status (such that the input signal of the critical input interrupt request is
deasserted) before reenabling MSR[CE], to avoid another, redundant critical input interrupt.

7.6.2 Machine Check Interrupt

A machine check interrupt occurs when no higher priority exception exists, a machine check exception is
presented to the interrupt mechanism, and (MSR[ME] or MSR[GS]) = 1. The Power ISA architecture specifies
machine check interrupts as neither synchronous nor asynchronous; indeed, the exact causes and details of
handling such interrupts are implementation dependent. Regardless, for this particular processor core, it is
useful to describe the handling of interrupts caused by various types of machine check exceptions in those
terms. The A2 core includes the following four types of machine check exceptions:

Instruction Synchronous Machine Check Exception

An instruction synchronous machine check exception is caused when a timeout or read error is signaled on
the A2 core interface during an instruction fetch operation.

Such an exception is not presented to the interrupt handling mechanism, however, unless and until such time
as the execution is attempted of an instruction at an address associated with the instruction fetch for which
the instruction machine check exception was asserted.

If MSR[ME] is 1 when the instruction machine check exception is presented to the interrupt mechanism,
execution of the instruction associated with the exception is suppressed, a machine check interrupt occurs,
and the interrupt processing registers are updated as described on page 328. If MSR[ME] is 0, however, the
instruction associated with the exception is processed as though the exception did not exist, and a machine
check interrupt does not occur (ever, even if and when MSR[ME] is subsequently set to 1), although the ESR
is still updated as described on page 328.

Instruction Asynchronous Machine Check Exception

An instruction asynchronous machine check exception is caused when either:

• The read interrupt request is asserted on the A2 core interface.

• External signal an_ac_external_mchk is asserted.

Critical Save/Restore Register 0
(CSRR0)

Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].
ME unchanged.
All other MSR bits set to 0.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 328 of 864
Version 1.3

October 23, 2012

Data Asynchronous Machine Check Exception

A data asynchronous machine check exception is caused when one of the following occurs:
• A timeout, read error, or read interrupt request is signaled on the A2 core interface during a data read

operation.
• A timeout, write error, or write interrupt request is signaled on the A2 core interface during a data write

operation.
• A parity error is detected on an access to the data cache. XUCR[MDCP] is used to disable parity recov-

ery.

TLB Asynchronous Machine Check Exception

A TLB asynchronous machine check exception is caused when a parity error is detected on an access to the
TLB.

When any machine check exception that is handled as an asynchronous interrupt occurs, it is immediately
presented to the interrupt handling mechanism. Bits of the MCSR are set as appropriate. A machine check
interrupt occurs immediately if MSR[ME] is 1, and the interrupt processing registers are updated as described
in the following list. If MSR[ME] is 0, however, the exception is recorded by the setting of the appropriate bits,
and deferred until such time as MSR[ME] is subsequently set to 1.

When a machine check interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x000.

Machine Check Save/Restore
Register 0 (MCSRR0)

For an instruction synchronous machine check exception, set to
the effective address of the instruction presenting the exception.
For an instruction asynchronous machine check, data asynchro-
nous machine check, or TLB asynchronous machine check excep-
tion, set to the effective address of the next instruction to be
executed.

Machine Check Save/Restore
Register 1 (MCSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].
All other MSR bits set to 0.

Exception Syndrome Register (ESR) All defined ESR bits are left unchanged.

Machine Check Status Register
(MCSR)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 329 of 864

7.6.2.1 Machine Check Status Register (MCSR)

The MCSR collects status for the machine check exceptions that are handled as asynchronous interrupts:
Data asynchronous machine check exception or TLB asynchronous machine check exception. Other bits in
the MCSR are set to indicate the exact type of machine check exception.

Register Short Name: MCSR Read Access: Hypv

Decimal SPR Number: 572 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:47 /// 0x0 Reserved

48 /// 0b0 Reserved
This bit is set to 0 at reset and must not be set to 1. When read, this bit might be 1 or 0.

49 DDMH 0b0 Data Cache Directory Multihit Error

1 Indicates a multihit condition detected in the data cache directory when enabled
by XUCR4[MDDMH] = 1.

50 TLBIVAXSR 0b0 tlbivax Snoop Reject

1 Indicates that a tlbivax snoop (which is tagged with a local core indication) can be
rejected back to the L2 when the snoop's LPID mismatches the current core's
LPIDR value. This can only occur when CCR2[NOTLB] = 1 or
MMUCR1[TLBI_REJ] = 1.

51 TLBLRUPE 0b0 TLB LRU Parity Error

1 Indicates a parity error detected for TLB LRU tlbre, tlbsx, or reload.

52 IL2ECC 0b0 Instruction Cache L2 ECC Error

1 Indicates that the instruction cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for a checkstop on this error.

53 DL2ECC 0b0 Data Cache L2 ECC Error

1 Indicates that a data cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for checkstop on this error.

54 DDPE 0b0 Data Cache Directory Parity Error

1 Indicates a parity error detected in the data cache directory when enabled by
XUCR0[MDDP] = 1.

55 EXT 0b0 External Machine Check

1 Indicates that an external machine check was asserted.

56 DCPE 0b0 Data Cache Parity Error

1 Indicates a parity error detected in data cache when enabled by
XUCR0[MDCP] = 1.

57 IEMH 0b0 I-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for an I-ERAT compare.

58 DEMH 0b0 D-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for a D-ERAT compare.

translation lookaside buffer

least recently used

error-correcting code

fault isolation register

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 330 of 864
Version 1.3

October 23, 2012

See Machine Check Interrupts on page 296 for more information about the handling of machine check inter-
rupts within the A2 core.

7.6.3 Data Storage Interrupt

A data storage interrupt might occur when no higher priority exception exists and a data storage exception is
presented to the interrupt mechanism. The A2 core includes the following types of data storage exceptions:

Cache Locking Exception

If a cache locking instruction is executed in user mode (MSR[PR] = 1), a data storage interrupt occurs if any
of the following conditions are met:

• (MSRP[UCLEP] = 1 & MSR[GS] = 1).

• (MSRP[UCLEP] = 0 | MSR[GS] = 0) and MSR[UCLE] = 0.

When a cache locking type data storage interrupt occurs, one of the following ESR or GESR bits is set to 1:

Read Access Control Exception

A read access control exception is caused by one of the following cases:

• While in user mode (MSR[PR] = 1), a load instruction attempts to access a location in storage that is not
enabled for read access in user mode (that is, the TLB entry associated with the memory page being
accessed has UR = 0).

• While in supervisor mode (MSR[PR] = 0), a load instruction attempts to access a location in storage that
is not enabled for read access in supervisor mode (that is, the TLB entry associated with the memory
page being accessed has SR = 0).

See Access Control Applied to Cache Management Instructions on page 194.

59 TLBMH 0b0 TLB Multi-Hit Error

1 Indicates a multiple entry hit error detected for a TLB compare.

60 IEPE 0b0 I-ERAT Parity Error

1 Indicates a parity error detected for an I-ERAT eratre, eratsx, or compare.

61 DEPE 0b0 D-ERAT Parity Error

1 Indicates a parity error detected for a D-ERAT eratre, eratsx, or compare.

62 TLBPE 0b0 TLB Parity Error

1 Indicates a parity error detected for a TLB tlbre, tlbsx, or reload.

63 /// 0b0 Reserved

Bit Description

42 DLK0
0 Default setting.
1 A dcbtls, dcbtstls, or dcblc instruction was executed in user mode.

43 DLK1
0 Default setting.
1 An icbtls or icblc instruction was executed in user mode.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 331 of 864

Programming Note: The instruction cache management instructions icbi and icbt are treated as loads from
the addressed byte with respect to address translation and protection. These instruction cache management
instructions use MSR[DS] rather than MSR[IS] to determine translation for their target effective address. Sim-
ilarly, they use the read access control field (UR or SR) rather than the execute access control field (UX or
SX) of the TLB entry to determine whether a data storage exception should occur. Instruction storage excep-
tions and instruction TLB miss exceptions are associated with the fetching of instructions not with the execu-
tion of instructions. Data storage exceptions and data TLB miss exceptions are associated with the execution
of instruction cache management instructions, as well as with the execution of load, store, and data cache
management instructions.

Write Access Control Exception

A Write Access Control exception is caused by one of the following:

• While in user mode (MSR[PR] = 1), a store instruction attempts to access a location in storage that is not
enabled for write access in user mode (that is, the TLB entry associated with the memory page being
accessed has UW = 0).

• While in supervisor mode (MSR[PR] = 0), a store instruction attempts to access a location in storage that
is not enabled for write access in supervisor mode (that is, the TLB entry associated with the memory
page being accessed has SW = 0).

See Access Control Applied to Cache Management Instructions on page 194.

Byte Ordering Exception

A byte ordering exception occurs when a floating-point unit or auxiliary processor is attached to the A2 core,
and a floating-point or auxiliary processor load or store instruction attempts to access a memory page with a
byte order that is not supported by the attached processor. Whether or not a given load or store instruction
type is supported for a given byte order is dependent on the implementation of the floating-point or auxiliary
processor. All integer load and store instructions supported by the A2 core are supported for both big-endian
and little-endian memory pages.

Unavailable Coprocessor Type Exception

An unavailable coprocessor type exception will occur when following expression is true:

MSR[GS,PR] != 0b00 & (HACOP[CT] == 0 | (ACOP[CT] == 0 & MSR[PR] == 1))

Note that for icswepx, the following substitutions are made.

EPSCEPR is used in place of MSRPR.
EPSCEGS is used in place of MSRGS.
EPSCEAS is used in place of MSRDS.

See Section 12.5.2 Initiate Coprocessor Store Word External Process ID Indexed (icswepx[.]) on page 518.

Storage Synchronization Exception

A storage synchronization exception occurs when an attempt is made to execute a load and reserve or store
conditional instruction from or to a location that is write through required or caching inhibited.

user mode read access

supervisor mode read access

user mode execution access

supervisor mode execution access

supervisor mode write access

Hypervisor Available Coprocessor Register

Available Coprocessor Register

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 332 of 864
Version 1.3

October 23, 2012

Virtualization Fault Exception

A virtualization fault exception occurs when a load, store, or cache management instruction attempts to
access a location in storage that has the virtualization fault (VF) bit set. A data storage interrupt resulting from
a virtualization fault exception is always directed to hypervisor state regardless of the setting of
EPCR[DSIGS]. See Access Control Applied to Cache Management Instructions on page 194.

Page Table Fault Exception

A page table fault exception is caused when a page table translation occurs for a data access due to a load,
store or cache management instruction and the page table entry that is accessed is invalid (PTE Valid bit =
0).

TLB Ineligible Exception

A TLB ineligible exception is caused when a page table translation occurs for a data access due to a load,
store or cache management instruction and any of the following conditions are true:

• The only TLB entries that can be used to hold the translation for the virtual address have IPROT = 1.

• No TLB array can be loaded from the page table for the page size specified by the PTE.

• The PTE[ARPN] is treated as an LPN and there is no TLB array that meets all the following conditions:
– The TLB array supports the page size specified by the PTE.
– The TLB array can be loaded from the page table (TLB0CFG[PT] = 1).

A data storage interrupt resulting from a TLB ineligible exception is always directed to hypervisor state
regardless of the setting of EPCR[DSIGS].

A data storage interrupt occurs regardless of whether a stwcx. or stdcx. would have performed its store. The
CR[CR0] is not updated.

The following instructions are treated as no-ops and cannot cause a data storage interrupt regardless of the
effective address (EA):

• lswx or stswx with a length of zero (although the target register of lswx is still undefined, as it is whether
or not a data storage exception occurs)

• icbt

• dcbt, dcbtep

• dcbtst, dcbtstep

• dcba

For all other instructions, if a data storage exception occurs, execution of the instruction causing the excep-
tion is suppressed, a data storage interrupt is generated, the interrupt processing registers are updated as
indicated in the following list (all registers not listed are unchanged), and instruction execution resumes at
address IVPR[IVP] || 0x060.

If the interrupt is directed to guest state (EPCR[DSIGS] = 1, MSR[GS] = 1, and TLB[VF] = 0), GSRR0,
GSRR1, GDEAR, and GESR, are set in place of SRR0, SRR1, DEAR, and ESR respectively, and instruction
execution resumes at address GIVPR[IVP] || 0x060.

page table entry

logical page number

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 333 of 864

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the data
storage interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[GICM] if the interrupt is directed to guest state;
otherwise, it is set to EPCR[ICM].

GS is left unchanged if the interrupt is directed to guest state; other-
wise, it is set to zero.

UCLE is left unchanged if the interrupt is directed to the guest state
and MSRP[UCLEP] = 1; otherwise, it is set to 0.

CE, ME, DE Unchanged.

If the interrupt is directed to guest state, bits in the MSR corre-
sponding to set bits in the MSRP register are left unchanged. All
other MSR bits set to 0.

Data Exception Address Register
(DEAR)

If the instruction causing the data storage exception does so with
respect to the memory page targeted by the initial effective address
calculated by the instruction, the DEAR is set to this calculated
effective address. On the other hand, if the data storage exception
only occurs due to the instruction causing the exception crossing a
memory page boundary, in that the exception is with respect to the
attributes of the page accessed after crossing the boundary, then
the DEAR is set to the address of the first byte within that page.

For example, consider a misaligned load word instruction that
targets effective address 0x00000FFF, and that the page containing
that address is a 4 KB page. The load word will thus cross the page
boundary, and access the next page starting at address
0x00001000. If a read access control exception exists within the first
page (because the Read Access Control field for that page is 0), the
DEAR is set to 0x00000FFF. On the other hand, if the Read Access
Control field of the first page is 1, but the same field is 0 for the next
page, then the read access control exception exists only for the
second page and the DEAR is set to 0x00001000. Furthermore, the
load word instruction in this latter scenario has been partially
executed (see Partially Executed Instructions on page 299).

Exception Syndrome Register (ESR) FP Set to 1 if the instruction causing the interrupt is a floating-
point load or store; otherwise, set to 0.

ST Set to 1 if the instruction causing the interrupt is a store,
dcbz, or dcbi instruction; otherwise, set to 0.

DLK0:1DLK0 Set to 1 when a dcbtls, dcbtstls, or dcblc instruction
was executed in user mode when MSR[UCLE] = 0;
otherwise, set to 0.

DLK1 Set to 1 when a icbtls or icblc instruction was executed in
user mode when MSR[UCLE] = 0; otherwise, set to 0.

kilobyte

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 334 of 864
Version 1.3

October 23, 2012

The following is a prioritized listing of the various exceptions that cause a data storage interrupt and the corre-
sponding ESR bit, if applicable. Even though multiples of these exceptions can occur, at most one of the
following exceptions is reported in the ESR:

• Cache locking: DLK0:1

• Page table fault: PT

• Virtualization fault

• TLB ineligible: TLBI

• Byte ordering: BO

• Read access or write access: If the exception occurred during a page table translation: PT

• Unavailable coprocessor type: UCT

7.6.4 Instruction Storage Interrupt

An instruction storage interrupt occurs when no higher priority exception exists and an instruction storage
exception is presented to the interrupt mechanism. Note that although an instruction storage exception can
occur during an attempt to fetch an instruction, such an exception is not actually presented to the interrupt
mechanism until an attempt is made to execute that instruction. The A2 core includes the following types of
instruction storage exceptions:

AXU Set to 1 if the instruction causing the interrupt is an auxiliary
processor load or store; otherwise, set to 0.

BO Set to 1 if the instruction caused a byte ordering exception;
otherwise, set to 0.
Note that a read or write access control exception can occur
in combination with a byte ordering exception, in which case
software needs to examine the TLB entry associated with the
address reported in the DEAR to determine whether both
exceptions occurred, or just a byte ordering exception.

EPID Set to 1 if the instruction causing the interrupt is an external
process ID instruction; otherwise, set to 0.

TLBI Set to 1 if a TLB ineligible exception occurred during a page
table translation for the instruction causing the interrupt;
otherwise, set to 0.

PT Set to 1 If a page table fault or read or write access control
exception occurred during a page table translation for the
instruction causing the interrupt, or if no TLB entry was
created from the page table. Set to an implementation-depen-
dent value if a TLB entry was created; otherwise, set to 0.

UCT Set to 1 if an unavailable coprocessor type exception
occurred; otherwise, set to zero.

All other defined ESR bits are set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 335 of 864

Execute Access Control Exception

An execute access control exception is caused by one of the following:

• While in user mode (MSR[PR] = 1), an instruction fetch attempts to access a location in storage that is not
enabled for execute access in user mode (that is, the TLB entry associated with the memory page being
accessed has UX = 0).

• While in supervisor mode (MSR[PR] = 0), an instruction fetch attempts to access a location in storage
that is not enabled for execute access in supervisor mode (that is, the TLB entry associated with the
memory page being accessed has SX = 0).

Architecture Note: The Power ISA defines an additional instruction storage exception, the byte ordering
exception. This exception is defined to assist implementations that cannot support dynamically switching byte
ordering between consecutive instruction fetches or cannot support a given byte order at all. The A2 core,
however, supports instruction fetching from both big-endian and little-endian memory pages, so this excep-
tion cannot occur.

Byte Ordering Exception

An instruction storage byte ordering exception cannot occur in A2.

Page Table Fault Exception

A page table fault exception is caused when a page table translation occurs for a data access due to a load,
store, or cache management instruction and the page table entry that is accessed is invalid (PTE Valid
bit = 0).

TLB Ineligible Exception

A TLB ineligible exception is caused when a page table translation occurs for an instruction fetch and any of
the following conditions are true:

• The only TLB entries that can be used to hold the translation for the virtual address have IPROT = 1.

• No TLB array can be loaded from the page table for the page size specified by the PTE.

• The PTE[ARPN] is treated as an LPN, and there is no TLB array that meets all the following conditions:

– The TLB array supports the page size specified by the PTE.
– The TLB array can be loaded from the page table (TLB0CFG[PT] = 1).

An instruction storage interrupt resulting from a TLB ineligible exception is always directed to hypervisor state
regardless of the setting of EPCR[ISIGS].

When an instruction storage interrupt occurs, the processor suppresses the execution of the instruction
causing the instruction storage exception, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x080.

If the interrupt is directed to the guest state (EPCR[ISIGS] = 1 and MSR[GS] = 1), GSRR0, GSRR1, and
GESR are set in place of SRR0, SRR1, and ESR respectively, and instruction execution resumes at address
GIVPR[IVP] || 0x080.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 336 of 864
Version 1.3

October 23, 2012

The following is a prioritized listing of the various exceptions that cause a data storage interrupt and the corre-
sponding ESR bit, if applicable. Even though multiples of these exceptions can occur, at most one of the
following exceptions is reported in the ESR:

• Page table fault: PT

• TLB ineligible: TLBI

• Byte ordering: BO

• Execute access: If the exception occurred during a Page Table translation, PT

7.6.5 External Input Interrupt

An external input interrupt occurs when no higher priority exception exists, an external input exception is
presented to the interrupt mechanism, and external interrupts are enabled. An external input exception is
caused by the activation of an asynchronous input to the A2 core. Although the only mask for this interrupt
type within the core is the MSR[EE] bit, system implementations typically provide an alternative means for
independently masking the interrupt requests from the various devices that collectively can activate the core’s
external input interrupt request input.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the instruction
storage interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[GICM] if the interrupt is directed to guest state;
otherwise, it is set to EPCR[ICM].

GS is left unchanged if the interrupt is directed to guest state; other-
wise, it is set to zero.

UCLE is left unchanged if the interrupt is directed to the guest state
and MSRP[UCLEP] = 1; otherwise, it is set to 0.

CE, ME, DE Unchanged.

If the interrupt is directed to guest state, bits in the MSR corre-
sponding to set bits in the MSRP register are left unchanged. All
other MSR bits set to 0.

Exception Syndrome Register (ESR) BO Set to 0.

TLBI Set to 1 if a TLB ineligible exception occurred during a page
table translation for the instruction causing the interrupt;
otherwise, set to 0.

PT Set to 1 if a page table fault or read or write access control
exception occurred during a page table translation for the
instruction causing the interrupt, or if no TLB entry was
created from the page table. Set to an implementation-depen-
dent value if a TLB entry was created; otherwise set to 0.

All other defined ESR bits are set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 337 of 864

External Input interrupts are enabled if:

(EPCR[EXTGS] = 0) & ((MSR[GS] = 1) | (MSR[EE] = 1))

or

(EPCR[EXTGS] = 1) & (MSR[GS] = 1) & (MSR[EE] = 1)

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

When an external input interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x0A0.

If the interrupt is directed to the guest state (EPCR[EXTGS] = 1 and MSR[GS] = 1), GSRR0 and GSRR1 are
set in place of SRR0, and SRR1 respectively, and instruction execution resumes at address GIVPR[IVP] ||
0x0A0.

Programming Note: Software is responsible for taking any actions that are required by the implementation
to clear any External Input exception status (such that the External Input interrupt request input signal is
deasserted) before reenabling MSR[EE], to avoid another, redundant External Input interrupt.

7.6.6 Alignment Interrupt

An alignment interrupt occurs when no higher priority exception exists and an alignment exception is
presented to the interrupt mechanism. An alignment exception occurs if execution of any of the following
instructions is attempted:

• An integer load or store instruction that references a data storage operand that is not aligned on an oper-
and-sized boundary, when XUCR0[FLSTA] is 1.

• A load or store multiple instruction that is not word aligned (load and store multiple instructions are con-
sidered to reference word operands, and hence word-alignment is required). Load and store string
instructions are considered to reference byte operands, and hence they cannot cause an alignment
exception due to XUCR0[FLSTA] being 1, regardless of the target address alignment. See Table 2-11
Operand Handling Dependent on Alignment on page 90 for more information about operand alignments.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[GICM] if the interrupt is directed to guest state;
otherwise, it is set to EPCR[ICM].

GS is left unchanged if the interrupt is directed to guest state; other-
wise, it is set to zero.

UCLE is left unchanged if the interrupt is directed to the guest state
and MSRP[UCLEP] = 1; otherwise, it is set to 0.

CE, ME, DE Unchanged.

If the interrupt is directed to guest state, bits in the MSR corre-
sponding to set bits in the MSRP register are left unchanged.

All other MSR bits set to 0.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 338 of 864
Version 1.3

October 23, 2012

• A floating-point or AXU load or store instruction that references a data storage operand that is not aligned
on an operand-sized boundary, when XUCR0[AFLSTA].

• An icswx[.] or icswepx[.] instruction specifying a coprocessor-request block (CRB) that is not located on
a 128-byte boundary.

• A dcbz instruction that targets a memory page that is either write-through required or caching inhibited.

• A boundary is crossed between memory pages with different storage attributes. See Section 6.5 on
page 195 for a definition of the various storage attributes.

• An alignment interrupt occurs regardless of whether a stwcx. or stdcx. would have performed its store.
The CR[CR0] is not updated.

Programming Note: The architecture does not support the use of an unaligned effective address by the
lwarx, ldarx, stwcx. and stdcx. instructions. If an alignment interrupt occurs due to the attempted execution
of one of these instructions, the alignment interrupt handler must not attempt to emulate the instruction;
instead, it should treat the instruction as a programming error.

When an alignment interrupt occurs, the processor suppresses the execution of the instruction causing the
alignment exception, the interrupt processing registers are updated as indicated in the following list (all regis-
ters not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || 0x0C0.

7.6.7 Program Interrupt

A program interrupt occurs when no higher priority exception exists, a program exception is presented to the
interrupt mechanism, and—for the floating-point enabled form of program exception only—MSR[FE0,FE1] is
nonzero. The A2 core includes following types of program exception:

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the alignment
interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Data Exception Address Register
(DEAR)

Set to the effective address of a byte that is both within the range of
the bytes being accessed by the storage access or cache manage-
ment instruction and within the page whose access caused the
alignment exception.

Exception Syndrome Register (ESR) FP Set to 1 if the instruction causing the interrupt is a floating-
point load or store; otherwise, set to 0.

ST Set to 1 if the instruction causing the interrupt is a store,
dcbz, or dcbi instruction; otherwise, set to 0.

AXU Set to 1 if the instruction causing the interrupt is an auxiliary
processor load or store; otherwise, set to 0.

EPID Set to 1 if the instruction causing the interrupt is an external
process ID instruction; otherwise, set to 0.

All other defined ESR bits are set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 339 of 864

Illegal Instruction Exception

An illegal instruction exception occurs when execution is attempted of any of the following kinds of instruc-
tions:

• A reserved-illegal instruction.

• An mtspr or mfspr that specifies an SPRN value with SPRN5 = 0 (user-mode accessible) that represents
an unimplemented Special Purpose Register.

• When MSR[PR] = 0 (supervisor-mode), an mtspr or mfspr that specifies an SPRN value with SPRN5 = 1
(supervisor-mode accessible) that represents an unimplemented Special Purpose Register.

• A defined instruction that is not implemented within the A2 core and that is not an auxiliary processor
instruction.

• A defined auxiliary processor instruction that is not recognized by an attached auxiliary processor unit (or
when no such auxiliary processor unit is attached).

• Any one of the following illegal forms of an ERAT or TLB instruction (see Memory Management on
page 185 or TLB Management Instructions on page 482 for more information):

– eratwe or eratre with WS > 3.

– eratwe or eratre with WS = 2 in 64-bit mode (MSR[CM] = 1).

– tlbilx with T = 2.

– tlbwe, tlbre, tlbsx, tlbsrx, tlbilx, or tlbivax when no TLB is present (CCR2[NOTLB] = 1).

– erativax with TLB present (CCR2[NOTLB] = 0).

– erativax when RS[60:63] contains an unsupported page size.

– eratwe, eratre, or eratsx when not targeting an ERAT (MMUCR0[TLBSEL] != (2 or 3)).

– tlbivax or tlbilx with T = 3, when MAS6[ISIZE] contains an unsupported page size.

– eratilx with T = 4, 5, 6, or 7 and MMUCR1[ICTID] = 1 and MMUCR1[DCTID] = 1.

– tlbre when MAS0[ATSEL] = 0 or MSR[GS] = 1, and MAS1[IND] = 0 or TLB0CFG[IND] = 0, and
MAS1[TSIZE] contains an unsupported direct page size for the TLB.

– tlbre when MAS0[ATSEL] = 0 or MSR[GS] = 1, MAS1[IND] = 1, TLB0CFG[IND] = 1, and
MAS1[TSIZE] contains an unsupported indirect page size for the TLB.

– tlbwe when MAS0[ATSEL] = 0 or MSR[GS] = 1, MAS1[IND] = 0 or TLB0CFG[IND] = 0, and
MAS0[WQ] != 2, and MAS1[TSIZE] contains an unsupported direct page size for the TLB.

– tlbwe when MAS0[ATSEL] = 0 or MSR[GS] = 1, and MAS1[IND] = 1, TLB0CFG[IND] = 1, and
MAS0[WQ] != 2, and MAS1[TSIZE] contains an unsupported indirect page size for the TLB.

– tlbwe when MAS0[ATSEL] = 0 or MSR[GS] = 1, and MAS0[WQ] != 2, MAS1[IND] = 1,
TLB0CFG[IND] = 1, and MAS2[WIMGE] contains memory attributes that are not consistent with
those specified in Section 6.16.6 Hardware Page Table Storage Control Attributes.

– tlbwe when MAS0[ATSEL] = 0 or MSR[GS] = 1, and MAS0[WQ] != 2, MAS1[IND] = 1,
TLB0CFG[IND] = 1, and an unsupported page size and sub-page size combination are contained in
MAS1[TSIZE] and MAS3[SPSIZE].

– tlbwe when MAS0[ATSEL] = 1, MSR[GS] = 0, MAS0[WQ] = 0 or 3, and MAS1[TSIZE] contains an
unsupported page size for the LRAT.

– tlbwe when MAS0[ATSEL] = 1, MSR[GS] = 0, and either MAS0[HES] = 1 or MAS0[WQ] = 1 or 2.

special purpose register number

effective to real address translation

Core Configuration Register

logical to real address translation

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 340 of 864
Version 1.3

October 23, 2012

• An instruction that is disabled:

– attn and CCR[EN_ATTN] = 0.

– msgsnd or msgclr and CCR2[EN_PC] = 0.

– icswx or icswepx and CCR2[EN_ICSWX] = 0.

• An illegal form of other defined instructions:

– store with update instruction with RA = 0.

– load with update instruction and RA = 0 or RA = RT.

– lswx instruction, and RA or RB is in the range of registers to be loaded, including the case in which
RA = 0, or RT = RA, or RT = RB.

– lmw, lswi, lswx, and RA is in the range of registers to be loaded.

– lswx, and RB is in the range of registers to be loaded.

– sc instruction with LEV > 1.

See Instruction Categories on page 86 for more information about the A2 core support for defined and allo-
cated instructions.

Privileged Instruction Exception

A privileged instruction exception occurs when MSR[PR] = 1 and execution is attempted of any of the
following kinds of instructions:

• A privileged instruction.

• An mtspr or mfspr instruction that specifies an SPRN value with SPRN5 = 1 (supervisor-mode accessi-
ble). A privileged instruction exception occurs regardless of whether or not the SPR referenced by the
SPRN value is defined.

Unimplemented Operation Exception

An unimplemented operation exception occurs when an instruction that is microcoded is executed and
CCR2[UCODE_DIS] = 1.

Trap Exception

A trap exception occurs when any of the conditions specified in a tw, twi, or td, tdi instruction are met.
However, if trap debug events are enabled (DBCR0[TRAP] = 1), internal debug mode is enabled
(DBCR0[IDM] = 1), and debug interrupts are enabled (MSR[DE] = 1), then a trap exception causes a debug
interrupt to occur rather than a program interrupt.

See Debug Facilities on page 399 for more information about Trap debug events.

Floating-Point Enabled Exception

A floating-point enabled exception occurs when the execution or attempted execution of a defined floating-
point instruction causes FPSCR[FEX] to be set to 1 in an attached floating-point unit. FPSCR[FEX] is the
Floating-Point Enabled Exception Summary bit in the Floating-Point Status and Control Register.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 341 of 864

If MSR[FE0,FE1] is nonzero when the floating-point enabled exception is presented to the interrupt mecha-
nism, a program interrupt occurs, and the interrupt processing registers are updated as described in the
following list. If MSR[FE0,FE1] are both 0, however, then a program interrupt does not occur and the instruc-
tion associated with the exception executes according to the definition of the floating-point unit. If and when
MSR[FE0,FE1] are subsequently set to a nonzero value and the Floating-Point Enabled exception is still
being presented to the interrupt mechanism (that is, FPSCR[FEX] is still set), then a “delayed” program inter-
rupt occurs, updating the interrupt processing registers as described in the following list.

See Synchronous, Imprecise Interrupts on page 295 for more information about this special form of “delayed”
Floating-Point Enabled exception.

Auxiliary Processor Enabled Exception

An auxiliary processor enabled exception can occur due to the execution or attempted execution of an
instruction that is recognized and supported by an attached auxiliary processor. The cause of such an excep-
tion is implementation-dependent.

When a program interrupt occurs, the processor suppresses the execution of the instruction causing the
program exception (for all cases except the “delayed” form of floating-point enabled exception previously
described), the interrupt processing registers are updated as indicated in the following list (all registers not
listed are unchanged), and instruction execution resumes at address IVPR[IVP] || 0x0E0.

Save/Restore Register 0 (SRR0)Set to the effective address of the instruction causing the Program interrupt,
for all cases except the “delayed” form of Floating-Point Enabled exception described above.

For the special case of the delayed Floating-Point Enabled exception, where the exception was already being
presented to the interrupt mechanism at the time MSR[FE0,FE1] was changed from 0 to a nonzero value,
SRR0 is set to the address of the instruction that would have executed after the MSR-changing instruction. If
the instruction that set MSR[FE0,FE1] was rfi, rfci, or rfmci, SRR0 is set to the address to which the rfi, rfci,
or rfmci was returning, and not to the address of the instruction that was sequentially after the rfi, rfci, or
rfmci.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Exception Syndrome Register (ESR) PIL Set to 1 for an illegal instruction exception; otherwise, set to
0.

PPR Set to 1 for a privileged instruction exception; otherwise, set
to 0.

PTR Set to 1 for a trap exception; otherwise, set to 0.

FP Set to 1 if the instruction causing the interrupt is a floating-
point instruction; otherwise, set to 0.

AXU Set to 1 if the instruction causing the interrupt is an auxiliary
processor instruction; otherwise, set to 0.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 342 of 864
Version 1.3

October 23, 2012

7.6.8 Floating-Point Unavailable Interrupt

A floating-point unavailable interrupt occurs when no higher priority exception exists, an attempt is made to
execute a floating-point instruction that is recognized by an attached floating-point unit, and MSR[FP] = 0.

When a floating-point unavailable interrupt occurs, the processor suppresses the execution of the instruction
causing the floating-point unavailable exception, the interrupt processing registers are updated as indicated
in the following list (all registers not listed are unchanged), and instruction execution resumes at address
IVPR[IVP] || 0x100.+

7.6.9 System Call Interrupt

A system call interrupt occurs when no higher priority exception exists and a system call (sc) instruction with
LEV = 0 is executed.

When a system call interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x120.

If the interrupt is directed to guest state (MSR[GS] = 1), GSRR0 and GSRR1 are set in place of SRR0 and
SRR1 respectively, and instruction execution resumes at address GIVPR[IVP] || 0x120.

PIE Set to 1 if a “delayed” form of the floating-point enabled
exception type of program interrupt; otherwise, set to 0.
The setting of ESR[PIE] to 1 indicates to the program inter-
rupt handler that the interrupt was imprecise because it was
caused by changing MSR[FE0,FE1] and not directly by the
execution of the floating-point instruction that caused the
exception by setting FPSCR[FEX]. Thus, the program inter-
rupt handler can recognize that SRR0 contains the address
of the instruction after the MSR-changing instruction, and not
the address of the instruction that caused the floating-point
enabled exception.

All other defined ESR bits are set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the floating-
point unavailable interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction after the system call
instruction.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 343 of 864

7.6.10 Auxiliary Processor Unavailable Interrupt

An auxiliary processor unavailable interrupt occurs when no higher priority exception exists, an attempt is
made to execute an auxiliary processor instruction that is not implemented within the A2 core but which is
recognized by an attached auxiliary processor, and auxiliary processor instruction processing is not enabled
(CCR2[AP] = 0).

When an auxiliary processor unavailable interrupt occurs, the processor suppresses the execution of the
instruction causing the auxiliary processor unavailable exception, the interrupt processing registers are
updated as indicated in the following list (all registers not listed are unchanged), and instruction execution
resumes at address IVPR[IVP] || 0x140.

7.6.11 Decrementer Interrupt

A decrementer interrupt occurs when no higher priority exception exists, a decrementer exception exists
(TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and (MSR[EE] = 1 or MSR[GS] = 1)). See Timer
Facilities on page 387 for more information about decrementer exceptions.

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

When a decrementer interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x160.

Machine State Register (MSR) CM set to EPCR[GICM] if the interrupt is directed to guest state;
otherwise, it is set to EPCR[ICM].

GS is left unchanged if the interrupt is directed to guest state; other-
wise, it is set to zero.

UCLE is left unchanged if the interrupt is directed to the guest state
and MSRP[UCLEP] = 1; otherwise, it is set to 0.

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Bits in the MSR corresponding to set bits in the MSRP register are
left unchanged.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the auxiliary
processor unavailable interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE, ICM Unchanged.

All other MSR bits are set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 344 of 864
Version 1.3

October 23, 2012

Programming Note: Software is responsible for clearing the decrementer exception status by writing to
TSR[DIS] before reenabling MSR[EE] to avoid another, redundant decrementer interrupt.

7.6.12 Fixed-Interval Timer Interrupt

A fixed-interval timer interrupt occurs when no higher priority exception exists, a fixed-interval timer exception
exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 and (MSR[EE] = 1 or MSR[GS] = 1)). See
Timer Facilities on page 387 for more information about fixed interval timer exceptions.

Note: MSR[EE] also enables the external input and all decrementer interrupts.

When a fixed interval timer interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x180.

Programming Note: Software is responsible for clearing the fixed interval timer exception status by writing
to TSR[FIS] before reenabling MSR[EE] to avoid another, redundant fixed interval timer interrupt.

7.6.13 Watchdog Timer Interrupt

A watchdog timer interrupt occurs when no higher priority exception exists, a watchdog timer exception exists
(TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and (MSR[CE] = 1 or MSR[GS] = 1)). See Timer
Facilities on page 387 for more information about watchdog timer exceptions.

Note: MSR[CE] also enables the critical input interrupt.

When a watchdog timer interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x1A0.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Critical Save/Restore Register 0
(CSRR0)

Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 345 of 864

Programming Note: Software is responsible for clearing the watchdog timer exception status by writing to
TSR[WIS] before reenabling MSR[CE] to avoid another, redundant watchdog timer interrupt.

7.6.14 Data TLB Error Interrupt

A data TLB error interrupt might occur when no higher priority exception exists and a data TLB miss excep-
tion is presented to the interrupt mechanism. A data TLB miss exception occurs when a load, store, icbi, icbt,
dcbst, dcbf, dcbz, dcbi, dcbt, or dcbtst instruction attempts to access a virtual address for which a valid
TLB entry does not exist. See Memory Management on page 185 for more information about the TLB.

Programming Note: The instruction cache management instructions icbi and icbt are treated as loads from
the addressed byte with respect to address translation and protection; therefore, use MSR[DS] rather than
MSR[IS] as part of the calculated virtual address when searching the TLB to determine translation for their
target storage address. Instruction TLB miss exceptions are associated with the fetching of instructions, not
with the execution of instructions. Data TLB miss exceptions are associated with the execution of instruction
cache management instructions, as well as with the execution of load, store, and data cache management
instructions.

A data TLB miss exception occurs regardless of whether an stwcx. or stdcx. would have performed its store.
The CR[CR0] is not updated.

If a data TLB Miss exception occurs on any of the following instructions, the instruction is treated as a no-op,
and a data TLB error interrupt does not occur:

• lswx or stswx with a length of zero (although the target register of lswx is undefined)

• icbt

• dcbt, dcbtep

• dcbtst, dcbtstep

For all other instructions, if a data TLB miss exception occurs, execution of the instruction causing the excep-
tion is suppressed, a data TLB error interrupt is generated, the interrupt processing registers are updated as
indicated the following list (all registers not listed are unchanged), and instruction execution resumes at
address IVPR[IVP] || 0x1C0.

If the interrupt is directed to guest state (EPCR[DTLBGS] = 1 and MSR[GS] = 1), GSRR0, GSRR1, GDEAR,
and GESR, are set in place of SRR0, SRR1, DEAR, and ESR respectively, and instruction execution
resumes at address IVPR[IVP] || 0x1C0.

Machine State Register (MSR) CM set to EPCR[ICM].

E Unchanged.

All other MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the data TLB
error interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 346 of 864
Version 1.3

October 23, 2012

7.6.15 Instruction TLB Error Interrupt

An instruction TLB error interrupt occurs when no higher priority exception exists and an instruction TLB miss
exception is presented to the interrupt mechanism. Note that although an instruction TLB miss exception can
occur during an attempt to fetch an instruction, such an exception is not actually presented to the interrupt

Machine State Register (MSR) CM set to EPCR[GICM] if the interrupt is directed to guest state;
otherwise, it is set to EPCR[ICM].

GS is left unchanged if the interrupt is directed to guest state; other-
wise, it is set to zero.

UCLE is left unchanged if the interrupt is directed to the guest state
and MSRP[UCLEP] = 1; otherwise, it is set to 0.

CE, ME, DE Unchanged.

If the interrupt is directed to guest state, bits in the MSR corre-
sponding to set bits in the MSRP register are left unchanged. All
other MSR bits set to 0.

Data Exception Address Register
(DEAR)

If the instruction causing the data TLB miss exception does so with
respect to the memory page targeted by the initial effective address
calculated by the instruction, then the DEAR is set to this calculated
effective address. On the other hand, if the data TLB miss exception
only occurs due to the instruction causing the exception crossing a
memory page boundary, in that the missing TLB entry is for the
page accessed after crossing the boundary, then the DEAR is set to
the address of the first byte within that page.

As an example, consider a misaligned load word instruction that
targets effective address 0x00000FFF, and that the page
containing that address is a 4 KB page. The load word thus crosses
the page boundary and attempts to access the next page starting at
address 0x00001000. If a valid TLB entry does not exist for the first
page, the DEAR is set to 0x00000FFF. On the other hand, if a valid
TLB entry does exist for the first page, but not for the second, then
the DEAR is set to 0x00001000. Furthermore, the load word
instruction in this latter scenario has been partially executed (see
Partially Executed Instructions on page 299).

Exception Syndrome Register (ESR) FP Set to 1 if the instruction causing the interrupt is a floating-
point load or store; otherwise, set to 0.

ST Set to 1 if the instruction causing the interrupt is a store,
dcbz, or dcbi instruction; otherwise, set to 0.

AXU Set to 1 if the instruction causing the interrupt is an auxiliary
processor load or store; otherwise, set to 0.

EPID Set to 1 if the instruction causing the interrupt is an external
process ID instruction; otherwise, set to 0.

All other defined ESR bits are set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 347 of 864

mechanism until an attempt is made to execute that instruction. An instruction TLB miss exception occurs
when an instruction fetch attempts to access a virtual address for which a valid TLB entry does not exist. See
Memory Management on page 185 for more information about the TLB.

When an instruction TLB error interrupt occurs, the processor suppresses the execution of the instruction
causing the instruction TLB miss exception, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x1E0.

If the interrupt is directed to guest state (EPCR[ITLBGS] = 1 and MSR[GS] = 1), GSRR0 and GSRR1 are set
in place of SRR0 and SRR1 respectively, and instruction execution resumes at address IVPR[IVP] || 0x1E0.

7.6.16 Vector Unavailable Interrupt

The vector unavailable interrupt occurs when no higher priority exception exists, an attempt is made to
execute a vector instruction that is recognized by an attached vector unit, and MSR[SPV] = 0.

When an vector unavailable interrupt occurs, the processor suppresses the execution of the instruction
causing the vector unavailable exception, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP]
|| 0x200.

Save/Restore Register 0 (SRR0)Set to the effective address of the instruction causing the Auxiliary
Processor Unavailable interrupt.

7.6.17 Debug Interrupt

A debug interrupt occurs when no higher priority exception exists, a debug exception exists in the Debug
Status Register (DBSR), the processor is in internal debug mode (DBCR0[IDM] = 1), and debug interrupts
are enabled (MSR[DE] = 1). A debug exception occurs when a debug event causes a corresponding bit in the
DBSR to be set.

There are several types of debug exception, as follows:

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the instruction
TLB error interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE, ICM Unchanged.

All other MSR bits set to 0.

Exception Syndrome Register (ESR) SPV Set to 1.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 348 of 864
Version 1.3

October 23, 2012

Instruction Address Compare (IAC) Exception

An IAC debug exception occurs when execution is attempted of an instruction whose address matches the
IAC conditions specified by the various debug facility registers. This exception can occur regardless of debug
mode, and regardless of the value of MSR[DE].

Data Address Compare (DAC) Exception

A DAC debug exception occurs when the DVC mechanism is not enabled, and execution is attempted of a
load, store, icbi, icbt, dcbst, dcbf, dcbz, dcbi, dcbt, or dcbtst instruction whose target storage operand
address matches the DAC conditions specified by the various debug facility registers. This exception can
occur regardless of debug mode and regardless of the value of MSR[DE].

Programming Note: The instruction cache management instructions icbi and icbt are treated as loads from
the addressed byte with respect to debug exceptions. IAC debug exceptions are associated with the fetching
of instructions not with the execution of instructions. DAC debug exceptions are associated with the execution
of instruction cache management instructions, as well as with the execution of load, store, and data cache
management instructions.

Data Value Compare (DVC) Exception

A DVC debug exception occurs when execution is attempted of a load, store, or dcbz instruction whose
target storage operand address matches the DAC and DVC conditions specified by the various debug facility
registers. This exception can occur regardless of debug mode and regardless of the value of MSR[DE].

Branch Taken (BRT) Exception

A BRT debug exception occurs when BRT debug events are enabled (DBCR0[BRT] = 1) and execution is
attempted of a branch instruction for which the branch conditions are met. This exception cannot occur in
internal debug mode when MSR[DE] = 0 unless external debug mode enabled.

Trap (TRAP) Exception

A TRAP debug exception occurs when TRAP debug events are enabled (DBCR0[TRAP] = 1) and execution
is attempted of a tw or twi instruction that matches any of the specified trap conditions. This exception can
occur regardless of debug mode and regardless of the value of MSR[DE].

Return (RET) Exception

An RET debug exception occurs when RET debug events are enabled (DBCR0[RET] = 1) and execution is
attempted of an rfi instruction. For rfi, the RET debug exception can occur regardless of debug mode and
regardless of the value of MSR[DE].

Instruction Complete (ICMP) Exception

An ICMP debug exception occurs when ICMP debug events are enabled (DBCR0[ICMP] = 1) and execution
of any instruction is completed. This exception cannot occur in internal debug mode when MSR[DE] = 0
unless external debug mode enabled.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 349 of 864

Programming Note: If ICMP debug events are enabled and debug interrupts (previously disabled) are sub-
sequently enabled, the ICMP debug interrupt occurs sometime after the instruction that enabled the debug
interrupt or on the instruction directly following a context synchronizing event. If the instruction that enabled
the debug interrupt was a context synchronizing instruction, the ICMP debug interrupt occurs on the next
instruction.

Interrupt (IRPT) Exception

An IRPT debug exception occurs when IRPT debug events are enabled (DBCR0[IRPT] = 1) and a base class
interrupt occurs.

Unconditional Debug Event (UDE) Exception

A UDE debug exception occurs when an unconditional debug event is signaled over the JTAG interface to
the A2 core. This exception can occur regardless of debug mode and regardless of the value of MSR[DE].

Instruction Value Compare (IVC) Exception

An IVC debug exception occurs when IVC events are enabled (DBCR3[IVC] = 1) and execution is attempted
of an instruction that matches the following expression:

(IMMR[MASK] & instruction_opcode) = (IMMR[MASK] & IMR[MATCH])

This exception can occur regardless of debug mode, and regardless of the value of MSR[DE].

There are two debug modes supported by the A2 core: internal debug mode and external debug mode.
Debug exceptions and interrupts are affected by the debug modes that are enabled at the time of the debug
exception. Debug interrupts occur only when internal debug mode is enabled, although it is possible for
external debug mode to be enabled as well. The remainder of this section assumes that internal debug mode
is enabled and that external debug mode is not enabled at the time of a debug exception.

See Debug Facilities on page 399 for more information about the different debug modes and the behavior of
each of the Debug exception types when operating in each of the modes.

Programming Note: It is a programming error for software to enable internal debug mode (by setting
DBCR0[IDM] to 1) while debug exceptions are already present in the DBSR. Software must first clear all
DBSR debug exception status fields (that is, all fields except IDE, MRR) before setting DBCR0[IDM] to 1.

A DAC or DVC debug exception occurs regardless of whether a stwcx. or stdcx. would have performed its
store. The CR[CR0] is not updated.

If a DAC exception occurs on an lswx or stswx with a length of zero, the instruction is treated as a no-op, the
debug exception is not recorded in the DBSR, and a debug interrupt does not occur.

If a DAC exception occurs on an icbt, dcbt, or dcbtst instruction that is being no-op’ed for some other reason
(either the referenced cache block is in a caching inhibited memory page or a data storage or data TLB miss
exception occurs), then the debug exception is not recorded in the DBSR and a debug interrupt does not
occur. On the other hand, if the icbt, dcbt, or dcbtst instruction is not being no-op’ed for one of these other
reasons, the DAC debug exception does occur and is handled in the same fashion as other DAC debug
exceptions.

Joint Test Action Group

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 350 of 864
Version 1.3

October 23, 2012

For all other cases, when a debug exception occurs, it is immediately presented to the interrupt handling
mechanism. A debug interrupt occurs immediately if MSR[DE] is 1, and the interrupt processing registers are
updated as described in the following list. If MSR[DE] is 0, however, the exception condition remains set in
the DBSR. If and when MSR[DE] is subsequently set to 1, and the exception condition is still present in the
DBSR, a “delayed” debug interrupt then occurs either as a synchronous, imprecise interrupt or as an asyn-
chronous interrupt, depending on the type of debug exception.

When a debug interrupt occurs, the interrupt processing registers are updated as indicated in the following list
(all registers not listed are unchanged) and instruction execution resumes at address IVPR[IVP] || 0x040.

Critical Save/Restore Register 0
(CSRR0)

For debug exceptions that occur while debug interrupts are enabled
(MSR[DE] = 1), CSRR0 is set as follows:

• For IAC, IVC, BRT, TRAP, and RET debug exceptions, set to the
address of the instruction causing the debug interrupt. Execu-
tion of the instruction causing the debug exception is sup-
pressed, and the interrupt is synchronous and precise.

• For DAC and DVC store class debug exceptions, set to the
address of the instruction causing the debug interrupt. Execu-
tion of the instruction causing the debug exception is sup-
pressed, and the interrupt is synchronous and precise.

• For DVC load class debug exceptions, set to the effective
address of the excepting instruction or to the effective address
of some subsequent instruction. Execution of the instruction
pointed to by CSRR0 is suppressed, and the interrupt is syn-
chronous and imprecise.

• For ICMP debug exceptions, set to the address of the next
instruction to be executed (the instruction after the one whose
completion caused the ICMP debug exception). The interrupt is
synchronous and precise.

• For IRPT debug exceptions, set to the address of the first
instruction in the interrupt handler associated with the interrupt
type that caused the IRPT debug exception. The interrupt is
asynchronous.

• For UDE debug exceptions, set to the address of the instruction
that would have executed next if the debug interrupt had not
occurred. The interrupt is asynchronous.

For all debug exceptions that occur while debug interrupts are
disabled (MSR[DE] = 0), the debug interrupt is delayed and occurs
if and when MSR[DE] is again set to 1, assuming the debug excep-
tion status is still set in the DBSR. If the debug interrupt occurs in
this fashion, CSRR0 is set to the address of the instruction after the
one that set MSR[DE]. If the instruction that set MSR[DE] was rfi,
rfci, rfgi, or rfmci, then CSRR0 is set to the address to which the
rfi, rfci, rfgi, or rfmci was returning, and not to the address of the
instruction that was sequentially after the rfi, rfci, rfgi, or rfmci. The
interrupt is either synchronous and imprecise or asynchronous,
depending on the type of debug exception, as follows:

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 351 of 864

7.6.18 Processor Doorbell Interrupt

A processor doorbell interrupt occurs when no higher priority exception exists, a processor doorbell exception
is present, and the interrupt is enabled (MSR[GS] = 1 or MSR[EE] = 1). Processor doorbell exceptions are
generated when DBELL messages (see Processor Messages on page 357) are received and accepted by
the processor.

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x280.

• For IAC and RET debug exceptions, the interrupt is synchro-
nous and imprecise.

• For BRT debug exceptions, this scenario cannot occur. BRT
debug exceptions are not recognized when MSR[DE] = 0 if
operating in internal debug mode.

• For TRAP debug exceptions, the debug interrupt is synchro-
nous and imprecise. However, under these conditions (TRAP
debug exception occurring while MSR[DE] is 0), the attempted
execution of the trap instruction for which one or more of the
trap conditions is met itself leads to a trap exception type of pro-
gram interrupt. The corresponding debug interrupt that occurs
later if and when debug interrupts are enabled is in addition to
the program interrupt.

• For ICMP debug exceptions, this scenario cannot occur in this
fashion. ICMP debug exceptions are not recognized when
MSR[DE] = 0 if operating in internal debug mode. However, a
similar scenario can occur when MSR[DE] is 1 at the time of the
ICMP debug exception, but the instruction whose completion is
causing the exception is itself setting MSR[DE] to 0. This sce-
nario is described in the subsection on the ICMP debug excep-
tion for which MSR[DE] is 1 at the time of the exception. In that
scenario, the interrupt is synchronous and imprecise.

• For IRPT and UDE debug exceptions, the interrupt is asynchro-
nous.

Critical Save/Restore Register 1
(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

ME unchanged.

All other MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the effective address of the next instruction to be executed.

doorbell interrupt

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 352 of 864
Version 1.3

October 23, 2012

7.6.19 Processor Doorbell Critical Interrupt

A processor doorbell critical interrupt occurs when no higher priority exception exists, a processor doorbell
critical exception is present, and the interrupt is enabled (MSR[CE] = 1 or MSR[GS] = 1). Processor doorbell
critical exceptions are generated when DBELL_CRIT messages (see Processor Messages on page 357) are
received and accepted by the processor.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x2A0.

7.6.20 Guest Processor Doorbell Interrupt

A guest processor doorbell interrupt occurs when no higher priority exception exists, a guest processor door-
bell exception is present, and the interrupt is enabled (MSR[GS] = 1 and MSR[EE] = 1). Guest processor
doorbell exceptions are generated when G_DBELL messages (see Processor Messages on page 357) are
received and accepted by the processor.

Programming Note: Guest processor doorbell interrupts are used by the hypervisor to be notified when the
guest operating system has set MSR[EE] to 1. This allows the hypervisor to reflect base class interrupts to
the guest at a time when the guest is ready to accept them (MSR[GS] = 1 and MSR[EE] = 1).

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x2C0.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other defined MSR bits set to 0.

Critical Save/Restore Register 0
(CSRR0)

Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

ME unchanged.

All other defined MSR bits set to 0.

Guest Save/Restore Register 0
(GSRR0)

Set to the effective address of the next instruction to be executed.

Guest Save/Restore Register 1
(GSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other defined MSR bits set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 353 of 864

7.6.21 Guest Processor Doorbell Critical Interrupt

A guest processor doorbell critical interrupt occurs when no higher priority exception exists, a guest
processor doorbell critical exception is present, and the interrupt is enabled (MSR[GS] = 1 and MSR[CE] = 1).
Guest processor doorbell critical exceptions are generated when G_DBELL_CRIT messages (see Processor
Messages on page 357) are received and accepted by the processor.

Programming Note: Guest processor doorbell critical interrupts are used by the hypervisor to be notified
when the guest operating system has set MSR[CE] to 1. This allows the hypervisor to reflect critical class
interrupts to the guest at a time when the guest is ready to accept them (MSR[GS] = 1 and MSR[CE] = 1).

Programming Note: Guest processor doorbell critical interrupts and guest processor doorbell machine
check interrupts share the same IVO. Hypervisor software can differentiate between the two interrupts by
comparing whether CE or ME is set in CSRR1 and which interrupt class is to be reflected.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x2E0.

7.6.22 Guest Processor Doorbell Machine Check Interrupt

A guest processor doorbell machine check interrupt occurs when no higher priority exception exists, a guest
processor doorbell machine check exception is present, and the interrupt is enabled (MSR[GS] = 1 and
MSR[ME] = 1). Guest processor doorbell machine check exceptions are generated when G_DBELL_MC
messages (see Processor Messages on page 357) are received and accepted by the processor.

Programming Note: Guest processor doorbell machine check interrupts are used by the hypervisor to be
notified when the guest operating system has set MSR[ME] to 1. This allows the hypervisor to reflect machine
check class interrupts to the guest at a time when the guest is ready to accept them (MSR[GS] = 1 and
MSR[ME] = 1).

Programming Note: Guest processor doorbell critical interrupts and guest processor doorbell machine
check interrupts share the same IVO. Hypervisor software can differentiate between the two interrupts by
comparing whether CE or ME is set in CSRR1 and which interrupt class is to be reflected.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x2E0.

Critical Save/Restore Register 0
(CSRR0)

Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register
1(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

ME unchanged.

All other defined MSR bits set to 0.

Critical Save/Restore Register 0
(CSRR0)

Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
(CSRR1)

Set to the contents of the MSR at the time of the interrupt.

interrupt vector offset

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 354 of 864
Version 1.3

October 23, 2012

7.6.23 Embedded Hypervisor System Call Interrupt

An embedded hypervisor system call interrupt occurs when no higher priority exception exists and a system
call (sc) instruction with LEV = 1 is executed.

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged), and instruction execution resumes at address IVPR[IVP] || 0x300.

7.6.24 Embedded Hypervisor Privilege Interrupt

An embedded hypervisor privilege interrupt occurs when no higher priority exception exists and an embedded
hypervisor privilege exception is presented to the exception mechanism.

An embedded hypervisor privilege exception occurs when MSR[GS] = 1 and MSR[PR] = 0 and execution is
attempted of any of the following instructions:

• A hypervisor privileged instruction (see Section 2.12.1 Privileged Instructions)

• An mtspr or mfspr instruction that specifies an SPR that is hypervisor privileged

• A tlbwe, tlbsrx., tlbwec., or tlbilx instruction and EPCR[DGTMI] = 1

• A cache locking instruction and MSRP[UCLEP] = 1

• A tlbwe instruction when TLB0CFG[GTWE] = 0

• A tlbwe instruction when MMUCFG[LRAT] = 0

• A tlbwe instruction that attempts to write a TLB entry that has IPROT = 1 and MAS0[WQ] = 0 or 3

• A tlbwe instruction that attempts to write a TLB entry that has IPROT = 1, MAS0[WQ] = 1, and the exe-
cuting thread holds a matching TLB reservation

• A tlbwe instruction when MAS1[IPROT] = 1 and MAS0[WQ] = 0 or 3

• A tlbwe instruction when MAS1[IPROT] = 1, MAS0[WQ] = 1, and the executing thread holds a matching
TLB reservation

• A tlbwe instruction when MAS0[HES] = 0 and MAS0[WQ] != 2

An embedded hypervisor privilege exception also occurs when execution is attempted of an ehpriv instruc-
tion, regardless of the state of the processor.

Machine State Register (MSR) CM set to EPCR[ICM].

ME unchanged.

All other defined MSR bits set to 0.

Save/Restore Register 0 (SRR0 Set to the effective address of the instruction after the sc instruc-
tion.

Save/Restore Register 1 (SRR1 Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME,DE Unchanged.

All other defined MSR bits set to 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 355 of 864

The interrupt processing registers are updated as indicated in the following list (all registers not listed are
unchanged) and instruction execution resumes at address IVPR[IVP] || 0x320.

7.6.25 LRAT Error Interrupt

An LRAT error interrupt occurs when no higher priority exception exists and an LRAT miss exception is
presented to the interrupt mechanism. An LRAT miss exception is caused by either of the following:

• A tlbwe instruction is executed with MSR[GS] = 1, MMUCFG[LRAT] = 1, MAS1[V] = 1, and the logical
page number (RPN specified by MAS7 and MAS3 and page size specified by MAS1[TSIZE]) does not
match any valid entry in the LRAT or matches multiple valid entries in the LRAT.

• A page table translation is performed when MSR[GS] = 1, MMUCFG[LRAT] = 1, PTE[V] = 1, and the log-
ical page number (RPN based on PTE[ARPN] and page size specified by PTE[PS]) does not match any
valid entry in the LRAT or matches multiple valid entries in the LRAT.

When an LRAT error interrupt occurs, the processor suppresses the execution of the instruction causing the
LRAT error interrupt, and the interrupt processing registers are updated as indicated in the following list (all
registers not listed are unchanged) and instruction execution resumes at address IVPR[IVP] || 0x340.

Save/Restore Register 0 (SRR0) Set to the effective address of the instruction causing the
embedded hypervisor privilege interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CMset to EPCR[ICM].

CE, ME,DE Unchanged

All other defined MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address at the time of the interrupt.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE unchanged.

All other defined Machine State Register bits set to 0.

Data Exception Address Register
(DEAR)

If the LRAT error interrupt occurred for a page table translation, set
to the effective address of a byte that is both within the range of the
bytes being accessed by the storage access or cache management
instruction and within the page whose access caused the LRAT
miss exception. Otherwise, undefined.

Exception Syndrome Register (ESR) FP Set to 1 if the instruction causing the interrupt is a floating-
point load or store; otherwise, set to 0.

ST Set to 1 if the instruction causing the interrupt is a store or
“store-class” cache management instruction; otherwise, set
to 0.

AP Set to 1 if the instruction causing the interrupt is an auxiliary
processor load or store; otherwise, set to 0.

logical to real address translation

real page number

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 356 of 864
Version 1.3

October 23, 2012

7.6.26 User Decrementer Interrupt

A user decrementer interrupt occurs when no higher priority exception exists, a user decrementer exception
exists (TSR[UDIS] = 1), and the interrupt is enabled (TCR[UDIE] = 1 and (MSR[EE] = 1 or MSR[GS] = 1)).
See Timer Facilities on page 387 for more information about User Decrementer exceptions.

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

When a user decrementer interrupt occurs, the interrupt processing registers are updated as indicated in the
following list (all registers not listed are unchanged) and instruction execution resumes at address IVPR[IVP]
|| 0x800.

Programming Note: Software is responsible for clearing the decrementer exception status by writing to
TSR[UDIS] before re-enabling MSR[EE] to avoid another, redundant user decrementer interrupt.

7.6.27 Performance Monitor Interrupt

A performance monitor interrupt occurs when no higher priority exception exists, a performance monitor
exception exists, and the interrupt is enabled (MSR[EE] = 1 or MSR[GS] = 1).

Note: MSR[EE] also enables other interrupts. See Table 7-3 Interrupt and Exception Types on page 323.

When a performance monitor interrupt occurs, the interrupt processing registers are updated as indicated in
the following list (all registers not listed are unchanged) and instruction execution resumes at address
IVPR[IVP] || 0x820.

SPV Set to 1 if the instruction causing the interrupt is an SPE
operation or a vector operation; otherwise, set to 0.

PT Set to 1 if the cause of the interrupt is an LRAT miss excep-
tion on a page table translation. Set to 0 if the cause of the
interrupt is an LRAT miss exception on a tlbwe.

DATA Set to 1 if the interrupt is due to is an LRAT miss resulting
from a page table translation of a load, store or cache
management operand address; otherwise, set to 0.

EPID Set to 1 if the instruction causing the interrupt is an external
process ID instruction; otherwise, set to 0.

All other defined ESR bits are set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

Save/Restore Register 0 (SRR0) Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1) Set to the contents of the MSR at the time of the interrupt.

signal processing engine

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 357 of 864

Programming Note: Software is responsible for taking any actions that are required by the implementation
to clear any Performance Monitor exception status (such that the Performance Monitor interrupt request input
signal is de-asserted) before re-enabling MSR[EE], to avoid another, redundant Performance Monitor inter-
rupt.

7.7 Processor Messages

Processors initiate a message by executing the msgsnd instruction and specifying a message type and
message payload in a general purpose register. Sending a message causes the message to be sent to all the
devices, including the sending processor, in the coherence domain in a reliable manner.

Each device receives all messages that are sent. The actions that a device takes are dependent on the
message type and payload. There are no restrictions on what messages a processor can send.

To provide inter processor interrupt capability the following doorbell message types are defined:

• Processor Doorbell
• Processor Doorbell Critical
• Guest Processor Doorbell
• Guest Processor Doorbell Critical
• Guest Processor Doorbell Machine Check

A doorbell message causes an interrupt to occur on processors when the message is received and the
processor determines through examination of the payload that the message should be accepted. The exami-
nation of the payload for this purpose is termed filtering. The acceptance of a doorbell message causes an
exception to be generated on the accepting processor.

7.7.1 Processor Message Handling and Filtering

Processors filter, accept, and handle message types defined as follows. The message type is specified in the
message and is determined by the contents of register RB32:36 used as the operand in the msgsnd instruc-
tion. The message type is interpreted as follows:

Value Description

0 Doorbell Interrupt (DBELL)
A processor doorbell exception is generated on the processor when the processor has filtered the
message based on the payload and has determined that it should accept the message. A processor
doorbell interrupt occurs when no higher priority exception exists, a processor doorbell exception
exists, and the interrupt is enabled (MSREE = 1). If the Embedded.Hypervisor category is supported,
the interrupt is enabled if (MSREE = 1 or MSRGS = 1).

1 Doorbell Critical Interrupt (DBELL_CRIT)
A processor doorbell critical exception is generated on the processor when the processor has filtered
the message based on the payload and has determined that it should accept the message. A proces-
sor doorbell critical interrupt occurs when no higher priority exception exists, a processor doorbell
critical exception exists, and the interrupt is enabled (MSRCE = 1). If the Embedded.Hypervisor cate-
gory is supported, the interrupt is enabled if (MSRCE = 1 or MSRGS = 1).

Machine State Register (MSR) CM set to EPCR[ICM].

CE, ME, DE Unchanged.

All other MSR bits set to 0.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 358 of 864
Version 1.3

October 23, 2012

2 Guest Doorbell Interrupt (G_DBELL)
A guest processor doorbell exception is generated on the processor when the processor has filtered
the message based on the payload and has determined that it should accept the message. A guest
processor doorbell interrupt occurs when no higher priority exception exists, a guest processor door-
bell exception exists, and the interrupt is enabled (MSREE = 1 and MSRGS = 1).

3 Guest Doorbell Interrupt Critical (G_DBELL_CRIT)
A guest processor doorbell critical exception is generated on the processor when the processor has
filtered the message based on the payload and has determined that it should accept the message. A
guest processor doorbell critical interrupt occurs when no higher priority exception exists, a guest
processor doorbell critical exception exists, and the interrupt is enabled (MSRCE = 1 and MSRGS =
1).

4 Guest Doorbell Interrupt Machine Check (G_DBELL_MC)
A guest processor doorbell machine check exception is generated on the processor when the proces-
sor has filtered the message based on the payload and has determined that it should accept the mes-
sage. A guest processor doorbell machine check interrupt occurs when no higher priority exception
exists, a guest processor doorbell machine check exception exists, and the interrupt is enabled
(MSRME = 1 and MSRGS = 1).

7.7.2 Doorbell Message Filtering

A processor receiving a DBELL message type filters the message and either ignores the message or accepts
the message and generates a processor doorbell exception based on the payload and the state of the
processor at the time the message is received.

The payload is specified in the message and is determined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits are defined in the following table.

If a DBELL message is received by a processor, the message is accepted if one of the following conditions
exist:

• The message is for this partition (payloadLPIDTAG = LPIDR).
• The message is for all partitions (payloadLPIDTAG = 0).

If a DBELL message is accepted, a processor doorbell exception is generated if one of the following condi-
tions exist:

• This is a broadcast message (payloadBRDCAST = 1).
• The message is intended for this processor (PIR50:63 = payloadPIRTAG).

Bits Field Name Description

37 BRDCAST Broadcast.
The message is accepted by all processors regardless of the value of the PIR register and the value of
PIRTAG.
0 If the values of PIR and PIRTAG are equal, a processor doorbell exception is generated.
1 A processor doorbell exception is generated regardless of the value of PIRTAG and PIR.

38:41 Reserved Reserved.

42:49 LPIDTAG LPID Tag
The contents of this field are compared with the contents of the LPIDR. If LPIDTAG = 0, it matches all
values in the LPIDR register.

50:63 PIRTAG PIR Tag
The contents of this field are compared with bits 50:63 of the PIR register.

logical partition identifier

Processor Identification Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 359 of 864

The exception condition remains until a processor doorbell interrupt is taken or an msgclr instruction is
executed on the receiving processor with a message type of DBELL. A change to any of the filtering criteria
(such as, changing the PIR register) does not clear a pending processor doorbell exception.

DBELL messages are not cumulative. That is, if a DBELL message is accepted and the interrupt is pending
because MSREE = 0, further DBELL messages that would be accepted are ignored until the processor door-
bell exception is cleared by taking the interrupt or cleared by executing an msgclr with a message type of
DBELL on the receiving processor.

7.7.3 Doorbell Critical Message Filtering

A processor receiving a DBELL_CRIT message type filters the message and either ignores the message or
accepts the message and generates a processor doorbell critical exception based on the payload and the
state of the processor at the time the message is received.

The payload is specified in the message and is determined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits are defined as follows.

If a DBELL_CRIT message is received by a processor, the message is accepted if one of the following condi-
tions exists:

• The message is for this partition (payloadLPIDTAG = LPIDR).
• The message is for all partitions (payloadLPIDTAG = 0).

If a DBELL_CRIT message is accepted, a processor doorbell critical exception is generated if one of the
following conditions exists:

• This is a broadcast message (payloadBRDCAST = 1).
• The message is intended for this processor (PIR50:63 = payloadPIRTAG).

DBELL_CRIT messages are not cumulative. That is, if a DBELL_CRIT message is accepted and the interrupt
is pending because MSRCE = 0, further DBELL_CRIT messages that would be accepted are ignored until the
processor doorbell critical exception is cleared by taking the interrupt or cleared by executing an msgclr with
a message type of DBELL_CRIT on the receiving processor.

Bit Field Name Description

37 BRDCAST Broadcast
The message is accepted by all processors regardless of the value of the PIR register and the value of
PIRTAG.
0 If the values of PIR and PIRTAG are equal, a processor doorbell critical exception is generated.
1 A processor doorbell critical exception is generated regardless of the value of PIRTAG and PIR.

38:41 Reserved Reserved

42:49 LPIDTAG LPID Tag
The contents of this field are compared with the contents of the LPIDR. If LPIDTAG = 0, it matches all
values in the LPIDR register.

50:63 PIRTAG PIR Tag
The contents of this field are compared with bits 50:63 of the PIR register.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 360 of 864
Version 1.3

October 23, 2012

7.7.4 Guest Doorbell Message Filtering

A processor receiving a G_DBELL message type filters the message and either ignores the message or
accepts the message and generates a guest processor doorbell critical exception based on the payload and
the state of the processor at the time the message is received.

The payload is specified in the message and is determined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits are defined as follows.

If a G_DBELL message is received by a processor, the message is accepted if one of the following conditions
exist:

• The message is for this partition (payloadLPIDTAG = LPIDR)
• The message is for all partitions (payloadLPIDTAG = 0)

If a G_DBELL message is accepted, a guest processor doorbell exception is generated if one of the following
conditions exists:

• This is a broadcast message (payloadBRDCAST = 1).
• The message is intended for this processor (GPIR50:63 = payloadPIRTAG).

G_DBELL messages are not cumulative. That is, if a G_DBELL message is accepted and the interrupt is
pending because MSR[CE] = 0, further G_DBELL messages that would be accepted are ignored until the
guest processor doorbell exception is cleared by taking the interrupt or cleared by executing an msgclr with a
message type of G_DBELL on the receiving processor.

7.7.5 Guest Doorbell Critical Message Filtering

A processor receiving a G_DBELL_CRIT message type filters the message and either ignores the message
or accepts the message and generates a guest processor doorbell critical exception based on the payload
and the state of the processor at the time the message is received.

The payload is specified in the message and is determined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits are defined as follows.

Bit Field Name Description

37 BRDCAST Broadcast
The message is accepted by all processors regardless of the value of the GPIR register and the value of
PIRTAG.
0 If the values of GPIR and PIRTAG are equal, a guest processor doorbell exception is gener-

ated.
1 A guest processor doorbell exception is generated regardless of the value of PIRTAG and

GPIR.

38:41 Reserved Reserved

42:49 LPIDTAG LPID Tag
The contents of this field are compared with the contents of the LPIDR. If LPIDTAG = 0, it matches all
values in the LPIDR register.

50:63 PIRTAG PIR Tag
The contents of this field are compared with bits 50:63 of the GPIR register.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 361 of 864

If a G_DBELL_CRIT message is received by a processor, the message is accepted if one of the following
conditions exist:

• The message is for this partition (payloadLPIDTAG = LPIDR).
• The message is for all partitions (payloadLPIDTAG = 0).

If a G_DBELL_CRIT message is accepted, a guest processor doorbell critical exception is generated if one of
the following conditions exists:

• This is a broadcast message (payloadBRDCAST=1).
• The message is intended for this processor (GPIR50:63 = payloadPIRTAG).

G_DBELL_CRIT messages are not cumulative. That is, if a G_DBELL_CRIT message is accepted and the
interrupt is pending because MSRCE = 0, further G_DBELL messages that would be accepted are ignored
until the guest processor doorbell critical exception is cleared by taking the interrupt or cleared by executing
an msgclr with a message type of G_DBELL_CRIT on the receiving processor.

7.7.6 Guest Doorbell Machine Check Message Filtering

A processor receiving a G_DBELL_MC message type filters the message and either ignores the message or
accepts the message and generates a guest processor doorbell machine check exception based on the
payload and the state of the processor at the time the message is received.

The payload is specified in the message and is determined by the contents of register RB37:63 used as the
operand in the msgsnd instruction. The payload bits are defined as follows.

Bit Field Name Description

37 BRDCAST Broadcast
The message is accepted by all processors regardless of the value of the GPIR register and the value of
PIRTAG.
0 If the values of GPIR and PIRTAG are equal, a guest processor doorbell critical exception is

generated.
1 A guest processor doorbell critical exception is generated regardless of the value of PIRTAG

and GPIR.

38:41 Reserved Reserved

42:49 LPIDTAG LPID Tag
The contents of this field are compared with the contents of the LPIDR. If LPIDTAG = 0, it matches all
values in the LPIDR register.

50:63 PIRTAG PIR Tag
The contents of this field are compared with bits 50:63 of the GPIR register.

Bit Field Name Description

37 BRDCAST Broadcast
The message is accepted by all processors regardless of the value of the GPIR register and the value of
PIRTAG.
0 If the values of GPIR and PIRTAG are equal, a guest processor doorbell critical exception is

generated.
1 A guest processor doorbell critical exception is generated regardless of the value of PIRTAG

and GPIR.

38:41 Reserved Reserved

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 362 of 864
Version 1.3

October 23, 2012

If a G_DBELL_MC message is received by a processor, the message is accepted if one of the following
conditions exist:

• The message is for this partition (payloadLPIDTAG = LPIDR).
• The message is for all partitions (payloadLPIDTAG = 0).

If a G_DBELL_MC message is accepted, a guest processor doorbell machine check exception is generated if
one of the following conditions exist:

• This is a broadcast message (payloadBRDCAST = 1).
• The message is intended for this processor (GPIR50:63 = payloadPIRTAG).

G_DBELL_MC messages are not cumulative. That is, if a G_DBELL_MC message is accepted and the inter-
rupt is pending because MSRCE = 0, further G_DBELL_MC messages that would be accepted are ignored
until the guest processor doorbell machine check exception is cleared by taking the interrupt or cleared by
executing an msgclr with a message type of G_DBELL_MC on the receiving processor.

The temporal relationship between when a G_DBELL_MC message is sent and when it is received in a given
processor is not defined.

7.8 Interrupt Ordering and Masking

It is possible for multiple exceptions to exist simultaneously, each of which could cause the generation of an
interrupt. Furthermore, the Power ISA does not provide for the generation of more than one interrupt of the
same class (critical or noncritical) at a time. Therefore, the architecture defines that interrupts are ordered
with respect to each other and provides a masking mechanism for certain persistent interrupt types.

When an interrupt type is masked (disabled) and an event causes an exception that would normally generate
an interrupt of that type, the exception persists as a status bit in a register (which register depends upon the
exception type). However, no interrupt is generated. Later, if the interrupt type is enabled (unmasked) and the
exception status has not been cleared by software, the interrupt due to the original exception event is then
finally generated.

All asynchronous interrupt types can be masked. Machine check interrupts can be masked, as well. In addi-
tion, certain synchronous interrupt types can be masked. The two synchronous interrupt types that can be
masked are the floating-point enabled exception type of program interrupt (masked by MSR[FE0,FE1) and
the IAC, DAC, DVC, RET, and ICMP exception type debug interrupts (masked by MSR[DE]).

Architecture Note: When an otherwise synchronous, precise interrupt type is “delayed” in this fashion via
masking and the interrupt type is later enabled, the interrupt that is then generated due to the exception event
that occurred while the interrupt type was disabled is considered a synchronous, imprecise class of interrupt.

To prevent a subsequent interrupt from causing the state information (saved in SRR0/SRR1,
CSRR0/CSRR1, or MCSRR0/MCSRR1) from a previous interrupt to be overwritten and lost, the A2 core
performs certain functions. As a first step, upon any noncritical class interrupt, the processor automatically

42:49 LPIDTAG LPID Tag
The contents of this field are compared with the contents of the LPIDR. If LPIDTAG = 0, it matches all
values in the LPIDR register.

50:63 PIRTAG PIR Tag
The contents of this field are compared with bits 50:63 of the GPIR register.

Bit Field Name Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 363 of 864

disables any further asynchronous, noncritical class interrupts (external input, decrementer, user decre-
menter, and fixed interval timer) by clearing MSR[EE]. Likewise, upon any critical class interrupt, hardware
automatically disables any further asynchronous interrupts of either class (critical and noncritical) by clearing
MSR[CE] and MSR[DE], in addition to MSR[EE]. The additional interrupt types that are disabled by the
clearing of MSR[CE,DE] are the critical input, watchdog timer, and debug interrupts. For machine check inter-
rupts, the processor automatically disables all maskable interrupts by clearing MSR[ME] as well as
MSR[EE,CE,DE].

This first step of clearing MSR[EE] (and MSR[CE,DE] for critical class interrupts and MSR[ME] for machine
checks) prevents any subsequent asynchronous interrupts from overwriting the relevant save/restore regis-
ters (SRR0/SRR1, CSRR0/CSRR1, or MCSRR0/MCSRR1), before software can save their contents. The
processor also automatically clears, on any interrupt, MSR[PR,FP,FE0,FE1,IS,DS]. The clearing of these bits
assists in the avoidance of subsequent interrupts of certain other types. However, guaranteeing that these
interrupt types do not occur and thus do not overwrite the save/restore registers also requires the cooperation
of system software. Specifically, system software must avoid the execution of instructions that could cause
(or enable) a subsequent interrupt, if the contents of the save/restore registers have not yet been saved.

7.8.1 Interrupt Ordering Software Requirements

The following list identifies the actions that system software must avoid, before saving the save/restore regis-
ters’ contents:

• Reenabling of MSR[EE] (or MSR[CE,DE] in critical class interrupt handlers)

This prevents any asynchronous interrupts, and (in the case of MSR[DE]) any debug interrupts (which
include both synchronous and asynchronous types).

• Branching (or sequential execution) to addresses not mapped by the TLB or mapped without execute
access permission

This prevents instruction storage and instruction TLB error interrupts.

• Load, store, or cache management instructions to addresses not mapped by the TLB or not having the
necessary access permission (read or write)

This prevents data storage and data TLB error interrupts.

• Execution of system call (sc) or trap (tw, twi, td, tdi) instructions

This prevents system call and trap exception types of program interrupts.

• Execution of any floating-point instructions

This prevents floating-point unavailable interrupts. Note that this interrupt would occur upon the execution
of any floating-point instruction, due to the automatic clearing of MSR[FP]. However, even if software
were to re-enable MSR[FP], floating-point instructions must still be avoided to prevent program interrupts
due to the possibility of floating-point enabled exceptions.

• Reenabling of MSR[PR]

This prevents privileged Instruction exception type of program interrupts. Alternatively, software can re-
enable MSR[PR], but avoid the execution of any privileged instructions.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 364 of 864
Version 1.3

October 23, 2012

• Execution of any auxiliary processor instructions that are not implemented in the A2 core

This prevents auxiliary processor unavailable interrupts. Note that the auxiliary processor instructions
that are implemented within the A2 core do not cause any of these types of exceptions, and can therefore
be executed before software has saved the save/restore registers’ contents.

• Execution of any illegal instructions or any defined instructions not implemented within the A2 core

This prevents illegal instruction exception type of program interrupts.

• Execution of any instruction that could cause an alignment interrupt

This prevents alignment interrupts. See Alignment Interrupt on page 337 for a complete list of instructions
that can cause alignment interrupts.

• In the machine check handler, use of the caches and TLBs until any detected parity errors have been cor-
rected.

This will avoid additional parity errors.

It is not necessary for hardware or software to avoid critical class interrupts from within noncritical class inter-
rupt handlers (hence, the processor does not automatically clear MSR[CE,ME,DE] upon a noncritical inter-
rupt), because the two classes of interrupts use different pairs of save/restore registers to save the instruction
address and MSR. The converse, however, is not true. That is, hardware and software must cooperate in the
avoidance of both critical and noncritical class interrupts from within critical class interrupt handlers, even
though the two classes of interrupts use different save/restore register pairs. This is because the critical class
interrupt might have occurred from within a noncritical class interrupt handler, before the noncritical class
interrupt handler saved SRR0 and SRR1. Therefore, within the critical class interrupt handler, both pairs of
save/restore registers can contain data that is necessary to the system software.

Similarly, the machine check handler must avoid further machine checks, as well as both critical and noncrit-
ical interrupts, because the machine check handler might have been called from within a critical or noncritical
interrupt handler.

7.8.2 Interrupt Order

The following is a prioritized list of the various enabled interrupt types for which exceptions might exist simul-
taneously:

1. Synchronous (nondebug) interrupts:

• Data storage
• Instruction storage
• Alignment
• Program
• Embedded hypervisor privilege
• Floating-point unavailable
• System call
• Embedded hypervisor system call
• Auxiliary processor unavailable
• Data TLB error
• Instruction TLB error
• LRAT error

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 365 of 864

Only one of the these types of synchronous interrupts can have an existing exception generating it at any
given time. This is guaranteed by the exception priority mechanism (see Exception Priorities on
page 365) and the requirements of the sequential execution model defined by the Power ISA.

2. Machine check

3. Guest processor doorbell machine check

4. Debug

5. critical input

6. Watchdog timer

7. Processor doorbell critical

8. Guest processor doorbell critical

9. External input

10. Fixed-interval timer

11. Decrementer

12. Processor doorbell

13. Guest processor doorbell

14. User decrementer

15. Performance monitor

Even though, the noncritical, synchronous exception types listed under item 1 are generated with higher
priority than the critical interrupt types listed in items 2 - 15, these noncritical interrupts will immediately be
followed by the highest priority existing critical interrupt type, without executing any instructions at the noncrit-
ical interrupt handler. This is because the noncritical interrupt types do not automatically clear
MSR[ME,DE,CE] and hence do not automatically disable the critical interrupt types. In all other cases, a
particular interrupt type from the preceding list automatically disables any subsequent interrupts of the same
type and all other interrupt types that are listed below it in the priority order.

7.9 Exception Priorities

The Power ISA requires all synchronous (precise and imprecise) interrupts to be reported in program order,
as implied by the sequential execution model. The one exception to this rule is the case of multiple synchro-
nous imprecise interrupts. Upon a synchronizing event, all previously executed instructions are required to
report any synchronous imprecise interrupt-generating exceptions. The interrupts are then generated
according to the general interrupt ordering rules outlined in Interrupt Order on page 364. For example, if an
mtmsr instruction causes MSR[FE0,FE1,DE] to all be set, it is possible that a previous floating-point enabled
exception and a previous debug exception both are still being presented (in the FPSCR and DBSR, respec-
tively). In such a scenario, a floating-point enabled exception type of program interrupt occurs first, followed
immediately by a debug interrupt.

For any single instruction attempting to cause multiple exceptions for which the corresponding synchronous
interrupt types are enabled, this section defines the priority order by which the instruction are permitted to
cause a single enabled exception, thus generating a particular synchronous interrupt. Note that it is this
exception priority mechanism, along with the requirement that synchronous interrupts be generated in
program order, that guarantees that at any given time there exists for consideration only one of the synchro-

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 366 of 864
Version 1.3

October 23, 2012

nous interrupt types listed in item 1 of Interrupt Order on page 364. The exception priority mechanism also
prevents certain debug exceptions from existing in combination with certain other synchronous interrupt-
generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding interrupt
types are disabled. The generation of exceptions for which the corresponding interrupt types are disabled has
no effect on the generation of other exceptions for which the corresponding interrupt types are enabled.
Conversely, if a particular exception for which the corresponding interrupt type is enabled is shown in the
following sections to be of a higher priority than another exception, the occurrence of that enabled higher
priority exception prevents the setting of the other exception, independent of whether that other exception’s
corresponding interrupt type is enabled or disabled.

Except as specifically noted below, only one of the exception types listed for a given instruction type is
permitted to be generated at any given time, assuming that the corresponding interrupt type is enabled. The
priority of the exception types is listed in the following sections ranging from highest to lowest, within each
instruction type.

Finally, note that machine check exceptions are defined by the Power ISA architecture to be neither synchro-
nous nor asynchronous. As such, machine check exceptions are not considered in the remainder of this
section, which is specifically addressing the priority of synchronous interrupts.

7.9.1 Exception Priorities for Integer Load, Store, and Cache Management Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of any integer load, store, or cache management instruction. Included in this
category is the former opcode for the icbt instruction, which is an allocated opcode still supported by the A2
core.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (illegal instruction exception)
Only applies to the defined 64-bit load, store, and cache management instructions, which are not recog-
nized by the A2 core.

6. Program (privileged instruction)

7. Embedded hypervisor privilege

8. Data TLB error (data TLB miss exception)

9. Data storage (all exception types except byte ordering exception)

10. Alignment (alignment exception)

11. LRAT error (data access)

12. Debug (DAC or DVC exception)

13. Debug (ICMP exception)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 367 of 864

7.9.2 Exception Priorities for Floating-Point Load and Store Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of any floating-point load or store instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (illegal instruction exception)
This exception occurs if no floating-point unit is attached to the A2 core, or if the particular floating-point
load or store instruction is not recognized by the attached floating-point unit.

6. Program (privileged instruction)

7. Floating-point unavailable (floating-point unavailable exception)
This exception occurs if an attached floating-point unit recognizes the instruction, but floating-point
instruction processing is disabled (MSR[FP] = 0).

8. Data TLB error (data TLB miss exception)

9. Data storage (all exception types except cache locking exception)

10. Alignment (alignment exception)

11. LRAT error (data access)

12. Debug (DAC or DVC exception)

13. Debug (ICMP exception)

7.9.3 Exception Priorities for Floating-Point Instructions (Other)

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of any floating-point instruction other than a load or store.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (illegal instruction exception)
This exception occurs if no floating-point unit is attached to the A2 core or if the particular floating-point
instruction is not recognized by the attached floating-point unit.

6. Floating-point unavailable (floating-point unavailable exception)
This exception occurs if an attached floating-point unit recognizes the instruction, but floating-point
instruction processing is disabled (MSR[FP] = 0).

7. Program (floating-point enabled exception)
This exception occurs if an attached floating-point unit recognizes and supports the instruction, floating-
point instruction processing is enabled (MSR[FP] = 1), and the instruction sets FPSCR[FEX] to 1.

8. Debug (ICMP exception)

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 368 of 864
Version 1.3

October 23, 2012

7.9.4 Exception Priorities for Privileged Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of any privileged instruction other than dcbi, rfi, rfci, rfmci, This list does
cover, however, the dci and ici instructions, which are privileged instructions that are implemented within the
A2 core.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (for hardware tablewalk for page table translation)

5. Program (illegal Instruction exception, except for TLB management instructions with invalid MAS settings,
see 8 below)

6. Program (privileged instruction exception)

7. Embedded hypervisor privilege

8. Program (illegal instruction exception, special case for TLB management instructions with invalid MAS
settings)

9. LRAT error (for tlbwe)

10. Debug (ICMP exception)

7.9.5 Exception Priorities for Trap Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of a trap (tw, twi, td, tdi) instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Debug (trap exception)

6. Program (trap exception)

7. Debug (ICMP exception)

7.9.6 Exception Priorities for System Call Instruction

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of a system call (sc) instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. System call (system call exception)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

CPU Interrupts and Exceptions

Page 369 of 864

6. Embedded system call (system call exception)

7. Debug (ICMP exception)

Because the system call exception does not suppress the execution of the sc instruction, but rather the
exception occurs once the instruction has completed, it is possible for an sc instruction to cause both a
system call exception and an ICMP debug exception at the same time. In such a case, the associated inter-
rupts occur in the order indicated in Interrupt Order on page 364.

7.9.7 Exception Priorities for Branch Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of a branch instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Debug (BRT exception)

6. Debug (ICMP exception)

7.9.8 Exception Priorities for Return From Interrupt Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of an rfi, rfgi, rfci, or rfmci instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (privileged instruction)

6. Debug (RET exception)

7. Debug (ICMP exception)

7.9.9 Exception Priorities for Reserved Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of a reserved instruction.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (illegal instruction exception)
Applies to all reserved instruction opcodes except the reserved nop instruction opcodes.

User’s Manual

A2 Processor

CPU Interrupts and Exceptions

Page 370 of 864
Version 1.3

October 23, 2012

6. Debug (ICMP exception)
Only applies to the reserved-nop instruction opcodes.

7.9.10 Exception Priorities for All Other Instructions

The following list identifies the priority order of the exception types that can occur within the A2 core as the
result of the attempted execution of all other instructions (that is, those not covered by one of the sections
7.9.1 through 7.9.9). This includes both defined instructions and allocated instructions implemented within the
A2 core.

1. Debug (IAC exception)

2. Instruction TLB error (instruction TLB miss exception)

3. Instruction storage (execute access control exception)

4. LRAT error (instruction fetch)

5. Program (illegal instruction exception)
Applies only to the defined 64-bit instructions, as these are not implemented within the A2 core.

6. Debug (ICMP exception)
Does not apply to the defined 64-bit instructions, as these are not implemented by the A2 core.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 371 of 864

8. FU Interrupts and Exceptions

An interrupt is the action in which the processor saves its old context (Machine State Register [MSR] and next
instruction address [NIA]) and begins execution at a predetermined interrupt-handler address, with a modified
MSR. Exceptions are the events that can cause the processor to take an interrupt, if the corresponding inter-
rupt type is enabled.

Exceptions can be generated by the execution of instructions, or by signals from devices external to the A2
processor core, the internal timer facilities, debug events, or error conditions.

8.1 Floating-Point Exceptions

Book III-E requires all synchronous (precise and imprecise) interrupts to be reported in program order, as
required by the sequential execution model. The only exception to this rule is the case of multiple synchro-
nous imprecise interrupts. Upon a synchronizing event, all previously executed instructions are required to
report any synchronous imprecise interrupt-generating exceptions, and the interrupt is then generated with all
of those exception types reported cumulatively in both the Exception Syndrome Register (ESR) and any
status registers associated with the particular exception type, such as the Floating-Point Status and Control
Register (FPSCR).

For any single instruction attempting to cause multiple exceptions for which the corresponding synchronous
interrupt types are enabled, this section defines the priority order in which the instruction is permitted to cause
a single enabled exception, thus generating a particular synchronous interrupt. This exception priority mecha-
nism, along with the requirement that synchronous interrupts must be generated in program order, guaran-
tees that only one of the synchronous interrupt types is considered at any given time. The exception priority
mechanism also prevents certain debug exceptions from existing in combination with certain other synchro-
nous interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding interrupt
types are disabled. The generation of exceptions for which the corresponding interrupt types are disabled has
no effect on the generation of other exceptions for which the corresponding interrupt types are enabled.
Conversely, if a particular exception for which the corresponding interrupt type is enabled is shown in the
following sections to be of a higher priority than another exception, it prevents the setting of that other excep-
tion, regardless of whether the corresponding interrupt type of the other exception is enabled or disabled.

Except as noted, only one of the exception types listed for a given instruction type can be generated at any
given time. The priority of the exception types is listed in subsequent sections ranging from highest to lowest,
within each instruction type.

Note: Some exception types can be mutually exclusive of each other and can otherwise be considered the
same priority. In such cases, the exceptions are listed in the order suggested by the sequential execution
model.

Computational instructions can cause exceptions. Aside from instructions that write the FPSCR, none of the
noncomputational instructions can cause a floating-point exception.

All exceptions are handled precisely. Because this can affect performance adversely, it is strongly recom-
mended that exceptions should be disabled when possible. This prevents the A2 core instruction stream from
waiting for the execution of long latency instructions, such as fdiv[s] and fsqrt[s].

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 372 of 864
Version 1.3

October 23, 2012

8.2 Exceptions List

Book III-E defines the following floating-point exceptions:

• Invalid operation exception (VX)

• Zero divide exception (ZX)

• Overflow exception (OX)

• Underflow exception (UX)

• Inexact exception (XI)

These exceptions can occur during execution of computational instructions. In addition, an invalid operation
exception occurs when an mtsfs or mtsfsi instruction sets FPSCR[VXSOFT] = 1.

Each floating-point exception, and each category of invalid operation exception, has an exception bit in the
FPSCR. Each floating-point exception also has a corresponding enable bit in the FPSCR. The exception bit
indicates the occurrence of the corresponding exception. If an exception occurs, the corresponding enable bit
controls the result produced by the instruction and, with MSR[FE0, FE1], whether and how the enabled
exception type of program interrupt is taken. (See Floating-Point Exceptions on page 371 for more informa-
tion.) In general, the enabling specified by an enable bit is to enable the invoking the interrupt, not to enable
the exception to occur. The occurrence of an exception depends only on the instruction and its inputs, not on
the setting of any enable bits. The only exceptions to this general rule are the occurrence of an underflow
exception, which can depend on the setting of the enable bit, and the occurrence of a inexact exception,
which can depend on the Overflow Exception bit not being set.

A single instruction, other than mtfsf or mtfsfi, can set more than one exception bit only in the following
cases:

• An inexact exception can be set with an overflow exception.

• An inexact exception can be set with an underflow exception.

• An invalid operation exception (SNaN) is set with invalid operation exception (  0) for multiply-add
instructions for which the values being multiplied are infinity and 0 and the value being added is an SNaN.

• An invalid operation exception (SNaN) can be set with an invalid operation exception (invalid compare) for
compare ordered instructions.

Table 8-1. Invalid Operation Exception Categories

Category FPSCR Field

SNaN VXSNAN

Infinity – Infinity VXISI

Infinity  Infinity VXIDI

Zero  Zero VXZDZ

Infinity  Zero VXIMZ

Invalid Compare VXVC

Software Request VXSOFT

Invalid Square Root VXSQRT

Invalid Integer Convert VXCVI

signalling NaN

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 373 of 864

• Invalid operation exception (SNaN) can be set with an invalid operation exception (invalid integer convert)
for convert-to-integer instructions.

When an exception occurs, instruction execution might be suppressed or a result might be delivered,
depending on the exception.

Instruction execution is suppressed for the following kinds of exception, so that there is no possibility that one
of the operands is lost:

• Enabled invalid operation

• Enabled zero divide

For the remaining exceptions, a result is generated and written to the target specified by the instruction
causing the exception. The result might be a different value for the enabled and disabled conditions for some
of these exceptions. The following exceptions deliver a result:

• Disabled invalid operation

• Disabled zero divide

• Disabled overflow

• Disabled underflow

• Disabled inexact

• Enabled overflow

• Enabled underflow

• Enabled inexact

Subsequent sections define each of the floating-point exceptions and specify the action that is taken when
they are detected.

IEEE 754 specifies the handling of exceptional conditions in terms of “traps” and “trap handlers.” In
Book III-E, an FPSCR exception enable bit of 1 causes generation of the result value specified in the IEEE
standard for the “trap enabled” case. The exception is expected to be detected by software, which revises the
result. An FPSCR exception enable bit of 0 causes generation of the default result value specified for the
“trap disabled” (or “no trap occurs” or “trap is not implemented”) case. Software is not expected to detect the
exception; it simply uses the default result. The result to be delivered in each case for each exception is
described in subsequent sections.

The IEEE 754 default behavior when an exception occurs is to generate a default value and to not notify soft-
ware. In Book III-E, if the IEEE 754 default behavior is desired for all exceptions, all FPSCR exception enable
bits should be set to 0 and ignore exceptions mode should be used (see Table 8-2 on page 374). In this case,
an enabled exception type of program interrupt is not taken, even if floating-point exceptions occur. Software
can inspect the FPSCR exception bits, if necessary, to determine whether exceptions have occurred.

If software is to be notified that a given kind of exception has occurred, the corresponding FPSCR exception
enable bit must be set to 1 and a mode other than ignore exceptions mode must be used. In this case, the
enabled exception type of program interrupt is taken if an enabled floating-point exception occurs. An
enabled exception type of program interrupt is also taken if an mtsfs or mtsfsi instruction sets an exception
bit and its corresponding enable bit both to 1; the mtsfs or mtsfsi instruction is considered to cause the
enabled exception.

Institute of Electrical and Electronics Engineers

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 374 of 864
Version 1.3

October 23, 2012

MSR[FE0, FE1] control whether and how enabled exception type of program interrupts are taken when an
enabled floating-point exception occurs. An enabled exception type of program interrupt is never taken
because of a disabled floating-point exception.

The imprecise modes (MSR[FE0, FE1] = 01 or 10) are not implemented in the A2 core.

If either MSR[FE0] or MSR[FE1] is 1, enabled exception type of program interrupts are treated as in precise
mode.

In all cases, the question of whether a floating-point result is stored, and what value is stored, is governed by
the FPSCR exception enable bits, as described in subsequent sections, and is not affected by the value of
MSR[FE0, FE1].

In all cases in which an enabled exception type of program interrupt is taken, all instructions before the
instruction at which the enabled exception type of program interrupt is taken have completed, and no instruc-
tion after the instruction at which the enabled exception type of program interrupt is taken has begun execu-
tion. (Recall that, for the two imprecise modes, the instruction at which the enabled exception type of program
interrupt is taken need not be the instruction that caused the exception.) The instruction at which the enabled
exception type of program interrupt is taken has not been executed unless it is the excepting instruction, in
which case it has been executed if the exception is not an enabled invalid operation exception or enabled
zero divide exception.

Programming Note: In any of the three nonprecise modes, a Floating-Point Status and Control
Register instruction can be used to force any exceptions, due to instructions initiated before the
Floating-Point Status and Control Register instruction, to be recorded in the FPSCR. (This forcing is
superfluous for precise mode.)

A sync instruction, or any other execution-synchronizing instruction or event, such as isync, also has the
effects described above. However, to obtain the best performance across the widest range of implementa-
tions, a Floating-Point Status and Control Register instruction should be used to obtain these effects.

To obtain the best performance across the widest range of implementations, the programmer should follow
these guidelines.

• If the IEEE 754 default results are acceptable to the application, ignore exceptions mode should be used,
with all FPSCR exception enable bits set to 0.

• Ignore exceptions mode should not, in general, be used when any FPSCR exception enable bits are set
to 1.

• Precise mode might degrade performance in some implementations, perhaps substantially, and therefore
should be used only for debugging and other specialized applications.

Table 8-2. MSR[FE0, FE1] Modes

MSR[FE0] MSR[FE1] Mode

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause an enabled exception type of program interrupt to be
taken.

1 1 Precise Mode
An enabled exception type of program interrupt is taken precisely at the instruction that
caused the enabled exception.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 375 of 864

8.3 Floating-Point Interrupts

The following interrupts are taken under the control of the A2 processor core and are not enabled by or
reported in FPSCR bits:

• Floating-point unavailable

• Floating-point assist

8.3.1 Floating-Point Unavailable Interrupt

A floating-point unavailable interrupt occurs when no higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-point loads, stores, and moves), and MSR[FP] = 0.

When a floating-point unavailable interrupt occurs, the processor suppresses the execution of the instruction
causing the floating-point unavailable interrupt.

8.3.2 Floating-Point Assist Interrupt

Book III-E allows for an interrupt to be triggered when an enabled floating-point instruction requires software
assistance to complete its execution. Typically, this would be used for handling such cases as denormalized
operands or results. In the A2 core, this is signalled, using the AXU exception bits, as an unimplemented
instruction after the instruction has begun. However, in the A2 core, there is no need for this interrupt. Either
an instruction is fully implemented, or it is not implemented at all.

8.4 Floating-Point Exception Behavior

The following sections describe the behavior that results from the floating-point exceptions. For each excep-
tion, the definition of the exception is given, followed by a description of the action caused by the exception.

In general, each exception can result in either of two types of action, depending on whether the exception is
enabled by its associated exception enable bit in the FPSCR.

8.4.1 Invalid Operation Exception

An invalid operation exception occurs when an operand is invalid for the specified operation. The invalid oper-
ations are:

• Any floating-point operation on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities ( – )

• Division of infinity by infinity (  )

• Division of zero by zero (0  0)

• Multiplication of infinity by zero (0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative and nonzero number (invalid square root)

• Integer conversion involving a number too large in magnitude to be represented in the target format, or
involving an infinity or a NaN (invalid integer convert)

auxiliary execution unit

Not a Number

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 376 of 864
Version 1.3

October 23, 2012

In addition, an invalid operation exception occurs if software explicitly requests this by executing an mtfsf,
mtfsfi, or mtfsb1 instruction that sets FPSCR[VXSOFT] = 1.

Programming Note: The purpose of FPSCR[VXSOFT] is to enable software to cause an invalid
operation exception for a condition that is not necessarily associated with the execution of a floating-
point instruction. For example, it can be set by a program that computes a square root, if the source
operand is negative.

8.4.1.1 Action

The action taken depends on the setting of FPSCR[VE].

When an invalid operation exception is enabled (FPSCR[VE] = 1) and an invalid operation exception occurs
or software explicitly requests the exception, the following actions are taken:

• One or two FPSCR invalid operation exception bits, listed in Table 8-3, are set.

• If the operation is an arithmetic, frsp, or convert to integer operation, the target FPR is unchanged.

– FPSCR[FR, FI]  0

– FPSCR[FPRF]  unchanged

• If the operation is a compare:

– FPSCR[FR, FI, C]  unchanged

– FPSCR[FPCC]  unordered

• If software explicitly requests the exception:

– FPSCR[FR, FI, FPRF] are as set by the mtfsf, mtfsfi, or mtfsb1 instruction.

Table 8-3. Invalid Operation Exceptions

FPSCR Bit Category

VXSNAN SNaN

VXISI Infinity – Infinity

VXIDI Infinity  Infinity

VXZDZ Zero  Zero

VXIMZ Infinity  Zero

VXVC Invalid Compare

VXSOFT Software Request

VXSQRT Invalid Square Root

VXCVI Invalid Integer Convert

floating-point register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 377 of 864

When invalid operation exception is disabled (FPSCR[VE] = 0) and an invalid operation exception occurs, or
software explicitly requests the exception, the following actions are taken:

• One or two FPSCR invalid operation exception bits, listed in Table 8-3, are set.

• If the operation is an arithmetic or floating round to single-precision operation, the target FPR is set to a
Quiet NaN.

– FPSCR[FR, FI]  0

– FPSCR[FPRF]  the class of the result (Quiet NaN)

• If the operation is a convert to 32-bit integer operation, the target FPR is set as follows:

– FPR(FRT)0:31  undefined

– FPR(FRT)32:63 are set to the most positive 32-bit integer if the operand in FPR[FRB] is a positive
number or +, and to the most negative 32-bit integer if the operand in FPR[FRB] is a negative num-
ber, -, or NaN.

– FPSCR[FR, FI]  0

– FPSCR[FPRF]  undefined

• If the operation is a compare:

– FPSCR[FR, FI, C]  unchanged

– FPSCR[FPCC]  unordered

• If software explicitly requests the exception:

– FPSCR[FR, FI, FPRF] are as set by the mtfsf, mtfsfi, or mtfsb1 instruction.

8.4.2 Zero Divide Exception

A zero divide exception occurs when an fdiv[s] instruction is executed with a zero divisor value and a finite
nonzero dividend value. This exception also occurs when a reciprocal estimate instruction (fres or frsqrte) is
executed with an operand value of zero.

8.4.2.1 Action

The action to be taken depends on the setting of FPSCR[ZE].

When a zero divide exception is enabled (FPSCR[ZE] = 1) and a zero divide occurs, the following actions are
taken:

• The Zero Divide exception bit is set.

FPSCRZX  1

• FPR(FRT)0:31  unchanged

• FPSCR[FR, FI]  0

• FPSCR[FPRF]  unchanged

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 378 of 864
Version 1.3

October 23, 2012

When a zero divide exception is disabled (FPSCR[ZE] = 0) and a zero divide occurs, the following actions are
taken:

• The Zero Divide exception bit is set.

FPSCRZX  1

• FPR(FRT)  Infinity (the sign is determined by the XOR of the signs of the operands)

• FPSCR[FR, FI]  0

• FPSCR[FPRF]  class and sign of the result (Infinity)

8.4.3 Overflow Exception

Overflow occurs when the magnitude of what would have been the rounded result, if the exponent range
were unbounded, exceeds that of the largest finite number of the specified result precision.

8.4.3.1 Action

The action to be taken depends on the setting of FPSCR[OE].

When overflow exceptions re enabled (FPSCR[OE] = 1) and exponent overflow occurs, the following actions
are taken:

• The Overflow Exception bit is set.

FPSCR[OX]  1

• For double-precision arithmetic instructions, the exponent of the normalized intermediate result is
adjusted by subtracting 1536.

• For single-precision arithmetic instructions and the frsp instruction, the exponent of the normalized inter-
mediate result is adjusted by subtracting 192.

• FPR(FRT)  adjusted rounded result

• FPSCR[FPRF]  class and sign of the result (Normal Number)

When overflow exception is disabled (FPSCR[OE] = 0) and overflow occurs, the following actions are taken:

• The Overflow Exception bit is set.

FPSCR[OX]  1

• The Inexact Exception bit is set.

FPSCR[XX]  1

• The result is determined by the rounding mode (FPSCR[RN]) and the sign of the intermediate result as
follows:

– Round to Nearest
Store  Infinity, where the sign is the sign of the intermediate result.

– Round toward Zero
Store the format's largest finite number with the sign of the intermediate result.

– Round toward +Infinity
For negative overflow, store the format's most negative finite number; for positive overflow, store
+Infinity.

exclusive OR

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 379 of 864

– Round toward –Infinity
For negative overflow, store –Infinity; for positive overflow, store the largest finite number of the for-
mat.

• FPR(FRT)  result

• FPSCR[FR]  undefined

• FPSCR[FI]  1

• FPSCR[FPRF] class and sign of the result (Infinity or Normal Number)

8.4.4 Underflow Exception

Underflow exception is defined separately for the enabled and disabled states:

• Enabled:
Underflow occurs when the intermediate result is “Tiny.”

• Disabled:
Underflow occurs when the intermediate result is “Tiny” and there is “Loss of Accuracy.”

A “Tiny” result is detected before rounding, when a nonzero intermediate result computed as though both the
precision and the exponent range were unbounded would be less in magnitude than the smallest normalized
number.

If the intermediate result is “Tiny” and underflow exception is disabled (FPSCR[UE] = 0), the intermediate
result is denormalized (See Normalization and Denormalization on page 138) and rounded (See Rounding
Modes on page 140) before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered result value differs from what would have been computed
were both the precision and the exponent range unbounded.

8.4.4.1 Action

The action to be taken depends on the setting of FPSCR[UE].

When underflow exception is enabled (FPSCR[UE] = 1) and exponent underflow occurs, the following actions
are taken:

• The Underflow Exception bit is set.
FPSCR[UX]  1

• For double-precision arithmetic instructions, the exponent of the normalized intermediate result is
adjusted by adding 1536.

• For single-precision arithmetic instructions and the frsp instruction, the exponent of the normalized inter-
mediate result is adjusted by adding 192.

• The adjusted rounded result is placed into the target FPR.

FPSCR[FPRF] class and sign of the result (Normalized Number)

Programming Note: The FR and FI bits are provided to allow the enabled exception type of program
interrupt, when taken because of an underflow exception, to simulate a “trap disabled” environment.
That is, the FR and FI bits allow the enabled exception type of program interrupt to unround the
result, thus allowing the result to be denormalized.

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 380 of 864
Version 1.3

October 23, 2012

When underflow exception is disabled (FPSCR[UE] = 0) and underflow occurs, the following actions are
taken:

• The Underflow Exception bit is set.

FPSCR[UX]  1

• FPR(FRT)  rounded result

• FPSCR[FPRF] class and sign of the result (Normalized Number, Denormalized Number, or Zero)

8.4.5 Inexact Exception

An inexact exception occurs when either of the following conditions occur during rounding:

• The rounded result differs from the intermediate result, assuming both the precision and the exponent
range of the intermediate result to be unbounded. In this case, the result is said to be inexact. If the
rounding causes an enabled overflow exception or an enabled underflow exception, an inexact exception
also occurs only if the significands of the rounded result and the intermediate result differ.)

• The rounded result overflows and overflow exception is disabled.

8.4.5.1 Action

The action to be taken does not depend on the setting of FPSCR[XX].

When an inexact exception occurs, the following actions are taken:

• The Inexact Exception bit is set.

FPSCR[XX]  1

• FPR(FRT)  rounded or overflowed result

• FPSCR[FPRF] class and sign of the result

Programming Note: In some implementations, enabling inexact exceptions might degrade
performance more than does enabling other types of floating-point exception.

8.5 Exception Priorities for Floating-Point Load and Store Instructions

The following prioritized list of exceptions can occur as a result of the attempted execution of any floating-
point load and store instruction.

1. Debug (instruction address compare)

2. Instruction TLB error (all types)

3. Instruction storage interrupt (all types)

4. Program (illegal instruction)

5. Floating-point unavailable

6. Program (unimplemented operation)

7. Data TLB error (all types)

8. Data storage (all types)

translation lookaside buffer

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 381 of 864

9. Alignment

10. Debug (data address compare, data value compare)

11. Debug (instruction complete)

If an instruction causes both a debug (instruction address compare) exception, and a debug (data address
compare) or debug (data value compare) exception, and does not cause any exception listed in items 2–9,
both exceptions can be generated and recorded in the Debug Status Register (DBSR). A single debug inter-
rupt results.

8.6 Exception Priorities for Other Floating-Point Instructions

The following prioritized list of exceptions can occur as a result of the attempted execution of any floating-
point instruction other than a load or store.

1. Debug (instruction address compare)

2. Instruction TLB error (all types)

3. Instruction storage interrupt (all types)

4. Program (illegal instruction)

5. Floating-point unavailable

6. Program (unimplemented operation)

7. Program (enabled)

8. Debug (instruction complete)

8.7 QNaN

If any of the source operands is a NaN, either a signaling (SNaN) or quiet (QNaN), the result will be that NaN
with the high-order fraction bit forced to 1 (that is, forced to a QNaN). The precedence, in decreasing order, is
FRA, FRB, FRC. The resultant QNaN is only truncated on an frsp[.] instruction, in which case the most signif-
icant 35 bits are copied to the target, with the least significant 29 forced to zero.

Table 8-4. QNaN Result

Ra Rb Rc Resultant QNaN1

NaN X X Ra

— NaN X Rb
2

— — NaN Rc

1. High-order fraction bit is forced to a 1.
2. frsp: Result is (FRB)0:11 || 1 || (FRB)13:34|| 290.

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 382 of 864
Version 1.3

October 23, 2012

8.8 Updating FPRs on Exceptions

The target FPR is never updated on enabled invalid exceptions and enabled divide by zero exceptions. This
requirement exists because an instruction can potentially use one of the source registers as a target register,
yet it is necessary that the trap handler be able to examine and act upon the source operands.

In all other cases, a floating-point exception does not block the writing of the target FPR.

8.9 Floating-Point Status and Control Register (FPSCR)

The computational instructions modify the FPSCR. With the exception of instructions that write directly to the
FPSCR, none of the noncomputational instructions modify the FPSCR.

The FPSCR controls the handling of floating-point exceptions and records status resulting from the floating-
point operations. FPSCR32:55 are status bits. FPSCR29:31 and FPSCR56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction. The exception summary bits FPSCR[FX,
FEX, VX] are not considered as exception bits, and only FPSCR[FX] is sticky.

FPSCR[FEX, VX] are simply ORs of other FPSCR bits. Therefore, these bits are not listed among the FPSCR
bits affected by the various instructions.

FPSCR[FPRF], which contains five result flag bits, is set for arithmetic, rounding, and conversion instructions
based on the class of the result value placed into the target FPR. If any portion of a result is undefined, the
value placed into FPSCR[FPRF] is undefined. Table 8-5 describes how the values of the result flags in
FPSCR[FPRF] correspond to the result value classes.

Table 8-6 illustrates the FPSCR.

Table 8-5. FPSCR[FPRF] Result Flags

Result Flags
Result Value Class

C   = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 0 –Infinity

0 1 0 0 0 –Normalized Number

1 1 0 1 0 –Denormalized Number

1 0 0 1 0 –Zero

0 0 0 0 0 +Zero

1 0 1 0 0 +Denormalized Number

0 0 1 0 0 +Normalized Number

0 0 1 0 1 +Infinity

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 383 of 864

Table 8-6. Floating-Point Status and Control Register (FPSCR) (Sheet 1 of 3)

Bits Field Name Description

0:28 Reserved
Note: FPSCR[28] is reserved for extension of the DRN field; therefore DRN can be set by using the mtfsfi
instruction to set the rounding mode.

29:31 DRN DFP Rounding Control
000 Round to nearest, ties to even.
001 Round toward zero.
010 Round toward +infinity.
011 Round toward -infinity.
100 Round to nearest, ties away from 0.
101 Round to nearest, ties toward 0.
110 Round to away from zero.
111 Round to prepare for shorter precision.
See Section 5.5.2 in PowerISA Version 2.06B.

32 FX Floating-Point Exception Summary
0 No FPSCR exception bits changed from 0 to 1.
1 At least one FPSCR exception bit changed from 0 to 1.
All floating-point instructions, except mtfsfi and mtfsf, implicitly set this field to 1 if the instruction causes any
floating-point exception bits in the FPSCR to change from 0 to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
can alter this field explicitly.

33 FEX Floating-Point Enabled Exception Summary
The OR of all the floating-point exception fields masked by their respective enable fields. mcrfs, mtfsfi, mtfsf,
mtfsb0, and mtfsb1 cannot alter this field explicitly.

34 VX Floating-Point Invalid Operation Exception Summary
The OR of all the invalid operation exception fields. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter
this field explicitly.

35 OX Floating-Point Overflow Exception
0 A floating-point overflow exception did not occur.
1 A floating-point overflow exception occurred.
See Overflow Exception on page 368.

36 UX Floating-Point Underflow Exception
0 A floating-point underflow exception did not occur.
1 A floating-point underflow exception occurred.
See Underflow Exception on page 369.

37 ZX Floating-Point Zero Divide Exception
0 A floating-point zero divide exception did not occur.
1 A floating-point zero divide exception occurred.
See Zero Divide Exception on page 367.

38 XX Floating-Point Inexact Exception
0 A floating-point inexact exception did not occur.
1 A floating-point inexact exception occurred.
This field is a sticky version of FPSCR[FI] The following rules describe how a given instruction sets this field.
If the instruction affects FPSCR[FI], the new value of this field is obtained by ORing the old value of this field
with the new value of FPSCR[FI].
If the instruction does not affect FPSCR[FI], the value of this field is unchanged.

39 VXSNAN Floating-Point Invalid Operation Exception (SNaN)
0 A floating-point invalid operation exception (VXSNAN) did not occur.
1 A floating-point invalid operation exception (VXSNAN) occurred.
See Invalid Operation Exception on page 365.

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 384 of 864
Version 1.3

October 23, 2012

40 VXISI Floating-Point Invalid Operation Exception ( – )
0 A floating-point invalid operation exception (VXISI) did not occur.
1 A floating-point invalid operation exception (VXISI) occurred.
See Invalid Operation Exception on page 365.

41 VXIDI Floating-Point Invalid Operation Exception (  )
0 A floating-point invalid operation exception (VXIDI) did not occur.
1 A floating-point invalid operation exception (VXIDI) occurred.
See Invalid Operation Exception on page 365.

42 VXZDZ Floating-Point Invalid Operation Exception (0  0)
0 A floating-point invalid operation exception (VXZDZ) did not occur.
1 A floating-point invalid operation exception (VXZDZ) occurred.
See Invalid Operation Exception on page 365.

43 VXIMZ Floating-Point Invalid Operation Exception (  0)
0 A floating-point invalid operation exception (VXIMZ) did not occur.
1 A floating-point invalid operation exception (VXIMZ) occurred.
See Invalid Operation Exception on page 365.

44 VXVC Floating-Point Invalid Operation Exception (Invalid Compare)
0 A floating-point invalid operation exception (VXVC) did not occur.
1 A floating-point invalid operation exception (VXVC) occurred.
See Invalid Operation Exception on page 365.

45 FR Floating-Point Fraction Rounded
The last arithmetic or rounding and conversion instruction either produced an inexact result during rounding or
caused a disabled overflow exception. See Rounding on page 131. This bit is not sticky.

46 FI Floating-Point Fraction Inexact
The last arithmetic or rounding and conversion instruction either produced an inexact result during rounding or
caused a disabled overflow exception. See Rounding on page 131. This bit is not sticky.
See the definition of FPSCR[XX] regarding the relationship between FPSCR[FI] and FPSCR[XX].

47 FPRF Floating-Point Result Flag (FPRF)

48 FL Floating-Point Less Than or Negative

49 FG Floating-Point Greater Than or Positive

50 FE Floating-Point Equal to Zero

51 FU Floating-Point Unordered or NaN

52 Reserved

53 VXSOFT Floating-Point Invalid Operation Exception (Software Request)
0 A floating-point invalid operation exception (software request) did not occur.
1 A floating-point invalid operation exception (software request) occurred.
See Invalid Operation Exception on page 365.

54 VXSQRT Floating-Point Invalid Operation Exception (Invalid Square Root)
0 A floating-point invalid operation exception (invalid square root) did not occur.
1 A floating-point invalid operation exception (invalid square root) occurred.
See Invalid Operation Exception on page 365.

55 VXCVI Floating-Point Invalid Operation Exception (Invalid Integer Convert)
0 A floating-point invalid operation exception (invalid integer convert) did not occur.
1 A floating-point invalid operation exception (invalid integer convert) occurred.
See Invalid Operation Exception on page 365.

Table 8-6. Floating-Point Status and Control Register (FPSCR) (Sheet 2 of 3)

Bits Field Name Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Interrupts and Exceptions

Page 385 of 864

8.10 Updating the Condition Register

Architecturally, excepting floating-point instructions do not block the updating of the Condition Register in the
A2 processor core.

8.10.1 Condition Register (CR)

The CR fields are modified by various floating-point instructions.

56 VE Floating-Point Invalid Operation Exception Enabled
0 Floating-point invalid operation exceptions are disabled.
1 Floating-point invalid operation exceptions are enabled.

57 OE Floating-Point Overflow Exception Enable
0 Floating-point overflow exceptions are disabled.
1 Floating-point overflow exceptions are enabled.

58 UE Floating-Point Underflow Exception Enable
0 Floating-point underflow exceptions are disabled.
1 Floating-point underflow exceptions are enabled.

59 ZE Floating-Point Zero Divide Exception Enable
0 Floating-point zero divide exceptions are disabled.
1 Floating-point zero divide exceptions are enabled.

60 XE Floating-Point Inexact Exception Enable
0 Floating-point inexact exceptions are disabled.
1 Floating-point inexact exceptions are enabled.

61 NI Floating-Point Non-IEEE Mode
0 Non-IEEE mode is disabled.
1 Non-IEEE mode is enabled.
If FPSCR[NI] = 1, the remaining FPSCR bits might have meanings other than those given in this document,
and the results of floating-point operations need not conform to the IEEE standard. If the IEEE-conforming
result of a floating-point operation would be a denormalized number, the result of that operation is 0 (with the
same sign as the denormalized number) if FPSCR[NI] = 1. The behavior when FPSCR[NI] = 1 can vary from
one implementation to another

62:63 RN Floating-Point Rounding Control
00 Round to nearest.
01 Round toward zero.
10 Round toward +infinity.
11 Round toward –infinity.
 See Rounding on page 131.

Register Short Name: CR Read Access: Any

Decimal SPR Number: N/A Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Table 8-6. Floating-Point Status and Control Register (FPSCR) (Sheet 3 of 3)

Bits Field Name Description

User’s Manual

A2 Processor

FU Interrupts and Exceptions

Page 386 of 864
Version 1.3

October 23, 2012

8.10.2 Updating CR Fields

The floating-point compare instructions fcmpo and fcmpu specify a CR field that is updated with the
compare results.

Table 8-7 illustrates the bit encodings for a CR field containing the results of an fcmpo and fcmpu instruc-
tion.

The mcrfs instruction moves a specified FPSCR field into a CR field.

8.10.3 Generation of QNaN Results

If a disabled invalid operation exception is caused by operating on a NaN, the value returned follows the rules
indicated in Table 8-4 on page 381.

If the exception was not caused by operating on a NaN, a QNaN must be generated. The generated QNaN
has a sign bit of 0, an exponent of all 1s, a high-order fraction bit of 1 with all other fraction bits of 0:
0x7FF8000000000000.

Bits Field Name Initial
Value Description

32:35 CR0 0b0000 Condition Register Field 0

36:39 CR1 0b0000 Condition Register Field 1

40:43 CR2 0b0000 Condition Register Field 2

44:47 CR3 0b0000 Condition Register Field 3

48:51 CR4 0b0000 Condition Register Field 4

52:55 CR5 0b0000 Condition Register Field 5

56:59 CR6 0b0000 Condition Register Field 6

60:63 CR7 0b0000 Condition Register Field 7

Table 8-7. Bit Encodings for a CR Field

CR Field (Bit) Description

0 Floating-Point Less Than (FL)
Floating-point compare: (FRA) < (FRB)

1 Floating-Point Greater Than (FG)
Floating-point compare: (FRA) > (FRB)

2 Floating-Point Equal (FE)
Floating-point compare: (FRA) = (FRB)

3 Floating-Point Unordered (FU)
Floating-point compare: One or both of (FRA) or (FRB) is a NaN.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 387 of 864

9. Timer Facilities

The A2 core provides five timer facilities: a time base, a decrementer (DEC), a user decrementer (UDEC), a
fixed interval timer (FIT), and a watchdog timer. These facilities, which share the same source clock
frequency, can support:

• Time-of-day functions

• General software timing functions

• Peripherals requiring periodic service

• General system maintenance

• System error recover ability

Figure 9-1 shows the relationship between these facilities and the clock source.

Figure 9-1. Relationship of Timer Facilities to the Time Base

TBL (32 bits)

TBL1 (231 clocks)

TBL7 (225 clocks)

TBL9 (223 clocks)

TBL13 (219 clocks)

TBL9 (223 clocks)

TBL13 (219 clocks)

TBL17 (215 clocks)

TBL21 (211 clocks)

Watchdog Timer

Fixed Interval Timer

Time Base (Incrementer)

31

TBU (32 bits)

31 00

DEC (Decrementer)

(32 bits)

310

Zero Detect Decrementer Exception

Reference
Clock
Source

Period

Period

UDEC (User Decrementer)

(32 bits)

310

Zero Detect User Decrementer Exception

A2 Processor Clock

External Clock
(tb_update_pulse)

A
N

D

tb_update_enable

2X

User’s Manual

A2 Processor

Timer Facilities

Page 388 of 864
Version 1.3

October 23, 2012

9.1 Time Base

The time base is a 64-bit register that increments once during each period of the source clock and provides a
time reference. Access to the time base is via two Special Purpose Registers (SPRs). The Time Base Upper
(TBU) SPR contains the high-order 32 bits of the time base, while the Time Base Lower (TBL) SPR contains
the low-order 32 bits.

Software access to the Timebase Register (TB) and TBU is nonprivileged for read. Software access to TBU
and TBL is privileged for write, and hence different SPR numbers are used for reading than for writing. TBU
and TBL are written using mtspr and read using mfspr.

The period of the 64-bit time base is approximately 254 years for a 2.3 GHz clock source. The time base
value itself does not generate any exceptions, even when it wraps. For most applications, the time base is set
once at system reset and only read thereafter. Note that fixed interval timer and watchdog timer exceptions (
described on page 392 and page 393) are caused by 01 transitions of selected bits from the time base.
Transitions of these bits caused by software alteration of the time base have the same effect as transitions
caused by normal incrementing of the time base.

Table 9-1. Timebase Register (TB)

Table 9-2. Timebase Lower Register (TBL)

Register Short Name: TB Read Access: Any

Decimal SPR Number: 268 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 TBU 0x0 Time Base Upper

Provides access to the upper portion of the time base.

32:63 TBL 0x0 Time Base Lower

Provides access to the lower portion of the time base.

Register Short Name: TBL Read Access: None

Decimal SPR Number: 284 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 TBL 0x0 Time Base Lower

Provides access to the lower portion of the time base.

gigahertz

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 389 of 864

Table 9-3. Timebase Upper Register (TBU)

9.1.1 Reading the Time Base

In 64-bit mode, the time base can be read with one instruction.

mfspr Ry,TB # Read TB into GPR Ry.

In 32-bit mode, the following code provides an example of reading the time base.

loop:
mfspr Rx,TBU # Read TBU into GPR Rx.
mfspr Ry,TB # Read TBL into GPR Ry.
mfspr Rz,TBU # Read TBU again, this time into GPR Rz.
cmpw Rz, Rx # See if old = new.
bne loop # Loop/reread if rollover occurred.

The comparison and loop ensure that a consistent pair of values is obtained.

9.1.2 Writing the Time Base

The following code provides an example of writing the time base.

lwz Rx, upper # Load 64-bit time base value into GPRs Rx and Ry.
lwz Ry, lower
li Rz, 0 # Set GPR Rz to 0.
mtspr TBL,Rz # Force TBL to 0 (thereby preventing wrap into TBU).
mtspr TBU,Rx # Set TBU to initial value.
mtspr TBL,Ry # Set TBL to initial value.

9.2 Decrementer (DEC)

The DEC is a 32-bit privileged SPR that decrements at the same rate that the time base increments. The
DEC is read and written using mfspr and mtspr, respectively. When a nonzero value is written to the DEC, it
begins to decrement with the next time base clock. A decrementer exception is signalled when a decrement
occurs on a DEC count of 1, and the Decrementer Interrupt Status field of the Timer Status Register
(TSR[DIS]; see page 397) is set. A decrementer interrupt occurs if it is enabled by both the Decrementer
Interrupt Enable field of the Timer Control Register (TCR[DIE]; see page 395) and by either the External Inter-

Register Short Name: TBU Read Access: None/Any

Decimal SPR Number: 285/269 Write Access: Hypv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 TBU 0x0 Time Base Upper

Provides access to the upper portion of the time base.

User’s Manual

A2 Processor

Timer Facilities

Page 390 of 864
Version 1.3

October 23, 2012

rupt Enable or Guest State fields of the Machine State Register (MSR[EE] or MSR[GS]; see Section 7.5.2
Machine State Register (MSR) on page 301). Section 7 CPU Interrupts and Exceptions on page 293 provides
more information about the handling of decrementer interrupts.

The decrementer interrupt handler software should clear TSR[DIS] before re-enabling MSR[EE] or MSR[GS]
to avoid another decrementer interrupt due to the same exception (unless TCR[DIE] is cleared instead).

The behavior of the DEC itself upon a decrement from a DEC value of 1 depends on which of two modes it is
operating in: normal, or auto-reload. The mode is controlled by the Auto-Reload Enable (ARE) field of the
TCR. When operating in normal mode (TCR[ARE] = 0), the DEC simply decrements to the value 0 and then
stops decrementing until it is re-initialized by software.

When operating in auto-reload mode (TCR[ARE] = 1), however, instead of decrementing to the value 0, the
DEC is reloaded with the value in the Decrementer Auto-Reload (DECAR) Register (see Table 9-5), and
continues to decrement with the next time base clock (assuming the DECAR value was nonzero). The
DECAR register is a 32-bit privileged SPR, and is read/written using mfspr/mtspr.

The auto-reload feature of the DEC is disabled upon reset, and must be enabled by software.

Table 9-4. Decrementer Register (DEC)

Table 9-5. Decrementer Auto-Reload Register (DECAR)

Register Short Name: DEC Read Access: Hypv

Decimal SPR Number: 22 Write Access: Hypv

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 DEC 0x7FFFFFFF Decrementer

The Decrementer (DEC) is a 32-bit decrementing counter that provides a mechanism for
causing a decrementer interrupt after a programmable delay. The contents of the Decre-
menter are treated as a signed integer.

Register Short Name: DECAR Read Access: Hypv

Decimal SPR Number: 54 Write Access: Hypv

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 DECAR 0x7FFFFFFF Decrementer Auto-Reload

If TCRARE = 1, TSRDIS is set to 1, the contents of the Decrementer Auto-Reload Register is
then placed into the DEC, and the decrementer continues decrementing from the reloaded
value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 391 of 864

Using mtspr to force the DEC to 0 does not cause a decrementer exception, and thus does not cause
TSR[DIS] to be set. However, if a time base clock causes a decrement from a DEC value of 1 to occur simul-
taneously with the writing of the DEC by an mtspr instruction, then the decrementer exception does occur,
TSR[DIS] is set, and the DEC is written with the value from the mtspr.

For software to quiesce the activity of the DEC and eliminate all DEC exceptions, follow this procedure:

1. Write 0 to TCR[DIE]. This prevents a decrementer exception from causing a decrementer interrupt.

2. Write 0 to TCR[ARE]. This disables the DEC auto-reload feature.

3. Write 0 to the DEC to halt decrementing. Although this action does not itself cause a decrementer excep-
tion, it is possible that a decrement from a DEC value of 1 has occurred since the last time that TSR[DIS]
was cleared.

4. Write 1 to TSR[DIS] (DEC Interrupt Status bit). This clears the decrementer exception by setting
TSR[DIS] to 0. Because the DEC is no longer decrementing (due to having been written with 0 in step 3),
no further decrementer exceptions are possible.

9.3 User Decrementer (UDEC)
The UDEC is a 32-bit SPR that decrements at the same rate that the time base increments. The UDEC is

read and written using mfspr and mtspr, respectively. When a nonzero value is written to the UDEC, it

begins to decrement with the next time base clock. A user decrementer exception is signalled when:

• A decrement occurs on a UDEC count of 1, and

• The User Decrementer Interrupt Status field of the Timer Status Register (TSR[UDIS] (see page 397) is
set, and

• The exception is enabled by either the External Interrupt Enable or Guest State fields of the Machine
State Register (MSR[EE] or MSR[GS] (see Section 7.5.2 Machine State Register (MSR) on page 301).

Section 7 CPU Interrupts and Exceptions on page 293 provides more information about the handling of User
Decrementer interrupts.

The user decrementer interrupt handler software should clear TSR[UDIS] before re-enabling MSR[EE] or
MSR[GS] to avoid another user decrementer interrupt due to the same exception (unless TCR[UDIE] is
cleared instead).

When the UDEC decrements from a value of 1, the UDEC simply decrements to the value 0, and then stops
decrementing until it is re-initialized by software.

Register Short Name: UDEC Read Access: Any

Decimal SPR Number: 550 Write Access: Any

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

User’s Manual

A2 Processor

Timer Facilities

Page 392 of 864
Version 1.3

October 23, 2012

Using mtspr to force the UDEC to 0 does not cause a user decrementer exception, and thus does not cause
TSR[UDIS] to be set. However, if a time base clock causes a decrement from a UDEC value of 1 to occur
simultaneously with the writing of the UDEC by an mtspr instruction, then the decrementer exception does
occur, TSR[UDIS] is set, and the UDEC is written with the value from the mtspr.

For software to quiesce the activity of the UDEC and eliminate all UDEC exceptions, follow this procedure:

1. Write 0 to TCR[UDIE]. This prevents a user decrementer exception from causing a user decrementer
interrupt.

2. Write 0 to the UDEC to halt decrementing. Although this action does not itself cause a user decrementer
exception, it is possible that a decrement from a UDEC value of 1 has occurred since the last time that
TSR[UDIS] was cleared.

3. Write 1 to TSR[UDIS] (UDEC Interrupt Status bit). This clears the user decrementer exception by setting
TSR[UDIS] to 0. Because the UDEC is no longer decrementing (due to having been written with 0 in step
2), no further User Decrementer exceptions are possible.

9.4 Fixed Interval Timer (FIT)

The FIT provides a mechanism for causing periodic exceptions with a regular period. The FIT is typically used
by system software to invoke a periodic system maintenance function, executed by the fixed interval timer
interrupt handler.

A fixed interval timer exception occurs on a 01 transition of a selected bit from the time base. Note that a
fixed interval timer exception also occurs if the selected time base bit transitions from 01 due to an mtspr
instruction that writes 1 to that time base bit when its previous value was 0.

The Fixed Interval Timer Period (FP) field of the TCR selects one of 4 bits from the time base, as shown in
Table 9-6.

Bits Field Name Initial Value Description

32:63 UDEC 0x7FFFFFFF User Decrementer

The User Decrementer (UDEC) is a 32-bit decrementing counter that provides a mechanism
for causing a user decrementer interrupt after a programmable delay. The contents of the User
Decrementer are treated as a signed integer.
Note: If TCR[UD] = 0, this access to this register is treated as an illegal SPR.

Table 9-6. Fixed Interval Timer Period Selection

TCR[FP] Time Base Bit Period
(Time Base Clocks)

Period
(32 MHz Clock)

Period
(1.6 GHz Clock)

Period
(2.3 GHz Clock)

0b00 TBL21 211 clocks 64.00 s 1.28 s .89 s

0b01 TBL17 215 clocks 1.02 ms 20.48 s 14.25 s

0b10 TBL13 219 clocks 16.38 ms 327.68 s 227.95 s

0b11 TBL9 223 clocks 262.14 ms 5.24 ms 3.65 ms

megahertz

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 393 of 864

When a fixed interval timer exception occurs, the exception status is recorded by setting the Fixed interval
Timer Interrupt Status (FIS) field of the TSR to 1. A fixed interval timer interrupt occurs if it is enabled by both
the Fixed Interval Timer Interrupt Enable (FIE) field of the TCR and by either MSR[EE] or MSR[GS].
Section 7.6.12 Fixed-Interval Timer Interrupt on page 344 provides more information about the handling of
Fixed Interval Timer interrupts.

The fixed interval timer interrupt handler software should clear TSR[FIS] before re-enabling MSR[EE] or
MSR[GS], to avoid another fixed interval timer interrupt due to the same exception (unless TCR[FIE] is
cleared instead).

9.5 Watchdog Timer

The watchdog timer provides a method for system error recovery in the event that the program running on the
A2 core has stalled and cannot be interrupted by the normal interrupt mechanism. The watchdog timer can be
configured to cause a critical-class watchdog timer interrupt upon the expiration of a single period of the
watchdog timer. It can also be configured to invoke a core-initiated reset upon the expiration of a second
period of the watchdog timer.

A watchdog timer exception occurs on a 01 transition of a selected bit from the time base. Note that a
watchdog timer exception also occurs if the selected time base bit transitions from 01 due to an mtspr
instruction that writes 1 to that time base bit when its previous value was 0.

The Watchdog Timer Period (WP) field of the TCR selects one of 4 bits from the time base, as shown in
Table 9-7.

The action taken upon a watchdog timer time-out depends upon the status of the Enable Next Watchdog
(ENW) and Watchdog Timer Interrupt Status (WIS) fields of the TSR at the time of the time-out. When
TSR[ENW] = 0, the next watchdog timer exception is “disabled”, and the only action to be taken upon the
watchdog timer time-out is to set TSR[ENW] to 1. By clearing TSR[ENW], software can guarantee that the
time until the next enabled watchdog timer exception is at least one full Watchdog Timer period (and a
maximum of two full watchdog timer periods).

When TSR[ENW] = 1, the next watchdog timer exception is enabled, and the action to be taken upon the
time-out depends on the value of TSR[WIS]. If TSR[WIS] = 0, then the action is to set TSR[WIS] to 1, at which
time a watchdog timer interrupt occurs if enabled by both the Watchdog Timer Interrupt Enable (WIE) field of
the TCR and by either the Critical Interrupt Enable (CE) or Guest State (GS) fields of the MSR. The watchdog
timer interrupt handler software should clear TSR[WIS] before re-enabling MSR[CE] or MSR[GS], to avoid
another watchdog timer interrupt due to the same exception (unless TCR[WIE] is cleared instead).
Section 7.6.13 Watchdog Timer Interrupt on page 344 provides more information about the handling of
watchdog timer interrupts.

Table 9-7. Watchdog Timer Period Selection

TCR[WP] Time Base Bit Period
(Time Base Clocks)

Period
(32 MHz Clock)

Period
(1.6 GHz Clock)

Period
(2.3 GHz Clock)

0b00 TBL13 219 clocks 16.38 ms 327.68 s 227.95 s

0b01 TBL9 223 clocks 262.14 ms 5.24 ms 3.65 ms

0b10 TBL7 225 clocks 1.05 s 20.97 ms 14.59 ms

0b11 TBL1 231 clocks 67.11 s 1.34 s .93 s

User’s Manual

A2 Processor

Timer Facilities

Page 394 of 864
Version 1.3

October 23, 2012

If TSR[ENW,WIS] is already 0b11 at the time of the next watchdog timer time-out, the action to take depends
on the value of the Watchdog Reset Control (WRC) field of the TCR. If TCR[WRC] is nonzero, then a core
reset request occurs (see Software Initiated Reset Requests on page 160 for more information about core
behavior when a watchdog timer reset request is activated).

Note that once software has set TCR[WRC] to a nonzero value, it cannot be reset by software; this feature
prevents errant software from disabling the watchdog timer reset capability.

Table 9-8 summarizes the action to be taken upon a watchdog timer time-out according to the values of
TSR[ENW] and TSR[WIS].

A typical system usage of the watchdog timer function is to enable the watchdog timer interrupt and the
watchdog timer reset function in the TCR (and MSR), and to start out with both TSR[ENW] and TSR[WIS]
clear. Then, a recurring software loop of reliable duration (or perhaps the interrupt handler for a periodic inter-
rupt such as the fixed interval timer interrupt) performs a periodic check of system integrity. Upon successful
completion of the system check, software clears TSR[ENW], thereby ensuring that a minimum of one full
watchdog timer period and a maximum of two full watchdog timer periods must expire before an enabled
watchdog timer exception occurs.

If for some reason the recurring software loop is not successfully completed (and TSR[ENW] thus not
cleared) during this period of time, then an enabled watchdog timer exception occurs. This sets TSR[WIS],
and a watchdog timer interrupt occurs (if enabled by both TCR[WIE] and MSR[CE] or MSR[GS]). The occur-
rence of a watchdog timer interrupt in this kind of system is interpreted as a “system error”, insofar as the
system was for some reason unable to complete the periodic system integrity check in time to avoid the
enabled watchdog timer exception. The action taken by the watchdog timer interrupt handler is of course
system-dependent, but typically the software attempts to determine the nature of the problem and correct it if
possible. If and when the system attempts to resume operation, the software typically clears both TSR[WIS]
and TSR[ENW], thus providing a minimum of another full watchdog timer period for a new system integrity
check to occur.

Finally, if for some reason the watchdog timer interrupt is disabled or the Watchdog Timer interrupt handler is
unsuccessful in clearing TSR[WIS] and TSR[ENW] before another watchdog timer exception, then the next
exception causes a processor reset request to occur, if enabled by the TCR[WRC] field.

Figure 9-2 illustrates the sequence of watchdog timer events that occurs according to this typical system
usage.

Table 9-8. Watchdog Timer Exception Behavior

TSR[ENW] TSR[WIS] Action upon Watchdog Timer Exception

0 0 Set TSR[ENW] to 1.

0 1 Set TSR[ENW] to 1.

1 0 Set TSR[WIS] to 1. If watchdog timer interrupts are enabled (TCR[WIE] = 1 and either
MSR[CE] = 1 or MSR[GS] = 1), then interrupt.

1 1 Initiate the watchdog timer reset request specified by TCR[WRC].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 395 of 864

9.6 Timer Control Register (TCR)

The TCR is a privileged SPR that controls DEC, UDEC, FIT, and watchdog timer operation. The TCR is read
into a GPR using mfspr and is written from a GPR using mtspr.

The Watchdog Timer Reset Control (WRC) field of the TCR is cleared to 0 by processor reset (see Initializa-
tion on page 153). Each bit of this 2-bit field is set only by software and is cleared only by hardware. For each
bit of the field, after software has written it to 1, that bit remains 1 until a processor reset occurs. This is to
prevent errant code from disabling the watchdog timer reset function.

The Auto-Reload Enable (ARE) field of the TCR is also cleared to zero by a processor reset. This disables
the auto-reload feature of the DEC.

Figure 9-2. Watchdog State Machine

Register Short Name: TCR Read Access: Hypv

Decimal SPR Number: 340 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

TSR[ENW,WIS] = 0b00

TSR[ENW,WIS] = 0b01

TSR[ENW,WIS] = 0b10

TSR[ENW,WIS] = 0b11

Watchdog Timer exception disabled;

Next Watchdog Timer time-out sets

time-out

SW Loop

subsequent time-out sets TSR[WIS].

TSR[WIS] and causes an exception.

next time-out sets TSR[ENW] so that a

An interrupt occurs if enabled by
TCR[WIE] and either MSR[CE] or
MSR[GS].

time-out

time-out

time-out

Next Watchdog Timer time-out sets
TSR[ENW] and causes an exception. An
interrupt occurs if enabled by TCR[WIE]

Watchdog Timer
interrupt handler

Watchdog Timer exception enabled and first
exception status still set; next time-out
causes RESET if enabled by TCR[WRC].

and either MSR[CE] or MSR[GS].

If TCR[WRC]  0b00, then
request RESET; else nothing.

general purpose register

User’s Manual

A2 Processor

Timer Facilities

Page 396 of 864
Version 1.3

October 23, 2012

Bits Field Name Initial
Value Description

32:33 WP 0b00 Watchdog Timer Period

Specifies one of four bit locations of the time base used to signal a watchdog timer excep-
tion on a transition from 0 to 1.
00 219 time base clocks.
01 223 time base clocks.
10 225 time base clocks.
11 231 time base clocks.

34:35 WRC 0b00 Watchdog Timer Reset Control

00 NoReset: No watchdog timer reset request will occur.
01 Reset1 request.
10 Reset2 request.
11 Reset3 request.
Note:

• Type of reset request to cause upon watchdog timer exception with TSR[ENW,WIS] =
0b11.

• These bits are set only by software. After a 1 has been written to one of these bits,
that bit remains a 1 until a reset request occurs. This is to prevent errant code from
disabling the watchdog reset function.

36 WIE 0b0 Watchdog Timer Interrupt Enable

0 Disable watchdog timer interrupt.
1 Enable watchdog timer interrupt.

37 DIE 0b0 Decrementer Interrupt Enable

0 Disable decrementer interrupt.
1 Enable decrementer interrupt.

38:39 FP 0b00 Fixed-Interval Timer Period

Specifies one of four bit locations of the time base used to signal a fixed-interval timer
exception on a transition from 0 to 1.
00 211 time base clocks.
01 215 time base clocks.
10 219 time base clocks.
11 223 time base clocks.

40 FIE 0b0 Fixed-Interval Timer Interrupt Enable

0 Disable fixed interval timer interrupt.
1 Enable fixed interval timer interrupt.

41 ARE 0b0 Auto-Reload Enable

0 Disable auto reload.
1 Enable auto reload.

42 UDIE 0b0 User Decrementer Interrupt Enable

0 Disable user decrementer interrupt.
1 Enable user decrementer interrupt.

43:50 /// 0x0 Reserved

51 UD 0b0 User Decrementer Available

0 mtspr or mfspr to the UDEC register causes an illegal instruction exception.
1 mtspr or mfspr to the UDEC register succeeds.
Note: Changing this bit requires a CSI for the next instruction to see the new context.

52:63 /// 0x0 Reserved

context synchronizing instruction

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Timer Facilities

Page 397 of 864

9.7 Timer Status Register (TSR)

The TSR is a privileged SPR that records the status of DEC, UDEC, FIT, and watchdog timer events. The
fields of the TSR are generally set to 1 only by hardware and cleared to 0 only by software. Hardware cannot
clear any fields in the TSR, nor can software set any fields. Software can read the TSR into a GPR using
mfspr. Clearing the TSR is performed using mtspr by placing a 1 in the GPR source register in all bit posi-
tions that are to be cleared in the TSR, and a 0 in all other bit positions. The data written from the GPR to the
TSR is not direct data, but a mask. A 1 clears the bit and a 0 leaves the corresponding TSR bit unchanged.

9.8 Freezing the Timer Facilities

The debug mechanism provides a means for temporarily “freezing” the timers upon a debug exception.
Specifically, the time base and decrementer can be prevented from incrementing and decrementing, respec-
tively, whenever a debug exception is recorded in the Debug Status Register (DBSR). This allows a debugger
to simulate the appearance of real time, even though the application has been temporarily halted to service
the debug event.

See Debug Facilities on page 399 for more information about freezing the timers.

Register Short Name: TSR Read Access: Hypv

Decimal SPR Number: 336 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: WC,AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ENW 0b0 Enable Next Watchdog Timer

0 Action taken on the next watchdog timer exception will be to set TSR{ENW].
1 Action taken on the next watchdog timer exception is governed by TSR[WIS].

33 WIS 0b0 Watchdog Timer Interrupt Status

0 A watchdog timer event has not occurred.
1 A watchdog timer event has occurred. When (MSR[CE] = 1 or MSR[GS] = 1) and

TCR[WIE] = 1, a watchdog timer interrupt is taken.

34:35 WRS 0b00 Watchdog Timer Reset Status

00 No reset: No watchdog timer reset has occurred.
01 Reset1: A watchdog timer initiated Reset1 reset occurred.
10 Reset2: A watchdog timer initiated Reset2 reset occurred.
11 Reset3: A watchdog timer initiated Reset3 reset occurred

36 DIS 0b0 Decrementer Interrupt Status

A decrementer event has occurred.

37 FIS 0b0 Fixed-Interval Timer Interrupt Status

A fixed-interval timer event has occurred.

38 UDIS 0b0 User Decrementer Interrupt Status

A user decrementer event has occurred.

39:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Timer Facilities

Page 398 of 864
Version 1.3

October 23, 2012

9.9 Selection of the Timer Clock Source

The source clock of the timers is selected by the Timer Clock Select (TCS) field of Execution Unit Configura-
tion Register 0 (XUCR0). When set to zero, XUCR0[TCS] selects the CPU clock. This is the highest
frequency timer clock source.

When set to one, XUCR0[TCS] selects an A2 core input (an_ac_tb_update_pulse) as the timer clock. The
input is sampled by a latch clocked by the CPU clock, and so cannot cycle any faster than half the frequency
of the CPU clock. Both rising and falling edges of the external timer pulse are sampled, so that the actual
timer clock will be twice the frequency of the external update pulse.

9.10 Synchronizing Timers Across Multiple Cores

In applications involving multiple A2 cores, the an_ac_tb_update_enable input can be used to stop timer
clock pulses from incrementing the timers. The purpose of this function is for software to initialize the timer
facilities in all cores before enabling the update pulse; thereby synchronizing all time base counters.

When set to zero, the an_ac_tb_update_enable input signal blocks the timer clock from incrementing timer
facilities. This control applies to either setting of XUCR0[TCS]; whether the timer clock source is internally or
externally generated.

central processing unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 399 of 864

10. Debug Facilities

The debug facilities of the A2 core include support for several debug modes for debugging during hardware
and software development, as well as debug events that allow developers to control the debug process.
Debug registers control these debug modes and debug events. The debug registers can be accessed either
through software running on the processor or through the JTAG port via the SCOM interface of the A2 core.
Access to the debug facilities through the JTAG port is typically provided by a debug tool such as the RISC-
Watch development tool from IBM. A trace bus, which enables the tracing of code running in real time, is also
provided.

10.1 Implications of Hypervisor on Debug Controls

The Power ISA Embedded.Hypervisor category provides several controls that affect debug operation within
the A2 core. All debug events are dependent on the state of EPCR[DUVD] and MSR[GS] to determine if
debug events can occur when executing in the hypervisor state (MSR[GS,PR] = 00). When EPCR[DUVD] =
1, debug events are enabled for guest state (MSR[GS] = 1) operation only. This stops debug events intended
for code executing in the guest state from occurring when the hypervisor is active. Another control determines
if the MSR[DE] bit can be modified when executing in guest state. If MSRP[DEP] is set to 1, a guest state
write operation to MSR[DE] is ignored. See Section 14.5 on page 537 for detailed descriptions of the MSR,
MSRP, and EPCR registers.

DBSRWR is a hypervisor accessible debug register. It allows code executing in hypervisor state to set bits in
the DBSR. DBSRWR is bit-for-bit compatible with the DBSR register. When a 1 is written to DBSRWR, the
corresponding DBSR bit is set. The DBSRWR register is shown in Section 10.7.6 on page 423.

10.2 Support for Development Tools

The RISCWatch product from IBM is an example of a development tool that uses external debug mode,
debug events, and the JTAG interface to implement a hardware and software development tool. Registers in
the A2 core are not directly accessible to JTAG, but instead are converted to a different serial interface
through a chip level SCOM controller.

10.3 Debug Modes

The following sections describe the various debug modes supported by the A2 core. Each of these debug
modes supports a particular type of debug tool or debug task commonly used in embedded systems develop-
ment. For internal and external debug modes, the various debug event types are enabled by the setting of
corresponding fields in Debug Control Register 0 (DBCR0) or Debug Control Register 3 (DBCR3), and upon
their occurrence are recorded in the Debug Status Register (DBSR). The trace debug mode is controlled
through various SCOM accessible registers that enable the selection of debug and trigger signals that are
sent out on the external trace and trigger buses.

There are three debug modes:

• Internal debug mode
• External debug mode
• Trace debug mode

Joint Test Action Group

serial communications

Embedded Processor Control Register

Machine State Register

Machine State Register Protect

Debug Status Register Write Register

Debug Status Register

User’s Manual

A2 Processor

Debug Facilities

Page 400 of 864
Version 1.3

October 23, 2012

The Power ISA specification deals only with internal debug mode and the relationship of debug interrupts to
the rest of the interrupt architecture. Internal debug mode is the mode that involves debug software running
on the processor itself, typically in the form of the debug interrupt handler. The other debug modes, are
outside the scope of the architecture, and involve special-purpose debug hardware external to the A2 core,
connected either to the JTAG interface (for external debug mode) and/or the external trace array (for trace
debug mode). Details of these interfaces and their operation are beyond the scope of this manual.

10.3.1 Internal Debug Mode

Internal debug mode provides access to architected processor resources and supports setting hardware and
software breakpoints and monitoring processor status. In this mode, debug events are considered excep-
tions. Exceptions, in addition to recording their status in the DBSR, generate debug interrupts if and when
such interrupts are enabled (Machine State Register (MSR) DE field is 1; see CPU Interrupts and Exceptions
on page 293 for a description of the MSR and debug interrupts). When a debug interrupt occurs, special
debugger software at the interrupt handler can check processor status and other conditions related to the
debug event, as well as alter processor resources using all of the instructions defined for the A2 core.

Internal debug mode relies on this interrupt handling software at the debug interrupt vector to debug software
problems. This mode, used while the processor executes instructions, enables debugging of both application
programs and operating system software, including all of the noncritical class interrupt handlers.

In this mode, the debugger software can communicate with the outside world through a communications port,
such as a serial port, external to the processor core.

To enable internal debug mode, the IDM field of DBCR0 must be set to 1 (DBCR0[IDM] = 1). This mode can
be enabled in combination with external debug mode (see External Debug Mode below).

10.3.2 External Debug Mode

External debug mode provides access to architected processor resources and supports stopping, starting,
and stepping the processor; setting hardware and software breakpoints; monitoring processor status; and
other operations. External debug mode is enabled by setting the SCOM-accessible PC Configuration
Register 0, Debug Action Select, (PCCR0[DBA]) bits to a valid decode. Each thread has separate
PCCR0[DBA] bits, allowing independent control over external debug action selection. In this mode, debug
events record their status in the DBSR, and then cause the processor to take actions based on the state of
the encoded bits set in PCCR0[DBA]. A description of the external debug actions supported through the
PCCR0[DBA] field is shown in Table 10-1.

Table 10-1. PCCR0[DBA] (Debug Action) Definition per Thread (Sheet 1 of 2)

Encode Action Description

000 No Action No action taken.

001 Reserved

010 Stop N Stop this thread at the current instruction.

011 Stop Core Stop all threads at the current instruction.

100 Activate Error Signal An error bit in this thread’s Fault Isolation Register (FIR) will be set. Depending on FIR
mask settings, a recoverable or checkstop error signal can be driven outside the core.

Processor Control

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 401 of 864

The PCCR0[DBA] bits provide options for stopping a thread or all threads on the core. It also allows sending
an error signal to external logic from the local FIR. If chip clock controls are enabled to stop the clock, they
can force the core clocks off, facilitating interrogation of all core latches and arrays via scanning. An external
trigger signal (single cycle pulse) can also be selected to trigger chip level controls upon activation of the
debug compare event. Use of this signal is implementation dependent.

When a debug event occurs with PCCR0[DBA] set to stop the processor (encodes 2, 3, 6, or 7), normal
instruction execution stops and architected processor resources and memory can be accessed and altered
via the JTAG interface. While in the stop state, external interrupts as well as time base and decrementer
updates can be temporarily disabled through options in the THRCTL register (see Table 10-10 Thread
Control and Status Register (THRCTL) on page 442). When a debug event occurs with PCCR0[DBA] set to
any other value, the stop state is not entered and instruction processing continues.

Storage access control by a memory management unit (MMU) remains in effect while in external debug
mode; the debugger might need to modify MSR or TLB values to access protected memory.

External debug mode relies only on internal processor resources, and no debug interrupt handling software,
so it can be used to debug both system hardware and software problems. This mode can also be used for
software development on systems without a control program, or to debug control program problems,
including problems within the debug interrupt handler itself, or within any other critical class interrupt
handlers.

External debug mode can be enabled in combination with internal debug mode (see Internal Debug Mode on
page 400). External debug mode takes precedence over internal debug mode. That is, debug events that
cause the processor to stop (when enabled by PCCR0[DBA]) enter the stop state rather than generating a
debug interrupt, although a debug interrupt might be pending while the processor is in the stop state.

10.3.3 Trace Debug Mode

The A2 core tracing capability is separate from the other debug modes. It can be used independent from, or
in conjunction with, the other debug resources. An 88-bit debug bus provides signals to tracing facilities
external to the core. Each unit within the core has a SCOM-accessible register for selecting and routing signal
groups onto the debug bus. Signal groups from multiple units within the core can be routed onto the debug
bus at the same time. Additional controls select and route groups of trigger signals onto a separate trigger
bus. Together, the debug and trigger buses provide external tracing facilities with the capability to monitor
and trigger on a large number of core signals. See Trace and Trigger Bus on page 445 for additional informa-
tion.

101 Activate External Signal Activates an external trigger signal (ac_an_debug_trigger pulse) outside the core. Chip-
level logic can use this to perform other actions, such as stopping all cores.

110 Activate External Signal and
Stop N

Stops this thread at the current instruction and activates the external trigger signal.

111 Activate External Signal and
Stop Core

Stops all threads at the current instruction and activates the external trigger signal.

Table 10-1. PCCR0[DBA] (Debug Action) Definition per Thread (Sheet 2 of 2)

Encode Action Description

translation lookaside buffer

User’s Manual

A2 Processor

Debug Facilities

Page 402 of 864
Version 1.3

October 23, 2012

10.4 Debug Events

There are several different kinds of debug events, each of which is enabled by a field in DBCR0 or DBCR3
(except for the unconditional debug event) and recorded in the DBSR. Debug Modes on page 399 describes
the operation that results when a debug event occurs while operating in any of the debug modes.

Table 10-2 lists the various debug events recognized by the A2 core. Detailed explanations of each debug
event type follow the table.

10.4.1 Instruction Address Compare (IAC) Debug Event

IAC debug events occur when execution is attempted of an instruction for which the instruction address and
other parameters match the IAC conditions specified by DBCR0, DBCR1, and the IAC registers. There are
four IAC registers on the A2 core, IAC1–IAC4. Depending on the IAC mode specified by DBCR1, these IAC
registers can be used to specify four independent, exact IAC addresses, or they can be configured in pairs
(IAC1/IAC2 and IAC3/IAC4) to match a masked instruction address for which IAC debug events should
occur. In 32-bit mode, the lower 32 bits of IAC1–IAC4 are compared against the lower 32 bits of the instruc-
tion address.

Table 10-2. Debug Events

Event Description

Instruction Address Compare (IAC) Caused by the attempted execution of an instruction for which the address matches the
conditions specified by DBCR0, DBCR1, and the IAC1–IAC4 registers.

Data Address Compare (DAC) Caused by the attempted execution of a load, store, or cache management instruction for
which the data storage address matches the conditions specified by DBCR0, DBCR2,
DBCR3, and the DAC1–DAC4 registers.

Data Value Compare (DVC) Caused by the attempted execution of a load or store instruction for which the data stor-
age address matches the conditions specified by DBCR0, DBCR2, and the DAC1–DAC2
registers, and for which the referenced data matches the value specified by the DVC1–
DVC2 registers.

Branch Taken (BRT) Caused by the attempted execution of a branch instruction for which the branch condi-
tions are met (that is, for a branch instruction that results in the redirection of the instruc-
tion stream).

Trap (TRAP) Caused by the attempted execution of a tw, twi, td, or tdi instruction for which the trap
conditions are met.

Return (RET) Caused by the attempted execution of an rfi instruction.

Instruction Complete (ICMP) Caused by the successful completion of the execution of any instruction.

Interrupt (IRPT) Caused by the generation of a base class interrupt.

Unconditional (UDE) Caused by the assertion of an unconditional debug event request through the
THRCTL[UDE] bits. The THRCTL register is accessed via the SCOM interface to the A2
core.

Instruction Value Compare (IVC) Caused by the attempted execution of an instruction for which the instruction data
matches the value specified by the IMR and IMMR registers. The IVC debug event is
enabled by setting DBCR3[IVC].

Instruction Match Register

Instruction Match Mask Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 403 of 864

10.4.1.1 IAC Debug Event Fields

Several fields in DBCR0 and DBCR1 are used to specify the IAC conditions, as follows:

IAC Event Enable Field

DBCR0[IAC1, IAC2, IAC3, IAC4] are the individual IAC event enables for each of the four IAC events:
IAC1, IAC2, IAC3, and IAC4. For a given IAC event to occur, the corresponding IAC event enable bit in
DBCR0 must be set. When a given IAC event occurs, the corresponding DBSR[IAC1, IAC2, IAC3, IAC4]
bit is set.

IAC Mode Field

DBCR1[IAC12M, IAC34M] control the comparison mode for the IAC1/IAC2 and IAC3/IAC4 events,
respectively. There are two comparison modes supported by the A2 core:

• Exact comparison mode (DBCR1[IAC12M/IAC34M] = 0b0)

In this mode, the instruction address is compared to the value in the corresponding IAC register; the
IAC event occurs only if the comparison is an exact match. When the processor is operating in 32-bit
mode (MSR[CM] = 0), the addresses are masked to compare only bits 32 through 63.

• Address bit match mode (DBCR1[IAC12M/IAC34M] = 0b1)

In this mode, the IAC1 or IAC2 event occurs only if the instruction address matches the value in the
IAC1 register, as masked by the value in the IAC2 register. That is, the IAC1 register specifies an
address value, and the IAC2 register specifies an address bit mask that determines which bit of the
instruction address should participate in the comparison to the IAC1 value. For every bit set to 1 in
the IAC2 register, the corresponding instruction address bit must match the value of the same bit
position in the IAC1 register. For every bit set to 0 in the IAC2 register, the corresponding address bit
comparison does not affect the result of the IAC event determination. Similarly, instruction address
matches for IAC3 and IAC4 events occur as described previously for IAC1 and IAC2. When the pro-
cessor is operating in 32-bit mode (MSR[CM] = 0), the addresses are masked to compare only bits
32 through 63.

When the instruction address matches the address bit mask mode conditions, either one or both of
the IAC debug event bits is set in the DBSR, as determined by which IAC event enable bits are set in
DBCR0. That is, when an address bit mask mode IAC debug event occurs, the setting of
DBCR0[IAC1, IAC2] determines whether one or the other or both of the DBSR[IAC1, IAC2] bits are
set. In like manner, the setting of DBCR0[IAC3, IAC4] determines how the DBSR[IAC3, IAC4] bits
are set. It is a programming error to set the IAC mode field to address bit mask mode for IAC12M or
IAC34M without also enabling at least one of the paired IAC event enable bits in DBCR0 (IAC1/IAC2
or IAC3/IAC4 respectively).

• The A2 core does not support the IAC range inclusive comparison mode.

• The A2 core does not support the IAC range exclusive comparison mode.

IAC User/Supervisor Field

DBCR1[IAC1US, IAC2US, IAC3US, IAC4US] are the individual IAC user/supervisor fields for each of the
four IAC events. The IAC user/supervisor fields specify the operating mode of the processor in order for
the corresponding IAC event to occur. The operating mode is determined by the Problem State field of
the Machine State Register (MSR[PR]; see Section 2.4.2.4 Machine State Register on page 85). When
the IAC user/supervisor field is 0b00, the operating mode does not matter; the IAC debug event can
occur independent of the state of MSR[PR]. When this field is 0b10, the processor must be operating in

User’s Manual

A2 Processor

Debug Facilities

Page 404 of 864
Version 1.3

October 23, 2012

supervisor state (MSR[PR] = 0). When this field is 0b11, the processor must be operating in user mode
(MSR[PR] = 1). The IAC user/supervisor field value of 0b01 is reserved.

If the IAC is set to the address bit match mode, it is a programming error (and the results of any instruc-
tion address comparison are undefined) if the paired IAC user/supervisor field settings
(DBCR1[IAC1US]/DBCR1[IAC2US] or DBCR1[IAC3US]/DBCR1[IAC4US]) are not set to the same value.

IAC Effective/Real Address Field

DBCR1[IAC1ER, IAC2ER, IAC3ER, IAC4ER] are the individual IAC effective/real address fields for each
of the four IAC events. The IAC effective/real address fields specify whether the instruction address com-
parison should be performed using the effective, virtual, or real address (see Memory Management on
page 185 for an explanation of these different types of addresses). When the IAC effective/real address
field is 0b00, the comparison is performed using the effective address only—the IAC debug event can
occur independent of the instruction address space (MSR[IS]). When this field is 0b10, the IAC debug
event occurs only if the effective address matches the IAC conditions and is in virtual address space 0
(MSR[IS] = 0). Similarly, when this field is 0b11, the IAC debug event occurs only if the effective address
matches the IAC conditions and is in virtual address space 1 (MSR[IS] = 1). Note that in these latter two
modes, in which the virtual address space of the instruction is considered, it is not the entire virtual
address that is considered. The Process ID, which forms the final part of the virtual address, is not con-
sidered. Finally, the IAC effective/real address field value of 0b01 is reserved, and corresponds to the
Power ISA architected real address comparison mode, which is not supported by the A2 core.

If the IAC is set to the address bit match mode, it is a programming error (and the results of any instruc-
tion address comparison are undefined) if the paired IAC effective/real field settings
(DBCR1[IAC1ER]/DBCR1[IAC2ER] or DBCR1[IAC3ER]/DBCR1[IAC4ER]) are not set to the same value.

10.4.1.2 IAC Debug Event Processing

When enabled, the occurrence of an IAC debug event is recorded in the corresponding bit of the DBSR. If
debug interrupts are not enabled (MSR[DE] = 0) the imprecise debug event (DBSR[IDE]) bit is also set. The
resulting actions taken by the processor due to the IAC debug event depend on the specific debug configura-
tion.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that caused the IAC
match to occur. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues, and
any additional debug actions are determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with Critical Save/Restore Register 0 (CSRR0) set to the address of the instruction
that caused the IAC debug event. When operating in internal debug mode with debug interrupts disabled
(MSR[DE] = 0), the debug interrupt does not occur immediately. Instead, instruction execution continues, and
a debug interrupt occurs if and when MSR[DE] is set to 1. This enables debug interrupts, assuming software
has not cleared the IAC debug event status from the DBSR in the meantime. Upon such a “delayed” interrupt,
the debug interrupt handler software can query the DBSR[IDE] field to determine that the debug interrupt has
occurred imprecisely.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 405 of 864

10.4.2 Data Address Compare (DAC) Debug Event

DAC debug events occur when execution is attempted of a load, store, or cache management instruction for
which the data storage address and other parameters match the DAC conditions specified by DBCR0,
DBCR2, DBRC3, and the DAC registers. There are four DAC registers on the A2 core, DAC1 through DAC4.
Depending on the DAC mode specified by DBCR2 and DBCR3, these DAC registers can be used to specify
four independent, exact DAC addresses, or they can be configured to operate as a pair (DAC1/DAC2 and
DAC3/DAC4). When operating as a pair, they can specify a combination of an address and an address bit
mask for selective comparison with the data storage address. Note that for all load, store and cache manage-
ment instructions, the address that is used in the DAC comparison is the effective address as presented to
the ERATs.

10.4.2.1 DAC Debug Event Fields

There are several fields in DBCR0, DBCR2, and DBCR3 that are used to specify the DAC conditions, as
follows:

DAC Event Enable Field

DBCR0[DAC1, DAC2, DAC3, DAC4] are the event enables for the four DAC events. For each of the DAC
events, there is one enable for DAC read events (DAC1R, DAC2R, DAC3R, DAC4R) and another for
DAC write events (DAC1W, DAC2W, DAC3W, DAC4W). Load, dcbt, dcbtep, dcbtst, dcbtstep, dcbtls,
dcbtstls, dcblc, icbi, icbiep, icblc, icbt, and icbtls instructions can cause DAC read events; while
store, dcbf, dcbfep, dcbi, dcbst, dcbstep, dcbz, and dcbzep instructions can cause DAC write events
(see DAC Debug Events Applied to Various Instruction Types on page 408 for more information about
these instructions and the types of DAC debug events they can cause). For a given DAC event to occur,
the corresponding DAC event enable bit in DBCR0 for the particular operation type must be set. When a
DAC event occurs, the corresponding DBSR[DAC1R, DAC1W, DAC2R, DAC2W, DAC3R, DAC3W,
DAC4R, DAC4W] bit is set. The DBSR bits for DAC1 and DAC2 events are shared by DVC debug events
(see Data Value Compare (DVC) Debug Event on page 409).

DAC Mode Field

DBCR2[DAC12M] and DBCR3[DAC34M] control the comparison mode for the DAC1, DAC2, DAC3, and
DAC4 events respectively. There are two comparison modes supported by the A2 core:

• Exact comparison mode (DBCR2[DAC12M] = 0b0; DBCR3[DAC34M] = 0b0)

In this mode, the data address is compared to the value in the corresponding DAC register, and the
DAC event occurs only if the comparison is an exact match.When the processor is operating in 32-bit
mode (MSR[CM] = 0), the addresses are masked to compare only bits 32 through 63.

• Address bit mask mode (DBCR2[DAC12M] = 0b1; DBCR3[DAC34M] = 0b1)

In this mode, the DAC1 or DAC2 event occurs only if the data address matches the value in the
DAC1 register, as masked by the value in the DAC2 register. That is, the DAC1 register specifies an
address value, and the DAC2 register specifies an address bit mask that determines which bit of the
data address should participate in the comparison to the DAC1 value. For every bit set to 1 in the
DAC2 register, the corresponding data address bit must match the value of the same bit position in
the DAC1 register. For every bit set to 0 in the DAC2 register, the corresponding address bit compar-
ison does not affect the result of the DAC event determination. Similarly, data address matches for
DAC3 and DAC4 events occur as described previously for DAC1 and DAC2. When the processor is

effective to real address translation

User’s Manual

A2 Processor

Debug Facilities

Page 406 of 864
Version 1.3

October 23, 2012

operating in 32-bit mode (MSR[CM] = 0), the addresses are masked to compare only bits 32
through 63.

This comparison mode is useful for detecting accesses to a particular byte address, when the
accesses can be of various sizes. For example, if the debugger is interested in detecting accesses to
byte address 0x0000_0000_0000_0003, then these accesses can occur due to a byte access to that
specific address, or due to a halfword access to address 0x0000_0000_0000_0002, or due to a word
access to address 0x0000_0000. By using address bit mask mode and specifying that the low-order
two bits of the address should be ignored (that is, setting the address bit mask in DAC2 to
0xFFFF_FFFF_FFFF_FFFC), the debugger can detect each of these types of access to byte
address 0x0000_0000_0000_0003.

When the data address matches the address bit mask mode conditions, either one or both of the
DAC debug event bits corresponding to the operation type (read or write) is set in the DBSR, as
determined by which of the corresponding four DAC event enable bits are set in DBCR0. That is,
when an address bit mask mode DAC debug event occurs, the setting of DBCR0[DAC1R, DAC1W,
DAC2R, DAC2W] determines whether one or the other or both of the DBSR[DAC1R, DAC1W,
DAC2R, DAC2W] bits corresponding to the operation type are set. In like manner, the setting of
DBCR0[DAC3R, DAC3W, DAC4R, DAC4W] determines how the DBSR[DAC3R, DAC3W, DAC4R,
DAC4W] bits are set. It is a programming error to set the DAC mode field to address bit mask mode
for DAC12M or DAC34M without also enabling at least one of the paired DAC event enable bits in
DBCR0 (DAC1/DAC2 or DAC3/DAC4 respectively).

• The A2 core does not support the DAC range inclusive comparison mode.

• The A2 core does not support the DAC range exclusive comparison mode.

DAC User/Supervisor Field

DBCR2[DAC1US, DAC2US] and DBCR3[DAC3US, DAC4US] are the individual DAC user/supervisor
fields for the four DAC events. The DAC user/supervisor fields specify the operating mode of the proces-
sor in order for the corresponding DAC event to occur. The operating mode is determined by the Problem
State field of the Machine State Register (MSR[PR]; see Section 2.4.2.4 Machine State Register on
page 85). When the DAC user/supervisor field is 0b00, the operating mode does not matter—the DAC
debug event can occur independent of the state of MSR[PR]. When this field is 0b10, the processor must
be operating in supervisor state (MSR[PR] = 0). When this field is 0b11, the processor must be operating
in user mode (MSR[PR] = 1). The DAC user/supervisor field value of 0b01 is reserved.

If the DAC is set to the address bit mask mode, it is a programming error (and the results of any data
address comparison are undefined) if the paired DAC user/supervisor field settings (DBCR2[DAC1US]
and DBCR2[DAC2US] or DBCR3[DAC3US] and DBCR3[DAC4US]) are not set to the same value.

DAC Effective/Real Address Field

DBCR2[DAC1ER, DAC2ER] and DBCR3[DAC3ER, DAC4ER] are the individual DAC effective/real
address fields for the four DAC events. The DAC effective/real address fields specify whether the instruc-
tion address comparison should be performed using the effective, virtual, or real address (see Memory
Management on page 185 for an explanation of these different types of addresses). When the DAC effec-
tive/real address field is 0b00, the comparison is performed using the effective address only; the DAC
debug event can occur independent of the data address space (MSR[DS]). When this field is 0b10, the
DAC debug event occurs only if the effective address matches the DAC conditions and is in virtual
address space 0 (MSR[DS] = 0). Similarly, when this field is 0b11, the DAC debug event occurs only if
the effective address matches the DAC conditions and is in virtual address space 1 (MSR[DS] = 1). Note
that in these latter two modes, in which the virtual address space of the data is considered, it is not the

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 407 of 864

entire virtual address that is considered. The Process ID, which forms the final part of the virtual address,
is not considered. Finally, the DAC effective/real address field value of 0b01 is reserved, and corre-
sponds to the Power ISA architected real address comparison mode, which is not supported by the A2
core.

If the DAC is set to the address bit mask mode, it is a programming error (and the results of any data
address comparison are undefined) if the paired DAC effective/real address field settings
(DBCR2[DAC1ER] and DBCR2[DAC2ER] or DBCR3[DAC3ER] and DBCR3[DAC4ER]) are not set to the
same value.

Data Value Compare Mode Field

DBCR2[DVC1M, DVC2M] are the data value compare (DVC) mode enable bits. This field must be dis-
abled (by being set to 0x00) for the corresponding DAC debug event to be enabled. Other settings of the
DVC1M or DVC2M fields enable specific DVC operations, which also require the corresponding DVC
byte enable (DBCR2[DVC1BE, DVC2BE]) fields to be set to a nonzero value. Data value compare events
cannot occur on cache management instructions. See Data Value Compare (DVC) Debug Event on
page 409 for more information about DVC events.

10.4.2.2 DAC Debug Event Processing

When enabled, the occurrence of a DAC debug event is recorded in the corresponding bit of the DBSR. If
debug interrupts are not enabled (MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The
resulting actions taken by the processor due to the DAC debug event depend on the specific debug configu-
ration.

When operating in external debug mode (DBCR0[EDM] = 1) the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that caused the DAC
match to occur. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues, and
any additional debug actions are determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with Critical Save/Restore Register 0 (CSRR0) set to the address of the instruction
that caused the DAC debug event. When operating in internal debug mode with debug interrupts disabled
(MSR[DE] = 0), the debug interrupt does not occur immediately. Instead, instruction execution continues, and
a debug interrupt occurs if and when MSR[DE] is set to 1. This enables debug interrupts, assuming software
has not cleared the DAC debug event status from the DBSR in the meantime. Upon such a “delayed” inter-
rupt, the debug interrupt handler software can query the DBSR[IDE] field to determine that the debug inter-
rupt has occurred imprecisely.

10.4.2.3 DAC Debug Events Applied to Instructions that Result in Multiple Storage Accesses

Certain misaligned load and store instructions are handled by making multiple, independent storage
accesses. Similarly, load and store multiple and string instructions that access more than one register result
in more than one storage access. Load and Store Alignment on page 175 provides a detailed description of
the circumstances that lead to such multiple storage accesses being made as the result of the execution of a
single instruction.

Whenever the execution of a given instruction results in multiple storage accesses, the data address of each
access is independently considered for whether or not it will cause a DAC debug event.

User’s Manual

A2 Processor

Debug Facilities

Page 408 of 864
Version 1.3

October 23, 2012

10.4.2.4 DAC Debug Events Applied to Various Instruction Types

Various special cases apply to the cache management instructions, the store word and doubleword condi-
tional indexed (stwcx., stdcx.) instructions, and the load and store string indexed (lswx, stswx) instructions,
with regards to DAC debug events. These special cases are as follows:

dcbz, dcbzep, dcbi

The dcbz, dcbzep, and dcbi instructions are considered “stores” with respect to both storage access
control and DAC debug events. The dcbz and dcbzep instructions directly change the contents of a
given storage location, whereas the dcbi instruction can indirectly change the contents of a given storage
location by invalidating data that has been modified within the data cache, thereby “restoring” the value of
the location to the “old” contents of memory. As “store” operations, they can cause DAC write debug
events.

dcbst, dcbstep, dcbf, dcbfep

The dcbst, dcbstep, dcbf, and dcbfep instructions are considered “loads” with respect to storage
access control because they do not change the contents of a given storage location. They can merely
cause the data at that storage location to be moved from the data cache out to memory. However, in a
debug environment, the fact that these instructions can lead to write operations on the external interface
is typically the event of interest. Therefore, these instructions are considered “stores” with respect to DAC
debug events and can cause DAC write debug events.

dcbt, dcbtep, dcbtstep

The touch instructions are considered “loads” with respect to both storage access control and DAC debug
events. However, these instructions are treated as no-ops if they reference caching inhibited storage
locations or if they cause data storage or data TLB miss exceptions. Consequently, if a touch instruction
is being treated as a no-op for one of these reasons, then it does not cause a DAC read debug event.
However, if a touch instruction is not being treated as a no-op for one of these reasons, it can cause a
DAC read debug event.

dcba, icbt, dcbtst

The dcba and icbt instructions are treated as a no-op by the A2 core, and thus will not cause a DAC
debug event.

icbi, icbiep, icbtls, icblc, dcbtls, dcbtstls, dcblc

These instructions are considered a “load” with respect to both storage access control and DAC debug
events, and thus can cause a DAC read debug event.

dci, ici

The dci and ici instructions do not generate an address, but rather they affect the entire data and instruc-
tion cache, respectively. Therefore, none of these instructions cause DAC debug events.

stwcx., stdcx.

If the execution of a stwcx. or stdcx. instruction would otherwise have caused a DAC write debug event,
but the processor does not have the reservation from a lwarx instruction, then the DAC write debug event
still occurs.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 409 of 864

lswx, stswx

DAC debug events do not occur for lswx or stswx instructions with a length of 0 (XER[SI] = 0), because
these instructions do not actually access storage.

10.4.3 Data Value Compare (DVC) Debug Event

DVC debug events occur when execution is attempted of a load or store instruction for which the data storage
address and other parameters match the DAC conditions specified by DBCR0, DBCR2, and the DAC regis-
ters, and for which the data accessed matches the DVC conditions specified by DBCR2 and the DVC regis-
ters. DVC debug events are not supported for floating-point loads and stores. In other words, for a DVC
debug event to occur, the conditions for a DAC debug event must first be met, and then the data must also
match the DVC conditions. Data Address Compare (DAC) Debug Event on page 405 describes the DAC
conditions. In addition to the DAC conditions, there are two DVC registers on the A2 core, DVC1 and DVC2.
The DVC registers can be used to specify two independent, 8-byte data values, which are selectively
compared against the data being accessed by a given load, store, or cache management instruction.

When a DVC event occurs, the corresponding DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bit is set. These
same DBSR bits are shared by DAC debug events.

10.4.3.1 DVC Debug Event Fields

In addition to the DAC debug event fields described in DAC Debug Event Fields on page 405, and the DVC
registers themselves, there are two fields in DBCR2 that are used to specify the DVC conditions, as follows:

DVC Byte Enable Field

DBCR2[DVC1BE, DVC2BE] are the individual DVC byte enable fields for the two DVC events. Each bit of
a given DVC byte enable field corresponds to a byte position within an aligned doubleword of memory.
For a given aligned doubleword of memory, the byte offsets (or “byte lanes”) within that doubleword are
numbered 0 through 7, starting from the left-most (most significant) byte of the doubleword. Accordingly,
bits 0:7 of a given DVC byte enable field correspond to bytes 0:7 of an aligned word of memory being
accessed.

For an access to “match” the DVC conditions for a given byte, the access must be actually transferring
data on that given byte position and the data must match the corresponding byte value within the DVC
register.

For each storage access, the DVC comparison is made against the bytes that are being accessed within
the doubleword of memory starting at the address specified by the corresponding DAC compare. This is
true whether the DAC address is aligned or unaligned, providing that the storage access is an atomic
operation. If an unaligned storage address forces byte accesses (see Section 2.2.1 Storage Operands on
page 62), then the DVC comparison is made against byte offset 7 in the DBCR2 byte enable fields and
their corresponding DVC registers.

DVC Mode Field

DBCR2[DVC1M, DVC2M] are the individual DVC mode fields for the two DVC events. Each one of these
fields specifies the particular data value comparison mode for the corresponding DVC debug event.
There are three comparison modes supported by the A2 core:

User’s Manual

A2 Processor

Debug Facilities

Page 410 of 864
Version 1.3

October 23, 2012

• DAC mode only (DBCR2[DVC1M, DVC2M] = 0b00)

This mode enables DAC1 and DAC2 compare events providing the respective DBCR0 and DBCR2
DAC settings result in a match condition. In this mode, the corresponding DBCR2[DVC1BE]/DVC1
and DBCR2[DVC2BE]/DVC2 bits are not used for determining if the DAC compare event will occur.

• AND comparison mode (DBCR2[DVC1M, DVC2M] = 0b01)

In this mode, all data byte lanes enabled by a DVC byte enable field must be accessed and must
match the corresponding byte data value in the corresponding DVC1 or DVC2 register.

• OR comparison mode (DBCR2[DVC1M, DVC2M] = 0b10)

In this mode, at least one data byte lane that is enabled by a DVC byte enable field must be accessed
and must match the corresponding byte data value in the DVC1 or DVC2 register.

• AND-OR comparison mode (DBCR2[DVC1M, DVC2M] = 0b11)

In this mode, at least one of the halfwords that are enabled by the DVC byte enable field must match
the corresponding byte data value in the DVC1 or DVC2 register.

10.4.3.2 DVC Debug Event Processing

When enabled, the occurrence of a DVC debug event is recorded in the corresponding DAC1R/W or
DAC2R/W bit of the DBSR. If debug interrupts are not enabled (MSR[DE] = 0), the imprecise debug event
(DBSR[IDE]) bit is also set. The resulting actions taken by the processor due to the DVC debug event depend
on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that caused the DVC
debug event, or in the case of a load miss to some other subsequent instruction. If the PCCR0[DBA] decode
does not stop the processor, instruction execution continues, and any additional debug actions are deter-
mined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs. CSRR0 contains the address of the instruction that caused the DVC debug event, or
in the case of a load miss to some other subsequent instruction. When operating in internal debug mode with
debug interrupts disabled (MSR[DE] = 0), the debug interrupt does not occur immediately. Instead, instruc-
tion execution continues, and a debug interrupt occurs if and when MSR[DE] is set to 1. This enables debug
interrupts, assuming software has not cleared the DVC debug event status from the DBSR in the meantime.
Upon such a “delayed” interrupt, the debug interrupt handler software can query the DBSR[IDE] field to deter-
mine that the debug interrupt has occurred imprecisely.

10.4.3.3 DVC Debug Events Applied to Instructions that Result in Multiple Storage Accesses

Certain misaligned load and store instructions are handled by making multiple, independent storage
accesses. Similarly, load and store multiple and string instructions that access more than one register result
in more than one storage access. Load and Store Alignment on page 175 provides a detailed description of
the circumstances that lead to such multiple storage accesses being made as the result of the execution of a
single instruction.

Whenever the execution of a given instruction results in multiple storage accesses, the address and data of
each access is independently considered for whether or not it will cause a DVC debug event.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 411 of 864

10.4.3.4 DVC Debug Events Applied to Various Instruction Types

Various special cases apply to the cache management instructions, the store word and doubleword condi-
tional indexed (stwcx., stdcx.) instruction, and the load and store string indexed (lswx, stswx) instructions,
with regards to DVC debug events. These special cases are as follows:

stwcx., stdcx.

If the execution of a stwcx. or stdcx. instruction would otherwise have caused a DVC write debug event,
but the processor does not have the reservation from an lwarx instruction, then the DVC write debug
event still occurs.

lswx, stswx

DVC debug events do not occur for lswx or stswx instructions with a length of 0 (XER[SI] = 0), because
these instructions do not actually access storage.

10.4.3.5 DVC Debug Events Applied to Floating-Point Loads and Stores

DVC debug events are not supported for floating-point loads and stores.

10.4.4 Instruction Complete (ICMP) Debug Event

ICMP debug events occur when ICMP debug events are enabled (DBCR0[ICMP] = 1), debug interrupts are
enabled (MSR[DE] = 1), and the A2 core completes the execution of any instruction.

When operating in external (DBCR0[EDM] = 1) debug mode, the occurrence of an ICMP debug event is
recorded in DBSR[ICMP]. In external debug mode, the setting of PCCR0[DBA] determines the resulting
debug actions. If the debug action is a stop, the processor enters the stop state and ceases the processing of
instructions. The program counter contains the address of the instruction that would have executed next, had
the ICMP debug event not occurred. Note that if the instruction whose completion caused the ICMP debug
event was a branch instruction (and the branch conditions were satisfied), then upon entering the stop state
the program counter contains the target of the branch, and not the address of the instruction that is sequen-
tially after the branch. Similarly, if the ICMP debug event is caused by the execution of a return (rfi, rfci, or
rfmci) instruction, then upon entering the stop state the program counter contains the address being returned
to, and not the address of the instruction that is sequentially after the return instruction. If the PCCR0[DBA]
decode does not stop the processor, instruction execution continues, and any additional debug actions are
determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), the
occurrence of an ICMP debug event is recorded in DBSR[ICMP] and a debug interrupt occurs with CSRR0
set to the address of the instruction that would have executed next, had the ICMP debug event not occurred.
Note that there is a special case of MSR[DE] = 1 at the time of the execution of the instruction causing the
ICMP debug event, but that instruction itself sets MSR[DE] to 0. This special case is described in more detail
in Debug Interrupt on page 347, in the subsection on the setting of CSRR0.

When debug interrupts are disabled (MSR[DE] = 0), ICMP debug events cannot occur. Because the code at
the beginning of the critical class interrupt handlers (including the debug interrupt itself) must execute at least
temporarily with MSR[DE] = 0, there would be no way to avoid causing additional ICMP debug events and
setting DBSR[IDE], if ICMP debug events were allowed to occur under these conditions.

User’s Manual

A2 Processor

Debug Facilities

Page 412 of 864
Version 1.3

October 23, 2012

10.4.5 Branch Taken (BRT) Debug Event

BRT debug events occur when BRT debug events are enabled (DBCR0[BRT] = 1), debug interrupts are
enabled (MSR[DE] = 1), and execution is attempted of a branch instruction for which the branch conditions
are satisfied, such that the instruction stream is redirected to the target address of the branch.

When operating in external (DBCR0[EDM] = 1) debug mode, the occurrence of a BRT debug event is
recorded in DBSR[BRT]. In external debug mode, the setting of PCCR0[DBA] determines the resulting debug
actions. If the debug action is a stop, the processor enters the stop state and ceases the processing of
instructions. The program counter contains the address of the branch instruction that caused the BRT debug
event. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues, and any
additional debug actions are determined by the setting of DBCR0[IDM] as described below.

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), the
occurrence of a BRT debug event is recorded in DBSR[BRT] and causes the instruction execution to be
suppressed. A debug interrupt occurs with CSRR0 set to the address of the branch instruction that caused
the BRT debug event.

When debug interrupts are disabled (MSR[DE] = 0), BRT debug events cannot occur. Because taken
branches are a very common operation and thus likely to be frequently executed within the critical class inter-
rupt handlers (which typically have MSR[DE] set to 0), allowing BRT debug events under these conditions
would lead to an undesirable number of delayed (and hence imprecise) debug interrupts.

10.4.6 Trap (TRAP) Debug Event

TRAP debug events occur when TRAP debug events are enabled (DBCR0[TRAP] = 1) and execution is
attempted of a trap (tw, twi, td, tdi) instruction for which the trap condition is satisfied.

When enabled, the occurrence of a TRAP debug event is recorded in DBSR[TRAP]. If debug interrupts are
not enabled (MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The resulting actions
taken by the processor due to the TRAP debug event depend on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the trap instruction that caused the
TRAP debug event. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues,
and any additional debug actions are determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with CSRR0 set to the address of the trap instruction that caused the TRAP debug
event. When operating in internal debug mode with debug interrupts disabled (MSR[DE] = 0), the debug
interrupt does not occur immediately. Instruction execution is suppressed and a trap exception type of
program interrupt occurs instead. A debug interrupt also occurs later, if and when MSR[DE] is set to 1. This
enables debug interrupts, assuming software has not cleared the TRAP debug event status from the DBSR in
the meantime. Upon such a “delayed” interrupt, the debug interrupt handler software can query the
DBSR[IDE] field to determine that the debug interrupt has occurred imprecisely.

10.4.7 Return (RET) Debug Event

RET debug events occur when RET debug events are enabled (DBCR0[RET] = 1) and execution is
attempted of a noncritical class return (rfi) instruction.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 413 of 864

When enabled, the occurrence of a RET debug event is recorded in DBSR[RET]. If debug interrupts are not
enabled (MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The resulting actions taken by
the processor due to the RET debug event depend on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the return instruction that caused the
RET debug event. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues,
and any additional debug actions are determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with CSRR0 set to the address of the return instruction that caused the RET debug
event. When operating in internal debug mode with debug interrupts disabled (MSR[DE] = 0), the debug
interrupt does not occur immediately. Instead, instruction execution continues, and a debug interrupt occurs if
and when MSR[DE] is set to 1. This enables debug interrupts, assuming software has not cleared the RET
debug event status from the DBSR in the meantime. Upon such a “delayed” interrupt, the debug interrupt
handler software can query the DBSR[IDE] field to determine that the debug interrupt has occurred impre-
cisely.

10.4.8 Interrupt (IRPT) Debug Event

IRPT debug events occur when IRPT debug events are enabled (DBCR0[IRPT] = 1) and a base class inter-
rupt occurs. Critical or machine check class interrupts cannot cause IRPT debug events. Otherwise, a debug
interrupt caused by an IRPT debug event would always be imprecise by necessity, because an interrupt that
caused an IRPT debug event would also cause MSR[DE] to be set to 0.

When enabled, the occurrence of an IRPT debug event is recorded in DBSR[IRPT]. If debug interrupts are
not enabled (MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The resulting actions
taken by the processor due to the IRPT debug event depend on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that would have
executed next, had the IRPT debug event not occurred. Because the IRPT debug event is caused by the
occurrence of an interrupt, by definition this address is that of the first instruction of the interrupt handler for
the interrupt type that caused the IRPT debug event. If the PCCR0[DBA] decode does not stop the processor,
instruction execution continues, and any additional debug actions are determined by the setting of
DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with CSRR0 set to the address of the instruction that would have executed next, had
the IRPT debug event not occurred. Because the IRPT debug event is caused by the occurrence of some
other interrupt, by definition this address is that of the first instruction of the interrupt handler for the interrupt
type that caused the IRPT debug event. When operating in internal debug mode with debug interrupts
disabled (MSR[DE] = 0), the debug interrupt does not occur immediately. Instead, instruction execution
continues, and a debug interrupt occurs if and when MSR[DE] is set to 1. This enables debug interrupts,
assuming software has not cleared the IRPT debug event status from the DBSR in the meantime. Upon such
a “delayed” interrupt, the debug interrupt handler software can query the DBSR[IDE] field to determine that
the debug interrupt has occurred imprecisely.

User’s Manual

A2 Processor

Debug Facilities

Page 414 of 864
Version 1.3

October 23, 2012

10.4.9 Unconditional Debug Event (UDE)

UDE debug events occur when a debug tool asserts the unconditional debug event request via the SCOM-
accessible THRCTL[UDE] bit. The UDE debug event is the only event that does not have a corresponding
enable field in either DBCR0 or DBCR3.

The occurrence of a UDE debug event is recorded in DBSR[UDE]. If debug interrupts are not enabled
(MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The resulting actions taken by the
processor due to the UDE debug event depend on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that would have
executed next, had the UDE debug event not occurred. If the PCCR0[DBA] decode does not stop the
processor, instruction execution continues, and any additional debug actions are determined by the setting of
DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
Debug interrupt occurs with CSRR0 set to the address of the instruction that would have executed next, had
the UDE debug event not occurred. When operating in internal debug mode with debug interrupts disabled
(MSR[DE] = 0), the debug interrupt does not occur immediately. Instead, instruction execution continues, and
a debug interrupt occurs if and when MSR[DE] is set to 1. This enables debug interrupts, assuming software
has not cleared the UDE debug event status from the DBSR in the meantime. Upon such a “delayed” inter-
rupt, the debug interrupt handler software can query the DBSR[IDE] field to determine that the debug inter-
rupt has occurred imprecisely.

10.4.10 Instruction Value Compare (IVC) Debug Event

The instruction value compare function provides a method of comparing an instruction against a set of mask
registers and performing selected actions when a match condition occurs. The masks are implemented
through the Instruction Match (IMR) and Instruction Match Mask (IMMR) registers. The IMR contains the
instruction compare data, and the IMMR is used to hold a 32-bit mask. A match occurs when the instruction
data bitwise ANDed against the IMMR equals the IMR also bitwise ANDed against the IMMR. An instruction
value compare debug event is enabled by setting DBCR3[IVC].

When enabled, the occurrence of an IVC debug event is recorded in DBSR[IVC]. If debug interrupts are not
enabled (MSR[DE] = 0), the imprecise debug event (DBSR[IDE]) bit is also set. The resulting actions taken by
the processor due to the IVC debug event depend on the specific debug configuration.

When operating in external debug mode (DBCR0[EDM] = 1), the setting of PCCR0[DBA] determines the
resulting debug actions. If the debug action is a stop, the processor enters the stop state and ceases the
processing of instructions. The program counter contains the address of the instruction that caused the IVC
match to occur. If the PCCR0[DBA] decode does not stop the processor, instruction execution continues, and
any additional debug actions are determined by the setting of DBCR0[IDM].

When operating in internal debug mode (DBCR0[IDM] = 1) with debug interrupts enabled (MSR[DE] = 1), a
debug interrupt occurs with CSRR0 set to the address of the instruction that caused the IVC debug event.
When operating in internal debug mode with debug interrupts disabled (MSR[DE] = 0), the debug interrupt
does not occur immediately. Instead, instruction execution continues, and a debug interrupt occurs if and
when MSR[DE] is set to 1. This enables debug interrupts, assuming software has not cleared the IVC debug
event status from the DBSR in the meantime. Upon such a “delayed” interrupt, the debug interrupt handler
software can query the DBSR[IDE] field to determine that the debug interrupt has occurred imprecisely.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 415 of 864

10.4.11 Debug Event Summary

Table 10-3 summarizes each of the debug event types, and the effect of the debug modes and MSR[DE] on
their occurrence.

10.5 Debug Reset

Software can initiate an immediate reset operation by setting DBCR0[RST] to a nonzero value. The A2 core
decodes this field and activates one of three external reset request signals. The exact meaning associated
with these reset requests, and any actions taken in response to them, are chip or system dependent. Soft-
ware-initiated reset requests are described in Section 4 Initialization on page 153.

10.6 Debug Timer Freeze

To maintain the semblance of “real time” operation while a system is being debugged, DBCR0[FT] can be set
to 1, which causes all of the timers for that thread to stop incrementing or decrementing for as long as a
debug event bit is set in the DBSR, or until DBCR0[FT] is set to 0. See Timer Facilities on page 387 for more
information about the operation of the A2 core timers.

10.7 Debug Registers

Various Special Purpose Registers (SPRs) are used to enable the debug modes, to configure and record
debug events, and to communicate with debug tool hardware and software. These debug registers can be
accessed either through software running on the processor or by the SCOM interface of the A2 core through
the Ram instruction stuffing facilities.

For the debug facilities on the A2 core, all control and status registers (DBCR0 - DBCR3, DBSR) and the
instruction value registers (IMMR, IMR) are replicated per thread. The data registers used to hold other
compare values (IAC1 - IAC4, DAC1 - DAC4, DVC1 - DVC2) are implemented per core, and therefore need
to be shared when debug operations are run simultaneously by multiple threads.

Programming Note: It is the responsibility of software to synchronize the context of any changes to the
debug facility registers. Specifically, when changing the contents of any of the debug facility registers,
software must execute an isync instruction both before and after the changes to these registers, to ensure

Table 10-3. Debug Event Summary

MSR
[DE]

External
Debug
Mode

Internal
Debug
Mode

Debug Events

IAC DAC DVC ICMP BRT TRAP RET IRPT UDE IVC

1 Note 1 Note 1 Yes Yes Yes Yes Yes Yes Note 2 Note 2 Yes Yes

0 Note 1 Note 1 Yes Yes Yes No No Yes Note 2 Note 2 Yes Yes

Notes:

1. The occurrence of debug events (to activate bits in the DBSR) is not dependent on the setting of DBCR0[EDM] or DBCR0[IDM].
Actions taken in response to the debug event, however, depend on the values of MSR[DE] along with the state of internal and
external debug modes. When both DBCR0[EDM] and DBCR0[IDM] are active, the external debug mode actions take precedence
(that is, the processor stops before the debug interrupt occurs).

2. RET and IRPT debug events can only occur for noncritical class interrupts.

User’s Manual

A2 Processor

Debug Facilities

Page 416 of 864
Version 1.3

October 23, 2012

that all preceding instructions use the old values of the registers, and that all succeeding instructions use the
new values. In addition, when changing any of the debug facility register fields related to the DAC debug
events, DVC debug events, or both, software must execute an msync instruction before making the changes,
to ensure that all storage accesses complete using the old context of these register fields.

10.7.1 Debug Control Register 0 (DBCR0)

DBCR0 is an SPR that is used to enable debug modes and events, reset the processor, and control timer
operation when debugging. DBCR0 can be written from a GPR using mtspr and can be read into a GPR
using mfspr.

Register Short Name: DBCR0 Read Access: Hypv

Decimal SPR Number: 308 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: dcfg

Bits Field Name Initial
Value Description

32 EDM RO 0b0 External Debug Mode RO

Reports the state of external debug mode.
0 External debug mode is disabled.
1 External debug mode is enabled. External debug mode is set, and the corre-

sponding debug action selected, from the decoded value of PCCR0[DBA] bits.

33 IDM 0b0 Internal Debug Mode

Enable internal debug mode. If MSR[DE] = 1, the occurrence of a debug event or the
recording of an earlier debug event in the Debug Status Register when MSR[DE] = 0 or
DBCR0[IDM] = 0 causes a debug interrupt.

34:35 RST 0b00 Reset

00 No Action
01 Reset1
10 Reset2
11 Reset3

36 ICMP 0b0 Instruction Completion Debug Event

0 ICMP debug events are disabled.
1 ICMP debug events are enabled when MSR[DE] = 1.

37 BRT 0b0 Branch Taken Debug Event

0 BRT debug events are disabled.
1 BRT debug events are enabled when MSR[DE] = 1.

38 IRPT 0b0 Interrupt Taken Debug Event Enable

0 IRPT debug events are disabled.
1 IRPT debug events are enabled.

39 TRAP 0b0 Trap Debug Event Enable

0 TRAP debug events cannot occur.
1 TRAP debug events can occur.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event Enable

0 IAC1 debug events cannot occur.
1 IAC1 debug events can occur.

general purpose register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 417 of 864

41 IAC2 0b0 Instruction Address Compare 2 Debug Event Enable

0 IAC2 debug events cannot occur.
1 IAC2 debug events can occur.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event Enable

0 IAC3 debug events cannot occur.
1 IAC3 debug events can occur.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event Enable

0 IAC4 debug events cannot occur.
1 IAC4 debug events can occur.

44:45 DAC1 0b00 Data Address Compare 1 Debug Event Enable

00 Disabled: DAC1 debug events cannot occur.
01 Store only: DAC1 debug events can occur only if a store-type data storage

access.
10 Load only: DAC1 debug events can occur only if a load-type data storage access.
11 Any: DAC1 debug events can occur on any data storage access.

46:47 DAC2 0b00 Data Address Compare 2 Debug Event Enable

00 Disabled: DAC2 debug events cannot occur.
01 Store only: DAC2 debug events can occur only if a store-type data storage

access.
10 Load only: DAC2 debug events can occur only if a load-type data storage access.
11 Any: DAC2 debug events can occur on any data storage access.

48 RET 0b0 Return Debug Event Enable

0 RET debug events cannot occur.
1 RET debug events can occur.

49:58 /// 0x0 Reserved

59:60 DAC3 0b00 Data Address Compare 3 Debug Event Enable

00 Disabled: DAC3 debug events cannot occur.
01 Store only: DAC3 debug events can occur only if a store-type data storage

access.
10 Load only: DAC3 debug events can occur only if a load-type data storage access.
11 Any: DAC3 debug events can occur on any data storage access.

61:62 DAC4 0b00 Data Address Compare 4 Debug Event Enable

00 Disabled: DAC4 debug events cannot occur.
01 Store only: DAC4 debug events can occur only if a store-type data storage

access.
10 Load only: DAC4 debug events can occur only if a load-type data storage access.
11 Any: DAC4 debug events can occur on any data storage access.

63 FT 0b0 Freeze Timers on Debug Event

0 Enable clocking of timers.
1 Disable clocking of timers if any DBSR bit is set (except MRR).

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Debug Facilities

Page 418 of 864
Version 1.3

October 23, 2012

10.7.2 Debug Control Register 1 (DBCR1)

DBCR1 is an SPR that is used to configure IAC debug events. DBCR1 can be written from a GPR using mtsp
and can be read into a GPR using mfspr.

Register Short Name: DBCR1 Read Access: Hypv

Decimal SPR Number: 309 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 IAC1US 0b00 Instruction Address Compare 1 User/Supervisor Mode

00 Enabled: IAC1 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC1 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC1 debug events can occur only if MSR[PR] = 1.

34:35 IAC1ER 0b00 Instruction Address Compare 1 Effective/Real Mode

00 Effective: IAC1 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC1 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC1 debug events are based on effective addresses and if

MSR[IS] = 1.

36:37 IAC2US 0b00 Instruction Address Compare 2 User/Supervisor Mode

00 Enabled: IAC2 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC2 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC2 debug events can occur only if MSR[PR] = 1.

38:39 IAC2ER 0b00 Instruction Address Compare 2 Effective/Real Mode

00 Effective: IAC2 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC2 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC2 debug events are based on effective addresses and if

MSR[IS] = 1.

40 /// 0b0 Reserved

41 IAC12M 0b0 Instruction Address Compare 1/2 Mode

0 Exact address compare.
1 Address bit match.

42:47 /// 0x0 Reserved

48:49 IAC3US 0b00 Instruction Address Compare 3 User/Supervisor Mode

00 Enabled: IAC3 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC3 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC3 debug events can occur only if MSR[PR] = 1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 419 of 864

10.7.3 Debug Control Register 2 (DBCR2)

DBCR2 is an SPR that is used to configure DAC and DVC debug events. DBCR2 can be written from a GPR
using mtspr and can be read into a GPR using mfspr.

50:51 IAC3ER 0b00 Instruction Address Compare 3 Effective/Real Mode

00 Effective: IAC3 debug events are based on effective addresses.
01 Not Implemented.
10 Effective IS0: IAC3 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC3 debug events are based on effective addresses and if

MSR[IS] = 1.

52:53 IAC4US 0b00 Instruction Address Compare 4 User/Supervisor Mode

00 Enabled: IAC4 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC4 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC4 debug events can occur only if MSR[PR] = 1.

54:55 IAC4ER 0b00 Instruction Address Compare 4 Effective/Real Mode

00 Effective: IAC4 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC4 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC4 debug events are based on effective addresses and if

MSR[IS] = 1.

56 /// 0b0 Reserved

57 IAC34M 0b0 Instruction Address Compare 3/4 Mode

0 Exact address compare.
1 Address bit match.

58:63 /// 0x0 Reserved

Register Short Name: DBCR2 Read Access: Hypv

Decimal SPR Number: 310 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 DAC1US 0b00 Data Address Compare 1 User/Supervisor Mode

00 Enabled: DAC1 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC1 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC1 debug events can occur only if MSR[PR] = 1.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Debug Facilities

Page 420 of 864
Version 1.3

October 23, 2012

34:35 DAC1ER 0b00 Data Address Compare 1 Effective/Real Mode

00 Effective: DAC1 debug events are based on effective addresses.
01 Not implemented.
10 Effective DS0: DAC1 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC1 debug events are based on effective addresses and if

MSR[DS] = 1.

36:37 DAC2US 0b00 Data Address Compare 2 User/Supervisor Mode

00 Enabled: DAC2 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC2 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC2 debug events can occur only if MSR[PR] = 1.

38:39 DAC2ER 0b00 Data Address Compare 2 Effective/Real Mode

00 Effective: DAC2 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC2 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC2 debug events are based on effective addresses and if

MSR[DS] = 1.

40 /// 0b0 Reserved

41 DAC12M 0b0 Data Address Compare 1/2 Mode

0 Exact: Exact address compare.
1 Bit Match: Address bit match.

42:43 /// 0b00 Reserved

44:45 DVC1M 0b00 Data Value Compare 1 Mode

00 DVC Disabled: DAC1 debug events can occur.
01 DVC All: DAC1 debug events can occur only when all bytes specified by DVC1BE

in the data value of the data storage access match their corresponding bytes in
DVC1.

10 DVC Any: DAC1 debug events can occur only when at least one of the bytes
specified by DVC1BE in the data value of the data storage access matches its cor-
responding byte in DVC1.

11 DVC HW: DAC1 debug events can occur only when all bytes specified in DVC1BE
within at least one of the halfwords of the data value of the data storage access
match their corresponding bytes in DVC1.

46:47 DVC2M 0b00 Data Value Compare 2 Mode

00 DVC Disabled: DAC2 debug events can occur.
01 DVC All: DAC2 debug events can occur only when all bytes specified by DVC2BE

in the data value of the data storage access match their corresponding bytes in
DVC2.

10 DVC Any: DAC2 debug events can occur only when at least one of the bytes
specified by DVC2BE in the data value of the data storage access matches its cor-
responding byte in DVC2.

11 DVC HW: DAC2 debug events can occur only when all bytes specified in DVC2BE
within at least one of the halfwords of the data value of the data storage access
match their corresponding bytes in DVC2.

48:55 DVC1BE 0x0 Data Value Compare 1 Byte Enables

Specifies which bytes in the aligned data value being read or written by the storage access
are compared to the corresponding bytes in DVC1.

56:63 DVC2BE 0x0 Data Value Compare 2 Byte Enables

Specifies which bytes in the aligned data value being read or written by the storage access
are compared to the corresponding bytes in DVC2.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 421 of 864

10.7.4 Debug Control Register 3 (DBCR3)

DBCR3 is an SPR that is used to configure DAC and DVC debug events and to enable IVC debug events.
DBCR3 can be written from a GPR using mtspr and can be read into a GPR using mfspr.

Register Short Name: DBCR3 Read Access: Hypv

Decimal SPR Number: 848 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 DAC3US 0b00 Data Address Compare 3 User/Supervisor Mode

00 Enabled: DAC3 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC3 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC3 debug events can occur only if MSR[PR] = 1.

34:35 DAC3ER 0b00 Data Address Compare 3 Effective/Real Mode

00 Effective: DAC3 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC3 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC3 debug events are based on effective addresses and if

MSR[DS] = 1.

36:37 DAC4US 0b00 Data Address Compare 4 User/Supervisor Mode

00 Enabled: DAC4 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC4 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC4 debug events can occur only if MSR[PR] = 1.

38:39 DAC4ER 0b00 Data Address Compare 4 Effective/Real Mode

00 Effective: DAC4 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC4 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC4 debug events are based on effective addresses and if

MSR[DS] = 1.

40 /// 0b0 Reserved

41 DAC34M 0b0 Data Address Compare 3/4 Mode

0 Exact address compare.
1 Address bit match.

42:62 /// 0x0 Reserved

63 IVC 0b0 Instruction Value Compare Event

0 Instruction value compare events disabled.
1 Instruction value compare events enabled.

User’s Manual

A2 Processor

Debug Facilities

Page 422 of 864
Version 1.3

October 23, 2012

10.7.5 Debug Status Register (DBSR)

The DBSR contains the status of debug events and information about the type of the most recent reset. The
status bits are set by the occurrence of debug events, while the reset type information is updated upon the
occurrence of any of the three reset types.

The DBSR is read into a GPR using mfspr. Clearing the DBSR is performed using mtspr by placing a 1 in
the GPR source register in all bit positions that are to be cleared in the DBSR, and a 0 in all other bit posi-
tions. The data written from the GPR to the DBSR is not direct data, but a mask. A 1 clears the bit and a 0
leaves the corresponding DBSR bit unchanged.

Register Short Name: DBSR Read Access: Hypv

Decimal SPR Number: 304 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: WC

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 IDE 0b0 Imprecise Debug Event

Set to 1 if MSRDE = 0 and a debug event causes its respective Debug Status Register bit
to be set to 1.

33 UDE 0b0 Unconditional Debug Event

Set to 1 if an unconditional debug event occurred.

34:35 MRR 0b00 Most Recent Reset
Set to one of three values when a reset occurs:
00 No Action
01 Reset1
10 Reset2
11 Reset3

36 ICMP 0b0 Instruction Complete Debug Event
Set to 1 if an instruction completion debug event occurred and DBCR0[ICMP] = 1.

37 BRT 0b0 Branch Taken Debug Event
Set to 1 if a branch taken debug event occurred and DBCR0[BRT] = 1.

38 IRPT 0b0 Interrupt Taken Debug Event

Set to 1 if an interrupt taken debug event occurred and DBCR0[IRPT] = 1.

39 TRAP 0b0 Trap Instruction Debug Event

Set to 1 if a trap instruction debug event occurred and DBCR0[TRAP] = 1.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event

Set to 1 if an IAC1 debug event occurred and DBCR0[IAC1] = 1.

41 IAC2 0b0 Instruction Address Compare 2 Debug Event

Set to 1 if an IAC2 debug event occurred and DBCR0[IAC2] = 1.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event

Set to 1 if an IAC3 debug event occurred and DBCR0[IAC3] = 1.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event

Set to 1 if an IAC4 debug event occurred and DBCR0[IAC4] = 1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 423 of 864

10.7.6 Debug Status Register Write Register (DBSRWR)

The DBSRWR is a write only register with the same format as the DBSR. It can be used to set the corre-
sponding DBSR bit when running in the hypervisor state (MSR[PR,GS] = 00) using an mtspr instruction.

44 DAC1R 0b0 Data Address Compare 1 Read Debug Event

Set to 1 if a read-type DAC1 debug event occurred and DBCR0[DAC1] = 0b10 or
DBCR0[DAC1] = 0b11.

45 DAC1W 0b0 Data Address Compare 1 Write Debug Event

Set to 1 if a write-type DAC1 debug event occurred and DBCR0[DAC1] = 0b01 or
DBCR0[DAC1] = 0b11.

46 DAC2R 0b0 Data Address Compare 2 Read Debug Event

Set to 1 if a read-type DAC2 debug event occurred and DBCR0[DAC2] = 0b10 or
DBCR0[DAC2] = 0b11.

47 DAC2W 0b0 Data Address Compare 2 Write Debug Event

Set to 1 if a write-type DAC2 debug event occurred and DBCR0[DAC2] = 0b01 or
DBCR0[DAC2] = 0b11.

48 RET 0b0 Return Debug Event

Set to 1 if a return debug event occurred and DBCR0[RET] = 1.

49:58 /// 0x0 Reserved

59 DAC3R 0b0 Data Address Compare 3 Read Debug Event

Set to 1 if a read-type DAC3 debug event occurred and DBCR0[DAC3] = 0b10 or
DBCR0[DAC3] = 0b11.

60 DAC3W 0b0 Data Address Compare 3 Write Debug Event

Set to 1 if a write-type DAC3 debug event occurred and DBCR0[DAC3] = 0b01 or
DBCR0[DAC3] = 0b11.

61 DAC4R 0b0 Data Address Compare 4 Read Debug Event

Set to 1 if a read-type DAC4 debug event occurred and DBCR0[DAC4] = 0b10 or
DBCR0[DAC4] = 0b11.

62 DAC4W 0b0 Data Address Compare 4 Write Debug Event

Set to 1 if a write-type DAC4 debug event occurred and DBCR0[DAC4] = 0b01 or
DBCR0[DAC4] = 0b11.

63 IVC 0b0 Instruction Value Compare Event

Set to 1 if an IVC debug event occurred with DBCR3[IVC] = 1.

Register Short Name: DBSRWR Read Access: None

Decimal SPR Number: 306 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 IDE 0b0 Imprecise Debug Event

Sets corresponding DBSR bit.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Debug Facilities

Page 424 of 864
Version 1.3

October 23, 2012

33 UDE 0b0 Unconditional Debug Event

Sets corresponding DBSR bit.

34:35 MRR 0b00 Most Recent Reset

Sets corresponding DBSR bit.

36 ICMP 0b0 Instruction Complete Debug Event

Sets corresponding DBSR bit.

37 BRT 0b0 Branch Taken Debug Event

Sets corresponding DBSR bit.

38 IRPT 0b0 Interrupt Taken Debug Event

Sets corresponding DBSR bit.

39 TRAP 0b0 Trap Instruction Debug Event

Sets corresponding DBSR bit.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event

Sets corresponding DBSR bit.

41 IAC2 0b0 Instruction Address Compare 2 Debug Event

Sets corresponding DBSR bit.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event

Sets corresponding DBSR bit.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event

Sets corresponding DBSR bit.

44 DAC1R 0b0 Data Address Compare 1 Read Debug Event

Sets corresponding DBSR bit.

45 DAC1W 0b0 Data Address Compare 1 Write Debug Event

Sets corresponding DBSR bit.

46 DAC2R 0b0 Data Address Compare 2 Read Debug Event

Sets corresponding DBSR bit.

47 DAC2W 0b0 Data Address Compare 2 Write Debug Event

Sets corresponding DBSR bit.

48 RET 0b0 Return Debug Event

Sets corresponding DBSR bit.

49:58 /// 0x0 Reserved

59 DAC3R 0b0 Data Address Compare 3 Read Debug Event

Sets corresponding DBSR bit.

60 DAC3W 0b0 Data Address Compare 3 Write Debug Event

Sets corresponding DBSR bit.

61 DAC4R 0b0 Data Address Compare 4 Read Debug Event

Sets corresponding DBSR bit.

62 DAC4W 0b0 Data Address Compare 4 Write Debug Event

Sets corresponding DBSR bit.

63 IVC 0b0 Instruction Value Compare Event

Sets corresponding DBSR bit.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 425 of 864

10.7.7 Instruction Address Compare Registers (IAC1–IAC4)

The four IAC registers specify the addresses upon which IAC debug events should occur. Each of the IAC
registers can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

Register Short Name: IAC1 Read Access: Hypv

Decimal SPR Number: 312 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC1 0x0 Instruction Address Compare 1

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC1 and
IAC2. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

Register Short Name: IAC2 Read Access: Hypv

Decimal SPR Number: 313 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC2 0x0 Instruction Address Compare 2

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC1 and
IAC2. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

Register Short Name: IAC3 Read Access: Hypv

Decimal SPR Number: 314 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

User’s Manual

A2 Processor

Debug Facilities

Page 426 of 864
Version 1.3

October 23, 2012

10.7.8 Data Address Compare Registers (DAC1–DAC2)

The four DAC registers specify the addresses upon which DAC debug events, or DVC debug events, or both
should occur. Each of the DAC registers can be written from a GPR using mtspr and can be read into a GPR
using mfspr.

Bits Field Name Initial
Value Description

0:61 IAC3 0x0 Instruction Address Compare 3

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC3 and
IAC4. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

Register Short Name: IAC4 Read Access: Hypv

Decimal SPR Number: 315 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC4 0x0 Instruction Address Compare 4

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC3 and
IAC4. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

Register Short Name: DAC1 Read Access: Hypv

Decimal SPR Number: 316 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC1 0x0 Data Address Compare 1

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC1 and
DAC2.

Register Short Name: DAC2 Read Access: Hypv

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 427 of 864

10.7.9 Data Value Compare Registers (DVC1–DVC2)

The DVC registers specify the data values upon which DVC debug events should occur. Each of the DVC
registers can be written from a GPR using mtspr and can be read into a GPR using mfspr.

Decimal SPR Number: 317 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC2 0x0 Data Address Compare 2

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC1 and
DAC2.

Register Short Name: DAC3 Read Access: Hypv

Decimal SPR Number: 849 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC3 0x0 Data Address Compare 3

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC3 and
DAC4.

Register Short Name: DAC4 Read Access: Hypv

Decimal SPR Number: 850 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC4 0x0 Data Address Compare 4

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC3 and
DAC4.

Register Short Name: DVC1 Read Access: Hypv

Decimal SPR Number: 318 Write Access: Hypv

User’s Manual

A2 Processor

Debug Facilities

Page 428 of 864
Version 1.3

October 23, 2012

10.7.10 Instruction Address Register (IAR)

The IAR indicates the address of the current instruction at the completion point, or of the last instruction that
has passed the completion point.

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DVC1 0x0 Data Value Compare 1

A DAC1R, DAC1W debug event can be enabled to occur upon loads or stores of a specific
data value specified in DVC1. DBCR2[DVC1M] and DBCR2[DVC1BE] control how the con-
tents of the DVC1 are compared with the value.

Register Short Name: DVC2 Read Access: Hypv

Decimal SPR Number: 319 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DVC2 0x0 Data Value Compare 2

A DAC2R, DAC2W debug event can be enabled to occur upon loads or stores of a specific
data value specified in DVC2. DBCR2[DVC2M] and DBCR2[DVC2BE] control how the con-
tents of the DVC2 are compared with the value.

Register Short Name: IAR Read Access: Hypv

Decimal SPR Number: 882 Write Access: Hypv

Initial Value: 0xFFFFFFFFFFFFFFFC Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial Value Description

0:61 IAR 0x3FFFFFFF
FFFFFFF

Instruction Address Register

Indicates the address of the current instruction at the completion point, or of the last instruction
that passed the completion point. The completion point is the point at which all interrupts have
been process and the instruction is guaranteed to complete.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 429 of 864

10.7.11 Instruction Match Mask Registers (IMMR)

The IMR and IMMR registers are used together to specify bits compared against an instruction, to determine
if an instruction value compare (IVC) debug event should occur. A match occurs when the instruction data
bitwise ANDed with the IMMR equals the IMR bitwise ANDed with the IMMR. The IMMR register can be
written from a GPR using mtspr and can be read into a GPR using mfspr.

10.7.12 Instruction Match Registers (IMR)

The IMR and IMMR registers are used together to specify bits compared against an instruction, to determine
if an instruction value compare (IVC) debug event should occur. A match occurs when the instruction data
bitwise ANDed with the IMMR equals the IMR bitwise ANDed with the IMMR. The IMR register can be written
from a GPR using mtspr and can be read into a GPR using mfspr.

10.8 Instruction Stuffing

The core provides a method of forcing instructions into the processor pipeline through a set of SCOM-acces-
sible registers and a special operating mode called Ram mode. When in Ram mode, instructions can be
inserted into a selected thread’s pipeline, allowing code execution and access to GPRs and SPRs. There are
three registers dedicated for Ram support: the Ram Command (RAMC), Ram Instruction (RAMI), and Ram
Data (RAMD) Registers.

Register Short Name: IMMR Read Access: Hypv

Decimal SPR Number: 881 Write Access: Hypv

Initial Value: 0x00000000FFFFFFFF Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 MASK 0xFFFFFFFF Instruction Mask

Register Short Name: IMR Read Access: Hypv

Decimal SPR Number: 880 Write Access: Hypv

Initial Value: 0x00000000FFFFFFFF Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 MATCH 0xFFFFFFFF Instruction Match

User’s Manual

A2 Processor

Debug Facilities

Page 430 of 864
Version 1.3

October 23, 2012

The RAMD register receives the results of any Rammed instruction. The RAMI register specifies the 32-bit
Ram instruction field. The RAMC register provides control and status over all Ram activity. RAMC register
fields have the following functions:

• Extension bits for specifying microcode scratch registers as the instruction source and target fields.
• Control bits that enable Ram Mode, select a thread, and start execution of the Rammed instruction
• Additional debug controls for overriding specific processor functions
• Status bits for indicating error conditions, and when the Rammed instruction has completed

See Section 10.8.2 beginning on page 431 for details of the Ram related registers.

10.8.1 Ram Mode Overview

Before performing any instruction stuffing activity, Ram operations must be enabled, and the thread to be
Rammed must be put in a stopped state. Ram mode for that thread is then selected using the RAMC register.
Ram mode has the following characteristics:

1. Only the thread selected for instruction stuffing needs to be stopped. The other threads can continue
instruction execution at normal speed.

2. While in Ram mode, the next instruction put in the pipeline when RAMCExecute is activated comes from
the RAMI register. An instruction that alters the next instruction address (for example, branch) is not exe-
cuted in place of the Rammed instruction.

3. The Ram registers provide no address information. All Rammed instructions have an associated effective
address of 0.

4. To save state, GPRs and FPRs that are targets of any Rammed instructions must be saved off before
executing Ram, and restored upon completion.
Alternatively, microcode scratch registers can be specified as source and target registers for an instruc-
tion by setting the appropriate RAMC instruction field extension bits (RAMC[32:35]).

5. All Ram mode access to core facilities is through the RAMI and RAMC registers. The effect of this is that
any store operations (that is, to a GPR) must have the data broken up into 16-bit groupings and stored
using immediate instructions.

6. The results of any PowerPC instruction executed in Ram mode are placed in the RAMD register (see the
note for item 7).

7. When the Rammed instruction completes, indication is provided through the RAMCDone bit.

Note: Activation of RAMCDone does not ensure completion for all instructions. Certain instructions can
require additional time depending on specific results or core facilities used in the operation. These opera-
tions are: load instructions; mftgpr; multiply and divide instructions; reads to SPRs on the slowSPR bus.
Results from these operations might not be available at the time the RAMCDone pulse latches data in the
RAMD register.

For these types of operations, data from the Ram instruction can be recovered through a second Ram
instruction to the GPR where the data was loaded. For example: an mfspr r31,IMMR0 instruction loads
IMMR0 data into GPR 31. Because IMMR0 is on the slowSPR bus, the data latched into RAMD by the
first RAMCDone pulse might not be valid. By following up the first Ram operation with a second Ram
instruction (such as xori r31,r31,0), the data from IMMR0 loaded into GPR 31 is latched into RAMD,
where it can be recovered through a SCOM read.

8. Any checkstop errors that occur when Ram mode is active are indicated through the RAMCError bit and
the FIR. When in Ram mode, the reporting of checkstop errors outside of the core (next higher level FIR)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 431 of 864

can be disabled by setting PCCR0, bit 36 active (see Section 15.3.8 PC Configuration Register 0
(PCCR0) on page 725).

9. Entering Ram mode does not fence interrupts. If disabling interrupts is required, the user must ensure the
appropriate MSR bits have been cleared (or use THRCTL register interrupt disable controls as appropri-
ate; see Table 10.10 Thread Control and Status on page 441). If a Rammed instruction results in an inter-
rupt being taken, the RAMCInterrupt bit is set.

10.8.2 Ram Register Descriptions

Table 10-4. Ram Instruction and Command Register (RAMIC)

Register Short Name: RAMIC Access: RW

Register Address: x‘28’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 RAMI(32 to 63) 0 Provides read/write control over the Ram Instruction and Command Registers in implementa-
tions supporting 64-bit access.
See the RAMI and RAMC registers for individual bit descriptions.

32:63 RAMC(32 to 63) 0

Table 10-5. Ram Instruction Register (RAMI)

Register Short Name: RAMI Access: RW

Register Address: x‘29’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Instruction 0 Instruction to be executed through a Ram operation.
See the RAMC Register for related Ram control bits.

Table 10-6. Ram Command Register (RAMC)

Register Short Name: RAMC Access: RW, WO_AND, WO_OR

Register Address: x‘2A’ RW
x‘2B’ WO with AND Mask
x‘2C’ WO with OR Mask

Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

User’s Manual

A2 Processor

Debug Facilities

Page 432 of 864
Version 1.3

October 23, 2012

32 Ram Instruction Tgt1 Field Extension 0 Provides the highest order bit of the Tgt1 field when using uCode ROM
scratch register as the instruction target.

33 Ram Instruction Src1 Field Extension 0 Provides the highest order bit of the Src1 field when using uCode ROM
scratch register as the instruction source.

34 Ram Instruction Src2 Field Extension 0 Provides the highest order bit of the Src2 field when using uCode ROM
scratch register as the instruction source.

35 Ram Instruction Src3 Field Extension 0 Provides the highest order bit of the Src3 field when using uCode ROM
scratch register as the instruction source.

36:43 Reserved 0

44 Ram Mode 0 Sets Ram mode for the selected thread.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) for this bit to be valid.

45:46 Thread Select 0 Encoded thread selects for Ram operation.
00 Thread 0.
01 Thread 1.
10 Thread 2.
11 Thread 3.

47 Execute 0 When set, the Ram instruction is forced into the processor pipeline for the
selected thread.
This bit is nonpersistent; it is pulsed for one cycle and reset.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the Ram Execute signal to be valid.

48 MSR Override Enable 0 This bit enables the override of certain MSR bits for the Rammed thread.
This capability allows access to SPRs for debug where normal program
permissions would restrict that access. It can also be used to force debug
interrupts active or inactive.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR Override Enable signal to be
valid.

49 MSR[PR] Override 0 Along with MSR Override Enable, determines the problem state for the
thread. It replaces the MSR output, but does not alter the actual register
bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR[PR] Override signal to be
valid.

50 MSR[GS] Override 0 Along with MSR Override Enable, determines the guest state for the
thread. It replaces the MSR output, but does not alter the actual register
bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR[GS] Override signal to be
valid.

51 Force Ram 0 When set, the Rammed instruction is forced to completion. The intention
for this bit is to work around situations where the pipeline is stalled waiting
for load data or other conflicts.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the Force Ram signal to be valid.

52 Flush Thread 0 When set, the Rammed thread’s pipeline is flushed.
This bit is nonpersistent; it is pulsed for one cycle and reset.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) for the Flush Thread signal to be valid.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 433 of 864

53 MSR[DE] Override 0 Along with MSR Override Enable, determines if debug interrupts are
enabled for the thread. It replaces the MSR output, but does not alter the
actual register bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram Mode active for the MSR[DE] Override signal to be
valid.

54:60 Reserved 0

61 Interrupt 0 Status bit indicating that the Rammed instruction resulted in an enabled
exception. Interrogation of interrupt facilities (SRR0, SRR1, and so forth)
might be required to determine the cause of the exception.

62 Error 0 Status bit indicating that the FIR contains a checkstop error. While in Ram
mode, the reporting of checkstops outside the core (to the chiplet FIR)
can be blocked by setting PC Configuration Register 0, bit 36 = 1.

63 Done 0 Status bit indicating that the previously executed Ram Instruction has
completed.
This bit is cleared when RAMC[Execute] is activated.

Table 10-7. Ram Data Register (RAMD)

Register Short Name: RAMD Access: RW

Register Address: x‘2D’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:63 Ram Data(0 to 63) 0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
Provides read/write control over the Ram Data Registers in implementations supporting 64-bit
access.
The Ram Data Registers are updated upon activation of RAMCDone.

Table 10-8. Ram Data Register High (RAMDH)

Register Short Name: RAMDH Access: RW

Register Address: x‘2E’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Data(0 to 31) 0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
The Ram Data Registers are updated upon activation of RAMCDone.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

Debug Facilities

Page 434 of 864
Version 1.3

October 23, 2012

10.8.3 Example Ram Mode Procedures

10.8.3.1 SPR Read/Write Using GPR as Temporary Storage

This section shows the process for stopping a thread, enabling Ram operations, and performing an SPR
access through Rammed instructions. This example reads the MSR, modifies its value, and stores it back;
using a GPR as temporary storage. Specific values for the thread, GPR, and SPR are shown in this example
for clarity, but can be extended to other facilities.

Assumptions and common actions:

• After Ram mode started, these settings remain constant: RAMCRam Mode = ‘1’ and RAMCThread Select =
‘01’ (selects thread 1).

• Assumes that the 64-bit RAMIC register is used to set Ram instruction and controls simultaneously. The
procedure describes PowerPC instructions written to the RAMIC register. Assume that RAMCRam Mode =
‘1’, RAMCThread Select = ‘01’, and RAMCExecute = ‘1’ is written along with the instruction.

• GPR r1 is used as a temporary register (needs to be saved off and restored).

• Assumes that the RAMD register is read to retrieve all 64 bits of Ram data in one operation.

• “Verify Ram status” means [SCOM read RAMC; verify bits 61:62 = ‘00’ and bit 63 = ‘1’]

Read; modify; write the MSR:

1. Stop execution on the selected thread and enable Ram operations.
• Stop thread 1 [SCOM write THRCTL(33) = ‘1’].
• Verify thread 1 stopped [SCOM read THRCTL(41) = ‘0’].
• Enable Ram operations [SCOM write PCCR0 = 0x0000_0000_4000_0000].

2. Save off original data from temporary register (r1).
• Result of Rammed instruction loads r1 into RAMD [SCOM write RAMIC Instr = “xori r1, r1, 0”].
• Verify Ram status.
• Save off RAMD [SCOM read RAMD] to SaveReg.

3. Read MSR and set desired bits.
• Copy MSR to r1 [SCOM write RAMIC Instr = “mfspr r1, MSR”]; Verify Ram status.
• Get MSR from RAMD [SCOM read RAMD].
• Modify MSR bits to new value.

Table 10-9. Ram Data Register Low (RAMDL)

Register Short Name: RAMDL Access: RW

Register Address: x‘2F’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Data
(32 to 63)

0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
The Ram Data Registers are updated upon activation of RAMCDone.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 435 of 864

4. Write MSR with new value.
• Clear r1 [SCOM write RAMC Instr = “li r1, 0”]; Verify Ram status.
• Write new MSR(32:47) to r1 [SCOM write RAMIC Instr = “oris r1, r1, MSR(32:47)”]; Verify Ram sta-

tus.
• Write new MSR(48:63) to r1 [SCOM write RAMIC Instr = “ori r1, r1, MSR(48:63)”]; Verify Ram status.
• Store r1 to MSR [SCOM write RAMIC Instr = “mtspr MSR, r1”]; Verify Ram status.

5. Restore original data back to temporary register (r1).
• Clear r1 [SCOM write RAMIC Instr = “li r1, 0”]; Verify Ram status.
• Write SaveReg(0:15) to r1 [SCOM write RAMIC Instr = “ori r1, r1, SaveReg(0:15)”]; Verify Ram sta-

tus.
• Shift bits in r1 by 16 [SCOM write RAMIC Instr = “sldi r1, r1, 16”]; Verify Ram status.
• Write SaveReg(16:31) to r1 [SCOM write RAMIC Instr = “ori r1, r1, SaveReg(16:31)”]; Verify Ram sta-

tus.
• Shift bits in r1 by 16 [SCOM write RAMIC Instr = “sldi r1, r1, 16”]; Verify Ram status.
• Write SaveReg(32:47) to r1 [SCOM write RAMIC Instr = “ori r1, r1, SaveReg(32:47)”]; Verify Ram sta-

tus.
• Shift bits in r1 by 16 [SCOM write RAMIC Instr = “sldi r1, r1, 16”]; Verify Ram status.
• Write SaveReg(48:63) to r1 [SCOM write RAMIC Instr = “ori r1, r1, SaveReg(48:63)”]; Verify Ram sta-

tus.

6. Disable Ram operations and restart program execution.
• End Ram mode [SCOM write RAMIC = 0x0000_0000_0000_0000].
• Disable Ram operations [SCOM write PCCR0 = 0x0000_0000_0000_0000].
• Start thread 1 execution [SCOM write THRCTL(33) = ‘0’].
• Verify thread 1 running [SCOM read THRCTL(41) = ‘1’].

10.8.3.2 Using Microcode Scratch Registers as Temporary Storage

Four microcode scratch registers are available as temporary storage when accessing core facilities through
Ram. These registers are 64 bits wide, and are specified as r0 through r3 in the Rammed instruction field
written to RAMI or RAMIC(0:31). RAMC(32:35), when set, selects a microcode scratch register as the corre-
sponding target or source register for the Rammed instruction.

See the instruction summary tables in Appendix A Processor Instruction Summary for the Target 1, Source 1,
Source 2, and Source 3 fields. For each instruction, these columns indicate how the target and source regis-
ters specified in the instruction opcode are implemented. As an example, to use microcode scratch register r0
as the RB source for a nor instruction, specify r0 in place of RB in the opcode and set RAMC(34) during the
Ram operation. Microcode scratch register r0 is selected as the Source 2 register when the nor instruction is
executed.

For floating-point opcodes, the RAMC register instruction field extension bits, RAMC(32:35), are mapped as
follows: Target 1 to an instruction target register, Source 1 to RA and FRA, Source 2 to FRC, Source 3 to RB
and FRB. As an example, to use microcode scratch register r0 as the FRB source register, specify r0 in place
of FRB in the opcode, and set RAMC(35) during the Ram operation.

Note: If the instruction summary table indicates that an instruction is microcoded, then the microcode scratch
registers should not be used as temporary storage when Ramming due to potential conflicts.

User’s Manual

A2 Processor

Debug Facilities

Page 436 of 864
Version 1.3

October 23, 2012

It is valid to set a RAMC(32:35) bit active when the corresponding target or source register is not used in the
Rammed instruction. The unused Target/Source fields are ignored by the hardware. This allows setting
RAMC(32:35) to be simplified to just writing 0xF whenever all of the target and source registers for the
Rammed instruction come from the microcode scratch registers.

The following examples describe using the microcode scratch registers along with a series of Rammed
instructions to read the value of an SPR and to write data to a 64-bit SPR. In these examples, just the instruc-
tion, the RAMI value, and the RAMC Target/Source extension bits are shown. The other RAMC (mode,
thread, execute) bits required to execute the Rammed instruction are assumed, but not specified.

Read DBSR
• // mfspr r2,DBSR

RAMI = 0x7c504aa6
RAMC(32:35) = 0x8 // Target 1 = scratch r2 (0xF is valid too as indicated in previous description)

• SCOM read RAMD to get DBSR value

Write DAC1
• // lis r1,dataHi(0:15)

RAMI = (0x3c200000 | (dataHi >> 16))
RAMC(32:35) = 0x8 // Target 1 = scratch r1

• // ori r1,r1,dataHi(16:31)
RAMI = (0x60210000 | (dataHi & 0xFFFF))
RAMC(32:35) = 0xC // Target 1 = scratch r1; Source 1 = scratch r1

• // Load shift amount into scratch register
// li r0,32
RAMI = 0x38000020
RAMC(32:35) = 0x8 // Target 1 = scratch r0

• // Shift dataHi left
// sld r1,r1,r0
RAMI = 0x7c210036
RAMC(32:35) = 0xE // Target 1 = scratch r1; Source 1 = scratch r1; Source 2 = scratch r0

• // oris r1,r1,dataLo(0:15)
RAMI = (0x64210000 | ((dataLo >> 16) & 0xFFFF)))
RAMC(32:35) = 0xC // Target 1 = scratch r1; Source 1 = scratch r1

• // ori r1,r1,dataLo(16:31)
RAMI = (0x60210000 | (dataLo & 0xFFFF))
RAMC(32:35) = 0xC // Target 1 = scratch r1; Source 1 = scratch r1

• // mtspr DAC1,r1
RAMI = 0x7c3c4ba6
RAMC(32:35) = 0x4 // Source 1 = scratch r1

10.8.4 Supported Ram Instructions

The hardware imposes no restrictions on which instructions are can be inserted in the pipeline through Ram.
Any valid A2 instruction, including instructions that are executed as microcoded operations, can be Rammed.
The key factor is that, while in Ram mode, the next instruction to be Rammed comes from the RAMI register.
Any instruction causing a jump to a different code location will update the IFAR, which will redirect software
once Ram mode is exited.

Instruction Fetch Address Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 437 of 864

Some examples of problem instructions while in Ram mode are:

• Branches. Next instruction will not come from the branch target address.
• Return from interrupts. Next instruction will not come from the associated SRR1 address.
• Any instruction that would cause an interrupt to be taken.

Depending on the situation, executing the types of instructions listed above might still be desirable. Ram
could be used to point to a specific code location; once Ram mode is disabled instruction execution would
then commence from the value specified in the IAR.

10.9 Direct Access to I-Cache and D-Cache Directories

The Directory Read Control Registers (IUDBG0 and XUDBG0) allow reads of the content of a specific, phys-
ical location in the I-cache or D-cache directory and store the data into debug registers. No address transla-
tion is done because only the content of a specific cache directory location is accessed. The contents of the
instruction or data cache directory entry associated with the selected cache block are placed into IUDBG1
and IUDBG2 for I-cache reads or into XUDBG1 and XUDBG2 for D-cache reads, and the Done bit is set in
the associated IUDBG0 or XUDBG0 register. To guarantee that an mfspr instruction obtains the results of
the directory read, software must first read the Directory Read Control Register Done bit = 1.

Note: On version 1 hardware, all processor threads and all other mechanisms that can possibly generate a
coherent cache invalidate to the processor must be quiesced.

10.9.1 General Read D-Cache Directory Sequence for L1 D-Cache

#D-Cache Directory written to XUDBG1 and XUDBG2

A2: XUDBG1/XUDBG2  L1 D-Cache directory(address(row, way)) #hardware read directory

#software poll for done = 1

#recover XUDBG1 data

scom write RAMI  li, Rx, [address(row, way), execute = 1] #data for XUDBG0(49:62)

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom write RAMI  mtspr XUDBG0, Rx #data written to XUDBG0 on Ram execute

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom write RAMI  mfspr Rx, XUDBG0 #XUDBG0 data written to Rx on Ram execute

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom write RAMI  xori Rx, Rx, 0 #XUDBG0 on slowSPR bus; requires second Ram
operation

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom read RAMD: wait for done = 1 #data valid in RAMD

scom write RAMI  mfspr Rx, XUDBG1 #XUDBG1 data written to Rx on Ram execute

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

User’s Manual

A2 Processor

Debug Facilities

Page 438 of 864
Version 1.3

October 23, 2012

#recover XUDBG1 data

10.9.2 Instruction Unit Debug Register 0 (IUDBG0)

scom write RAMI  xori Rx, Rx, 0 #XUDBG1 on slowSPR bus; requires second Ram
operation

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom read RAMD: RAMD  Rx #XUDBG1 data valid in RAMD

scom write RAMI  mfspr Rx, XUDBG2 #XUDBG2 data written to Rx on Ram execute

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom write RAMI  xori Rx, Rx, 0 #XUDBG2 on slowSPR bus; requires second Ram
operation

scom write RAMC  0x000X0000 #set Ram mode; Ram thread; Ram execute

scom read RAMD: RAMD  Rx #XUDBG2 data valid in RAMD

Register Short Name: IUDBG0 Read Access: Hypv

Decimal SPR Number: 888 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:51 WAY 0b00 Instruction Cache Directory Way Select

Selects way for an instruction cache directory read.

52:57 ROW 0x0 Instruction Cache Directory Row Select

Selects row for an instruction cache directory read.

58:61 /// 0b0000 Reserved

62 EXEC NP 0b0 Instruction Cache Directory Read Execute NP

1 Executes an instruction cache directory read.

63 DONE 0b0 Instruction Cache Directory Read Done

1 Indicates that an instruction cache directory read operation has completed and the
IUDBG1 and IUDBG2 registers are valid.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 439 of 864

10.9.3 Instruction Unit Debug Register 1 (IUDBG1)

10.9.4 Instruction Unit Debug Register 2 (IUDBG2)

Register Short Name: IUDBG1 Read Access: Hypv

Decimal SPR Number: 889 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:52 /// 0x0 Reserved

53:55 LRU 0b000 Instruction Cache Directory LRU

Indicates value of the LRU in the instruction cache directory.

56:59 PARITY 0b0000 Instruction Cache Directory Parity

Indicates value of the parity bits in the instruction cache directory.

60 ENDIAN 0b0 Instruction Cache Directory Endian

0 Big endian.
1 Little endian.

61:62 /// 0b00 Reserved

63 VALID 0b0 Instruction Cache Directory Read Valid

0 Directory entry is not valid.
1 Directory entry is valid.

Register Short Name: IUDBG2 Read Access: Hypv

Decimal SPR Number: 890 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:63 TAG 0x0 Instruction Cache Directory Tag

Indicates value of the tag bit in the instruction cache directory.

User’s Manual

A2 Processor

Debug Facilities

Page 440 of 864
Version 1.3

October 23, 2012

10.9.5 Execution Unit Debug Register 0 (XUDBG0)

10.9.6 Execution Unit Debug Register 1 (XUDBG1)

Register Short Name: XUDBG0 Read Access: Hypv

Decimal SPR Number: 885 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:48 /// 0x0 Reserved

49:51 WAY 0b000 Data Cache Directory Way Select
Selects way for a data cache directory read.

52 /// 0b0 Reserved

53:57 ROW 0x0 Data Cache Directory Row Select
Selects row for a data cache directory read.

58:61 /// 0b0000 Reserved

62 EXEC NP 0b0 Data Cache Directory Read Execute NP

1 Executes a data cache directory read.

63 DONE 0b0 Data Cache Directory Read Done

1 Indicates a data cache directory read operation has completed and the XUDBG1
and XUDBG2 registers are valid.

Register Short Name: XUDBG1 Read Access: Hypv

Decimal SPR Number: 886 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:44 /// 0x0 Reserved

45:48 WATCH 0b0000 Data Cache Directory Watch Bits
0 Directory entry has no watch set.
1 Directory entry has watch set.

49:55 LRU 0x0 Data Cache Directory LRU
Indicates value of the LRU in the data cache directory.

56:59 PARITY 0b0000 Data Cache Directory Parity
Indicates value of the parity bits in the data cache directory.

60:61 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 441 of 864

10.9.7 Execution Unit Debug Register 2 (XUDBG2)

10.10 Thread Control and Status

The SCOM-accessible Thread Control and Status Register (THRCTL) allows debug control of thread opera-
tions such as start/stop, single-step and the monitoring of thread status bits. It is connected to the boot config-
uration ring and is configurable through scanning during the POR sequence. This section contains a brief
description of these debug functions, the THRCTL register bit definition, and a few sample procedures.

The Tx_STOP controls cause instruction fetching to stop and the thread to enter a stopped state. When
stopped, the following events occur:

• The IU stops fetching instructions; the next instruction address is preserved and used upon restart.
• Commands in the pipeline continue to completion. If a stop is attempted in the middle of a uCode

sequence, the hardware allows the uCode sequence to complete before stopping.
• The Tx_RUN status is reset to indicate that the thread is stopped.
• Snoop invalidate and TLB invalidate requests from the L2 are still handled as normal.

To single-step instructions, first put the core in debug mode (PC Configuration Register 0, bit 32 = 1) with the
designated thread stopped using the Tx_STOP control. Each time the Tx_STEP control is set to ‘1’, the IU
issues one instruction.

62 LOCK 0b0 Data Cache Directory Lock Bits
0 Directory entry is unlocked.
1 Directory entry is locked.

63 VALID 0b0 Data Cache Directory Read Valid
0 Directory entry is not valid.
1 Directory entry is valid.

Register Short Name: XUDBG2 Read Access: Hypv

Decimal SPR Number: 887 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 /// 0b0 Reserved

33:63 TAG 0x0 Data Cache Directory Tag

Indicates value of the tag bit in the data cache directory.

Bits Field Name Initial
Value Description

power-on reset

instruction unit

User’s Manual

A2 Processor

Debug Facilities

Page 442 of 864
Version 1.3

October 23, 2012

Thread activity is indicated by the Tx_RUN and Tx_PM status bits. Tx_RUN indicates that the thread is active
when set and indicates stopped when cleared. Tx_PM, when set, indicates that a thread has been stopped
due to some power management action. Power management could be the result of power savings instruc-
tions or due to activation of the stop input control signal.

The Tx_UDE bit activates an unconditional debug event by setting the UDE bit in the corresponding thread’s
Debug Status Register.

Additional fields disable specific core functions while a thread is stopped and re-enable them when the thread
returns to a “running” state (this includes single-stepping instructions). See the ASYNC_DIS, TB_DIS, and
DEC_DIS descriptions for more details on these debug aids.

Table 10-10. Thread Control and Status Register (THRCTL)

Register Short Name: THRCTL Access: RW, WO_AND, WO_OR

Register Address: x‘30’ RW
x‘31’ WO with AND Mask
x‘32’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x0000000000000000

Bits Field Name Initial
Value Description

0:31 Reserved 0

32 T0_STOP 0 When set, this thread stops instruction fetch and enters a stopped state. Instructions cur-
rently in the pipeline continue to completion.
When reset, program execution resumes at the next instruction address available before
stopping.
In addition to a SCOM write, these bits can be set by the following conditions:

• An enabled checkstop error.
• A debug compare event (when PCCR0[Tx_DBA] bits are configured to stop the

thread upon occurrence of the compare event).
• An attn instruction when configured by CCR2[EN_ATTN].

33 T1_STOP 0

34 T2_STOP 0

35 T3_STOP 0

36 T0_STEP 0 Writing a ‘1’ to this location causes one instruction for this thread to be issued. This bit is
reset upon completion of the stepped instruction.
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for the
single-step signals to be valid.

Note: Before activating Tx_STEP, the corresponding thread should be stopped
(Tx_STOP = 1 and Tx_RUN = 0).

37 T1_STEP 0

38 T2_STEP 0

39 T3_STEP 0

40 T0_RUN 0 Status bit indicating that the thread is in a running state when set.
When ‘0’, the thread is stopped.
This bit is read only. Writes have no effect.

41 T1_RUN 0

42 T2_RUN 0

43 T3_RUN 0

44 T0_PM 0 Status bit indicating that the thread is stopped due to power management. This could be
the result of a power-savings (wait) instruction or the an_ac_pm_thread_stop input con-
trol.
This bit is read only. Writes have no effect.

45 T1_PM 0

46 T2_PM 0

47 T3_PM 0

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 443 of 864

10.10.1 Using THRCTL Register to Stop Thread 0

1. SCOM write to THRCTL(32) to set the T0_STOP bit.

2. SCOM read to THRCTL(40) to verify T0_RUN bit is ‘0’.

3. At this point, access to thread SPRs and GPRs is available through Ram operations.

10.10.2 Using THRCTL Register to Start Thread 0

1. SCOM write to THRCTL(32) to clear the T0_STOP bit.

2. SCOM read to THRCTL(40) to verify T0_RUN bit is ‘1’.

10.10.3 Using THRCTL Register to Instruction Step Thread 0

1. Put core in debug mode. [SCOM write PCCR0(32) = ‘1’].

2. Stop thread 0 by setting the T0_STOP bit. [SCOM write THRCTL(32) = ‘1’].

3. Verify thread 0 has quiesced. [SCOM read THRCTL(40) = ‘0’].

4. SCOM write THRCTL(36) = ‘1’ to activate a single instruction step pulse to the XU.
(THRCTL[36 and 40] are both reset to ‘0’ when the stepped instruction completes execution.)

5. Repeat SCOM writes to THRCTL(36) until all stepped instructions have been executed.

48 T0_UDE 0 A low-to-high transition activates an unconditional debug event pulse, which sets the
corresponding DBSR[UDE] bit for this thread.
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for the
UDE signals to be valid.

Note: Activation of the unconditional debug event does not clear this bit. Another SCOM
write must be performed to reset it.

49 T1_UDE 0

50 T2_UDE 0

51 T3_UDE 0

52 ASYNC_DIS 0 This bit provides a global disable to any thread’s asynchronous interrupts as long as the
associated thread is stopped through pervasive (THRCTL[Tx_STOP],
an_ac_debug_stop or an_ac_pm_thread_stop) controls. The asynchronous interrupts
are re-enabled whenever the thread is put in a running state (this includes activation dur-
ing a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

53 TB_DIS 0 Setting this bit blocks incrementing of the time base whenever all threads are stopped
through pervasive (THRCTL[Tx_STOP], an_ac_debug_stop or an_ac_pm_thread_stop)
controls. The time base count continues whenever any thread is in a running state (this
includes activation during a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

54 DEC_DIS 0 Setting this bit blocks the counting of any thread’s decrementer, as long as that thread is
stopped through pervasive (THRCTL[Tx_STOP], an_ac_debug_stop or
an_ac_pm_thread_stop) controls. Decrementer counting is re-enabled whenever the
thread is put in a running state (this includes activation during a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

55:63 Reserved 0

Bits Field Name Initial
Value Description

execution unit

User’s Manual

A2 Processor

Debug Facilities

Page 444 of 864
Version 1.3

October 23, 2012

10.11 PC Configuration Register 0 (PCCR0)

The PC unit includes a register for miscellaneous configuration and control functions. The PC Configuration
Register 0 (PCCR0), is a SCOM-accessible register with read/write access. It is connected to the PC unit
debug configuration ring and is configurable through scanning during the POR sequence. See Table 10-11
for the function of the PCCR0 bits.

Table 10-11. PC Configuration Register 0 (PCCR0)

Register Short Name: PCCR0 Access: RW, WO_AND, WO_OR

Register Address: x‘33’ RW
x‘34’ WO with AND Mask
x‘35’ WO with OR Mask

Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 Enable Debug Mode 0 This bit places the core in debug mode.
It is used to enable debug logic such as the trace and trigger multiplexer
controls and buses.
Enabling debug mode allows various debug functions to be performed
(that is: instruction stepping; activating unconditional debug events; and
miscellaneous debug controls such as THRCTL[ASYNC_DIS, TB_DIS,
and DEC_DIS]).

33 Enable Ram Operations 0 This bit enables Ram mode operation through the RAMI, RAMC, and
RAMD registers.
It is gated with various RAMC control signals, such as: Ram Mode, Ram
Execute, MSR Override Enable, Flush Thread, and Force Ram.

34 Enable Error Injection 0 This bit enables control signals set in the ERRINJ register to force errors
to test error recovery methods.

35 Enable External Debug Stop 0 When set, this bit enables the input signal an_ac_debug_stop to stop all
threads.

36 Disable Xstop Reporting in Ram Mode 0 Setting this bit blocks the reporting of checkstop errors outside of the core
(to the chiplet FIR) when in Ram mode. A checkstop error is still indicated
by the RAMCError bit and the FIR.

37 Enable Fast Clockstop 0 This bit enables a checkstop error to directly force all core tholds active,
thereby quickly stopping clocks.
Note: The core must be in debug mode (PC Configuration Register 0, bit
32 = 1) for this bit to be valid.

38 Disable Power-savings 0 This bit blocks power-saving controls from raising the run tholds, and
thereby forcing off the associated latch clocks.
Other power-savings control signals (that is, ac_an_rvwinkle_mode) are
still active, but all core latch clocks remain enabled.

39:47 Reserved 0

48:51 Recoverable Error Counter 0 This 4-bit counter increments whenever an unmasked recoverable error
occurs. When the count value reaches 15, an error bit is set in FIR1.
The count value can be read to obtain the current value or written to pre-
set or clear it.
Note: Write access to the Recoverable Error Counter is only supported
through the RW SCOM address.

processor control

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 445 of 864

10.12 Trace and Trigger Bus

An 88-bit debug bus is brought out of the core for use by a trace array or other debug functions implemented
at the chip level. A 12-bit bus providing trace trigger information is also made available. Together, the trace
and trigger signals provide debug data and the control signals used for starting and stopping the trace array.

Each unit has one or more debug multiplexer components, with each multiplexer requiring 16 bits of control
for selecting the debug and trigger groups from among its signals. A single 32-bit SCOM register contains two
sets of debug multiplexer control bits for controlling multiplexers in different units or within the same unit.
Tables describing each unit’s debug select register and corresponding debug and trigger groups are shown in
Section C Debug and Trigger Groups on page 761.

10.12.1 Trace and Trigger Bus Overview

Each core unit shares a pass-through trace bus. As depicted in Figure 10-1, the order of trace bus data flow
from unit to unit is: AXU  PC  IU  XU  MMU. Within the XU, four debug multiplexer components are
implemented; the IU implements two. Each unit has an input for the trace bus from the previous unit, and a
pass-through multiplexer (trace bus on-ramp) to control sending the trace bus of the previous unit or its local
trace signals onto the output trace bus. The pass-through multiplexer control for the data is managed as four,
22-bit groups. The trigger bus structure is similar to the trace bus, and maintains the same unit-to-unit data
flow. Each unit can contribute up to 12 bits of trigger data onto the trigger bus. Control bits select between the
trigger bus of the previous unit or a unit’s local trigger signals as two, 6-bit groups. All units default on power
up to have the pass-through state selected for the trace and trigger buses.

52:54 T0_DBA 000 Additional actions that can be selected when a debug compare event
occurs for the indicated thread (sets DBCR0[EDM] status bit).
Debug Action Select:
000 No action.
001 Reserved (no action).
010 Stop specified thread.
011 Stop all threads.
100 Activate error signal (sets FIR1[52:55] for the appropriate

thread).
101 Activate external signal (ac_an_debug_trigger pulse).
110 Activate external signal and stop specified thread.
111 Activate external signal and stop all threads.

55:57 T1_DBA 000

58:60 T2_DBA 000

61:63 T3_DBA 000

Bits Function Initial
Value Description

auxiliary execution unit

processor control

instruction unit

execution unit

memory management unit

User’s Manual

A2 Processor

Debug Facilities

Page 446 of 864
Version 1.3

October 23, 2012

Bit 32 of PC Configuration Register 0 provides an enable for the trace and trigger bus logic in all units and is
connected to the ACT pin on the trace and trigger bus latches. In this way, they initialize to a nonclocked
state. Setting PCCR0(32) then enables the trace and trigger buses for the whole core. Similarly, bit 36 of the
Core Event Select Register (CESR) also enables the trace and trigger latches.

10.12.2 Unit Level Trace and Trigger Bus Implementation

This section describes a unit level implementation of the trace and trigger pass-through bus. Figure 10-2
shows an implementation that provides selection between multiple 88-bit debug groups. A set of four stan-
dard debug_mux components allows selection of 4:1, 8:1, 16:1, or 32:1 multiplexers for the 88-bit debug
group signals. After the debug multiplexer, the 88 bits of unit level signals can be rotated as 22-bit groups,
before being multiplexed with the input trace bus. Four 2:1 multiplexers select between the unit’s debug
signals, or the previous unit’s input trace bus on 22-bit boundaries, before exiting as the trace output bus. The
trigger bus is implemented with a fixed 4:1 multiplexer to select between four 12-bit trigger groups. The output
of the trigger multiplexer can be rotated as 6-bit groups. The unit’s local trigger signals then connect to a pair
of 2:1 multiplexers, which choose between the unit’s trigger signals or signals from the previous unit’s input
trigger bus.

The trace and trigger signals from each debug multiplexer output are latched before connection to the next
downstream debug multiplexer component. Latches on the input trace and trigger data are only implemented
if required for timing. Each debug multiplexer requires between 13 (4:1 debug multiplexer) and 16 (32:1
debug multiplexer) control bits, which are connected to a SCOM-accessible debug select register.

Figure 10-1. Pass-Through Trace and Trigger Bus Overview

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug Facilities

Page 447 of 864

10.12.3 Debug Select Registers

Each 32-bit SCOM accessible Debug Select Register can control up to two debug multiplexer components.
The debug multiplexer controls for core units are split up as follows:

• ABDSR AXU debug multiplexer 1
• IDSR IU debug multiplexer 1 and IU debug multiplexer 2
• MPDSR MMU debug multiplexer 1 and PC debug multiplexer 1
• XDSR1 XU debug multiplexer 1 and XU debug multiplexer 2
• XDSR2 XU debug multiplexer 3 and XU debug multiplexer 4

Descriptions of the debug select registers, and the debug and trigger groups connected to each debug multi-
plexer component are provided in Section C Debug and Trigger Groups on page 761.

Figure 10-2. Trace and Trigger Bus Unit Description

2 to 1
MUX

2 to 1
MUX

2 to 1
MUX

2 to 1
MUX

Debug Group 0 (0:87)
Debug Group 1 (0:87)

Debug Group n (0:87)

Trace Data Out (0:87)

Latch Trace Data In (0:87)

(0:21)

(22:43)

(44:65)

(66:87)

Rotate
(22 bit)

MUX
(4, 8, 16

or
32 to 1) Latch

Debug Mux Component

(0:87) (0:87)

(Where n is 3, 7, 15 or 31)

Debug Group Mux Select Bits
Debug Group Rotate Select Bits

Debug Group Output Select Bits

Trigger Group Rotate Select Bit

Trigger Group Output Select Bits

MUX
(4 to 1)

Trigger Group 0 (0:11)

Trigger Data Out (0:11)

Trigger Data In (0:11)

2 to 1
MUX

Latch
2 to 1
MUX

Latch

(0:5)

Trigger Group 3 (0:11)

Trigger Group 2 (0:11)
Trigger Group 1 (0:11) Rotate

(6 bit)
(0:11) (0:11)

(6:11)

Trigger Group Mux Select Bits

(2-5 bits) (2 bits)

(2 bits)

(1 bit)(2 bits)

(4 bits)

(See Note)

(See Note)

Note: Latches on input trace / trigger data only used if required for timing .

AXU/BX Debug Select Register

IU Debug Select Register

MMU/PC Debug Select Register

XU Debug Select Register1

XU Debug Select Register2

User’s Manual

A2 Processor

Debug Facilities

Page 448 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 449 of 864

11. Performance Events and Event Selection

An 8-bit event bus is brought out of the core for use by an external performance monitor unit implemented at
the chiplet level. Within the core, each unit selects from their performance events and routes them to the PC
unit as one 8-bit group. The PC unit provides the final selection from each unit’s event bits and forwards them
onto the external event bus to the chiplet level PMU.

Note: The XU contains two event multiplexer components in separate areas of logic. To differentiate
between them in this section, they are referred to as XU and LSU. LSU events and multiplexing includes the
load/store function; XU refers to logic from other sections of the execution unit.

11.1 Event Bus Overview

Figure 11-1 provides an overview of how performance event signals from each unit are put out on the
external event bus. Each unit brings out a set of signals to be used as performance events. The unit event
multiplexer within each unit allows these signals to be selected onto a 8-bit bus. The select bits used to
control signal selection in the unit event multiplexers originate from SPRs (AESR, IESR1, IESR2, MESR1,
MESR2, XESR1, XESR2, XESR3, XESR4) located within the PC unit. Each unit’s event multiplexer is sized
to match the number of performance events required by that unit.

The performance event signals from each unit are sent to the PC unit for final selection before being routed
out onto the external event bus. As with the individual units, select bits located in a PC unit SPR (CESR)
control signal selection through the core event multiplexer. As a debug feature, signals from the trace bus are
also connected to the core event multiplexer. Any signals that can be multiplexed onto ac_an_trace_bus[0:7]
can be forwarded onto the external event bus and counted using the PMU counters. See Section 10.12 on
page 445 for information about the trace bus.

Figure 11-1. Performance Event Selection Overview

mm_pc_event_bits(0:7)

MESR1(32:51)

MMU Event Selection

AESR(32:63)

fu_pc_event_bits(0:7)

FU Event Selection

IESR1(32:55)

Core Event Mux

Trace_Bus(0:7)

ac_an_event_bus(0:7)

PC Unit

Trace/Trigger
Bus Muxing

CESR(40:63)

xu_pc_event_bits(0:7)iu_pc_event_bits(0:7)

Unit
Event
Mux

(128 bit)

IU Event Selection

IESR2(32:55)

MESR2(32:51)

T0_Events(0:7)

T3_Events(0:7)
T2_Events(0:7)
T1_Events(0:7)

T0_Events(0:31)

T3_Events(0:31)
T2_Events(0:31)
T1_Events(0:31)

T0_Events(0:15)

T3_Events(0:15)
T2_Events(0:15)
T1_Events(0:15)

Unit
Event
Mux

(32 bit)

Unit
Event
Mux

(64 bit)

XU Event Selection

XESR2(32:55)
XESR1(32:55)

T0_Events(0:31)

T3_Events(0:31)
T2_Events(0:31)
T1_Events(0:31)

Unit
Event
Mux

(128 bit)

LSU Event Selection

XESR4(32:55)
XESR3(32:55)

T0_Events(0:31)

T3_Events(0:31)
T2_Events(0:31)
T1_Events(0:31)

Unit
Event
Mux

(128 bit)

lsu_pc_event_bits(0:7)

processor control

performance monitor unit

execution unit

load/store unit

special purpose register

AXU Event Select Register

IU Event Select Register 1

IU Event Select Register 2

MMU Event Select Register 1

MMU Event Select Register 2

XU Event Select Register 1

XU Event Select Register 2

XU Event Select Register 3

XU Event Select Register 4

Core Event Select Register

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 450 of 864
Version 1.3

October 23, 2012

11.2 A2 Core Event Bus and PC Unit Controls

This section describes the Core Event Select Register and core event multiplexer functions. The CESR
contains various control bits that select different performance analysis modes of operation and contains multi-
plexer controls for routing the required unit events onto the external event bus. Each unit has registers
containing event multiplexer control bits for its own local performance events; the CESR performs the final
selection from among these unit multiplexer outputs before they are sent out on the external event bus. See
Core Event Select Register (CESR) on page 452.

11.2.1 Enabling Performance Event and Trace Bus Latches

The default core power-on reset state disables clocking of latches used for performance event and debug bus
logic. Several bits of the CESR must be set before working with these functions to enable them.

Setting CESR[32], the ENABPERF bit, is required to enable latches associated with performance event
signals, event multiplexer staging, and the core event bus outputs. This bit must be set before working with
any unit performance events, so that the event-related latches are enabled.

In addition, if the trace-trigger bus logic is required, then CESR[36], the ENABTRACEBUS bit, should be set
to enable debug-bus-related latches.

Note: CESR[36] performs a similar function to PCCR0[32], the Enable Debug Mode bit, except that it only
enables trace-trigger-bus-related latches without activating any additional debug mode controls.

11.2.2 Performance Analysis Operating Modes

The A2 supports instruction sampling by continuously driving address data onto the trace-trigger bus when-
ever an instruction completes. A specific configuration of debug multiplexer controls is required to enable this
function. See A2 Support for Instruction Sampling on page 479.

Setting CESR[37] places the core in instruction trace mode. In this mode, the XU and FU continuously output
relevant instruction data onto the trace bus, where it is written to system memory for postprocessing and
analysis. CESR[38:39] are encoded bits that indicate the thread selected for core instruction tracing. See A2
Support for Core Instruction Trace on page 476.

Each unit enables performance monitor event signals based on three count modes. If a thread’s mode of
operation matches a selected count mode, then its performance events are enabled for counting. The three
modes and their respective CESR bits follow:

• Count events in problem mode: CESR[33]
• Count events in guest supervisor mode: CESR[34]
• Count events in hypervisor mode: CESR[35]

11.2.3 Core Performance Event Selection to External Event Bus

As depicted in Figure 11-2 on page 451, each unit sends an 8-bit bus containing performance event signals
to the PC unit. The core event multiplexer selects the required events from each unit and outputs them onto
the 8-bit external event bus. Debug count signals (from ac_an_trace_bus[0:7]) are also sent to the core event
multiplexer. This provides a way to use the PMU counters to count signal activity for debug purposes. The
core event multiplexer function is shown in Figure 11-2 and Table 11-1. For each event bit, a 3-bit multiplexer
value in the CESR selects between the indicated XU, IU, FU, MMU, LSU, and trace signals through the eight
8:1 multiplexers. The signal that is finally selected is latched before going out onto the external event bus.

instruction unit

floating-point unit

memory management unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 451 of 864

Additionally, performance events from the LSU, IU, MMU, and FU are driven out of the core on separate inter-
faces, thereby bypassing the core event multiplexer. In this way, the performance event bits from all units are
available at the same time (XU unit events are driven out on ac_an_event_bus by default).

Figure 11-2. Core Event Multiplexer Description

Table 11-1. Core Event Multiplexer to External Event Bus

Event
Bus
Bits

CESR
Select

Bits

Core Event Multiplexer Outputs (by Select_Bits decode)

000 001 010 011 100 101 110 111

0 40:42 XU[0] IU[0] FU[0] MMU[0] LSU[0] XU[4] IU[4] Trace[0]

1 43:45 XU[1] IU[1] FU[1] MMU[1] LSU[1] XU[5] IU[5] Trace[1]

2 46:48 XU[2] IU[2] FU[2] MMU[2] LSU[2] XU[6] IU[6] Trace[2]

3 49:51 XU[3] IU[3] FU[3] MMU[3] LSU[3] XU[7] IU[7] Trace[3]

4 52:54 XU[4] IU[4] FU[4] MMU[4] LSU[4] XU[0] IU[0] Trace[4]

5 55:57 XU[5] IU[5] FU[5] MMU[5] LSU[5] XU[1] IU[1] Trace[5]

6 58:60 XU[6] IU[6] FU[6] MMU[6] LSU[6] XU[2] IU[2] Trace[6]

7 61:63 XU[7] IU[7] FU[7] MMU[7] LSU[7] XU[3] IU[3] Trace[7]

lsu_pc_event _bits(0:7)

mm_pc_event _bits(0:7)

fu_pc_event _bits(0:7)

iu_pc_event _bits(0:7)

CESR(40:63)

Trace Bus (0:7)

ac_an_event_bus(0:7)
Latch

Latch

Latch

Latch

8:1 MUX
8:1 MUX

8:1 MUX

8:1 MUX

8:1 MUX

8:1 MUX
8:1 MUX

8:1 MUX

Bit 0 Events

Bit 3 Events

Bit 2 Events

Bit 1 Events

Bit 4 Events

Bit 5 Events

Bit 6 Events

Bit 7 Events

Latch

Latch

Latch

B
it

 O
rd

er
in

g

ac_an_iu_bypass_events(0:7)

ac_an_fu_bypass _events (0:7)

ac_an_mm _bypass_events(0:7)

Latch

Latch

Latch

Latchxu_pc_event _bits(0:7)

CESR(32)
Enable Performance Event Latches

Mux Selects

ac_an_lsu_bypass_events(0:7)

to other core units

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 452 of 864
Version 1.3

October 23, 2012

11.2.4 Core Event Select Register (CESR)

Register Short Name: CESR Read Access: Priv

Decimal SPR Number: 912 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ENABPERF 0b0 Enable Performance Event Latches

When set, latches used to redrive performance event signals and the event bus are
enabled. This bit must be set before making performance measurements.

33:35 COUNTMODES 0b000 Performance Event Count Modes

This field determines which count modes are valid for the selected performance events.
More than one count mode bit at a time can be enabled.
33 = Count events when in problem mode.
34 = Count events when in guest supervisor mode.
35 = Count events when in hypervisor mode.

36 ENABTRACEBUS 0b0 Enable Trace-Trigger Bus Latches

When set, latches used to redrive the trace-trigger bus and trace-related signals are
enabled.
This bit is an alternate method of enabling the trace-trigger bus, similar to PCCR0[Enable
Debug Mode]. Unlike PCCR0[Enable Debug Mode], it does not enable additional debug
mode functions in the THRCTL or PCCR0 registers.

37 INSTTRACE 0b0 Instruction Trace Mode Enable

This bit enables support of the core trace function by activating multiplexer selects and con-
trols used to perform instruction tracing.

38:39 INSTTRACETID 0b00 Instruction Trace Mode Thread ID

These bits indicate which thread is selected for core trace.
00 T0
01 T1
10 T2
11 T3

40:42 SELEB0 0b000 Select Signal Driven on ac_an_event_bus(0)

000 xu_pc_event_bits(0)
001 iu_pc_event_bits(0)
010 fu_pc_event_bits(0)
011 mm_pc_event_bits(0)
100 lsu_pc_event_bits(0)
101 xu_pc_event_bits(4)
110 iu_pc_event_bits(4)
111 ac_an_debug_bus(0)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 453 of 864

43:45 SELEB1 0b000 Select Signal Driven on ac_an_event_bus(1)

000 xu_pc_event_bits(1)
001 iu_pc_event_bits(1)
010 fu_pc_event_bits(1)
011 mm_pc_event_bits(1)
100 lsu_pc_event_bits(1)
101 xu_pc_event_bits(5)
110 iu_pc_event_bits(5)
111 ac_an_debug_bus(1)

46:48 SELEB2 0b000 Select Signal Driven on ac_an_event_bus(2)

000 xu_pc_event_bits(2)
001 iu_pc_event_bits(2)
010 fu_pc_event_bits(2)
011 mm_pc_event_bits(2)
100 lsu_pc_event_bits(2)
101 xu_pc_event_bits(6)
110 iu_pc_event_bits(6)
111 ac_an_debug_bus(2)

49:51 SELEB3 0b000 Select Signal Driven on ac_an_event_bus(3)

000 xu_pc_event_bits(3)
001 iu_pc_event_bits(3)
010 fu_pc_event_bits(3)
011 mm_pc_event_bits(3)
100 lsu_pc_event_bits(3)
101 xu_pc_event_bits(7)
110 iu_pc_event_bits(7)
111 ac_an_debug_bus(3)

52:54 SELEB4 0b000 Select Signal Driven on ac_an_event_bus(4)

000 xu_pc_event_bits(4)
001 iu_pc_event_bits(4)
010 fu_pc_event_bits(4)
011 mm_pc_event_bits(4)
100 lsu_pc_event_bits(4)
101 xu_pc_event_bits(0)
110 iu_pc_event_bits(0)
111 ac_an_debug_bus(4)

55:57 SELEB5 0b000 Select Signal Driven on ac_an_event_bus(5)

000 xu_pc_event_bits(5)
001 iu_pc_event_bits(5)
010 fu_pc_event_bits(5)
011 mm_pc_event_bits(5)
100 lsu_pc_event_bits(5)
101 xu_pc_event_bits(1)
110 iu_pc_event_bits(1)
111 ac_an_debug_bus(5)

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 454 of 864
Version 1.3

October 23, 2012

11.3 Unit Level Performance Event Selection

11.3.1 Unit Event Multiplexer Component

Each unit includes one or more event multiplexer components for selecting local performance events. The
unit event multiplexer is a common core component that can be sized to match a particular unit’s perfor-
mance event count. See Figure 11-3 on page 456 for a description of the event multiplexer component and
Figure 11-1 on page 449 for its usage within each of the A2 units.

The event multiplexer component is sized based on the total number of supported performance events: 32,
64, or 128. For each of the eight multiplexer outputs (Event_Bits[0:7]) there is a bank of 2:1 multiplexers used
for selecting from among the performance event inputs. The event inputs are split into four groups
(T0_Events through T3_Events). The T0_Events and T1_Events are connected to the four banks of 2:1 multi-
plexers controlling the Event_Bits[0:3] outputs; T2_Events and T3_Events control Event_Bits[4:7]. Perfor-
mance events that are counted per thread are assigned to the appropriate Tx_Events input (thread 0 to
T0_Events, and so forth), with corresponding performance event signals connected to the same Tx_Events
bit number (Tx_Events[0:n-1]). Per core events can be assigned to any of the Tx_Events input groups as
appropriate.

For each of the eight event multiplexer outputs, a set of select bits control which of the Tx_Event inputs is
driven out the event multiplexer. A single Input_Sel value determines which group of the Tx_Events is
selected by the 2:1 multiplexers; a Mux_Sel input selects which 2:1 multiplexer output is gated to the corre-
sponding Event_Bits output. The size of the encoded Mux_Sel bits depends on the total number of 2:1 multi-
plexers (total performance events / 4). Each unit has one or two event select registers corresponding to an
event multiplexer component, which provides the select bits used to drive each of the Event_Bits outputs.

As indicated previously, each Event_Bits output can be independently programmed to select from its corre-
sponding Tx_Events inputs through its own bank of 2:1 multiplexers. The corresponding event select regis-
ters provide the encoded bits for the Input_Sel and Mux_Sel fields used by each of the eight event multiplexer
outputs.

58:60 SELEB6 0b000 Select Signal Driven on ac_an_event_bus(6)

000 xu_pc_event_bits(6)
001 iu_pc_event_bits(6)
010 fu_pc_event_bits(6)
011 mm_pc_event_bits(6)
100 lsu_pc_event_bits(6)
101 xu_pc_event_bits(2)
110 iu_pc_event_bits(2)
111 ac_an_debug_bus(6)

61:63 SELEB7 0b000 Select Signal Driven on ac_an_event_bus(7)

000 xu_pc_event_bits(7)
001 iu_pc_event_bits(7)
010 fu_pc_event_bits(7)
011 mm_pc_event_bits(7)
100 lsu_pc_event_bits(7)
101 xu_pc_event_bits(3)
110 iu_pc_event_bits(3)
111 ac_an_debug_bus(7)

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 455 of 864

In summary, each A2 unit implements the following performance event multiplexer components:

See Section 11.5.1 through Section 11.5.5 for descriptions of each unit’s event select registers.

FU “32-event” event multiplexer; 32 select bits (AESR); supports 32 total performance events

MMU “64-event” event multiplexer; 40 select bits (MESR1, MESR2); supports 64 total performance
events

IU “128-event” event multiplexer; 48 select bits (IESR1, IESR2); supports 128 total performance
events

XU “128-event” event multiplexer; 48 select bits (XESR1, XESR2); supports 128 total perfor-
mance events

LSU “128-event” event multiplexer; 48 select bits (XESR3, XESR4); supports 128 total perfor-
mance events

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 456 of 864
Version 1.3

October 23, 2012

11.3.2 Performance Monitor Event Tags and Count Modes

In the following sections, performance event tables for each unit are included that describe each event and
how they are selected by the unit’s event multiplexer select register. The performance monitor event tags are
shown in the Event Tag column; a tag (B, C, E, S, or V) is used to specify how the event should be counted.

Figure 11-3. A2 Common Unit Event Multiplexer Component

Unit
Event
Mux

Total Events
per Mux

Mux Num
per bit

(n)

Mux Sel
per bit

(x)

Total Select
Bits per

Event Mux

FU
MMU

IU
XU
LSU

32
64
128
128
128

8
16
32
32
32

3
4
5
5
5

32
40
48
48
48

Event _Bits(0)

Event _Bits(3)

Event _Bits(2)

Event _Bits(1)

T1_Events(0:n-1)

T0_Events(0:n-1)

Bit 0 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 1 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 2 Selects Decode
Mux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 3 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

2:1 Muxes

2:1 Muxes

2:1 Muxes

2:1 Muxes

Event _Bits(4)

Event _Bits(7)

Event _Bits(6)

Event _Bits(5)

T3_Events(0:n-1)

T2_Events(0:n-1)

Bit 4 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 5 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 6 Selects Decode
Mux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

Bit 7 Selects DecodeMux_Sel (0:x-1)

Input_Sel (0)

Mux n-1

Mux 0

A
N
D
-O

R

2:1 Muxes

2:1 Muxes

2:1 Muxes

2:1 Muxes

SPRs
Required

1
2
2
2
2

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 457 of 864

The event tags and count modes are summarized in Table 11-2. Cycle Counting refers to counting the
number of cycles a performance monitor signal is active or inactive. Event Counting refers to counting the
number of occurrences of an event.

11.3.3 Unit Performance Event Tables

For each unit’s event multiplexer component, there is a corresponding table defining how performance events
are mapped to the Tx_Events inputs and which Input_Sel and Mux_Sel decodes are required for selecting
them.

The layout and information in the unit performance events tables is described below:

• Column 1 lists the performance event name and, in parentheses, the associated tag values explained in
Table 11-2.

• Column 2 describes the performance event

• Column 3 indicates if this is a per-core event and not specific to individual threads.

• Column 4 lists valid Input_Sel multiplexer options to be specified in the corresponding event select regis-
ter (fields: INPSELEB0, INPSELB1, INPSELB2, INPSELB3, INPSELEB4, INPSELB5, INPSELB6, and
INPSELB7) depending on the desired event multiplexer output bit. Per-thread events are connected to the
Tx_Events signal groups by thread number (thread 0 events to T0_Events, and so forth). Per-core events
indicate the specific Tx_Events signal group that they connect to (0, 1, 2, or 3).

Note: Some per-core events might be connected to more than one Tx_Events signal group.

• Column 5 lists the Mux_Sel decode value to be specified in the associated event select register (fields:
MUXSELB0, MUXSELB1, MUXSELB2, MUXSELB3, MUXSELB4, MUXSELB5, MUXSELB6, and
MUXSELB7) depending on the desired event multiplexer output bit. The Mux_Sel decode is used to
select the specified performance event from its bit position in the Tx_Events signals group.

Table 11-2. Performance Monitor Event Tags

Event Tag Definition Cycle Counting Event Counting

B Signals are useful for counting both cycles and events. Because an edge
detector is used for event counting, signals of this type must have events sepa-
rated by at least one cycle.

Cycle Edge

C Signals are only useful for counting cycles. Events cannot be counted because
these signals can have multicycle events that occur on consecutive cycles.

Cycle N/A

E Signals are only useful for counting events. The cycles that this signal is active
might not accurately represent the cycles that the associated function is actu-
ally occurring.

N/A Edge

S Signals are single-cycle signals that represent single-cycle events. Because
cycles and events are synonymous, counting cycles is sufficient to determine
the number of cycles or events.

Cycle N/A

V Signals are single-cycle events, but they might occur on consecutive cycles.
Thus, to count the number of events, the number of cycles the signal is active
must be used.

N/A Cycle

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 458 of 864
Version 1.3

October 23, 2012

11.4 Unit Performance Event Tables

11.4.1 FU Performance Events Table

11.4.2 IU Performance Events Table

Table 11-3. FU Performance Events Table
(Use AESR for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:7)

AXU Instruction Commit (S) A valid AXU (non-load/store) instruction is in EX6, past the last
flush point.

No any 0

AXU CR Commit (S) A valid AXU CR updating instruction is in EX6, past the last
flush point.

No any 1

AXU Idle (S) No valid AXU instruction is in the EX6 stage. No any 2

FP Div/Sqrt In Progress (B) A floating-point divide or square root sequence is in progress.
Also includes single-precision versions.

No any 3

Denormal Operand Flush (S) A B operand of a floating-point instruction caused a denormal
operand, flush2ucode. Microcode prenormalization sequence
will follow.

No any 4

AXU uCode Instr Commit (S) A valid AXU instruction from a microcode sequence is in EX6,
past the last flush point. The last instruction of the sequence is
not counted.

No any 5

FP Exception (E) FX bit of the FPSCR. No any 6

FP Enabled Exception (E) FEX bit of the FPSCR. No any 7

Table 11-4. IU Performance Events Table (Sheet 1 of 3)
(Use IESR1 and IESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

IL1 Miss Cycles (C) Number of cycles a thread is waiting for a reload from the L2.
• Not when CI = 1.
• Not when thread held off for a reload that another thread is

waiting for.
• Still counts even if flush has occurred.

No any 0

IL1 Reloads Dropped (E) Number of times a reload from the L2 is dropped, per thread.
• Not when CI = 1.
• Does not count when not loading a cache due to a back

invalidate to that address.

No any 1

Reload Collisions (C) Number of cycles a ready thread is held off due to the L1 cache
being reloaded.

• Could occur on multiple threads per cycle.

No any 2

IU0 Redirected (C) Number of cycles IU0 is flushed for any reason. No 3

 I-ERAT Miss (B) Number of times I-ERAT miss occurs
• Can only occur on one thread per cycle.

No any 4

auxiliary execution unit

Condition Register

Floating-Point Status and Control Register

level 2

coprocessor instance

instruction ERAT

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 459 of 864

I-Cache Fetch (B) Number of times I-cache read completes for instruction.
• Does not count if flushed before IU2.
• Counts whether cache hit or miss.
• Can only occur on one thread per cycle.

No any 5

Instructions Fetched (B) Number of instructions fetched, divided by 4 (only counts every
four instructions).

• Uses a counter so fetches of 1, 2, or 3 instructions are not
lost.

• Includes CI = 0 or 1, hit or miss (any instruction that
comes through IU2).

No any 6

Reserved any 7

L2 Back Invalidates (B) Back invalidate from L2
• Per core, not per thread.

Yes any 8

L2 Back Invalidates - Hits (B) Back invalidate from L2, and data was contained within the
instruction cache.

• Per core, not per thread.
• Does not count if hits cache line for which we are waiting

for a reload.

Yes any 9

IBuff Empty (C) Instruction buffers are empty. No any 10

IBuff Flush (C) Instruction buffer address range mismatch and flush. No any 11

IS1 Stall (C) Any IS1 stall (includes IS2 stall). No any 12

IS2 Stall (C) Any IS2 stall. No any 13

Barrier Op Stall (C) Count of cycles stalled pending barrier operation resolution. No any 14

Slow SPR Access (C) Count of cycles stalled for mfspr or mtspr operations that
move across the slow SPR bus.

No any 15

RAW Dep Hit (C) Count of cycles stalled for read-after-write dependency. No any 16

WAW Dep Hit (C) Count of cycles stalled for write-after-write dependency. No any 17

Sync Dep Hit (C) Count of cycles stalled for sync, isync, or tlbsync instructions. No any 18

SPR Dep Hit (C) Count of cycles stalled for SPR uses or updates dependency. No any 19

AXU Dep Hit (C) Count of cycles stalled for any AXU dependency (excludes IS2
stall).

No any 20

FXU Dep Hit (C) Count of cycles stalled for any FXU dependency (excludes IS2
stall).

No any 21

AXU/FXU Dep Hit (C) Count of cycles stalled for any AXU/FXU dependency
(excludes IS2 stall).

No any 22

Reserved any 23

Reserved Reserved. 24

AXU Issue Priority Loss (C) Cycle count for AXU instruction that is valid in issue and
another thread issues because it has priority (see IS2 Stall for
combined AXU/FXU issue priority loss).

No any 25

Table 11-4. IU Performance Events Table (Sheet 2 of 3)
(Use IESR1 and IESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

instruction cache

fixed-point unit

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 460 of 864
Version 1.3

October 23, 2012

11.4.3 XU Performance Events Table

FXU Issue Priority Loss (C) Cycle count for FXU instruction that is valid in issue and
another thread issues because it has priority (see IS2 Stall for
combined AXU/FXU issue priority loss).

No any 26

Reserved Reserved. 27

FXU Issue Cycle Count (C) Cycle count for FXU instructions issued per thread.
AXU Issue Cycle Count = Total Issue Cycle Count minus FXU
Issue Cycle Count.

No any 28

Total Issue Cycle Count (C) Cycle count for all instructions issued per thread. No any 29

Instruction Match Count (C) Cycle count for instruction matches issued per thread. No any 30

Reserved any 31

Table 11-5. XU Performance Events Table (Sheet 1 of 2)
(Use XESR1 and XESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

Processor Busy (C) Cycles that any thread is running. Yes 0 0

Branch Commit (C) Number of branches committed. Yes 1 0

Branch Mispredict Commit
(S)

Number of mispredicted branches committed (does not include
target address mispredicted).

Yes 2 0

Branch Target Address
Mispredict Commit (S)

Number of branch target addresses mispredicted committed. Yes 3 0

Thread Running (C) Number of cycles that thread is in run state. No any 1

Timebase Tick (C) Number of times the time base has incremented. No any 2

SPR Read Commit (C) Number of mfspr, mftb, mfmsr, or mfcr instructions commit-
ted.

No any 3

SPR Write Commit (C) Number of mtspr, mtmsr, mtcrf, wrtee, or wrteei instructions
committed.

No any 4

Cycles stalled on waitrsv (B) Number of cycles between commit of waitrsv and wakeup by
lost reservation.

No any 5

External Interrupt Asserted
(C)

Number of cycles the external interrupt signal is asserted. No any 6

Critical External Interrupt
Asserted (C)

Number of cycles the critical external interrupt signal is
asserted.

No any 7

Performance Monitor
Interrupt Asserted (C)

Number of cycles the performance monitor interrupt signal is
asserted.

No any 8

PPC Commit (C) Number of instructions committed. Microcode sequences count
as one instruction.

No any 9

Table 11-4. IU Performance Events Table (Sheet 3 of 3)
(Use IESR1 and IESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 461 of 864

XU Commit (C) Number of XU instructions committed. Every instruction of the
microcode sequence is counted.

No any 10

uCode Commit (S) Number of microcode sequences committed. No any 11

Any Flush (C) Number of cycles flush is asserted to the IU. No any 12

Branch Commit (C) Number of branches committed. No any 13

Branch Mispredict Commit
(S)

Number of mispredicted branches committed (does not include
target address mispredicted).

No any 14

Branch Taken Commit (C) Number of taken branches committed. No any 15

Branch Target Address
Mispredict Commit (S)

Number of branch target addresses mispredicted committed. No any 16

Mult/Div Collision (C) Number of multiply/divide resource collisions. No any 17

External Interrupt Pending
(C)

Count number of cycles that the interrupt signal into the proces-
sor is asserted before the completion logic redirects program
flow to the interrupt vector.

No any 18

Critical External Interrupt
Pending (C)

Count number of cycles that the interrupt signal into the proces-
sor is asserted before the completion logic redirects program
flow to the interrupt vector.

No any 19

Performance Monitor
Interrupt Pending (C)

Count number of cycles that the interrupt signal into the proces-
sor is asserted before the completion logic redirects program
flow to the interrupt vector.

No any 20

Opcode Match (C) Number of opcode matches. No any 21

Run Instructions (C) Number of PowerPC instruction commits while any thread is in
run state.

No any 22

Interrupts Taken (C) Number of external, critical external, or performance monitor
interrupts taken across all threads. Does not count more than
one per cycle, although up to four can occur simultaneously.

Yes any 23

External Interrupt Taken (S) Number of interrupts taken. No any 24

Critical External Interrupt
Taken (S)

Number of interrupts taken. No any 25

Performance Monitor
Interrupt Taken (S)

Number of interrupts taken. No any 26

Doorbell Interrupt Taken (S) Number of doorbell or doorbell critical interrupts taken. No any 27

stcx fail (S) Number of failing stwcx. or stdcx. instructions. No any 28

icswx failed (S) Number of failing icswx or icswepx instructions. No any 29

icswx commit (S) Number of icswx or icswepx instructions committed. No any 30

Mult/Div Busy (C) Number of cycles the multiplier or divider is in use. No any 31

Table 11-5. XU Performance Events Table (Sheet 2 of 2)
(Use XESR1 and XESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 462 of 864
Version 1.3

October 23, 2012

11.4.4 LSU Performance Events Table

Table 11-6. LSU Performance Events Table (Sheet 1 of 3)
(Use XESR3 and XESR4 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

Committed Stores (V) Number of completed store commands.
• Microcoded instructions count more than once.
• Does not count syncs, TLB operations, dcbz, icswx, or

data cache management instructions.
• Includes stcx, but does not wait for stcx complete

response from the L2.
• Includes cache-inhibited stores.

No any 0

Committed Store Misses (V) Number of completed store commands that missed the L1 data
cache.

• Microcoded instructions can be counted more than once.
• Does not count syncs, TLB operations, dcbz, icswx, or

data cache management instructions.
• Includes stcx, but does not wait for stcx complete

response from the L2.
• Does not includes cache-inhibited stores.

No any 1

Committed Load Misses (V) Number of completed load commands that missed the L1 data
cache.

• Microcoded instructions can be counted more than once.
• Does not count dcbt[st][ls][ep].
• Includes larx.
• Does not includes cache-inhibited loads.

No any 2

Committed Cache-
Inhibited Load Misses (V)

Number of completed cache-inhibited load commands.
• Microcoded instructions can be counted more than once.
• Does not count dcbt[st][ls][ep].
• Does not include cacheable loads.

No any 3

Committed Cacheable Loads
(V)

Number of completed cacheable load commands.
• Microcoded instructions can be counted more than once.
• Does not count dcbt[st][ls][ep].
• Includes larx.
• Does not includes cache-inhibited loads.

No any 4

Committed DCBT Misses (V) Number of completed dcbt[st][ls][ep] commands that missed
the L1 data cache.

• Does not include touch operations that were dropped due
to the following:

1. Unsupported TH(CT) fields.
2. Translated to cache-inhibited.
3. Exception detected on dcbt[st][ep].

No any 5

Committed DCBT Hits (V) Number of completed dcbt[st][ls][ep] commands that hit the
L1 data cache.

• Does not include touch operations that were dropped due
to the following:

1. Unsupported TH(CT) fields.
2. Translated to cache-inhibited.
3. Exception detected on dcbt[st][ep].

No any 6

translation lookaside buffer

data cache

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 463 of 864

Committed AXU Loads (V) Number of completed AXU loads. AXU refers to the unit
attached on the AXU interface (that is, a floating-point unit).

• Cacheable and cache-inhibited loads are counted.

No any 7

Committed AXU Stores (V) Number of completed AXU stores. AXU refers to the unit
attached on the AXU interface (that is, a floating-point unit).

• Cacheable and cache-inhibited stores are counted.

No any 8

Committed STCX (V) Number of completed stcx instructions. Does not wait for the
stcx complete response from the L2.

No any 9

Committed WCLR (V) Number of completed wclr instructions. No any 10

Committed WCLR L = 0x1
(V)

Number of completed wclr instructions that set the watchlost
indicator.

No any 11

Committed LDAWX (V) Number of completed ldawx. instructions. No any 12

Unsupported Alignment
Flush (V)

Number of flushes due to an unsupported alignment.
• This is a speculative count.
• Includes speculative flushes to microcode.
• Includes speculative flushes to the alignment interrupt due

to unaligned larx, stcx, icswx, ldawx, or XUCR0[FLSTA]
= 1, or XUCR0[AFLSTA] = 1.

No any 13

Reload Resource Conflict
Flush (V)

Number of flushes due to a resource conflict on a reload.

1. Cache-inhibited reload colliding with store, icswx, mftgpr,
or mffgpr instructions valid in EX2 pipe stage.

2. Cache-inhibited reload targeting AXU colliding with AXU
load instruction.

3. First half of cacheable reload colliding with dcbt[st]ls or
ldawx.

No any 14

Committed Duplicate
LDAWX. (V)

Number of completed ldawx, which sets CR = 001||XER[SO]. No any 15

Interthread Directory Access
Flush (V)

Number of flushes due to a thread setting or clearing cache line
directory contents (that is, valid, lock, thread watch bits) and dif-
ferent thread accesses same cache line. Also, count of non-
committed WCLR L[0] = 0 in pipe and different thread has a
directory access in EX3.

• This is a speculative count.

No any 16

LSU Dependency Hit (V) Number of flushes due to a RAW or WAW hazard detected
against the load miss queue.

• This is a speculative count.

No any 17

Committed wchkall (V) Number of completed WCHKALL instructions. No any 18

Committed Successful
wchkall (V)

Number of completed wchkall instructions that returned CR =
000||XER[SO].

No any 19

Load Miss Queue Full Flush
(V)

Number of flushes due to the load miss queue being full. Load
miss queue full is determined when all eight entries are in use
and new load miss is flushed. Also, count of load miss com-
mand sequence wrapped flushes.

• This is a speculative count.

No any 20

Table 11-6. LSU Performance Events Table (Sheet 2 of 3)
(Use XESR3 and XESR4 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

read-after-write

write-after-write

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 464 of 864
Version 1.3

October 23, 2012

Store Queue Full Flush (V) Number of flushes due to the store queue being full or a sync,
mbar, or tlbsync instruction hits against an outstanding load
for the issuing thread.

• This is a speculative count.

No any 21

Hit Against Outstanding Load
Flush (V)

Number of flushes due to a cache instruction (that is, load,
store, or cache management) hit against an outstanding load
miss.

• XUCR0[CLS] = 0. Cache line check is down to the 64-byte
boundary, or check is down to the 128-byte boundary.

• This is a speculative count.

No any 22

Hit Against Outstanding I = G
= 1 Request Flush (V)

Number of flushes due to a cache instruction (that is, load,
store, or cache management) hit against an outstanding
guarded, cache-inhibited request in the load miss queue or in
the store queue.

• This is a speculative count.

No any 23

larx Finished(V) Number of completed larx instructions.
• Waits for reload from the L2

No any 24

Interthread Store Set Watch
Lost Indicator (V)

Number of watch lost indicator sets due to a different thread
storing to a watched line by another thread.

No any 25

Reload Set Watch Lost
Indicator (V)

Number of watch lost indicator sets due to a reload evicting a
watched line.

No any 26

Back-Invalidate Set Watch
Lost Indicator (V)

Number of watch lost indicator sets due to a back-
invalidate to a watched line.

No any 27

L1 Data Cache Back-
Invalidate (V)

Number of back-invalidates sent to the L1 data cache. Yes any 28

L1 Data Cache
Back- Invalidate Hits (V)

Number of back-invalidates sent to the L1 data cache that
invalidated a line.

Yes any 29

L1 Cache Parity Error
Detected (V)

Number of parity errors detected in the L1 Directories And
Caches.

• Includes both instruction and data directories and caches.
• Does not count more than one per cycle, although up to

four can occur simultaneously.

Yes any 30

Load Latency Memory
Subsystem (B)

Number of cycles load miss queue entry 0 is in use. Can be
used to determine how often load miss queue entry 0 is used
and how many cycles it is in use.

Yes any 31

Table 11-6. LSU Performance Events Table (Sheet 3 of 3)
(Use XESR3 and XESR4 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:31)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 465 of 864

11.4.5 MMU Performance Events Table

Table 11-7. MMU Performance Events Table (Sheet 1 of 2)
(Use MESR1 and MESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:15)

tlb_hit_direct_ierat (E) Instruction TLB hit direct entry. No any 0

tlb_miss_direct_ierat (E) Instruction TLB miss direct entry. No any 1

tlb_miss_indirect_ierat (E) Instruction TLB miss indirect entry. No any 2

htw_hit_ierat (E) Instruction hardware tablewalk hit. No any 3

htw_miss_ierat (E) Instruction hardware tablewalk miss. No any 4

tlb_hit_direct_derat (E) Data TLB hit direct entry. No any 5

tlb_miss_direct_derat (E) Data TLB miss direct entry. No any 6

tlb_miss_indirect_derat (E) Data TLB miss indirect entry. No any 7

htw_hit_derat (E) Data hardware tablewalk hit. No any 8

htw_miss_derat (E) Data hardware tablewalk miss. No any 9

ierat_miss_latency (B) I-ERAT miss (edge) or latency (level) (total ierat misses or
latency).

No any 10

derat_miss_latency (B) D-ERAT miss (edge) or latency (level) (total derat misses or
latency).

No any 11

ierat_miss_total (E) I-ERAT miss total (part of direct entry search total). Yes 0 12

derat_miss_total (E) D-ERAT miss total (part of direct entry search total). Yes 0 13

tlb_miss_direct_total (E) TLB miss direct entry total (total TLB ind = 0 misses). Yes 0 14

tlb_hit_firstsize_total (E) TLB hit direct entry first page size (first MMUCR2 size). Yes 0 15

tlb_hit_indirect_total (E) TLB indirect entry hits total (equals page table searches). Yes 1 12

htw_ptereload_total (E) Hardware tablewalk successful installs total (with no PT fault,
TLB ineligible, or LRAT miss).

Yes 1 13

lrat_translation_total (E) LRAT translation request total (for GS = 1, tlbwe, and ptere-
load).

Yes 1 14

lrat_miss_total (E) LRAT misses total (for GS = 1, tlbwe, and ptereload). Yes 1 15

pt_fault_total (E) Page table faults total (PTE.V = 0 for ptereload, resulting in an
ISI or DSI).

Yes 2 12

pt_inelig_total (E) TLB ineligible total (all TLB ways are TLB.iprot = 1 for ptere-
loads, resulting in an ISI or DSI).

Yes 2 13

tlbwec_fail_total (E) tlbwe conditional failed total (total tlbwe WQ = 01 with no res-
ervation match).

Yes 2 14

tlbwec_success_total (E) tlbwe conditional success total (total tlbwe WQ = 01 with reser-
vation match).

Yes 2 15

tlbilx_local_source_total (E) tlbilx local invalidations sourced total (sourced tlbilx on this
core total).

Yes 3 12

logical to real address translation

guest state

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 466 of 864
Version 1.3

October 23, 2012

11.5 Unit Event Select Registers

11.5.1 FU Event Select Register (AESR)

tlbivax_local_source_total(E) tlbivax invalidations sourced total (sourced tlbivax on this core
total).

Yes 3 13

tlbivax_snoop_total (E) tlbivax snoops total (total tlbivax snoops received from bus,
local bit = don’t care).

Yes 3 14

tlb_flush_req_total (B) TLB flush requests total (TLB requested flushes due to TLB
busy or instruction hazards).

Yes 3 15

Register Short Name: AESR Read Access: Priv

Decimal SPR Number: 913 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

33:35 MUXSELEB0 0b000 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 0 of the event multiplexer
(fu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

36 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

37:39 MUXSELEB1 0b000 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 1 of the event multiplexer
(fu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

40 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

Table 11-7. MMU Performance Events Table (Sheet 2 of 2)
(Use MESR1 and MESR2 for corresponding multiplexer selects)
Note: See the unit performance events table column descriptions in Section 11.3.3 on page 457.

Event Name
(Tag: B/C/E/S/V) Description

Per
Core

Event?

Input_Sel
Options

(Tx_Events)

Mux_Sel
Decode

(Mux 0:15)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 467 of 864

41:43 MUXSELEB2 0b000 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 2 of the event multiplexer
(fu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

44 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

45:47 MUXSELEB3 0b000 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 3 of the event multiplexer
(fu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

48 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

49:51 MUXSELEB4 0b000 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 4 of the event multiplexer
(fu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

52 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events(0:7]
1 T3_Events(0:7]

53:55 MUXSELEB5 0b000 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 5 of the event multiplexer
(fu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

56 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

57:59 MUXSELEB6 0b000 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 6 of the event multiplexer
(fu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

60 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

61:63 MUXSELEB7 0b000 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 7 of the event multiplexer
(fu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 468 of 864
Version 1.3

October 23, 2012

11.5.2 IU Event Select Registers

Register Short Name: IESR1 Read Access: Priv

Decimal SPR Number: 914 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(iu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(iu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(iu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(iu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 469 of 864

Register Short Name: IESR2 Read Access: Priv

Decimal SPR Number: 915 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(iu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(iu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(iu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(iu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 470 of 864
Version 1.3

October 23, 2012

11.5.3 XU Event Select Registers

Register Short Name: XESR1 Read Access: Priv

Decimal SPR Number: 918 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(xu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(xu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(xu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(xu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 471 of 864

Register Short Name: XESR2 Read Access: Priv

Decimal SPR Number: 919 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(xu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(xu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(xu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(xu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 472 of 864
Version 1.3

October 23, 2012

11.5.4 LSU Event Select Registers

Register Short Name: XESR3 Read Access: Priv

Decimal SPR Number: 920 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event mux bit 0
(lsu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(lsu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Mux Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(lsu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(lsu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 473 of 864

Register Short Name: XESR4 Read Access: Priv

Decimal SPR Number: 921 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(lsu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(lsu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(lsu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(lsu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 474 of 864
Version 1.3

October 23, 2012

11.5.5 MMU Event Select Registers

Register Short Name: MESR1 Read Access: Priv

Decimal SPR Number: 916 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

33:36 MUXSELEB0 0b0000 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(mm_pc_event_bits[0]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 ‘1111’).

37 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

38:41 MUXSELEB1 0b0000 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(mm_pc_event_bits[1]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 ‘1111’).

42 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

43:46 MUXSELEB2 0b0000 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(mm_pc_event_bits[2]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

47 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

48:51 MUXSELEB3 0b0000 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(mm_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 475 of 864

Register Short Name: MESR2 Read Access: Priv

Decimal SPR Number: 917 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

33:36 MUXSELEB4 0b0000 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(mm_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

37 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

38:41 MUXSELEB5 0b0000 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(mm_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

42 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

43:46 MUXSELEB6 0b0000 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(mm_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

47 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

48:51 MUXSELEB7 0b0000 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(mm_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

52:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 476 of 864
Version 1.3

October 23, 2012

11.6 A2 Support for Core Instruction Trace

Core instruction tracing allows chip level facilities to collect instruction address information over extended
periods of time and store it out in system memory for subsequent performance analysis. This can involve
multiple hardware trace macros (HTMs) and additional support logic from various chip or chiplet units. The A2
core supports core trace operations through the following functions:

• Instruction Tracing. Each instruction and its relevant address information is driven out onto the debug bus.
This mode requires single thread execution in slow mode.

• Trace SPR - A trace SPR is supported. Software can issue an mtspr trace instruction, which enables
placement of instruction mark data into the trace record.

When in instruction trace mode, the A2 core continuously places instruction trace data onto the 88-bit debug
bus, where it is sent to the external trace array. Additional control signals enable the HTM to interpret the
trace data, format it, and put it on the PBus to be written to memory. This section describes instruction trace
mode setup, the A2 core instruction trace data, and how instruction trace mode is used to control placement
of this data onto the external debug bus.

11.6.1 Instruction Trace Mode Setup

The following core facilities need to be configured to enable instruction trace mode:

• Enable single thread execution (TENC or THRCTL[Tx_STOP])

• Configure core for single instruction execution (CCR3[SI]).
This is an optional step; see the note below on CESR settings.

• Enable writes to TRACE SPR (CCR2[EN_TRACE]).

• If required, enable user mode writes to TRACE SPR (XUCR0[TRACE_UM]).

• Set all unit debug multiplexer control registers to the pass-through mode so that they do not interfere with
instruction trace data written to the trace bus. The XU and AXU drive out on the trace bus as required.

Note: The normal power-on reset state of the core initializes all of the debug multiplexer control registers
(ABDSR, IDSR, MPDSR, XDSR1, and XDSR2) to 0, which puts them in the pass-through state by
default.

• Enable instruction trace mode (CESR[INSTTRACE]) and select the thread of operation
(CESR[INSTTRACETID]). The CESR[ENABPERF] and CESR[ENABTRACEBUS] bits must also be set
to enable clocking to the debug bus and performance-related latches involved in instruction tracing.

Note: Upon entering instruction trace mode, the selected thread is automatically configured for single
instruction execution by the XU. The state of the CCR3[SI] bit is not affected by this action, however, and
provides no status or indication that single instruction execution is active.

11.6.2 Instruction Trace Record Data

Only the XU and AXU participate in core trace by outputting instruction trace data and control signals onto the
debug bus. Table 11-8 describes the data and controls signals, which unit supplies it, and its size.

AXU/BX Debug Select Register

IU Debug Select Register

XU Debug Select Register1

XU Debug Select Register2

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 477 of 864

11.6.3 Instruction Trace Record Formats and Ordering

The first instruction trace record includes the opcode field, a unique data pattern, and other control signals
that enable the HTM and postprocessing software to identify it as the first trace record and determine what
additional trace records will follow. The number and type of additional trace records are determined by the
value of the encoded Trace Record Type field.

The tables in this section describe how the instruction trace records are driven onto the debug bus, and the
specific ordering of the trace records for each trace record type.

Table 11-8. Core Instruction Trace Data and Control Signals

Trace Data Type Unit
Driving

Size
(Bits) Comments

Instruction Opcode AXU, XU 32 32-bit opcode field.

xABCDE data pattern AXU, XU 20 Specific data pattern. Part of the information used by software to identify
the first instruction trace record.

Encoded Trace Record Type AXU, XU 2 A 2-bit encoded field included in the first instruction trace record, which
indicates how many data packets will follow. The trace record type
decode follows:
00 Opcode only.
01 Opcode and IEA.
10 Opcode and IEA and mtspr data.
11 Opcode and IEA, DEA, and DRA.

First Instruction Trace Record Valid XU 2 There are two first record valid signals. One is driven on bit 56 of the
debug bus and is written to memory along with the other first instruction
trace record data. The other is driven on bit 64 and is used only by the
HTM.

Trace Record Valid XU 1 This signal is driven on bit 67 of the debug bus. It is used by the HTM to
determine when the corresponding bus data is a valid trace record.

Instruction Effective Address (IEA) XU 62 Because no address information is provided through the Ram registers,
any Rammed instructions executed in instruction trace mode has an asso-
ciated IEA of 0.

MTSPR Data XU 64 Data written to an SPR from mtspr, mtmsr, and so forth

Data Effective Address (DEA) XU 64

Data Real Address (DRA) XU 40 The DRA field is driven onto the debug bus noncontiguously by the LSU.
Correlation between the LSU address and debug bus is shown below:
debug_bus[08:12]  ex4_p_addr_q[53:57]
debug_bus[18:21]  ex4_p_addr_q[58:61]
debug_bus[33:43]  ex4_p_addr_q[22:32]
debug_bus[44:63]  ex4_p_addr_q[33:52]

Table 11-9. First Instruction Trace Record Format (Sheet 1 of 2)

Debug Bus Bit
Number Function

0:31 Opcode.

32:35 Reserved.

36:55 Unique pattern for software identification (xABCDE).

56 First instruction trace record valid bit.

instruction effective address

instruction effective address

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 478 of 864
Version 1.3

October 23, 2012

11.6.4 Debug Bus Control When in Instruction Trace Mode

With each unit’s debug select registers in the pass-through state, the XU and AXU can control placement of
data and control signals onto the debug bus as needed while in instruction trace mode. Data driven out of the
AXU’s debug multiplexer is placed on the debug bus 5 cycles earlier than the XU debug multiplexer (XU2)
used to drive instruction trace data. This allows the AXU to drive out continuously on the debug bus as
floating-point instructions are issued, and the XU to control activation of valid bits when they complete.

The following sections provide additional information about how the AXU and XU control the debug bus while
in instruction trace mode.

57:58 Encoded Trace Record Type bits (as described in Table 11-8).

59:63 Reserved.

64 First instruction trace record valid bit (used by HTM logic).

65:66 Encoded Trace Record Type bits (as described in Table 11-8; used by HTM logic).

67 Trace record valid indicator (used by HTM logic).

68:87 Reserved.

Table 11-10. Format of Subsequent Instruction Trace Records

Debug Bus Bit
Number Function

0:63 Trace record data (either IEA, DEA, DRA, or MTSPR data). The number of debug bus bits used and placement
depends on the particular data type being driven.

64:66 Reserved.

67 Trace record valid indicator (used by HTM logic).
Note: Subsequent trace records might not occur on consecutive cycles. Data placed on the debug bus is a valid
instruction trace record only when this bit is active.

68:87 Reserved.

Table 11-11. Trace Record Type Decode and Instruction Trace Record Ordering

Trace
Record
Number

Encoded Trace Record Type Bits

00 01 10 11

1 First Instruction Trace Record First Instruction Trace Record First Instruction Trace Record First Instruction Trace Record

2 Instruction Effective Address Instruction Effective Address Data Real Address

3 MTSPR Data Instruction Effective Address

4 Data Effective Address

Table 11-9. First Instruction Trace Record Format (Sheet 2 of 2)

Debug Bus Bit
Number Function

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Performance Events and Event Selection

Page 479 of 864

11.6.4.1 FU Trace Records

• Upon entering instruction trace mode, the FU continuously drives out on the debug bus the xABCDE data
pattern, and 0s for the encoded Trace Record Type (the only FU trace record data is the opcode field).

• When a floating-point instruction is valid at the RF1 stage, it also is driven out on the debug bus.

• If that instruction completes, the XU drives out the 3 valid bits, completing the first instruction trace record.

11.6.4.2 XU Debug Bus Control

• When the XU has instruction trace records to send, it overrides the upstream data from the AXU through
the XU2 debug multiplexer controls and drives out onto the debug bus.

• If a first instruction trace record is driven out on the debug bus and that instruction does not complete, the
XU suppresses activation of Trace Record Valid (bit 67) when the IEA is placed on the bus. The resulting
trace records stored to memory contain less data than indicated by the Trace Record Type field. Software
can use this information to discard the incomplete trace record.

11.7 A2 Support for Instruction Sampling

The A2 core supports instruction sampling by driving address information onto the debug bus whenever an
instruction completes. This is accomplished by selecting XU Debug Mux2, debug group 13; and by putting all
other unit debug multiplexers in the pass-through state. The debug select register initialization to enable
instruction sampling follows:

• SCOM write 0x00000000_00000000 to ABDSR, IDSR, MPDSR, and XDSR2.

• SCOM write 0x00000000_000069E0 to XDSR1.

Additionally, both the trace bus enable and performance event enable must be on:

• An mtspr instruction to set CESR to 0x88000000.

See the following table for the instruction sampling data format.

Instruction sampling occurs simultaneously on all four threads. Whenever two instructions complete during
the same cycle, only one of them has its address information placed on the debug bus. To provide a balance
between XU and AXU instructions that complete simultaneously, the instruction sampling logic toggles
between them when this situation occurs (for example, one time reporting the XU address; the next time
reporting the AXU address).

Bit Number Function

0:61 Effective address.

62 MSR[GS].

63 MSR[PR].

68 Reserved.

69 Completed bit (data on bus is an instruction address that was issued and completed).

70:71 Thread ID bits.

serial communications

User’s Manual

A2 Processor

Performance Events and Event Selection

Page 480 of 864
Version 1.3

October 23, 2012

At the chiplet level, the PMU logic writes the address data to per-thread SIAR registers. Upon a counter over-
flow, the affected thread’s SIAR stops updating, thereby freezing the last address. A PMU interrupt for the
thread is sent to the core. If enabled, instruction sampling code can then handle the interrupt by gathering all
relevant data from the core and PMU.

Sampled Instruction Address Register,

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 481 of 864

12. Implementation Dependent Instructions

This chapter describes all the A2 core instructions implemented that are not part of Power ISA or that are
implementation dependent.

12.1 Miscellaneous

12.1.1 Attention (attn)

For purposes of hardware debugging, the processor supports a special, implementation-dependent instruc-
tion for signaling an “attention” signal to system-level hardware, which is beyond the scope of this document.
This instruction is per thread and causes the following sequence:

1. A normal CSI event is generated for the thread issuing the instruction.

2. The instructions following the attention instruction are flushed for the thread issuing the instruction.

3. A dispatch stall is enabled so that no further instructions can be dispatched for the thread issuing the
instruction.

4. An attention signal, if enabled by the corresponding Special Attention Register (SPATTN) mask bit, is sent
to system-level hardware.

The attn instruction has the following definition:

• The immediate field (I) has no effect on the operation of this instruction.

• If CCR2[en_attn] = 1 (support processor attention enable bit is set), this instruction causes all preceding
instructions to run to completion, the machine to quiesce, and a bit in the Special Attention Register
(SPATTN) to be set. If enabled by the corresponding SPATTN register mask bit, a support processor
attention signal is be asserted.

• If CCR2[en_attn] = 0 (support processor attention enable bit is not set), this instruction causes an illegal
instruction type of program interrupt.

0 256

0 6 21 31

instruction set architecture

context synchronizing instruction

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 482 of 864
Version 1.3

October 23, 2012

12.2 TLB Management Instructions

12.2.1 TLB Read Entry (tlbre)

Software must use the tlbre instruction to read entries from the TLB or LRAT. This instruction is embedded
hypervisor privileged. Execution of this instruction in guest state (GS = 1) results in an embedded hypervisor
privilege exception.

Because this instruction relies on the MMU Assist (MAS) Registers, execution of this instruction in ERAT-only
mode (CCR2[NOTLB] = 1) results in an illegal instruction exception. The instruction format and details follow.

tlbre

if MAS0ATSEL= 0 then
 entry  SelectTLB(MAS2EPN(27:51), MAS1TID, TSIZE, MAS0ESEL(1:2))

 rpn  entryRPN
 MAS1V IPROT TID TS TSIZE IND entryV IPROT TID TS SIZE IND

if MSRCM = 0 then
MAS2EPN[0:31] 0
MAS2EPN[32:51] W I M G E entryEPN[32:51] W I M G E

else
 MAS2EPN W I M G E entryEPN W I M G E

 MAS3RPNL rpn32:51
 MAS3U0:U3 entryU0:U3

if entryIND = 1
MAS3SPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 SPSIZE4 UND entrySPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 || 0 0
MAS3RPNL[52]  entryRPN[52]

else
MAS3UX SX UW SW UR SR entryUX SX UW SW UR SR
MAS3RPNL[52]  0

 MAS7RPNU rpn22:31
 MAS8TGS VF TLPID entryTGS VF TLPID
 MMUCR3X R C ECL TID_NZ Class WLC ResvAttr ThdID entryX R C ExtClass TID_NZ Class WLC ResvAttr ThdID

else
 entry SelectLRAT(MAS0ESEL)

 rpn entryRPN
 MAS1V TSIZE entryV SIZE

 MAS1IPROT TID IND TS  0 0 0 0
 MAS1IND 0

 MAS2EPN[0:21] 0
 MAS2EPN[22:43] entryLPN[22:43]
 MAS2EPN[44:51] 0
 MAS2W I M G E  0 0 0 0 0
 MAS3RPNL[22:43] rpn22:43

31
0

///
6

///
11

///
16

946
21

/
31

translation lookaside buffer

logical to real address translation

memory management unit

effective to real address translation

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 483 of 864

 MAS3RPNL[44:51] 0
 MAS3U0:U3 UX SX UW SW UR SR 0 0 0 0 0 0 0
 MAS7RPNU rpn22:31

 MAS8TGS VF 0 0
 MAS8TLPID  entryLPID
 MMUCR3X entryX
 MMUCR3R C ECL TID_NZ Class WLC ResvAttr ThdID 0 0 0 0 0 0 0 0b1111

For reading TLB entries, MAS0.ATSEL must be set to 0. The congruence class of the set-associative TLB
array is selected by a hardware hash based on MAS2.EPN bits [27:51], MAS1.TID, and MAS1.TSIZE. The
TLB way is selected by MAS0.ESEL bits [1:2]. The MSbs of the MAS2.EPN and MAS0.ESEL fields are
ignored when reading from the TLB (that is, only certain bits of these fields are used in the hash).

For reading LRAT entries, MAS0.ATSEL must be set to 1. The entry number of the fully-associative LRAT
array is selected by MAS0.ESEL bits [0:2]. The MAS2.EPN, MAS1.TID, and TSIZE fields are not used.

This implementation requires the page size to be specified by MAS1TSIZE to calculate the congruence class
of the set-associative TLB array. If the page size specified by MAS1TSIZE is not supported by this implemen-
tation, an illegal instruction exception is generated.

The MAS Registers shown above are updated with the associated fields from the selected TLB or LRAT entry
at the completion of the tlbre instruction. The MAS registers can be subsequently read via one or more mfspr
instructions. See Section 6.17.28 MAS Register Update Summary on page 275 for a description of values
loaded into the MAS registers for this instruction.

Note: The architecturally defined fields of MAS0.TLBSEL, MAS0.NV, MAS2.VLE, and MAS2.ACM are not
included in the explanation of this instruction because they are reserved in this implementation.

most significant bits

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 484 of 864
Version 1.3

October 23, 2012

12.2.2 TLB Write Entry (tlbwe)

Software must use the tlbwe instruction to write entries into either the TLB or LRAT. This instruction is super-
visor privileged.

Because this instruction relies on the MAS Registers, execution of this instruction in ERAT-only mode
(CCR2[NOTLB] = 1) results in an illegal instruction exception. The instruction format and details follow.

tlbwe

if MAS0WQ = 0b00 | MAS0WQ = 0b01 | MAS0WQ = 0b11 then
 if MAS0ATSEL = 0 or MSRGS = 1 then
 if MAS0HES = 0 then
 entry  SelectTLB(MAS1TID TSIZE, MAS2EPN, MAS0ESEL)
 else
 entry  SelectTLB(MAS1TID TSIZE, MAS2EPN, hardware_replacement_algorithm)
 if (MAS0WQ = 0b00) | (MAS0WQ = 0b01 & TLB reservation) | (MAS0WQ = 0b11) then

 if (MSRGS = 1) & (MAS1V = 1) then
 rpn  translate_logical_to_real(MAS7RPNU || MAS3RPNL, MAS8TLPID)

 else
 rpn  MAS7RPNU || MAS3RPNL

 entryV IPROT TID TS SIZE  MAS1V IPROT TID TS TSIZE
 entryW I M G E  MAS2W I M G E
 entryU0:U3  MAS3U0:U3

if MAS1IND = 1 and TLB0CFGIND = 1 then
 entrySPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 SPSIZE4 RPN[52]  MAS3SPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 || 0 ||

rpn52
 entryIND  MAS1IND
 else
 entryUX SX UW SW UR SR  MAS3UX SX UW SW UR SR
 entryIND  0

 if MSRCM = 0 then
 entryEPN[0:31]  0
 entryEPN[32:51]  MAS2EPN[32:51]
 else
 entryEPN  MAS2EPN

entryRPN[22:51]  rpn22:51
 entryTGS VF TLPID  MAS8TGS VF TLPID

entryX R C Class WLC ResvAttr ThdID MMUCR3X R C Class WLC ResvAttr ThdID
 entryExtClass MAS1IPROT & MMUCR3ECL
 entryTID_NZ or_reduce(MAS1TID)

else
 entry  SelectLRAT(MAS0ESEL)

31
0

///
6

///
11

///
16

978
21

/
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 485 of 864

 if (MAS0WQ = 0b00) & (MAS0HES = 0b0) then
 entryV SIZE  MAS1V TSIZE

 entryLPN  MAS2EPN[22:43]
 entryRPN  MAS7RPNU[22:31] || MAS3RPNL[32:43]
 entryLPID  MAS8TLPID

 entryX MMUCR3X

TLB reservationV  0

else
TLB reservationV  0

For writing TLB entries, MAS0.ATSEL must be set to 0. The congruence class of the set-associative TLB
array is selected by a hardware hash based on MAS2.EPN bits [27:51], MAS1.TID, and MAS1.TSIZE. When
MAS0.HES = 0, the TLB way is selected by MAS0.ESEL bits [1:2]. When MAS0.HES = 1, the TLB way is
selected by a hardware pseudo-LRU replacement algorithm. The MSbs of the MAS2.EPN and MAS0.ESEL
fields are ignored when writing to the TLB (that is, only certain bits of these fields are used in the hash).

For writing LRAT entries, MAS0.ATSEL must be set to 1, MAS0.HES must be set 0, and MAS0.WQ must be
set to 0 or 3. The entry number of the fully-associative LRAT array is selected by MAS0.ESEL bits [0:2]. The
MAS2.EPN field is not used to select an entry. If a tlbwe instruction with MAS0.ATSEL = 1 is attempted and
either MAS0.HES = 1 or the MAS0.WQ = 1 or 2, an illegal instruction exception is generated.

The MAS register contents shown above are used as the source data for the associated fields to be updated
in the selected TLB or LRAT entry at the completion of the tlbwe instruction. The MAS registers are assumed
to have been previously written via one or more mtspr instructions.

This implementation requires the page size to be specified by MAS1TSIZE to calculate the congruence class
of the set-associative TLB array. If the page size specified by MAS1TSIZE is not supported by this implemen-
tation, an illegal instruction exception is generated. If MAS0ATSEL = 0, and MAS1IND = 1, and the page size
and sub-page size combination contained in MAS1TSIZE and MAS3SPSIZE is not supported by this implemen-
tation, an illegal instruction exception is generated.

If MAS1IND = 1 and the memory attributes specified by MAS2W I M G E are not consistent with those specified
in Section 6.16.6 Hardware Page Table Storage Control Attributes, an illegal instruction exception is gener-
ated.

Note: The architecturally defined fields of MAS0.TLBSEL, MAS0.NV, MAS2.VLE, and MAS2.ACM are not
included in the explanation of this instruction because they are reserved in this implementation.

least recently used

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 486 of 864
Version 1.3

October 23, 2012

12.2.3 TLB Search Indexed (tlbsx[.])

Software must use the tlbsx[.] instruction to search entries in the TLB (searching the LRAT is not supported
in this implementation). This instruction is embedded hypervisor privileged. Execution of this instruction in
guest state (GS = 1) results in an embedded hypervisor privilege exception.

Because this instruction relies on the MAS Registers, execution of this instruction in ERAT-only mode
(CCR2[NOTLB] = 1) results in an illegal instruction exception. The instruction format and details follow.

tlbsx RA,RB Rc = 0
tlbsx. RA,RB Rc = 1

if RA = 0 then b  0 else b  (RA)
EA  b + (RB)
EPN EA(0:51)
pid  MAS6SPID
as  MAS6SAS
gs  MAS5SGS
lpid  MAS5SLPID
vpn  gs || lpid || as || pid || EPN
thread_num  number of executing thread (0 to 3)
if Rc = 1 then

CRCR0(0)  0
CRCR0(1)  0
CRCR0(3)  0

Valid_matching_entry_exists  0

for each TLB entry
m  ¬((1 << (2 X (entrySIZE - 1))) - 1)
n  64-log2(page size in bytes)
if ((EA0:51 & m) = (entryEPN & m)) &

(entryTLPID = MAS5SLPID | entryTLPID = 0) & (entryTGS = MAS5SGS) &
(entryTID = MAS6SPID | entryTID = 0) & (entryTS = MAS6SAS) & (entryIND = MAS1IND) &
(entryX = 0 | EPNn:51 > entryEPN[n:51]) & (entryTHDID(thread_num) = 1)

then
 Valid_matching_entry_exists  1
 exit for loop

if Valid_matching_entry_exists = 1 then
 entry  matching entry found

index  index of TLB entry found (TLB way)
rpn  entryRPN

 MAS0ATSEL  0
 MAS0ESEL  index

MAS0HES  TLB0CFGHES
MAS0WQ  0b01
MAS1V  1

31
0

///
6

RA
11

RB
16

914
21

Rc
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 487 of 864

 MAS1IPROT TID TS TSIZE  entryIPROT TID TS SIZE
MAS1IND  entryIND

 MAS2EPN W I M G E  entryEPN W I M G E

if entryIND = 1
MAS3SPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 SPSIZE4 UND  entrySPSIZE0 SPSIZE1 SPSIZE2 SPSIZE3 || 0 0
MAS3RPNL[52]  entryRPN[52]

else
MAS3UX SX UW SW UR SR  entryUX SX UW SW UR SR
MAS3RPNL[52]  0

 MAS3RPNL[32:51]  rpn32:51
 MAS3U0:U3  entryU0:U3
 MAS7RPNU  rpn0:31

MAS8TGS VF TLPID  entryTGS VF TLPID
MMUCR3X R C ECL TID_NZ Class WLC ResvAttr ThdID entryX R C ExtClass TID_NZ Class WLC ResvAttr ThdID
if Rc = 1 then
 CRCR0(2)  1

else
 MAS0ATSEL 0

MAS0ESEL  0
MAS0HES  TLB0CFGHES
MAS0WQ  0b01
MAS1V IPROT  0

 MAS1TID TS  MAS6SPID SAS
 MAS1TSIZE  MAS4TSIZED

MAS1IND  MAS4INDD
MAS2W I M G E  MAS4WD ID MD GD ED

 MAS2EPN  unchanged
 MAS3RPNL  0
 MAS3U0:U3 UX SX UW SW UR SR  0
 MAS7RPNU  0

if Rc = 1 then
 CRCR0(2)  0

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA 0:63 otherwise.

An effective page number (EPN) is determined from EA bits 0 to 51. The effective page number bits used for
page matching for a given TLB entry is EPN[0:63-p], where p = log2(entry page size in bytes). If the TLB array
contains an entry corresponding to the virtual page number formed by MAS5SGS, MAS5SLPID, MAS6SAS ,
MAS6SPID, and EPN[0:63-p], and the entry’s indirect bit (IND) matches that value in MAS6SIND, that entry’s
contents and the index (the matching TLB way in this case) are read into the MAS and MMUCR3 registers. If
no valid matching translation exists, MAS1V is set to 0 and the MAS registers are loaded with defaults to facil-
itate a TLB replacement (MMUCR3 is unchanged). See Section 6.17.28 MAS Register Update Summary on
page 275 for a description of default values loaded into the MAS registers for this instruction. If more than one
entry matches the search parameters, a machine check exception is generated.

The record bit (Rc) specifies whether the results of the search will affect CR[CR0] as shown above, such that
CR[CR0]2 can be tested if there is a possibility that the search might fail.

Condition Register

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 488 of 864
Version 1.3

October 23, 2012

12.2.4 TLB Search and Reserve Indexed (tlbsrx.)

Software can use the tlbsrx. instruction to search for entries in the local TLB and, as a side-affect, sets a
local TLB reservation for the associated virtual address.

Because the Embedded.Hypervisor category is supported, if guest execution of TLB management instruc-
tions is disabled (EPCRDGTMI = 1), this instruction is embedded hypervisor privileged. Otherwise, this instruc-
tion is supervisor privileged. Because this instruction relies on the MAS Registers, execution of this
instruction in ERAT-only mode (CCR2[NOTLB] = 1) results in an illegal instruction exception. The instruction
format and details follow.

tlbsrx. RA,RB Rc = 1

if RA = 0 then b  0 else b  (RA)
EA  b + (RB)
EPN  EA0:51
pid  MAS1TID
as  MAS1TS
ind  MAS1IND
gs  MAS5SGS
lpid  MAS5SLPID
thread_num  number of executing thread (0 to 3)
vpn  gs || lpid || as || pid || EPN

TLB-RESERVATIONV  1
TLB-RESERVATIONIND  ind
TLB-RESERVATIONGS  gs
TLB-RESERVATIONLPID  lpid
TLB-RESERVATIONAS  as
TLB-RESERVATIONPID  pid
TLB-RESERVATIONEPN  EPN

Valid_matching_entry_exists  0

for each TLB entry
m  ¬((1 << (2 X (entrySIZE - 1))) - 1)
n  64-log2(page size in bytes)
if ((EA0:51 & m) = (entryEPN & m)) &

(entryTLPID = MAS5SLPID | entryTLPID = 0) & (entryTGS = MAS5SGS) &
(entryTID = MAS1TID | entryTID = 0) & (entryTS = MAS1TS) & (entryIND = MAS1IND) &
(entryX = 0 | EPNn:51 > entryEPN[n:51]) & (entryTHDID(thread_num) = 1)

then
Valid_matching_entry_exists  1
exit for loop

if Valid_matching_entry_exists = 1 then
CR0  0b0010

else
CR0  0b0000

31
0

///
6

RA
11

RB
16

850
21

1
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 489 of 864

Let the EA be the sum (RA|0) + (RB).

If the TLB array contains a valid entry matching the MAS1IND and virtual address formed by MAS5SGS,
MAS5SLPID, MAS1TS TID, and EA, the search is considered successful. A TLB entry matches if all the
following conditions are met:

• The valid bit of the TLB entry is 1.

• The IND value of the TLB entry is equal to MAS1IND.

• The logical AND of EA0:53 and m is equal to the logical AND of the EPN value of the TLB entry and m,
where m is equal to the logical NOT of ((1 << (2  (entrySIZE-1))) - 1).

• The X value of the TLB entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n
equals 64 - log2(entry page size in bytes).

• The TID value of the TLB entry is equal to MAS1TID or is zero.

• The TS value of the TLB entry is equal to MAS1TS.

• The TGS value of the TLB entry is equal to MAS5SGS

• The TLPID value of the TLB entry is equal to MAS5SLPID or is zero.

• CR field 0 is set as follows: CR0LT GT EQ SO = 0b00 || n || 0, where n is a 1-bit value that indicates whether
the search was successful.

This instruction creates a TLB reservation for use by a tlbwe instruction. The virtual address described above
is associated with the TLB reservation, and replaces any address previously associated with the TLB reser-
vation.

If there are multiple matching TLB entries, a machine check exception occurs.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 490 of 864
Version 1.3

October 23, 2012

12.2.5 TLB Invalidate Virtual Address Indexed (tlbivax)

Software can use the tlbivax instruction to invalidate entries in the TLB (and associated copies in the
ERATs). The tlbivax instruction pertains to all processors in the same logical partition (that is, this a “global”
instruction), as opposed to the tlbilx instruction (which is a “local” instruction to this processor only). The
global tlbivax instruction is broadcast to all processors in the system when the A2 is connected to an L2
memory subsystem with invalidation snoop capability. See Section 6.9.4 TLB Invalidate Virtual Address
(Indexed) Instruction (tlbivax) for implementation-specific system requirements and parameters associated
with the broadcast aspect of this instruction.

This instruction is embedded hypervisor privileged. Execution of this instruction in guest state (GS = 1) results
in an embedded hypervisor privilege exception. Because this instruction relies on the MAS Registers, execu-
tion of this instruction in ERAT-only mode (CCR2[NOTLB] = 1) results in an illegal instruction exception.

tlbivax RA,RB

EA  (RA|0) + (RB)
EPN EA[0:51]

lpid  MAS5[SLPID]
gs  MAS5[SGS]
ts  MAS6[SAS]
tid  MAS6[SPID]
size  MAS6[ISIZE]
ind  MAS6[SIND]

if size= ‘0001’ and ind=0 then pg_size  4 KB
else if size = ‘0011’ and ind = 0 then pg_size  64 KB
else if size = ‘0101’ then pg_size  1 MB
else if size = ‘0111’ and ind = 0 then pg_size  16 MB
else if size = ‘1001’ and ind = 1 then pg_size  256 MB
else if size = ‘1010’ and ind = 0 then pg_size  1 GB
else illegal instruction exception

p  log2(pg_size)
if pg_size = 4 KB then L  0 else L  1

w  Most significant bit position supported by this processor’s physical system address bus (see
Section 6.9.4 TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax) for a description of w values for
this implementation)

for each processor in the system
for each TLB entry

n  64-log2(entry page size in bytes)
if (entry[EPNw:63-p] = EPNw:63-p) AND

(entry[X] = 0 OR EPNn:51 > entry[EPNn:51]) AND
(entry[TGS] = gs) AND
(entry[TLPID] = lpid) AND

31
0

///
6

RA
11

RB
16

786
21

/
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 491 of 864

(entry[TS] = ts) AND
(entry[TID] = tid) AND
(entry[SIZE]) = size) AND
(entry[IND] = ind) AND
(entry[IPROT] = 0)

then entry[V]  0
for each ERAT entry

n  64-log2(entry page size in bytes)
if (entry[EPN31:63-p] = EPN31:63-p) AND

(entry[X] = 0 OR EPNn:51 > entry[EPNn:51]) AND
(entry[TGS] = gs) AND
(entry[TS] = ts) AND
(entry[TID] = tid6:13) AND
(entry[THDID] = tid2:5 OR MMUCR1[I/DTTID] = 0) AND
(entry[CLASS] = tid0:1 OR MMUCR1[I/DCTID] = 0) AND
(entry[SIZE]) = convert_to_3bit(size)) AND
(entry[TID_NZ] = or_reduce(tid0:13)) AND
(ind = 0) AND

(entry[EXTCLASS] = 0)
then entry[V]  0

An EA is formed by adding an index to a base address. The index is the contents of register RB. The base
address is 0 if the RA field is 0, and is the contents of register RA 0:63 otherwise.

This implementation requires the target page size to be specified by MAS6ISIZE (MMUCFGTWC = 1 and
TLB0CFGHES = 1). For the T = 3 form, the target page size is used by the set-associative TLB structure in this
implementation to calculate the one and only congruence class in which the targeted entry can be stored. The
target page size is used by the fully associative ERAT structures to minimize generous invalidations that
would otherwise occur when the full EPN is not transferred. If the page size specified by MAS6ISIZE is not
supported by this implementation, an illegal instruction exception is generated.

All TLB entries on all processors that have all of the following properties are made invalid. The MAS registers
listed are those in the processor executing the tlbivax.

• The EPNw:63-p value of the TLB entry is equal to EPNw:63-p.

• The X value of the TLB entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n
equals 64 - log2(entry page size in bytes).

• The TGS value of the TLB entry is equal to MAS5SGS.

• The TLPID value of the TLB entry is equal to MAS5SLPID

• The TS value of the TLB entry is equal to MAS6SAS.

• The TID value of the TLB entry is equal to MAS6SPID

• The SIZE value of the TLB entry is equal to MAS6ISIZE.

• The IND value of the TLB entry is equal to MAS6SIND.

• The IPROT value of the TLB entry is 0.

All shadow ERAT entries on all processors that have all of the following properties are made invalid. The
MAS registers listed are those in the processor executing the tlbivax.

• The EPN31:63-p value of the ERAT entry is equal to EPN31:63-p.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 492 of 864
Version 1.3

October 23, 2012

• The X value of the ERAT entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n
equals 64 - log2(entry page size in bytes).

• The TGS value of the ERAT entry is equal to MAS5SGS.

• The TS value of the ERAT entry is equal to MAS6SAS.

• The 8-bit TID value of the ERAT entry is equal to MAS6SPID[6:13].

• Either the appropriate MMUCR1[I/DTTID] bit (for I-ERAT or D-ERAT) is 0, or the 4-bit ThdID value of the
ERAT entry is equal to MAS6SPID[2:5].

• Either the appropriate MMUCR1[I/DCTID] bit (for I-ERAT or D-ERAT) is 0, or the 2-bit Class value of the
ERAT entry is equal to MAS6SPID[0:1].

• The 3-bit SIZE value of the ERAT entry is equal to the 3-bit interpretation of the 4-bit MAS6ISIZE.

• The TID_NZ bit of the ERAT entry is equal to the logical OR of all the bits of MAS6SPID[0:13].

• The MAS6SIND value is 0 (that is, ERATs contain only direct entries).

• The ExtClass value of the ERAT entry is 0.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 493 of 864

12.2.6 TLB Invalidate Local Indexed (tlbilx)

Software can use the tlbilx instruction to invalidate entries in the local TLB (and associated copies in the local
ERAT structures).

The “c” parameter (which architecturally can depend on MMUCFGTWC) is defined always as MAS6ISIZE
because MMUCFGTWC = 1 for this processor.

Because the Embedded.Hypervisor category is supported, if guest execution of TLB management instruc-
tions is disabled (EPCRDGTMI = 1), this instruction is embedded hypervisor privileged. Otherwise, this instruc-
tion is supervisor privileged. Because this instruction relies on the MAS Registers, execution of this
instruction in ERAT-only mode (CCR2[NOTLB] = 1) results in an illegal instruction exception. The instruction
format and details follow.

tlbilx T,RA,RB

if RA = 0 then b  0 else b  (RA)
EA  b + (RB)

for each TLB entry
c  MAS6ISIZE
m ¬((1 << (2(c-1))) - 1)
n  64-log2(entry page size in bytes)
if (entryIPROT = 0) & (entryTLPID = MAS5SLPID) then

if T = 0 then entryV  0
 if T = 1 & entryTID = MAS6SPID & (MAS6SIND = 0 | (MAS6SIND = 1 & entryIND = 0))

then entryV  0
 if T = 3 & entryTGS = MAS5SGS &
 ((EA0:51 & m) = (entryEPN & m)) &

(entryX = 0 | EPNn:51 > entryEPN[n:51]) & entrySIZE = MAS6ISIZE &
entryTID = MAS6SPID & entryTS = MAS6SAS & entryIND = MAS6SIND

then entryV  0
 if T = 4 & entryCLASS = 0 & MMUCR1ICTID DCTID = 0 0 then entryV  0

if T = 5 & entryCLASS = 1 & MMUCR1ICTID DCTID = 0 0 then entryV  0
if T = 6 & entryCLASS = 2 & MMUCR1ICTID DCTID = 0 0 then entryV  0
if T = 7 & entryCLASS = 3 & MMUCR1ICTID DCTID = 0 0 then entryV  0

for each ERAT entry
c  entrySIZE
m ¬((1 << (2(c-1))) - 1)
n  64-log2(entry page size in bytes)
if (entryEXTCLASS = 0) then

if T = 0 then entryV  0
 if T = 1 & entryTID = MAS6SPID[6:13] & entryTID_NZ = or_reduce(MAS6SPID[0:13]) &

(entryTHDID = MAS6SPID[2:5] | MMUCR1I/DTTID = 0) &
(entryCLASS = MAS6SPID[0:1] | MMUCR1I/DCTID = 0)
then entryV  0

 if T = 3 & entryTGS = MAS5SGS &

31
0

///
6

T
8

RA
11

RB
16

18
21

/
31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 494 of 864
Version 1.3

October 23, 2012

 ((EA0:51 & m) = (entryEPN & m)) &
(entryX = 0 | EPNn:51 > entryEPN[n:51]) &
entryTID = MAS6SPID[6:13] & entryTS = MAS6SAS & MAS6IND = 0 & entryTID_NZ =

or_reduce(MAS6SPID[0:13]) &
(entryTHDID = MAS6SPID[2:5] | MMUCR1I/DTTID = 0) &
(entryCLASS = MAS6SPID[0:1] | MMUCR1I/DCTID = 0)

 then entryV  0
 if T = 4 & entryCLASS = 0 & MMUCR1I/DCTID = 0 then entryV  0

if T = 5 & entryCLASS = 1 & MMUCR1I/DCTID = 0 then entryV  0
if T = 6 & entryCLASS = 2 & MMUCR1I/DCTID = 0 then entryV  0
if T = 7 & entryCLASS = 3 & MMUCR1I/DCTID = 0 then entryV  0

Let the EA be the sum (RA|0) + (RB).

The tlbilx instruction invalidates TLB and ERAT entries in the processor (core) that executes the tlbilx
instruction. TLB entries that are protected by the IPROT attribute (entryIPROT = 1) are not invalidated. ERAT
entries that are protected by the ExtClass attribute (entryEXTCLASS = 1) are not invalidated.

If T = 0, all TLB (and ERAT) entries that have all of the following properties are made invalid on the processor
(core) executing the tlbilx instruction:

• The TLPID of the entry matches MAS5SLPID (ERAT entries ignore MAS5SLPID).

• The IPROT (or ExtClass) of the entry is 0.

If T = 1, all TLB (and ERAT) entries that have all of the following properties are made invalid on the processor
executing the tlbilx instruction:

• The TLPID of the entry matches MAS5SLPID (ERAT entries ignore MAS5SLPID).

• The TID of the entry (and perhaps the ThdID and/or Class of the ERAT entries, depending on
MMUCR1ITTID DTTID ICTID DCTID bits) matches MAS6SPID.

• The TID_NZ bit value of the ERAT entry (does not apply to TLB entries) matches the logical OR of all bits
of MAS6SPID(0:13).

• The IPROT (or ExtClass) of the entry is 0.

If T = 3, all TLB entries (and except where noted, all ERAT entries) in the processor executing the tlbilx
instruction that have all of the following properties are made invalid:

• The TLPID value of the entry is equal to MAS5SLPID (ERAT entries ignore MAS5SLPID)

• The TGS value of the entry is equal to MAS5SGS.

• The logical AND of EA0:53 and m is equal to the logical AND of the EPN value of the entry and m, where
m is based on the following:

– c is equal MAS6ISIZE.

– m is equal to the logical NOT of ((1 << (2  (c - 1))) - 1). Note this might seem in conflict with the archi-
tecture for MAV 2.0, but this implementation supports only the 4 MSbs of the SIZE fields (that is, this
processor supports only power of 4, 1 KB page sizes).

• The X value of the entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n equals 64
- log2(entry page size in bytes).

• The TID value of the entry (and perhaps the ThdID and/or Class values of the ERAT entries, depending
on MMUCR1ITTID DTTID ICTID DCTID bits) is equal to MAS6SPID.

MMU Architecture version

kilobyte

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 495 of 864

• The TID_NZ bit value of the ERAT entry (does not apply to TLB entries) matches the logical OR of all bits
of MAS6SPID(0:13).

• The TS value of the entry is equal to MAS6SAS.

• For TLB entries, the SIZE value of the entry is equal to MAS6ISIZE (this does not apply to ERAT entries).

• The IND value of the TLB entry is equal to MAS6SIND (or MAS6SIND = 0 for ERAT entries).

• The IPROT (or ExtClass) of the entry is 0.

If T = 4, 5, 6, or 7, all TLB (and ERAT) entries that have all of the following properties are made invalid on the
processor executing the tlbilx instruction:

• The TLPID value of the entry is equal to MAS5SLPID (ERAT entries ignore MAS5SLPID).

• The Class value of the entry equals T - 4.

• MMUCR1ICTID = 0 (for I-ERAT entries) or MMUCR1DCTID = 0 (for D-ERAT entries).

• The IPROT (or ExtClass) of the entry is 0.

The effects of the invalidation are not guaranteed to be visible to the programming model until the completion
of a context synchronizing operation.

If T = 2, an illegal instruction exception is generated.

If T = 4, 5, 6, or 7, and MMUCR1ICTID = 1 and MMUCR1DCTID = 1, an illegal instruction exception is gener-
ated.

This implementation requires the target page size to be specified by MAS6ISIZE (because MMUCFGTWC = 1
and TLB0CFGHES = 1). For the T = 3 form, the target page size is used by the set-associative TLB structure
in this implementation to calculate the one and only congruence class in which the targeted entry can be
stored. The target page size is not required by the fully associative ERAT structures because the full EPN is
specified and generous invalidates are therefore inherently minimized. If T = 3 and the page size specified by
MAS6ISIZE is not supported by this implementation, an illegal instruction exception is generated.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 496 of 864
Version 1.3

October 23, 2012

12.3 ERAT Management Instructions

12.3.1 ERAT Read Entry (eratre)

Software must use the eratre instruction to read entries from either ERAT. The eratre instruction relies on the
MMUCR0[TLBSEL] to determine on which hardware ERAT structure (I-ERAT or D-ERAT) the instruction
operates.

This instruction is embedded hypervisor privileged. This instruction can be executed in either MMU mode or
ERAT-only mode (CCR2[NOTLB] = don’t care). The instruction format and details follow.

eratre RT,RA,WS

IF MMUCR0[TLBSEL] = 0 or 1 (reserved settings) THEN
 illegal instruction exception

ELSE IF MMUCR0[TLBSEL] = 2 THEN
 If WS = 0 then
 (RT)  I-ERATWS0[(RA60:63)]
 (MMUCR0[TGS])  I-ERATWS0[(RA60:63)].TGS
 (MMUCR0[TS])  I-ERATWS0[(RA60:63)].TS
 (MMUCR0[TID50:51])  I-ERATWS0[(RA60:63)].CLASS when MMUCR1[ICTID] = 1 else unchanged
 (MMUCR0[TID52:55])  I-ERATWS0[(RA60:63)].THDID when MMUCR1[ITTID] = 1 else unchanged
 (MMUCR0[TID56:63])  I-ERATWS0[(RA60:63)].TID
 (MMUCR0[TID_NZ])  I-ERATWS0[(RA60:63)].TID_NZ
 (MMUCR0[ECL])  I-ERATWS0[(RA60:63)].EXTCLASS
 else If WS = 1 then
 (RT)  I-ERATWS1[(RA60:63)]

 else If WS = 3 then
 (RT)  I-ERAT round-robin pointer when MMUCR1[IRRE] = 1 else least recently used (LRU)

index

ELSE IF MMUCR0[TLBSEL] = 3 THEN
if WS = 0

 (RT)  D-ERATWS0[(RA59:63)]
 (MMUCR0[TGS])  D-ERATWS0[(RA59:63)].TGS
 (MMUCR0[TS])  D-ERATWS0[(RA59:63)].TS
 (MMUCR0[TID50:51])  D-ERATWS0[(RA59:63)].CLASS when MMUCR1[DCTID] = 1 else unchanged
 (MMUCR0[TID52:55])  D-ERATWS0[(RA59:63)].THDID when MMUCR1[DTTID] = 1 else unchanged
 (MMUCR0[TID56:63])  D-ERATWS0[(RA59:63)].TID
 (MMUCR0[TID_NZ])  D-ERATWS0[(RA59:63)].TID_NZ
 (MMUCR0[ECL])  D-ERATWS0[(RA59:63)].EXTCLASS
 else If WS = 1 then
 (RT)  D-ERATWS1[(RA59:63)]

else If WS = 3 then
 (RT)  D-ERAT round-robin pointer when MMUCR1[DRRE] = 1 else least recently used (LRU)

index

31
0

RT
6

RA
11

WS
16

179
21

/
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 497 of 864

The contents of the selected ERAT entry is placed into register RT (and possibly into MMUCR0[TGS, TS,
TID, and ECL]).

MMUCR0[TLBSEL] is used as the source structure selection for this instruction: I-ERAT or D-ERAT
(MMUCR0[TLBSEL] = 2 or 3 respectively; settings 0 and 1 are reserved).

Bits 52:63 of RA are used as an index into the I-ERAT or D-ERAT (up to 4096 entries). Bits 60:63 are used to
select the I-ERAT entries, bits 59:63 select the D-ERAT entries, and bits 52:58 are reserved.

The WS field specifies which portion of the selected the entry (WS0 or WS1) is loaded into RT.

If WS is 0 (the EPN portion is being accessed), then the MMUCR0[TGS, TS, TID56:63, TID_NZ, and ECL]
fields are set to the values of the TGS, TS, TID, TID_NZ, and EXTCLASS fields from the entry. Otherwise,
the MMUCR0 SPR is not affected. Also, the MMUCR1[ITTID] and [ICTID] bits for I-ERAT, and
MMUCR1[DTTID] and [DCTID] bits for D-ERAT, play a role in updating the MMUCR0[TID50:55] field. When
MMUCR1[I/DTTID] = 1, then MMUCR0[TID52:55] is set to the value of the THDID field of the chosen I-ERAT
or D-ERAT entry. When MMUCR1[I/DCTID] = 1, then MMUCR0[TID50:51] is set to the value of the CLASS
field of the chosen I/D-ERAT entry.

If WS is 1, the RPN portion is returned, and if WS is 3, the ERAT least recently used (LRU) entry index is
returned. Setting WS = 2 is reserved for the 32-bit subset.

The contents of RT after completion of this instruction are defined below.

If WS = 0 (EPN portion) and MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected):
RT[0:51]  EPN[0:51]
RT[52:53]  Class[0:1] when MMUCR[I/DCTID] = 0 else “00”
RT[54]  V
RT[55]  X (exclusion enable)
RT[56:59]  convert_to_4bits(SIZE[0:2]) when entry page size supported else “0000”
RT[60:63]  ThdID[0:3] when MMUCR[I/DTTID] = 0 else “1111”
MMUCR0[TGS]  TGS
MMUCR0[TS]  TS
MMUCR0[TID50:51]  Class[0:1] when MMUCR[I/DCTID] = 1 else unchanged
MMUCR0[TID52:55]  ThdID[0:3] when MMUCR[I/DTTID] = 1 else unchanged
MMUCR0[TID56:63]  TID[0:7]
MMUCR0[TID_NZ]  TID_NZ
MMUCR0[ECL]  EXTCLASS

If WS = 1 (RPN portion) and MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected):
RT[0:7]  “00000000”
RT[8:9]  WLC[0:1]
RT[10]  ResvAttr
RT[11]  ‘0’
RT[12:15]  U[0:3]
RT[16]  R
RT[17]  C
RT[18:21]  “0000”
RT[22:51]  RPN[22:51]
RT[52:56]  WIMGE
RT[57]  VF
RT[58:59]  UX,SX

special purpose register

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 498 of 864
Version 1.3

October 23, 2012

RT[60:61]  UW,SW
RT[62:63]  UR,SR

If WS = 3 (LRU portion), MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected), and MMUCR1[IRRE] =
0 for I-ERAT or MMUCR1[DRRE] = 0 for D-ERAT:

RT[0:51]  “00...0”
RT[52:63]  Least Recently Used (LRU) entry index1

If WS = 3 (LRU portion), MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected), and MMUCR1[IRRE] =
1 for I-ERAT or MMUCR1[DRRE] = 1 or D-ERAT:

RT[0:51]  “00...0”
RT[52:63]  Round-robin entry pointer value1, 2

Notes:

1. For ERAT structures containing less than 4096 entries, unused MSBs return ‘0’.

2. See Section 6.7.4 ERAT LRU Round-Robin Replacement Mode for a description of the round-robin entry
pointer operation.

most significant byte

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 499 of 864

12.3.2 ERAT Write Entry (eratwe)

Software must use the eratwe instruction to write entries into either ERAT. The eratwe instruction relies on
the MMUCR0[TLBSEL] to determine on which hardware ERAT structure (I-ERAT or D-ERAT) the instruction
operates.

This instruction is embedded hypervisor privileged. This instruction can be executed in either MMU mode or
ERAT-only mode (CCR2[NOTLB] = don’t care). The instruction format and details follow.

eratwe RS,RA,WS

IF MMUCR0[TLBSEL] = 0 or 1 (reserved settings) THEN
illegal instruction exception

ELSE IF MMUCR0[TLBSEL] = 2 THEN
 If MMUCR1.IRRE = 1 then
 entry  I-ERAT LRU round-robin pointer
 I-ERAT LRU round-robin pointer  [(I-ERAT LRU round-robin pointer + 1) mod (water-

mark + 1)]
 else

 entry  RA60:63
 If WS = 0 then
 I-ERATWS0[(entry)].EPN  (RS0:51)
 I-ERATWS0[(entry)].CLASS  (MMUCR0[TID50:51]) when MMUCR1[ICTID] = 1 else (RS52:53)
 I-ERATWS0[(entry)].V, X  (RS54:55)
 I-ERATWS0[(entry)].TSIZE  convert_to_3bits(RS56:59)
 I-ERATWS0[(entry)].THDID  (MMUCR0[TID52:55]) when MMUCR1[ITTID] = 1 else (RS60:63)
 I-ERATWS0[(entry)].TGS  (MMUCR0[TGS])
 I-ERATWS0[(entry)].TS  (MMUCR0[TS])
 I-ERATWS0[(entry)].TID  (MMUCR0[TID56:63])
 I-ERATWS0[(entry)].TID_NZ  (MMUCR0[TID_NZ])
 I-ERATWS0[(entry)].EXTCLASS  (MMUCR0[ECL])

 I-ERATWS1[(entry)]  (I-ERAT.RPNREG)
 else if WS = 1 then
 I-ERAT.RPNREG  (RS)
 else if WS = 3 then

 I-ERAT.LRU-Watermark-  (RS60:63)
ELSE IF MMUCR0[TLBSEL] = 3 THEN

 If MMUCR1[DRRE] = 1 then
 entry  D-ERAT LRU round-robin pointer
 D-ERAT LRU round-robin pointer  [(D-ERAT LRU round-robin pointer + 1) mod (water-

mark + 1)]
 else

 entry  RA59:63
 If WS = 0 then
 D-ERATWS0[(entry)].EPN  (RS0:51)
 D-ERATWS0[(entry)].CLASS  (MMUCR0[TID50:51]) when MMUCR1[DCTID] = 1 else (RS52:53)
 D-ERATWS0[(entry)].V, X  (RS54:55)
 D-ERATWS0[(entry)].TSIZE  convert_to_3bits(RS56:59)

31
0

RS
6

RA
11

WS
16

211
21

/
31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 500 of 864
Version 1.3

October 23, 2012

 D-ERATWS0[(entry)].THDID  (MMUCR0[TID52:55]) when MMUCR1[DTTID] = 1 else (RS60:63)
 D-ERATWS0[(entry)].TGS  (MMUCR0[TGS])
 D-ERATWS0[(entry)].TS  (MMUCR0[TS])
 D-ERATWS0[(entry)].TID  (MMUCR0[TID56:63])
 D-ERATWS0[(entry)].TID_NZ  (MMUCR0[TID_NZ])
 D-ERATWS0[(entry)].EXTCLASS  (MMUCR0[ECL])
 D-ERATWS1[(entry)]  (D-ERAT.RPNREG)
 else if WS = 1 then
 D-ERAT.RPNREG  (RS)
 else if WS = 3 then
 D-ERAT.LRU-Watermark  (RS59:63)

The contents of register RS (and possibly the contents of MMUCR0[TGS, TS,TID, TID_NZ, and ECL]) are
placed into the selected ERAT entry.

Bits MMUCR0[TLBSEL] are used as the target structure selection for this instruction: I-ERAT or D-ERAT
(MMUCR0[TLBSEL] = 2 or 3 respectively; settings 0 and 1 are reserved).

When MMUCR1[I/DRRE] = 0, bits 52:63 of RA are used as an index into the I-ERAT or D-ERAT (up to 4096
entries). Bits 60:63 are used to select the I-ERAT entries, bits 59:63 select the D-ERAT entries, and bits
52:58 are reserved. When MMUCR1[I/DRRE] = 1, the appropriate LRU round-robin pointer is used as the
entry pointer, and subsequently incremented (when less than the current watermark value; otherwise, it rolls
over to zero).

The WS field specifies which portion of the selected the entry (WS0 or WS1) is loaded into from RS. The
ERAT structures in this implementation contain an intermediate holding register (RPNREG) for the WS = 1
(RPN) portion. This is done to provide for an atomic update of the entire entry at one time. When this instruc-
tion is executed with WS = 1, the contents of RS are actually written into the holding register. When this
instruction is executed with WS = 0, the contents of RS and MMUCR0 are written into the WS0 portion, and
the contents of the holding register are written into the WS1 portion of the entry.

If WS is 0 (the WS0 portion is being written), then the MMUCR0[TGS, TS, TID56:63, TID_NZ, and ECL] fields
are used to set the values of the TGS, TS, TID, TID_NZ, and EXTCLASS fields in the entry. Also, the
MMUCR1[ITTID] and [ICTID] bits for I-ERAT, and MMUCR1[DTTID] and [DCTID] bits for D-ERAT, play a role
in updating the entry THDID and CLASS fields. When MMUCR1[I/DTTID] = 1, then MMUCR0[TID52:55] is
used to update the value of the THDID field of the chosen I/D-ERAT entry. When MMUCR1[I/DCTID] = 1,
then MMUCR0[TID50:51] is used to update the value of the CLASS field of the chosen I/D-ERAT entry.

If WS is 3 and MMUCR0[TLBSEL] = 2 or 3, the ERAT LRU watermark value is updated with the contents of
RS. The setting of WS = 2 is reserved for the 32-bit subset.

The contents of the entry after completion of this instruction are defined below.

If WS = 0 (WS0 portion) and MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected):
EPN[0:51]  RS[0:51]
Class[0:1]  MMUCR0[TID50:51] when MMUCR1[I/DCTID] = 1 else RS[52:53]
V  RS[54]
X (exclusion enable)  RS[55]
SIZE[0:2]  convert_to_3bits(RS[56:59])
ThdID[0:3]  MMUCR0[TID52:55] when MMUCR1[I/DTTID] = 1 else RS[60:63]
TGS  MMUCR0[TGS]
TS  MMUCR0[TS]

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 501 of 864

TID[0:7]  MMUCR0[TID56:63]
TID_NZ  MMUCR0[TID_NZ]
EXTCLASS  MMUCR0[ECL]

unused  RPNREG[0:7]
WLC[0:1]  RPNREG[8:9]
ResvAttr  RPNREG[10]
unused  RPNREG[11]
U[0:3]  RPNREG[12:15]
R  RPNREG[16]
C  RPNREG[17]
unused  RPNREG[18:21]
RPN[22:51]  RPNREG[22:51]
WIMGE  RPNREG[52:56]
VF  RPNREG[57]
UX,SX  RPNREG[58:59]
UW,SW  RPNREG[60:61]
UR,SR  RPNREG[62:63]

If WS = 1 (WS1 portion) and MMUCR0[TLBSEL] = 2 or 3 (I-ERAT or D-ERAT selected):
RPNREG[0:63]  RS[0:63]

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 502 of 864
Version 1.3

October 23, 2012

12.3.3 ERAT Search Indexed (eratsx[.])

Software must use the eratsx[.] instruction to search the entries in either ERAT. The eratsx[.] instruction
relies on the MMUCR0[TLBSEL] field to determine on which hardware ERAT structure (I-ERAT or D-ERAT)
the instruction operates.

This instruction is embedded hypervisor privileged. This instruction can be executed in either MMU mode or
ERAT-only mode (CCR2[NOTLB] = don’t care). The instruction format and details are described below.

eratsx RT,RA,RB Rc = 0
eratsx. RT,RA,RB Rc = 1

EA  (RA|0)1+ (RB)
EPN  EA[0:63-p], where p = log2(4

Entry[SIZE] x 1 K)
thread_num  number of executing thread (0 to 3)
If Rc = 1

CR[CR0]0  0
CR[CR0]1  0
CR[CR0]3  0

IF MMUCR0[TLBSEL] = 0 or 1 (reserved settings) THEN
Illegal Instruction exception

ELSE IF MMUCR0[TLBSEL] = 2 THEN
if exactly one valid, matching entry with all of the following properties:

1. entry[TGS] = MMUCR0[TGS]
2. entry[TS] = MMUCR0[TS]
3. entry[TID] = MMUCR0[TID56:63], or entry[TID_NZ] = 0
4. MMUCR1[ICTID] = 0, or entry[CLASS] = MMUCR0[TID50:51], or entry[TID_NZ] = 0
5. MMUCR1[ITTID] = 0, or entry[THDID] = MMUCR0[TID52:55], or entry[TID_NZ] = 0
6. MMUCR1[ITTID] = 1, or entry[THDID(thread_num)] = 1
7. entry[EPN0:63-p] = EPN0:63-p
8. entry[V] = 1

is in the I-ERAT then
 (RT[52:63])  index of matching I-ERAT entry2

 (RT[50:51])  “01”
if Rc = 1 then CR[CR0]2  1

else if more than one valid, matching entry is in the I-ERAT then
 (RT[52:63])  index of first matching I-ERAT entry2
 (RT[50:51])  “11”
if Rc = 1 then CR[CR0]2  1

else
 (RT[52:63])  undefined
 (RT[50:51])  “00”
if Rc = 1 then CR[CR0]2  0

31
0

RT
6

RA
11

RB
16

147
21

Rc
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 503 of 864

ELSE IF MMUCR0[TLBSEL] = 3 THEN
if exactly one valid, matching entry with all of the following properties:

1. entry[TGS] = MMUCR0[TGS]
2. entry[TS] = MMUCR0[TS]
3. entry[TID] = MMUCR0[TID56:63], or entry[TID_NZ] = 0
4. MMUCR1[DCTID] = 0, or entry[CLASS] = MMUCR0[TID50:51], or entry[TID_NZ] = 0
5. MMUCR1[DTTID] = 0, or entry[THDID] = MMUCR0[TID52:55], or entry[TID_NZ] = 0
6. MMUCR1[DTTID] = 1, or entry[THDID(thread_num)] = 1
7. entry[EPN0:63-p] = EPN0:63-p
8. entry[V] = 1

is in the D-ERAT then
 (RT[52:63])  index of matching D-ERAT entry2

 (RT[50:51])  “01”
if Rc = 1 then CR[CR0]2  1

else if more than one valid, matching entry is in the D-ERAT then
 (RT[52:63])  index of first matching D-ERAT entry2

 (RT[50:51])  “11”
if Rc = 1 then CR[CR0]2  1

else
 (RT[52:63])  undefined
 (RT[50:51])  “00”
if Rc = 1 then CR[CR0]2  0

Notes:

1. An EA is formed by adding an index to a base address. The index is the contents of register RB. The base
address is 0 if the RA field is 0, and is the contents of register RA 0:63 otherwise. Because of the pipelined
nature of searches of the ERAT arrays, and because the effective address adder resides in the execution
unit (not the instruction unit), only the RA = 0 variation of this instruction is supported when searching the
I-ERAT array (that is, EA is always calculated as EA = 0 + (RB) when MMUCR0[TLBSEL] = 2).

2. For ERAT structures containing less than 4096 entries, unused MSBs return ‘0’.

An EPN is determined from EA bits 0 to 51. The effective page number bits used for page matching for a
given ERAT entry are EPN[0:63-p], where p = log2(4Entry[SIZE]  1 K).

The MMUCR0[TLBSEL] bits are used to select a particular source structure (I-ERAT or D-ERAT).

The chosen ERAT is searched for a valid entry, which translates MMUCR0[TGS], MMUCR0[TS],
MMUCR0[TID56:63], and EPN (the ERATs do not contain the TLPID or IND values). Depending on the value
of the MMUCR1[I/DCTID] and [I/DTTID] bits, the entry Class and/or ThdID fields can participate in the search
as part of the TID value. If one or more matching entries are found, the index number of the first matching
entry is returned in register RT. If no matching entries are found, the index number returned is undefined.

The RT bits 50:51 can be tested after an eratsx[.] instruction to determine if the search found exactly one
matching entry (01), found more than one matching entry (11), or failed to find a matching entry (00).

The record bit (Rc) specifies whether the results of the search will affect CR[CR0] as shown above, such that
CR[CR0]2 can be tested if there is a possibility that the search might fail.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 504 of 864
Version 1.3

October 23, 2012

12.3.4 ERAT Invalidate Virtual Address Indexed (erativax)

Software must use the erativax instruction to globally invalidate entries in the ERATs while operating in
ERAT-only mode (CCR2[NOTLB] = 1). The global erativax instruction is broadcast to all processors in the
same logical partition when the A2 is connected to an L2 memory subsystem with invalidation snoop capa-
bility. See Section 6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruction (erativax) for implementation-
specific system requirements and parameters associated with the broadcast aspect of this instruction.

This instruction is embedded hypervisor privileged. Execution of the instruction while MSR[GS] = 1 results in
an embedded hypervisor privilege exception.

This instruction can be executed in ERAT-only mode (CCR2[NOTLB] = 1). Execution of this instruction in
MMU mode (CCR2[NOTLB] = 0) results in an illegal instruction exception. When specific, architected global
invalidations are required in MMU mode, the tlbivax instruction is recommended.

erativax RS,RA,RB

EA  (RA|0) + (RB)
EPN  EA[0:51]

IS  RS[56:57]
class  RS[58:59]
size  RS[60:63]

tgs  MMUCR0[TGS]
ts  MMUCR0[TS]
tid  MMUCR0[TID50:63]
lpid  LPIDR[LPID]

if size = ‘0001’ then pg_size  4 KB
else if size = ‘0011’ then pg_size  64 KB
else if size = ‘0101’ then pg_size  1 MB
else if size = ‘0111’ then pg_size  16 MB
else if size = ‘1010’ then pg_size  1 GB
else illegal instruction exception

p  log2(pg_size)

L  0 when pg_size = 4 KB
else L  1

w  most significant bit position supported by this processor’s physical system address bus (see
Section 6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruction (erativax) on page 221 for a description
of w values for this implementation)

31
0

RS
6

RA
11

RB
16

819
21

/
31

Machine State Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 505 of 864

for each processor in the logical partition
for each ERAT entry
n  64-log2(entry page size in bytes)
if {(IS = “11”) AND

(entry[EPNw:63-p] = EPNw:63-p) AND
(entry[X] = 0 OR EPNn:51 > entry[EPNn:51]) AND
(entry[TGS] = gs) AND
(entry[TS] = ts) AND
(entry[TID] = tid6:13) AND
(entry[THDID] = tid2:5 OR MMUCR1[I/DTTID] = 0) AND
(entry[CLASS] = tid0:1 OR MMUCR1[I/DCTID] = 0) AND
(entry[TID_NZ] = or_reduce(tid0:13)) AND
(entry[SIZE]) = convert_to_3bit(size)) AND
(entry[EXTCLASS] = 0)} OR

{(IS = “10”) AND
(entry[CLASS] = class AND MMUCR1[I/DCTID]TARGET = 0) AND
(entry[EXTCLASS] = 0)} OR

{(IS = “01”) AND
(entry[TID] = tid6:13) AND
(entry[THDID] = tid2:5 OR MMUCR1[I/DTTID]TARGET = 0) AND
(entry[CLASS] = tid0:1 OR MMUCR1[I/DCTID]TARGET = 0) AND
(entry[TID_NZ] = or_reduce(tid0:13)) AND
(entry[EXTCLASS] = 0)} OR

{(IS = “00”) AND
(entry[EXTCLASS] = 0)}

then entry[V]  0

An effective address EA is formed by adding an index to a base address. The index is the contents of register
RB. The base address is 0 if the RA field is 0, and is the contents of register RA 0:63 otherwise.

This implementation requires a valid direct page size to be specified by RS60:63. If the page size specified by
RS60:63 is not supported by this implementation for direct pages, an illegal instruction exception is generated.

When IS = ‘11’, all ERAT entries on all processors in the same logical partition that have all of the following
properties are made invalid. The RS and MMUCR0 registers listed are those in the processor executing the
erativax instruction.The MMUCR1 register listed is that in the processor receiving the erativax snoop.

• The EPNw:63-p value of the ERAT entry is equal to EPNw:63-p.

• The X value of the ERAT entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n
equals 64 - log2(entry page size in bytes).

• The TGS value of the ERAT entry is equal to MMUCR0TGS.

• The TS value of the ERAT entry is equal to MMUCR0TS.

• The 8-bit TID value of the ERAT entry is equal to MMUCR0TID[56:63].

• Either the appropriate MMUCR1[I/DTTID] bit (for target I-ERAT or D-ERAT) is 0, or the 4-bit ThdID value
of the ERAT entry is equal to MMUCR0TID[52:55].

• Either the appropriate MMUCR1[I/DCTID] bit (for target I-ERAT or D-ERAT) is 0, or the 2-bit Class value
of the ERAT entry is equal to MMUCR0TID[50:51].

• The TID_NZ value of the ERAT entry is equal to or_reduce(MMUCR0TID[50:63]).

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 506 of 864
Version 1.3

October 23, 2012

• The 3-bit SIZE value of the ERAT entry is equal to the 3-bit interpretation of the 4-bit RS60:63.

• The ExtClass value of the ERAT entry is 0.

This implementation requires the direct target page size to be specified by RS60:63. For the IS = ‘11’ form, the
target page size is used by the fully associative ERAT structures to minimize generous invalidations that
would otherwise occur when the full EPN is not transferred. If the direct page size specified by RS60:63 is not
supported by this implementation, an illegal instruction exception is generated.

When IS = ‘10’, all ERAT entries on all processors in the same logical partition that have all of the following
properties are made invalid:

• The appropriate MMUCR1[I/DCTID] bit (for target I-ERAT or D-ERAT) is 0, and the 2-bit Class value of
the ERAT entry is equal to RS58:59.

• The ExtClass value of the ERAT entry is 0.

When IS = ‘01’, all ERAT entries on all processors in the same logical partition that have all of the following
properties are made invalid:

• The 8-bit TID value of the ERAT entry is equal to MMUCR0TID[56:63].

• Either the appropriate MMUCR1[I/DTTID] bit (for target I-ERAT or D-ERAT) is 0, or the 4-bit ThdID value
of the ERAT entry is equal to MMUCR0TID[52:55].

• Either the appropriate MMUCR1[I/DCTID] bit (for target I-ERAT or D-ERAT) is 0, or the 2-bit Class value
of the ERAT entry is equal to MMUCR0TID[50:51].

• The TID_NZ value of the ERAT entry is equal to or_reduce(MMUCR0TID[50:63]).

• The ExtClass value of the ERAT entry is 0.

When IS = ‘00’, all ERAT entries on all processors in the same logical partition that have an ExtClass value of
0 are made invalid.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 507 of 864

12.3.5 ERAT Invalidate Local Indexed (eratilx)

Software can use the eratilx instruction to invalidate entries in the local processor’s ERAT structures. The
eratilx invalidations are not broadcast to other processors.

This instruction is embedded hypervisor privileged. This instruction can be executed in either MMU mode or
ERAT-only mode (CCR2[NOTLB] = don’t care). The instruction format and details follow.

eratilx T,RA,RB

if RA = 0 then b 0 else b (RA)
EA b + (RB)

for each ERAT entry
c  entrySIZE
m ¬((1 << (2(c-1))) - 1)
n  64-log2(entry page size in bytes)
if (entryEXTCLASS = 0) then

if T = 0 then entryV  0
 if T = 1 & entryTID = MMUCR0TID[56:63] & entryTID_NZ = or_reduce(MMUCR0TID[50:63]) &

(entryTHDID = MMUCR0TID[52:55] | MMUCR1I/DTTID = 0) &
(entryCLASS = MMUCR0TID[50:51] | MMUCR1I/DCTID = 0)
then entryV  0

if T = 2 & entryTGS = MMUCR0TGS then entryV 0
if T = 3 & entryTGS = MMUCR0TGS &

 ((EA0:51 & m) = (entryEPN & m)) &
(entryX = 0 | EPNn:51 > entryEPN[n:51]) &
entryTID = MMUCR0TID[56:63] & entryTID_NZ = or_reduce(MMUCR0TID[50:63]) & entryTS = MMUCR0TS &
(entryTHDID = MMUCR0TID[52:55] | MMUCR1I/DTTID = 0) &
(entryCLASS = MMUCR0TID[50:51] | MMUCR1I/DCTID = 0)

 then entryV  0
 if T = 4 & entryCLASS = 0 & MMUCR1I/DCTID = 0 then entryV  0

if T = 5 & entryCLASS = 1 & MMUCR1I/DCTID = 0 then entryV  0
if T = 6 & entryCLASS = 2 & MMUCR1I/DCTID = 0 then entryV  0
if T = 7 & entryCLASS = 3 & MMUCR1I/DCTID = 0 then entryV  0

Let the EA be the sum (RA|0) + (RB).

The eratilx instruction invalidates ERAT entries in the processor (core) that executes the eratilx instruction.
ERAT entries that are protected by the ExtClass attribute (entryEXTCLASS = 1) are not invalidated.

If T = 0, all ERAT entries that have an ExtClass value of 0 are made invalid on the processor (core) executing
the eratilx instruction:

If T = 1, all ERAT entries that have all of the following properties are made invalid on the processor executing
the eratilx instruction:

• The TID of the entry (and perhaps the ThdID and/or Class of the ERAT entry, depending on
MMUCR1ITTID DTTID ICTID DCTID bits) matches MMUCR0TID.

31
0

///
6

T
8

RA
11

RB
16

51
21

/
31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 508 of 864
Version 1.3

October 23, 2012

• The TID_NZ value of the entry matches the logical OR of all bits of MMUCR0TID(0:13).

• The ExtClass of the entry is 0.

If T = 2, all ERAT entries that have all of the following properties are made invalid on the processor executing
the eratilx instruction:

• The TGS of the entry matches MMUCR0TGS.

• The ExtClass of the entry is 0.

If T = 3, all ERAT entries in the processor executing the eratilx instruction that have all of the following prop-
erties are made invalid:

• The TGS value of the entry is equal to MMUCR0TGS.

• The logical AND of EA0:53 and m is equal to the logical AND of the EPN value of the entry and m, where
m is based on the following:

– c is equal entrySIZE.

– m is equal to the logical NOT of ((1 << (2  (c-1))) - 1). Note that this might seem in conflict with the
architecture for MAV 2.0, but this implementation supports only the 4 MSbs of the SIZE fields (that is,
this processor supports only power of 4  1 KB page sizes).

• The X value of the entry is 0, or EPNn:51 is greater than the value of the entry EPNn:51, where n equals 64
- log2(entry page size in bytes).

• The TID value of the entry (and perhaps the ThdID and/or Class values of the ERAT entries, depending
on MMUCR1ITTID DTTID ICTID DCTID bits) is equal to MMUCR0TID.

• The TID_NZ value of the entry matches the logical OR of all bits of MMUCR0TID(0:13).

• The TS value of the entry is equal to MMUCR0TS.

• The ExtClass of the entry is 0.

If T = 4, 5, 6, or 7, all ERAT entries that have all of the following properties are made invalid on the processor
executing the eratilx instruction:

• The Class value of the entry equals T - 4.

• MMUCR1ICTID = 0 (for I-ERAT entries) or MMUCR1DCTID = 0 (for D-ERAT entries).

• The ExtClass of the entry is 0.

The effects of the invalidation are not guaranteed to be visible to the programming model until the completion
of a context synchronizing operation.

If T = 4, 5, 6, or 7, and MMUCR1ICTID = 1 and MMUCR1DCTID = 1, an illegal instruction exception is gener-
ated.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 509 of 864

12.4 Software Transactional Memory Instructions

Support is provided for three problem-state instructions. The following notation assumes the existence of an
extra bit per hardware thread per memory location X denoted watchbit(X), which is initialized to 0. An addi-
tional sticky bit per thread is maintained denoted watchlost, which reflects whether any watches have been
lost since that thread last reset its watchlost bit. In the following descriptions, references to watchbit(X) and
watchlost refer to the bits associated with the thread executing the instruction. The watch bits and watchlost
bit associated with other threads in the system are unaffected.

The watch granule is 64 bytes, the same as the cache line size.

The watch facility is supported for coherent, cacheable, nonguarded, nonwrite through memory (that is, for
pages with WIMG = 0b0010). Its behavior for other types of storage is boundedly undefined. In the case that
a cache-inhibited ldawx. hit in the L1 data cache, this might result in an invalid CR update. The watchlost bit
associated for a thread will not be set for any cache-inhibited ldawx. executions.

For verification purposes, the A2 core treats the WIMG bits as follows.

M and W bits are completely ignored.

I and G bits:
00 - Good behavior as defined by the STM instruction.
01 - Same as 00.
10 - Load executes as I = 1, no watch bit is set, CR is updated.
11 - Same as 10, but this instruction waits for any previous G = 1 load to complete.

write-through, caching-inhibited, memory coherency required, guarded attributes

stream category

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 510 of 864
Version 1.3

October 23, 2012

12.4.1 Load Doubleword and Watch Indexed X-Form (ldawx.)

ldawx. RT,RA,RB

if RA = 0 then b  0
elseb  (RA)
EA  b + (RB)
if EA.watchbit = 0
then
 CR0  0b00 || 0b0 || XERSO
 EA.watchbit  1
else
 CR0  0b00 || 0b1 || XERSO
RT  MEM(EA, 8)

Let the EA be the sum (RA|0) + (RB).

If the watch bit associated with address EA is not set, the bit is set to 1. CR field 0 is set to reflect whether the
watch bit was already set for the referenced block as follows.

CR0LT GT EQ SO = 0b00 || watch bit already set || XERSO

Hardware guarantees that the reading of the watchbit(EA) and MEM(EA, 8) and setting of watchbit(EA) are
performed as a single atomic operation with respect to operations performed by other threads.

EA must be a multiple of 8. If it is not, an alignment interrupt occurs.

This instruction is treated as a load.

Special Registers Altered

 CR0

31
0

RT
6

RA
11

RB
16

212
21

1
31

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 511 of 864

12.4.2 Watch Check All X-Form (wchkall)

wchkall BF

This instruction probes the watch monitoring facility, which maintains a watchlost sticky bit, to check whether
any watches have been lost, due to invalidation or capacity reasons, since the watchlost bit was previously
set to 0 via wclr. CR is updated as follows:

CR4xBF + 32: 4xBF + 35 = 0b00 || watchlost sticky bit || XERSO

watchlost stickybit = 0 indicates no watches lost.
watchlost stickybit = 1 indicates at least one watch might have been lost.

Special Registers Altered

 CR field BF

Programming Note:

wchkall serves as both a basic and an extended mnemonic. The assembler recognizes a wchkall mnemonic
with one operand as the basic form and a wchkall mnemonic with no operand as the extended form. In the
extended form, the BF operand is omitted and assumed to be 0.

Programming Note:

Because a single watch can be checked using the ldawx instruction, a variant of wchkall that checks the
watch status of a single block is not provided.

31
0

BF
6

//
9

///
11

///
16

902
21

/
31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 512 of 864
Version 1.3

October 23, 2012

12.4.3 Watch Clear X-Form (wclr)

wclr L, RA, RB

if RA = 0 then b  0
elseb  (RA)
EA  b + (RB)

if L[0] == 0
then
 reset all watches for thread to 0
watchlost  L[1]
else watchbit(EA)  0

This instruction clears watches associated with one or more locations. If bit 0 of the L field is 1, the watch
associated with EA is cleared, without affecting the watchlost bit. If there was no pre-existing watch for that
block, the instruction has no effect.

If bit 0 of the L field is 0, watch(X) for all addresses X are flash cleared to 0, and watchlost is set to the value
in L[1].

The L value of 0b11 is reserved.

This instruction is treated as a load.

Special Registers Altered

 None.

Extended Mnemonics

Programming Note:

On a thread switch, the operating system should execute a wclr instruction with L = 0b01, indicating that a
watch might have been lost since the thread was last running, similar to the practice of forcing a stwcx failure
for clearing a reservation.

Programming Note:

When unmapping a physical page, the operating system must ensure that all pre-existing watches on the
page are cleared by performing a sequence of watch clearing operations to the blocks within that page (for
example, via dcbi or dcbz instruction) and a wclr (to clear those watches for the local hardware thread).

31
0

///
6

L
9

RA
11

RB
16

934
21

/
31

Extended Equivalent To: Notes:

wclrone RA, RB wclr 2, RA, RB

wclrall L wclr L,0,0 L must be 0 or 1; the RA and RB fields are ignored

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 513 of 864

A ldawx by a processor P1 is performed with respect to any processor or mechanism P2 when the value and
watchbit to be returned by the ldawx can no longer be changed by an operation by P2. A wchkall instruction
by P1 is performed with respect to P2 when an operation by P2 can no longer affect the state of any watches
summarized by the wchkall condition value.

Programming Note:

A wclrall L operation is not performed with respect to the processor executing the wclrall instruction until a
subsequent isync instruction has been executed by that processor.

12.5 Coprocessor Instructions

A coprocessor is not a standard processor, but instead is a specialized processor that is capable of one or
more particular tasks with the intent to provide acceleration of each task that might have otherwise been done
by the program. For example, cryptographic functions can be performed by a coprocessor and are commonly
known as clear-key functions. Depending upon configuration controls, a coprocessor is generally available to
be initiated from any standard processor.

Each standard processor does not necessarily have its own suite of coprocessors. The system design is to
provide overall platform acceleration by allowing a coprocessor to be invoked from where the application
need arises.

Initiation of a coprocessor begins an asynchronous processing of the requested function. Upon completion,
the completion and any exception status is signaled to the initiating program. This latter topic is covered in
coprocessor architecture, which is outside the scope of this document.

A coprocessor is located outside of any standard processor, but is within the same coherence domain of an
invoking, standard processor.

Part of the mechanism for a standard processor to initiate a function performed by a coprocessor involves a
storage interface where a 64-byte control block is effectively pushed to a selected coprocessor. The particular
coprocessor is identified using a coprocessor instance (CI) and can be explicitly specified with a CI value or is
otherwise determined by an implementation-dependent default selection means.

The set of all coprocessors is first subdivided into categories where a category is identified as a coprocessor
type (CT) and represents a related set of functions that a coprocessor of the CT recognizes. Then, within
each CT that is provided, one or more CI values identify the coprocessor instances within the category, any of
which can perform the same set of functions. A CT is an integer value in the range 0:63. The actual assign-
ment of each CT value is implementation dependent and is configurable. A representative set of CTs that
might or might not be provided in a given implementation include the following:

• Symmetric cryptographic functions
• Asymmetric cryptographic functions
• Asynchronous data copy
• Random-number generation
• Compression/decompression
• Regular-expression search
• Others

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 514 of 864
Version 1.3

October 23, 2012

The instruction that initiates a coprocessor is normally a problem-state instruction. However, the definition
also provides a higher-privileged instruction to assist a privileged-state or hypervisor-state program with the
ability to logically re-issue the same instruction that was issued by the lower-privileged program, on behalf of
that program. This avoids the higher-privileged program having to enter the context of the lower-privileged
program.

Access to each CT is controlled by a privileged program. The control used is the ACOP special-purpose
register, which has bit positions 0:63 defined. If ACOPCT is 1 when a problem-state program attempts to
initiate a coprocessor of type CT, permission has been granted by the supervisor-state program. See Avail-
able-Coprocessor on page 516. Neither a hypervisor-state nor a privileged-state program is subject to ACOP
control.

Similarly, a hypervisor state control is provided by the HACOP special-purpose register. If HACOPCT is 1
when a problem-or supervisor-state program attempts to initiate a coprocessor of type CT, permission has
been granted by the hypervisor. A hypervisor-state program is not subject to HACOP control.

When an initiated function request is made to a coprocessor, the initiating instruction can include the ability to
set CR0 to indicate status of the initiation. This is not indicative of the completion of the function, but only
whether or not it has been accepted.

Available Coprocessor Register

Hypvervisor Available Coprocessor Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 515 of 864

12.5.1 Initiate Coprocessor Store Word Indexed (icswx[.])

Initiation of a coprocessor is requested by issuing the Initiate Coprocessor Store Word Indexed (icswx)
instruction.

Initiate Coprocessor Store Word Indexed X-form

icswx RS,RA,RB (Rc = 0)
icswx. RS,RA,RB (Rc = 1)

; Determine Processor State, PID, and LPID
hv  ¬MSRGSMSRGS
pr  MSRPR MSRPR
dr  MSRDS MSRDS

ps  hv||pr||dr||00000

pid  PID32:63My PID
lpid  LPIDR32:63My LPAR ID

; Determine Address of CRB
if (RA == 0) thenFulfill (RA|0)
b  0 Value of 0 Since R0

else RA is R1:R31
b  (RA)Effective Addr in b

EA  b + (RB)Calc EA of CRB

; Determine CT and CCW per Endian State
if (TLBE(EA) == 0) thenIf Big Endian (BE)
ct  RS42:47Get CT
cdm  RS48:55Get MSB CD
cdl  RS56:63Get LSB CD
ccw0:31  ps||00||ct||cdm||cdlForm BE CCW

else Is Little Endian (LE)
ct  RS50:55Get CT
cdm  RS40:47Get MSB CD
cdl  RS32:39Get LSB CD
ccw0:31  cdl||cdm||00||ct||psForm LE CCW

; Check if HACOP & ACOP Permit CT
if (ps0:1 ¬= 0b10) thenIf Not Hypervisor
if (HACOPct == 0) |If Hyp Precludes, Or
((ps1 == 1) &If Problem State and
 (ACOPct == 0)) thenIf OS Precludes

ESR49  1UCT
Data-Storage Interrupt

; Store CCW into CRB Bytes 0:3

31 RS RA RB 406 Rc
0 6 11 16 21 31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 516 of 864
Version 1.3

October 23, 2012

MEM(EA,4)  ccw0:31

; Signal Coprocessor
signal (

MEM(b,64),CRB 0:63
pid,
lpid)

; Set CR0 If Necessary
if (Rc == 1) thenIf Setting CR0
if (available) then

CR0  0b1000Initiated or Negative
elseif (busy) then

CR0  0b0100Busy or Positive
elseif (no match on CT & FRC) then

CR0  0b0010Reject

The PID and LPID values are normalized to 32-bit values. The signal internal function is a coarse abstraction
of the relationship between the issuing processor and the coprocessor.

The coprocessor-command word (CCW) consists of the machine-state byte appended with the three least-
significant bytes of general register RS (see Figure 12-2 Coprocessor Command Word (CCW) on page 518).
The CCW is volatile in that, when used, a fresh instance of the CCW is determined during execution of icswx
and then forgotten.

Unless stated otherwise, the CCW is stored in word 0 of the CRB (see Figure 12-3 Generic Coprocessor-
Request Block on page 520).

A side effect of icswx execution is that an attempt is made to initiate a coprocessor by sending the CCW and
the 64-byte CRB block to a coprocessor whose coprocessor type is CT and that provides support for execu-
tion of the CD specified.

Regardless of the condition set at the completion of icswx execution, the store of CCW into the CRB will
have been performed.

The icswx instruction is not subject to exceptions related to storage-access WIMG bits.

The icswx instruction is a problem-state instruction.

12.5.1.1 General Registers

RS

General register RS contains multiple fields and bits that are illustrated in Figure 12-1 and defined as follows.
When applicable, the correspondence to the coprocessor-command word (CCW) is also indicated.

When little endian is in effect for the storage containing the CRB, and therefore the CCW, the format of RS is
byte-reversed.

process ID

logical partition ID

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 517 of 864

RA and RB

The address of a coprocessor-request block (CRB) is located on a 128-byte boundary; otherwise, an align-
ment interrupt is recognized.

Before signaling a coprocessor, the icswx instruction performs storage write-access checks on the location
specified by (RA|0) + (RB). A data-storage interrupt can be recognized.

12.5.1.2 Initial Execution

Let the EA of the coprocessor-request block (CRB) be the sum (RA|0) + (RB). A data-storage interrupt is
recognized for a translation exception.

Figure 12-1. ICSWX (RS32:63) Coprocessor-Command Word

Reserved / / CT CD

32 40 41 42 48 63

RSBits Definition

0:31 RS bits 0:31 (not illustrated) are reserved.

32:39 RS bits 32:39 are reserved as a placeholder for the processor state (PS). CCW0:7 are based
upon the required processor state, not RS.

40:41 Reserved.

42:47 RS bits 42:47 (CCW10:15) are a 6-bit unsigned integer whose value specifies a coprocessor
type (CT). A full-broadcast CT value specifies that all coprocessor types are designated. A
specific coprocessor CT specifies that a particular coprocessor type is designated.

48:63 RS bits 48:63 (CCW16:31) are a 16-bit unsigned integer whose value specifies the copro-
cessor directive (CD) that the coprocessor is requested to perform. See the specific chip or
project hardware reference manual for details on supported coprocessor directives for that
project.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 518 of 864
Version 1.3

October 23, 2012

12.5.2 Initiate Coprocessor Store Word External Process ID Indexed (icswepx[.])

Initiation of a coprocessor is requested by issuing the Initiate Coprocessor Store Word External Process ID
Indexed (icswepx) instruction. The icswepx instruction is identical to the icswx instruction except that it
obtains identification of the issuing process from the EPSC SPR.

Initiate Coprocessor Store Word External Process ID Indexed X-form

icswepx RS,RA,RB (Rc = 0)
icswepx. RS,RA,RB (Rc = 1)

This instruction behaves identically to an icswx instruction except for using the EPSC register substitutions.
See Initiate Coprocessor Store Word Indexed (icswx[.]) on page 515.

The icswepx instruction is a privileged-state instruction.

For icswepx, the following substitutions are made:

EPSCEPR is used in place of MSRPR.
EPSCEGS is used in place of MSRGS.
EPSCEAS is used in place of MSRDS.
EPSCEPID is used in place of PID.
EPSCELPID is used in place of LPIDR.

12.5.3 Execution

The coprocessor type (CT) specified must be enabled. To be enabled, ACOPCT must be 1 and, when imple-
mented, HACOPCT must be 1. When not enabled, an unavailable-coprocessor-type (UCT) exception is
recognized, and:

• No access of storage occurs.

• A data-storage interrupt is recognized.

• Storage protection remains effective.

Execution of icswx forms a coprocessor-command word (CCW) that is stored into bytes 0:3 of the CRB. The
CCW format is illustrated in Figure 12-2.

Bits 0:7 (PS) contains MSR^GS PR AS || 00000. Bits 8:15 (CT) and 16:31 (CD) are obtained from the defined
general-register fields.

Execution of icswx attempts to initiate a coprocessor by presenting the 64-byte CRB to a coprocessor desig-
nated by the coprocessor type (CT) and coprocessor directive (CD).

If the type of coprocessor specified by CT is enabled, when icswx. completes, the condition is set in CR0
(see Condition Register 0 on page 519).

31 RS RA RB 950 Rc

0 6 11 16 21 31

Figure 12-2. Coprocessor Command Word (CCW)

PS CT Coprocessor Directive

0 8 16 31

External Process ID Store Context Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 519 of 864

After successfully initiated (CR0 bit 0 is 1), execution of a function completes asynchronously. See the copro-
cessor architecture for details.

Programming Note: The icswx instruction is treated like a store. The program must ensure that stores that
must be performed before the icswx have been performed by using a storage synchronization instruction
such as sync L=1, also known as lwsync.

Programming Note: The nature of the execution of the icswx instructions is such that the additional,
processor-state information acquired and associated with a CRB is made available only to a coprocessor. It is
not possible for any processor to alter the values sent to a coprocessor that were current when the icswx
instruction was issued.

Programming Note: During execution of an icswx instruction, additional processor state information is
acquired and communicated to the coprocessor. The additional processor state information consists of the
following:

12.5.3.1 Condition Register 0

Condition-register field 0 (CR0) is set to reflect the result of the icswx. instruction execution as follows:

Exactly one bit of CR00:2 is set to 1.

When bit 0 of CR0 is 1, the request has been initiated but not necessarily completed. After successfully initi-
ated, execution of a function completes asynchronously. See the coprocessor architecture for details.

When bit 1 of CR0 is 1, the request is not initiated because no coprocessor of the specified CT is idle.

When bit 2 of CR0 is 1, the request is not initiated because no coprocessor of the specified coprocessor type
is available.

Bit 3 of CR0 is set to 0.

PID Process identification is used to help identify the issuing program.

LPID When operating in the logically-partitioned mode, the logical-partition identification is also used to
help identify the issuing program.

PS MSR^GS PR AS are used and obtained during the formation of a CCW to inform a coprocessor about
address-translation and issuer-privilege matters.

Bit Description

0 Initiated

1 Busy

2 Reject

3 Undefined

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 520 of 864
Version 1.3

October 23, 2012

12.5.4 Coprocessor-Request Block

A coprocessor-request block (CRB) must be located on a 128-byte boundary; otherwise, the icswx instruc-
tion specifying such an unaligned CRB recognizes an alignment interrupt.

A CRB is, at most, 64 bytes long. The definition of the contents of a CRB depends upon the coprocessor type
and coprocessor directive that is specified by the icswx instruction. See the coprocessor architecture for
details.

If the implementation forms a CCW, storing it into bytes 0:3 of the CRB, execution of an icswx instruction is
subject to a storage-protection data storage interrupt.

A CRB is not subject to exceptions related to storage-access WIMG bits.

Programming Note: When little endian is in effect for the storage containing a CRB, byte-reversal stores
must be performed in setting up a CRB data field such that the big-endian definition in the CRB contents is
maintained. This includes setup by the program of any byte-reversed integer value whose length is a power
of 2 and is normally subject to reversal.

12.5.4.1 Available Coprocessor Register (ACOP)

The ACOP is a 64-bit register. Available Coprocessor Register bits are numbered 0 (most-significant) to 63
(least-significant). The Available Coprocessor Register provides a 64-bit mask where a bit position corre-
sponds to a coprocessor type. When a bit position is one, at least one coprocessor of that coprocessor type
might be available. When a bit position is zero, no coprocessor of that coprocessor type is available.

The Available Coprocessor Register can be read using mfspr and can be written using mtspr. Only the least-
significant 32 bits of the Available Coprocessor Register are implemented. The most-significant 32 bits of the
Available-Coprocessor Register are treated as reserved. Each thread has an ACOP register.

When icswx is issued by a program in hypervisor or privileged state, ACOP checking does not apply. When
icswx is issued by a program in problem state, ACOP checking applies. When ACOP checking applies and
fails, an unavailable coprocessor type (UCT) exception is recognized and a DSI occurs.

Figure 12-3. Generic Coprocessor-Request Block

Byte

0 Implementation-Dependent CCW

4 Data Field

...

63

0 31

Byte Meaning

0:3 Implementation-dependent CCW.

4:63 Bytes 0:63, the data field, are defined by each coprocessor type.

data storage interrupt

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 521 of 864

1. When any bit for a specific coprocessor type (CT) is set to 1, the bit position for the full-broadcast CT
must also be set to 1 to also enable the broadcast coprocessor type; otherwise, any request that specifies
the broadcast CT fails.

2. Before mtspr to ACOP, the program must issue sync with L = 0 (also known as a heavyweight) or other-
wise ensure that there is no icswx instruction that has not yet completed.

3. A problem-state process causes a DSI on issue of the icswx instruction when bit position CT in the
ACOP is zero. Notwithstanding that DSI, because each thread has an ACOP SPR, the same process can
cause another DSI for a subsequent issue of the icswx instruction on a different hardware thread.

12.5.4.2 Hypervisor Available Coprocessor Register (HACOP)

The HACOP is a 64-bit register. Hypervisor Available Coprocessor Register bits are numbered 0 (most-signif-
icant) to 63 (least-significant). The Hypervisor Available Coprocessor Register provides a 64-bit mask where
a bit position corresponds to a coprocessor type. When a bit position is 1, at least one coprocessor of that
coprocessor type might be available. When a bit position is zero, no coprocessor of that coprocessor type is
available.

The Hypervisor Available Coprocessor Register can be read using mfspr and can be written using mtspr.
Only the least-significant 32 bits of the Hypervisor Available Coprocessor Register are implemented. The
most-significant 32 bits of the Hypervisor Available Coprocessor Register are treated as reserved. Each
logical partition has an HACOP register. When the icswx instruction is executed, a fresh result of the effec-
tive mask is generated by a bitwise AND of ACOP with HACOP. The resulting mask is used for the current
execution of the icswx instruction and not remembered.

When icswx is issued by a program in hypervisor state, HACOP checking does not apply. When icswx is
issued by a program in privileged state, HACOP checking applies. When icswx is issued by a program in
problem state, HACOP checking applies. When HACOP checking applies and fails, an unavailable copro-
cessor type (UCT) exception is recognized and a DSI occurs.

The reset state of HACOP is 640.

Register Short Name: ACOP Read Access: Priv

Decimal SPR Number: 31 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:63 CT 0x0 Coprocessor Type

Indicates available coprocessor types for the icswx instruction. Bit n of the register indi-
cates availability of coproccessor type n.
0 Coprocessor unavailable. Accesses generate an unavailable coprocessor type of

data storage interrupt.
1 Coprocessor available.

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 522 of 864
Version 1.3

October 23, 2012

Programming Notes:

1. When any bit for a regular coprocessor type (CT) is set to 1, the bit position for the broadcast CT must
also be set to 1 to enable the broadcast coprocessor type; otherwise, any request that specifies the
broadcast CT fails.

2. Before an mtspr to HACOP, the program must issue sync with L = 0 (also known as a heavyweight sync)
or otherwise ensure that there are no icswx instructions that have not yet completed.

3. A process without hypervisor privilege causes a DSI on issue of the icswx instruction when bit position
CT in HACOP is zero.

Register Short Name: HACOP Read Access: Priv

Decimal SPR Number: 351 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:63 CT 0x0 Coprocessor Type

Indicates the available coprocessor types for the icswx instruction. Bit n of the register indi-
cates availability of coproccessor type n.
0 Coprocessor unavailable. Accesses generate an unavailable coprocessor type of

data storage interrupt.
1 Coprocessor available.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Implementation Dependent Instructions

Page 523 of 864

12.6 Data Cache Block Flush

The A2 supports data cache block flush with L = 0,1 or 3.

12.6.1 Data Cache Block Flush (dcbf)

Data Cache Block Flush X-form

dcbf RA,RB,L

Let the EA be the sum (RA|0)+(RB).

L = 0

If the block containing the byte addressed by EA is in storage that is memory coherence required,
and a block containing the byte addressed by EA is in the data cache of any processor, and any loca-
tions in the block are considered to be modified there, those locations are written to main storage and
additional locations in the block can be written to main storage. The block is invalidated in the data
caches of all processors. If the block containing the byte addressed by EA is in storage that is not
memory coherence required, and the block is in the data cache of this processor, and any locations
in the block are considered to be modified there, those locations are written to main storage and addi-
tional locations in the block can be written to main storage. The block is invalidated in the data cache
of this processor.

L = 1 (“dcbf local”)

The L = 1 form of the dcbf instruction permits a program to limit the scope of the flush operation to
the data cache of this processor. If the block containing the byte addressed by EA is in the data
cache of this processor, it is removed from this cache. The coherence of the block is maintained to
the extent required by the memory coherence required storage attribute.

L = 3 (“dcbf local primary”)

The L = 3 form of the dcbf instruction permits a program to limit the scope of the flush operation to
the primary data cache of this processor. If the block containing the byte addressed by EA is in the
primary data cache of this processor, it is removed from this cache. The coherence of the block is
maintained to the extent required by the memory coherence required storage attribute.

For the L operand, the value 2 is reserved. The results of executing a dcbf instruction with L = 2 are bound-
edly undefined.

The function of this instruction is independent of whether the block containing the byte addressed by EA is in
storage that is write through required or caching inhibited.

This instruction is treated as a load and it is treated as a write with respect to debug events.

Special Registers Altered:

None.

31 ///

6

L RA RB 86 /

0 9 11 16 21 31

User’s Manual

A2 Processor

Implementation Dependent Instructions

Page 524 of 864
Version 1.3

October 23, 2012

Extended Mnemonics:

Extended mnemonics are provided for the data cache block flush instruction so that it can be coded with the
L value as part of the mnemonic rather than as a numeric operand. The extended mnemonics are shown
below.

Except in the dcbf instruction description in this section, references to “dcbf” in Books I - III imply L = 0 unless
otherwise stated or obvious from context; “dcbfl<S>” is used for L = 1 and “dcbflp<S>” is used for L = 3.

dcbf serves as both a basic and an extended mnemonic.

The assembler recognizes a dcbf mnemonic with three operands as the basic form and a dcbf mnemonic
with two operands as the extended form. In the extended form, the L operand is omitted and assumed to be
0.

dcbf with L = 1 can be used to provide a hint that a block in this processor’s data cache will not be reused
soon.

dcbf with L = 3 can be used to flush a block from the processor’s primary data cache but reduce the latency
of a subsequent access. For example, the block can be evicted from the primary data cache but a copy
retained in a lower level of the cache hierarchy.

Programs that manage coherence in software must use dcbf with L = 0.

dcbf with L = 1 requires caches that are private to this processor to be flushed. Caches shared with other
processors need not be affected provided that the requirements of memory coherence are satisfied.

12.7 Data Cache Block Flush by External PID

This instruction behaves identically to a dcbf instruction except for using the EPLC register to provide the
translation context.

12.7.1 Data Cache Block Flush by External PID (dcbfep)

X-form

dcbfep RA,RB,L

This instruction behaves identically to a dcbf instruction except for using the EPLC register to provide the
translation context.

Extended: Equivalent to:

dcbf RA,RB dcbf RA,RB,0

dcbfl RA,RB dcbf RA,RB,1

dcbflp RA,RB dcbf RA,RB,3

31 ///

6

L RA RB 127 /

0 9 11 16 21 31

External Process ID Load Context Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Power Management Methods

Page 525 of 864

13. Power Management Methods

13.1 Chip Power Management Controls

Power management logic and clock controls external to the core can force a thread to a stopped state, or
bring about deeper levels of power savings.

• an_ac_pm_thread_stop(0:3) inputs - Core inputs are available that force each thread to a stopped
state. Chip level controls can use these signals to stop threads in response to a thermal fault or for some
other purpose. The level of power-management from this signal is the same as using the ACT control to
gate off unused logic. Upon release of this control, instruction execution continues from the next instruc-
tion address.

• chip level power - After software has put all cores on the same clock grid into the PM_RVW power-sav-
ings state (see Section 13.2), both core clocks and power can be turned off. A power-on reset is then
required to restart the cores.

13.2 Power-Saving Instructions

Software can induce power-saving actions through the use of core level power-management (CCR0[PME])
controls in combination with CCR0[WE]. The CCR0[WE] bits can be set through the wait instruction or by an
mtspr CCR0.

The CCR0[WE] bits can be used to disable a thread. After a thread is stopped, the
ac_an_pm_thread_running output signal for that thread is driven to 0, indicating that the thread is stopped.
When stopped, the thread shuts off unneeded logic using the ACT pin; this is the most basic level of power
savings and is independent of CCR0[PME] settings. Requests from the A2/ L2 interface (snoop invalidate
and TLB invalidate) are still handled as normal, and the state of all processor resources is maintained.

To enable core level power-management options, the Power-Management Enable field of the CCR0 register
must be set. CCR0[PME] is a 2-bit field that allows software to select one of the three power states available
in the A2 core: Running, PM_Sleep, and PM_RVW.

1. Running State

• CCR0[PME] = PM_disabled.

• This state is independent of the setting of CCR0[WE] bits.

2. PM_Sleep State

• CCR0[PME] = PM_Sleep_enable and all four threads have set their respective CCR0[WE] bits.

• The A2 activates run tholds to stop clocks for power savings. Requests from the A2/L2 interface
(snoop invalidate and TLB invalidate) are still handled as normal.

• The A2 signals the chip power management logic that the A2 is in the PM_Sleep state by activating
the ac_an_power_managed signal.

• The state of all processor resources is maintained.

• Wakeup options are determined by CCR1[WC0,WC1,WC2,WC3] field settings.

translation lookaside buffer

User’s Manual

A2 Processor

Power Management Methods

Page 526 of 864
Version 1.3

October 23, 2012

3. PM_RVW State

• CCR0[PME] = PM_RVW_enable and all four threads have set their respective CCR0[WE] bits.

• The A2 activates run tholds to stop clocks for power savings. Requests from the A2/L2 interface
(snoop invalidate and TLB invalidate) are still handled as normal.

• The A2 signals the chip power management logic that the A2 is in PM_RVW state by activating the
ac_an_power_managed and ac_an_rvwinkle_mode signals.

• The chip may shut off all clocks and/or power to the core. All processor states might be lost. Software
must save any processor state before going into PM_RVW state.

• Wakeup options are determined by CCR1[WC0,WC1,WC2,WC3] field settings. A power-on reset is
required when chip level power-saving actions drop power to the core or disrupt clock synchroniza-
tion.

Note: From the standpoint of the A2 core, actual power-saving actions are the same whether the PM_Sleep
or PM_RVW state is entered. In either case, the core activates run tholds to stop some clocking, handle
snoop invalidate and TLB invalidate requests from the L2; and accept the wakeup conditions that were set in
CCR1. The difference in power-savings attained between PM_Sleep and PM_RVW states, and the method
required to restart the core, depend on chip-level hardware and software actions.

13.2.1 Power-Saving Instruction Sequence

1. Software sets CCR1[WC0-WC3] bits to enable the allowed wakeup options for that thread.
The CCR1 Wake Control (WC) field enables specific exceptions to interrupt the power-managed thread
and resume execution. Each thread has a set of Wake Control bits (CCR1 [WC0, WC1, WC2, WC3]) that
determine how the corresponding thread can be started after a power-savings state has been entered.
For each thread, bits of the WC field select the following enables:

• Wake on critical interrupt
• Wake on external interrupt
• Wake on decrementer
• Wake on fixed interval timer
• Wake on waitrsv
• Wake on waitimpl

2. Software sets CCR0[PME] to the desired power-management enable control for the core.

• PM_disabled - No additional power-savings is taken when all threads’ CCR0[WE] bits are set.
• PM_Sleep_enable - PM_Sleep power-savings state when all threads’ CCR0[WE] bits are set.
• PM_RVW_enable - PM_RVW power-savings state when all threads’ CCR0[WE] bits are set.

3. The thread is disabled; this stops the thread after outstanding operations have completed.

• The thread is stopped; unused logic is clock-gated with the ACT control.
• The ac_an_pm_thread_running signal to chip logic is deactivated.
• Snoop and TLB invalidate requests from the L2 are still handled.

4. If all four threads are stopped and either power-management enable (PM_Sleep_enable or
PM_RVW_enable) is active, the A2 core:

• Activates the run tholds to gate off additional core logic.
• Activates the ac_an_power_managed signal to indicate that the core is in a power-savings state.
• If PM_RVW_enable is active, the ac_an_rvwinkle_mode signal is also activated.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Power Management Methods

Page 527 of 864

5. After the ac_an_rvwinkle_mode signal has been asserted, the L2 can take additional actions in prepara-
tion for chip power down. Further power-savings actions can be taken by stopping all core clocks and
shutting off power to the core.

6. Upon wake-up from a power-savings state, the corresponding CCR0[WE] bit is cleared, indicating that
the corresponding thread is being restarted. The ac_an_power_managed and, if PM_RVW was enabled,
the ac_an_rvwinkle_mode signals are deactivated. The run tholds are shut off so that clocking to all core
latches can begin again. If, in the PM_RVW state, chip-level power-saving actions remove power from the
core or disrupt clock synchronization, then a power-on reset is required.

User’s Manual

A2 Processor

Power Management Methods

Page 528 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Register Summary

Page 529 of 864

14. Register Summary

This chapter provides an alphabetical listing of and bit definitions for the registers contained in the A2 core.

The five types of registers are grouped into several functional categories according to the processor functions
with which they are associated. More information about the registers and register categories is provided in
Section 2.4 Registers on page 82 and in the chapters describing the processor functions with which each
register category is associated.

14.1 Register Categories

Table 14-1 lists the Special Purpose Registers (SPRs) in alphabetical order. The table gives register names,
mnemonics, SPR numbers, access levels necessary for read/write, and mapping behavior, as well as listing if
an SPR is multithreaded or slow.

Note: All SPR numbers not listed are reserved, and should be neither read nor written.

The “Access Mapped” column defines the mapping behavior when in guest mode. An “N” in this column
means that the register is not mapped to any other register while in guest mode, nor does any register map to
it. A “Y” means that mapping exists in guest mode. A register name in this column means that the register
named in the field is the one used in guest mode. For more information about how register mapping in guest
mode works, see Section 7.5.1 on page 301.

The “Multithreaded” column indicates if the register is replicated or shared across threads. An “N” in this
column means that the register is shared across threads. A “Y” means that the register is replicated for each
thread.

The “Slow SPR” column indicates if the register is a “Slow” SPR. A “Y” in this column means that the register
accesses go around the slow SPR bus, and will be lower performance than other register access. An “N” indi-
cates that the register access does not use the slow SPR bus.

User’s Manual

A2 Processor

Register Summary

Page 530 of 864
Version 1.3

October 23, 2012

Table 14-1. Register Summary (Sheet 1 of 5)

R
eg

is
te

r
M

ne
m

on
ic

S
P

R
N

um
be

r

M
in

im
um

m
ts

p
r

A
cc

es
s

M
in

im
um

m
fs

p
r

A
cc

es
s

A
cc

es
s

M
ap

pe
d

to
 R

eg
is

te
r

M
ul

tit
hr

ea
de

d

S
lo

w
 S

P
R

S
ca

n
R

in
g

F
ul

l N
am

e

B
ef

or
e

W
rit

e
(I

ns
tr

)

A
fte

r
W

rit
e

(I
ns

tr
)

B
ef

or
e

W
rit

e
(D

at
a)

A
fte

r
W

rit
e

(D
at

a)

N
ot

e

ACOP 31 Priv Priv N Y N func Available Coprocessor None CSI None None AM

AESR 913 Priv Priv N N Y func AXU Event Select Register SR SR SR SR

CCR0 1008 Hypv Hypv N N N bcfg Core Configuration Register 0 None None None None

CCR1 1009 Hypv Hypv N N N func Core Configuration Register 1 None CSI None None

CCR2 1010 Hypv Hypv N N N ccfg Core Configuration Register 2 sync,
CSI

sync,
CSI

sync,
CSI

sync,
CSI

CCR3 1013 Hypv Hypv N Y N ccfg Core Configuration Register 3 sync,
CSI

sync,
CSI

None None

CESR 912 Priv Priv N N Y func Core Event Select Register SR SR SR SR

CR N/A Any Any N Y N func Condition Register None None None None

CSRR0 58 Hypv Hypv N Y N func Critical Save/Restore Register 0 None None None None AM

CSRR1 59 Hypv Hypv N Y N func Critical Save/Restore Register 1 None None None None AM

CTR 9 Any Any N Y N func Count Register None None None None

DAC1 316 Hypv Hypv N N N func Data Address Compare 1 N/A N/A None CSI AM

DAC2 317 Hypv Hypv N N N func Data Address Compare 2 N/A N/A None CSI AM

DAC3 849 Hypv Hypv N N N func Data Address Compare 3 N/A N/A None CSI

DAC4 850 Hypv Hypv N N N func Data Address Compare 4 N/A N/A None CSI

DBCR0 308 Hypv Hypv N Y N dcfg Debug Control Register 0 None CSI None CSI

DBCR1 309 Hypv Hypv N Y N func Debug Control Register 1 None CSI None CSI

DBCR2 310 Hypv Hypv N Y N func Debug Control Register 2 None CSI None CSI AM

DBCR3 848 Hypv Hypv N Y N func Debug Control Register 3 None CSI None CSI

DBSR1 304 Hypv Hypv N Y N func Debug Status Register None None None None WC

DBSRWR 306 Hypv None N Y N func Debug Status Register Write Register None CSI None None HM

DEAR 61 Priv Priv GDEAR Y N func Data Exception Address Register None None None None

DEC 22 Hypv Hypv N Y N func Decrementer None None None None

DECAR 54 Hypv Hypv N Y N func Decrementer Auto-Reload None None None None AM

DVC1 318 Hypv Hypv N N Y func Data Value Compare 1 N/A N/A sync,
CSI

CSI AM

DVC2 319 Hypv Hypv N N Y func Data Value Compare 2 N/A N/A sync,
CSI

CSI AM

RO: This register or field is read only.
IO: This register or field is controlled by setting I/Os on the A2 core.
HO: This register or field is only writable in hypervisor state.
WS: Write to Set. Writing 1s to this field or register sets 1s. Writing 0s to this field or register has no effect.
WC: Write to Clear. Writing 1s to this field or register sets 0s. Writing 0s to this field or register has no effect.
HM: Only available when compiled with hvmode generic set to 1.
AM: Only available when compiled with a 2mode generic set to 1.
NP: This register or field is nonpersistent; reads always return zero.

context synchronizing instruction

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Register Summary

Page 531 of 864

EPCR 307 Hypv Hypv N Y N func Embedded Processor Control Register None CSI None None HM

EPLC 947 Priv Priv N Y Y func External Process ID Load Context None CSI None None HM

EPSC 948 Priv Priv N Y Y func External Process ID Store Context None CSI None None HM

EPTCFG 350 None Hypv N N Y func Embedded Page Table Configuration Regis-
ter

None None None None HM

ESR 62 Priv Priv GESR Y N func Exception Syndrome Register None None None None

GDEAR 381 Priv Priv Y Y N func Guest Data Exception Address Register None None None None HM

GESR 383 Priv Priv Y Y N func Guest Exception Syndrome Register None None None None HM

GIVPR 447 Hypv Priv N N N func Guest Interrupt Vector Prefix Register None None None None HM

GPIR 382 Hypv Priv Y Y N func Guest Processor ID Register None None None None HM

GSPRG0 368 Priv Priv Y Y N func Guest Software Special Purpose Register 0 None None None None HM

GSPRG1 369 Priv Priv Y Y N func Guest Software Special Purpose Register 1 None None None None HM

GSPRG2 370 Priv Priv Y Y N func Guest Software Special Purpose Register 2 None None None None HM

GSPRG3 371 Priv Priv Y Y N func Guest Software Special Purpose Register 3 None None None None HM

GSRR0 378 Priv Priv Y Y N func Guest Save/Restore Register 0 None None None None HM

GSRR1 379 Priv Priv Y Y N func Guest Save/Restore Register 1 None None None None HM

HACOP 351 Hypv Priv N Y N func Hypvervisor Available Coprocessor None CSI None None HM

IAC1 312 Hypv Hypv N N N func Instruction Address Compare 1 None CSI N/A N/A

IAC2 313 Hypv Hypv N N N func Instruction Address Compare 2 None CSI N/A N/A

IAC3 314 Hypv Hypv N N N func Instruction Address Compare 3 None CSI N/A N/A AM

IAC4 315 Hypv Hypv N N N func Instruction Address Compare 4 None CSI N/A N/A AM

IAR 882 Hypv Hypv N Y N bcfg Instruction Address Register CSI None None None

IESR1 914 Priv Priv N N Y func IU Event Select Register 1 SR SR SR SR

IESR2 915 Priv Priv N N Y func IU Event Select Register 2 SR SR SR SR

IMMR 881 Hypv Hypv N N Y func Instruction Match Mask Register None CSI None None AM

IMPDEP0 976 - 991 Hypv Hypv N/A N/A Y N/A Implementation Dependant Region 0 N/A N/A N/A N/A

IMPDEP1 912 - 927 Priv Priv N/A N/A Y N/A Implementation Dependant Region 1 N/A N/A N/A N/A

IMR 880 Hypv Hypv N N Y func Instruction Match Register None CSI None None AM

IUCR0 1011 Hypv Hypv N N Y ccfg Instruction Unit Configuration Register 0 None CSI None None

IUCR1 883 Hypv Hypv N Y Y ccfg Instruction Unit Configuration Register 1 None CSI None None

Table 14-1. Register Summary (Sheet 2 of 5)
R

eg
is

te
r

M
ne

m
on

ic

S
P

R
N

um
be

r

M
in

im
um

m
ts

p
r

A
cc

es
s

M
in

im
um

m
fs

p
r

A
cc

es
s

A
cc

es
s

M
ap

pe
d

to
 R

eg
is

te
r

M
ul

tit
hr

ea
de

d

S
lo

w
 S

P
R

S
ca

n
R

in
g

F
ul

l N
am

e

B
ef

or
e

W
rit

e
(I

ns
tr

)

A
fte

r
W

rit
e

(I
ns

tr
)

B
ef

or
e

W
rit

e
(D

at
a)

A
fte

r
W

rit
e

(D
at

a)

N
ot

e

RO: This register or field is read only.
IO: This register or field is controlled by setting I/Os on the A2 core.
HO: This register or field is only writable in hypervisor state.
WS: Write to Set. Writing 1s to this field or register sets 1s. Writing 0s to this field or register has no effect.
WC: Write to Clear. Writing 1s to this field or register sets 0s. Writing 0s to this field or register has no effect.
HM: Only available when compiled with hvmode generic set to 1.
AM: Only available when compiled with a 2mode generic set to 1.
NP: This register or field is nonpersistent; reads always return zero.

User’s Manual

A2 Processor

Register Summary

Page 532 of 864
Version 1.3

October 23, 2012

IUCR2 884 Hypv Hypv N Y Y ccfg Instruction Unit Configuration Register 2 None CSI None None

IUDBG0 888 Hypv Hypv N N Y func Instruction Unit Debug Register 0 Qui-
esce

None None None

IUDBG1 889 None Hypv N N Y func Instruction Unit Debug Register 1 None None None None

IUDBG2 890 None Hypv N N Y func Instruction Unit Debug Register 2 None None None None

IULFSR 891 Hypv Hypv N N Y func Instruction Unit LFSR None CSI None None

IULLCR 892 Hypv Hypv N N Y ccfg Instruction Unit Live Lock Control Register None None None None

IVPR 63 Hypv Hypv N N N func Interrupt Vector Prefix Register None None None None

LPER 56 Hypv Hypv N Y Y func Logical Page Exception Register None None None None HM

LPERU 57 Hypv Hypv N Y Y func Logical Page Exception Register (Upper) None None None None HM

LPIDR 338 Hypv Hypv N N Y func Logical Partition ID Register None CSI CSI CSI

LR 8 Any Any N Y N func Link Register None None None None

LRATCFG 342 None Hypv N N Y func LRAT Configuration Register None None None None HM

LRATPS 343 None Hypv N N Y func LRAT Page Size Register None None None None HM

MAS0 624 Priv Priv N Y Y func MMU Assist Register 0 None None None None HM

MAS0_MAS1 373 Priv Priv N Y Y func MMU Assist Registers 0 and 1 None None None None HM

MAS1 625 Priv Priv N Y Y func MMU Assist Register 1 None None None None HM

MAS2 626 Priv Priv N Y Y func MMU Assist Register 2 None None None None HM

MAS2U 631 Priv Priv N Y Y func MMU Assist Register 2 (Upper) None None None None HM

MAS3 627 Priv Priv N Y Y func MMU Assist Register 3 None None None None HM

MAS4 628 Priv Priv N Y Y ccfg MMU Assist Register 4 None None None None HM

MAS5 339 Hypv Hypv N Y Y func MMU Assist Register 5 None None None None HM

MAS5_MAS6 348 Hypv Hypv N Y Y func MMU Assist Registers 5 and 6 None None None None HM

MAS6 630 Priv Priv N Y Y func MMU Assist Register 6 None None None None HM

MAS7 944 Priv Priv N Y Y func MMU Assist Register 7 None None None None HM

MAS7_MAS3 372 Priv Priv N Y Y func MMU Assist Registers 7 and 3 None None None None HM

MAS8 341 Hypv Hypv N Y Y func MMU Assist Register 8 None None None None HM

MAS8_MAS1 349 Hypv Hypv N Y Y func MMU Assist Registers 8 and 1 None None None None HM

MCSR1 572 Hypv Hypv N Y N func Machine Check Syndrome Register None None None None AM

MCSRR0 570 Hypv Hypv N Y N func Machine Check Save/Restore Register 0 None None None None AM

Table 14-1. Register Summary (Sheet 3 of 5)

R
eg

is
te

r
M

ne
m

on
ic

S
P

R
N

um
be

r

M
in

im
um

m
ts

p
r

A
cc

es
s

M
in

im
um

m
fs

p
r

A
cc

es
s

A
cc

es
s

M
ap

pe
d

to
 R

eg
is

te
r

M
ul

tit
hr

ea
de

d

S
lo

w
 S

P
R

S
ca

n
R

in
g

F
ul

l N
am

e

B
ef

or
e

W
rit

e
(I

ns
tr

)

A
fte

r
W

rit
e

(I
ns

tr
)

B
ef

or
e

W
rit

e
(D

at
a)

A
fte

r
W

rit
e

(D
at

a)

N
ot

e

RO: This register or field is read only.
IO: This register or field is controlled by setting I/Os on the A2 core.
HO: This register or field is only writable in hypervisor state.
WS: Write to Set. Writing 1s to this field or register sets 1s. Writing 0s to this field or register has no effect.
WC: Write to Clear. Writing 1s to this field or register sets 0s. Writing 0s to this field or register has no effect.
HM: Only available when compiled with hvmode generic set to 1.
AM: Only available when compiled with a 2mode generic set to 1.
NP: This register or field is nonpersistent; reads always return zero.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Register Summary

Page 533 of 864

MCSRR1 571 Hypv Hypv N Y N func Machine Check Save/Restore Register 1 None None None None AM

MESR1 916 Priv Priv N N Y func MMU Event Select Register 1 SR SR SR SR

MESR2 917 Priv Priv N N Y func MMU Event Select Register 2 SR SR SR SR

MMUCFG 1015 None Hypv N N Y ccfg MMU Configuration Register None None None None HM

MMUCR0 1020 Hypv Hypv N Y Y func Memory Management Unit Control Register
0

None None None None AM

MMUCR1 1021 Hypv Hypv N N Y ccfg Memory Management Unit Control Register
1

None None None None AM

MMUCR2 1022 Hypv Hypv N N Y ccfg Memory Management Unit Control Register
2

None CSI None None AM

MMUCR3 1023 Priv Priv N Y Y ccfg Memory Management Unit Control Register
3

None None None None HM

MMUCSR0 1012 Hypv Hypv N N Y func MMU Control and Status Register 0 None CSI,
sync

None CSI,
sync

HM

MSR N/A Priv Priv N Y N ccfg Machine State Register None None None None

MSRP 311 Hypv Hypv N Y N func Machine State Register Protect None None None None HM

PID 48 Priv Priv N Y Y func Process ID None CSI None None

PIR 286 None Priv GPIR N N func Processor ID Register None None None None

PPR32 898 Any Any N Y Y ccfg Program Priority Register None CSI None None

PVR 287 None Priv N N N func Processor Version Register None None None None

SPRG0 272 Priv Priv GSPRG0 Y N func Software Special Purpose Register 0 None None None None

SPRG1 273 Priv Priv GSPRG1 Y N func Software Special Purpose Register 1 None None None None

SPRG2 274 Priv Priv GSPRG2 Y N func Software Special Purpose Register 2 None None None None

SPRG3 275/259 Priv/None Priv/Any GSPRG3 Y N func Software Special Purpose Register 3 None None None None

SPRG4 276/260 Priv/None Priv/Any N Y N func Software Special Purpose Register 4 None None None None

SPRG5 277/261 Priv/None Priv/Any N Y N func Software Special Purpose Register 5 None None None None

SPRG6 278/262 Priv/None Priv/Any N Y N func Software Special Purpose Register 6 None None None None

SPRG7 279/263 Priv/None Priv/Any N Y N func Software Special Purpose Register 7 None None None None

SPRG8 604 Hypv Hypv N Y N func Software Special Purpose Register 8 None None None None

SRR0 26 Priv Priv GSRR0 Y N func Save/Restore Register 0 None None None None

SRR1 27 Priv Priv GSRR1 Y N func Save/Restore Register 1 None None None None

TB 268 None Any N N N func Timebase None None None None

Table 14-1. Register Summary (Sheet 4 of 5)
R

eg
is

te
r

M
ne

m
on

ic

S
P

R
N

um
be

r

M
in

im
um

m
ts

p
r

A
cc

es
s

M
in

im
um

m
fs

p
r

A
cc

es
s

A
cc

es
s

M
ap

pe
d

to
 R

eg
is

te
r

M
ul

tit
hr

ea
de

d

S
lo

w
 S

P
R

S
ca

n
R

in
g

F
ul

l N
am

e

B
ef

or
e

W
rit

e
(I

ns
tr

)

A
fte

r
W

rit
e

(I
ns

tr
)

B
ef

or
e

W
rit

e
(D

at
a)

A
fte

r
W

rit
e

(D
at

a)

N
ot

e

RO: This register or field is read only.
IO: This register or field is controlled by setting I/Os on the A2 core.
HO: This register or field is only writable in hypervisor state.
WS: Write to Set. Writing 1s to this field or register sets 1s. Writing 0s to this field or register has no effect.
WC: Write to Clear. Writing 1s to this field or register sets 0s. Writing 0s to this field or register has no effect.
HM: Only available when compiled with hvmode generic set to 1.
AM: Only available when compiled with a 2mode generic set to 1.
NP: This register or field is nonpersistent; reads always return zero.

User’s Manual

A2 Processor

Register Summary

Page 534 of 864
Version 1.3

October 23, 2012

TBL 284 Hypv None N N N func Timebase Lower None None None None

TBU 285/269 Hypv/None None/Any N N N func Timebase Upper None None None None

TCR 340 Hypv Hypv N Y N func Timer Control Register None None None None AM

TENC 439 Hypv Hypv N N N bcfg Thread Enable Clear Register None None None None WC

TENS 438 Hypv Hypv N N N bcfg Thread Enable Set Register None None None None WS

TENSR 437 None Hypv N N N func Thread Enable Status Register None None None None

TIR 446 None Hypv N N N func Thread Identification Register None None None None

TLB0CFG 688 None Hypv N N Y ccfg TLB 0 Configuration Register None None None None HM

TLB0PS 344 None Hypv N N Y func TLB 0 Page Size Register None None None None HM

TRACE 1006 Any None N N N func Hardware Trace Macro Control Register None None None None

TSR1 336 Hypv Hypv N Y N func Timer Status Register None None None None WC,
AM

UDEC 550 Any Any N Y N func User Decrementer None None None None AM

VRSAVE 256 Any Any N Y N func Vector Register Save None None None None

XER 1 Any Any N Y N func Fixed Point Exception Register None None None None

XESR1 918 Priv Priv N N Y func XU Event Select Register 1 SR SR SR SR

XESR2 919 Priv Priv N N Y func XU Event Select Register 2 SR SR SR SR

XESR3 920 Priv Priv N N Y func XU Event Select Register 3 SR SR SR SR

XESR4 921 Priv Priv N N Y func XU Event Select Register 4 SR SR SR SR

XUCR0 1014 Hypv Hypv N N N ccfg Execution Unit Configuration Register 0 sync,
CSI

sync,
CSI

sync,
CSI

sync,
CSI

XUCR1 851 Hypv Hypv N Y N ccfg Execution Unit Configuration Register 1 sync,
CSI

sync,
CSI

sync,
CSI

sync,
CSI

XUCR2 1016 Hypv Hypv N N Y func Execution Unit Configuration Register 2 sync,
CSI

sync,
CSI

sync,
CSI

sync,
CSI

XUCR3 852 Hypv Hypv N N N dcfg Execution Unit Configuration Register 3 None None None None

XUCR4 853 Hypv Hypv N N N dcfg Execution Unit Configuration Register 4 None None None None

XUDBG0 885 Hypv Hypv N N Y func Execution Unit Debug Register 0 None None Qui-
esce

None

XUDBG1 886 None Hypv N N Y func Execution Unit Debug Register 1 None None None None

XUDBG2 887 None Hypv N N Y func Execution Unit Debug Register 2 None None None None

Table 14-1. Register Summary (Sheet 5 of 5)

R
eg

is
te

r
M

ne
m

on
ic

S
P

R
N

um
be

r

M
in

im
um

m
ts

p
r

A
cc

es
s

M
in

im
um

m
fs

p
r

A
cc

es
s

A
cc

es
s

M
ap

pe
d

to
 R

eg
is

te
r

M
ul

tit
hr

ea
de

d

S
lo

w
 S

P
R

S
ca

n
R

in
g

F
ul

l N
am

e

B
ef

or
e

W
rit

e
(I

ns
tr

)

A
fte

r
W

rit
e

(I
ns

tr
)

B
ef

or
e

W
rit

e
(D

at
a)

A
fte

r
W

rit
e

(D
at

a)

N
ot

e

RO: This register or field is read only.
IO: This register or field is controlled by setting I/Os on the A2 core.
HO: This register or field is only writable in hypervisor state.
WS: Write to Set. Writing 1s to this field or register sets 1s. Writing 0s to this field or register has no effect.
WC: Write to Clear. Writing 1s to this field or register sets 0s. Writing 0s to this field or register has no effect.
HM: Only available when compiled with hvmode generic set to 1.
AM: Only available when compiled with a 2mode generic set to 1.
NP: This register or field is nonpersistent; reads always return zero.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Register Summary

Page 535 of 864

1. DBSR, MCSR, and TSR have read/clear access. These three registers are status registers, and as such
behave differently than other SPRs when written. The term “read/clear” does not mean that these regis-
ters are automatically cleared upon being read. Rather, the “clear” refers to their behavior when being
written. Instead of simply overwriting the SPR with the data in the source GPR, the status SPR is updated
by zeroing those bit positions corresponding to 1 values in the source GPR; those bit positions corre-
sponding to 0 values in the source GPR are left unchanged. In this fashion, it is possible for software to
read one of these status SPRs, and then write to it using the same data that was read. Any bits that were
read as 1 are then cleared, and any bits that were not yet set at the time the SPR was read are left
unchanged. If any of these previously clear bits happen to be set between the time the SPR is read and
when it is written, then when the SPR is later read again, software observes any newly set bits. If it were
not for this behavior, software could erroneously clear bits that it had not yet observed as having been set,
and overlook the occurrence of certain exceptions.

14.2 Reserved Fields

For all registers with fields marked as reserved, the reserved fields should be written as zero and read as
undefined. That is, when writing to a reserved field, write a zero to that field. When reading from a reserved
field, ignore that field.

The recommended coding practice is to perform the initial write to a register with reserved fields as described
in the preceding paragraph, and to perform all subsequent writes to the register using a read-modify-write
strategy: read the register, alter desired fields with logical instructions, and then write the register.

Note: Software must not set any field of a system register to a reserved value.

14.3 Unimplemented SPRs

An unimplemented SPR is defined as any SPR number that is not listed in Table 14-1.

14.4 Device Control Registers

Move to and move from DCR instructions when CCR2(EN_DCR) is zero are dropped silently; they are no-ops
and do not cause an exception.

User’s Manual

A2 Processor

Register Summary

Page 536 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 537 of 897

14.5 Alphabetical Register Listing

The following pages list the registers available in the A2 core. For each register, the following information is
supplied:

• Register mnemonic and name

• Register number (address)

• Register programming model (user or supervisor) and access (read-clear, read-only, read/write (R/W),
write-only)

• A table describing the register fields, giving field mnemonics, field bit locations, field names, and the func-
tions associated with the various field values

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 538 of 897
Version 1.3

October 23, 2012

14.5.1 ACOP - Available Coprocessor

Register Short Name: ACOP Read Access: Priv

Decimal SPR Number: 31 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:63 CT 0x0 Coprocessor Type

Indicates available coprocessor types for the icswx instruction. Bit n of the register indi-
cates availability of coproccessor type n.
0 Coprocessor unavailable. Accesses generate an unavailable coprocessor type of

data storage interrupt.
1 Coprocessor available.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 539 of 897

14.5.2 AESR - AXU Event Select Register

Register Short Name: AESR Read Access: Priv

Decimal SPR Number: 913 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

33:35 MUXSELEB0 0b000 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 0 of the event multiplexer
(fu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

36 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

37:39 MUXSELEB1 0b000 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 1 of the event multiplexer
(fu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

40 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

41:43 MUXSELEB2 0b000 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 2 of the event multiplexer
(fu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

44 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:7]
1 T1_Events[0:7]

45:47 MUXSELEB3 0b000 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 3 of the event multiplexer
(fu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

48 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 540 of 897
Version 1.3

October 23, 2012

49:51 MUXSELEB4 0b000 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 4 of the event multiplexer
(fu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

52 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events(0:7]
1 T3_Events(0:7]

53:55 MUXSELEB5 0b000 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 5 of the event multiplexer
(fu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

56 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

57:59 MUXSELEB6 0b000 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 6 of the event multiplexer
(fu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

60 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:7]
1 T3_Events[0:7]

61:63 MUXSELEB7 0b000 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving bit 7 of the event multiplexer
(fu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘000’) through multiplexer 7 (‘111’).

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 541 of 897

14.5.3 CCR0 - Core Configuration Register 0

Register Short Name: CCR0 Read Access: Hypv

Decimal SPR Number: 1008 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

32:33 PME 0b00 Power Management Enable

00 Disabled: No power savings mode entered.
01 PM_Sleep_enable: PM_Sleep state entered when all threads are stopped.
10 PM_RVW_enable: PM_RVW state entered when all threads are stopped.
11 Disabled2: No power savings mode entered.
Note: See the A2 User Manual, Power Management Methods section.

34:51 /// 0x0 Reserved

52:55 WEM 0b0000 Wait Enable Mask

0 No effect to CCR0[WE].
1 Allows writing of the corresponding bit in the CCR0[WE] field. These bits are non-

persistent. A read always returns zeros.

56:59 /// 0b0000 Reserved

60:63 WE 0b0000 Wait Enable

For t < 4, bit 63-t corresponds to thread t:
0 Indicates that the thread is enabled.
1 Indicates that the thread is disabled.
Note: This field can also be set by a wait instruction.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 542 of 897
Version 1.3

October 23, 2012

14.5.4 CCR1 - Core Configuration Register 1

Register Short Name: CCR1 Read Access: Hypv

Decimal SPR Number: 1009 Write Access: Hypv

Initial Value: 0x000000000F0F0F0F Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:39 WC3 0xF Thread 3 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

40:41 /// 0b00 Reserved

42:47 WC2 0xF Thread 2 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

48:49 /// 0b00 Reserved

50:55 WC1 0xF Thread 1 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

56:57 /// 0b00 Reserved

58:63 WC0 0xF Thread 0 Wake Control

(0) 1 Disables sleep on waitrsv.
(1) 1 Disables sleep on waitimpl.
(2) 1 Enables wake on critical input, watchdog, critical doorbell, guest critical doorbell,

or guest machine check doorbell interrupts.
(3) 1 Enables wake on external input, performance monitor, doorbell, or guest doorbell

interrupts.
(4) 1 Enables wake on decrementer or user decrementer interrupts.
(5) 1 Enables wake on fixed interval timer interrupts.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 543 of 897

14.5.5 CCR2 - Core Configuration Register 2

Register Short Name: CCR2 Read Access: Hypv

Decimal SPR Number: 1010 Write Access: Hypv

Initial Value: 0x0000000000000001 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32 EN_DCR 0b0 Enable DCR instructions

0 Disable Embedded.Device Control category instructions.
1 Enable Embedded.Device Control category instructions.

33 EN_TRACE 0b0 Enable Hardware Trace Control Register

0 Writes to TRACE SPR behave as a nop.
1 Writes to TRACE SPR are enabled.

34 EN_PC 0b0 Enable Processor Control Instructions

0 Disable msgsnd and msgclr instructions; causes an illegal instruction type of pro-
gram interrupt.

1 Enable msgsnd and msgclr instructions.

35:43 IFRATSC 0x0 IFRAT Storage Control

Sets the storage control bits used when CCR2[IFRAT] = 1. When set to 1, indicates:
0 (W) Write through required
1 (I) Caching inhibited
2 (M) Memory coherence required
3 (G) Guarded
4 (E) Big endian
5 (U0) User defined bit 0
6 (U1) User defined bit 1
7 (U2) User defined bit 2
8 (U3) User defined bit 3

44 IFRAT 0b0 Instruction Force Real Address Translation

Debug facility that forces EA = RA address translation for instructions:
0 Access I-ERAT for instruction translation.
1 Force EA = RA instruction translation.

45:53 DFRATSC 0x0 DFRAT Storage Control

Sets the storage control bits used when CCR2[DFRAT] = 1. When set to 1, indicates:
0 (W) Write through required
1 (I) Caching inhibited
2 (M) Memory coherence required
3 (G) Guarded
4 (E) Big endian
5 (U0) User defined bit 0
6 (U1) User defined bit 1
7 (U2) User defined bit 2
8 (U3) User defined bit 3

54 DFRAT 0b0 Data Force Real Address Translation

Debug facility that forces EA = RA address translation for data:
0 Access D-ERAT for data translation.
1 Force EA = RA data translation.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 544 of 897
Version 1.3

October 23, 2012

55 UCODE_DIS 0b0 Microcode Disable

0 Enable microcode (normal operation).
1 Disable microcode. (All microcoded instructions cause an unimplemented opera-

tion type of program interrupt.)

56:59 AP 0b0000 Auxiliary Processor Available

Per thread enable for auxiliary processor instructions; this field corresponds to threads
[0:3].
0 The auxiliary processor cannot execute any instructions.
1 The processor can execute instructions.

60 EN_ATTN 0b0 Enable Attn Instruction

0 Disable “Attn” Instruction; causes an illegal instruction type of program interrupt.
1 Enable “Attn” Instruction.

61 /// 0b0 Reserved
This bit is set to 0 at reset and must not be set to 1. When read, this bit can be 1 or 0.

62 EN_ICSWX 0b0 Enable icswx Instruction

0 Disable icswx instruction; causes an illegal instruction type of program interrupt.
1 Enable icswx Instruction.

63 NOTLB 0b1 ERAT Only Mode

0 Backing TLB is present.
1 No backing TLB; use ERATs as micro-TLBs.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 545 of 897

14.5.6 CCR3 - Core Configuration Register 3

Register Short Name: CCR3 Read Access: Hypv

Decimal SPR Number: 1013 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:61 /// 0x0 Reserved

62 EN_EEPRI 0b0 Raise Priority when External Interrupts are Disabled

0 Use priority in PPR32[PRI].
1 If MSR[EE] = 0 and PPR32[PRI] = A2LOW, effective priority is raised to

A2MEDIUM. PPR32 is left unchanged.

63 SI 0b0 Single Instruction Mode

0 Processor runs normally.
1 Process executes only one instruction per thread at a time.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 546 of 897
Version 1.3

October 23, 2012

14.5.7 CESR - Core Event Select Register

Register Short Name: CESR Read Access: Priv

Decimal SPR Number: 912 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ENABPERF 0b0 Enable Performance Event Latches

When set, latches used to redrive performance event signals and the event bus are
enabled. This bit must be set before making performance measurements.

33:35 COUNTMODES 0b000 Performance Event Count Modes

This field determines which count modes are valid for the selected performance events.
More than one count mode bit at a time can be enabled.
33 = Count events when in problem mode.
34 = Count events when in guest supervisor mode.
35 = Count events when in hypervisor mode.

36 ENABTRACEBUS 0b0 Enable Trace-Trigger Bus Latches

When set, latches used to redrive the trace-trigger bus and trace-related signals are
enabled.
This bit is an alternate method of enabling the trace-trigger bus, similar to PCCR0[Enable
Debug Mode]. Unlike PCCR0[Enable Debug Mode], it does not enable additional debug
mode functions in the THRCTL or PCCR0 registers.

37 INSTTRACE 0b0 Instruction Trace Mode Enable

This bit enables support of the core trace function by activating multiplexer selects and con-
trols used to perform instruction tracing.

38:39 INSTTRACETID 0b00 Instruction Trace Mode Thread ID

These bits indicate which thread is selected for core trace.
00 T0
01 T1
10 T2
11 T3

40:42 SELEB0 0b000 Select Signal Driven on ac_an_event_bus(0)

000 xu_pc_event_bits(0)
001 iu_pc_event_bits(0)
010 fu_pc_event_bits(0)
011 mm_pc_event_bits(0)
100 lsu_pc_event_bits(0)
101 xu_pc_event_bits(4)
110 iu_pc_event_bits(4)
111 ac_an_debug_bus(0)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 547 of 897

43:45 SELEB1 0b000 Select Signal Driven on ac_an_event_bus(1)

000 xu_pc_event_bits(1)
001 iu_pc_event_bits(1)
010 fu_pc_event_bits(1)
011 mm_pc_event_bits(1)
100 lsu_pc_event_bits(1)
101 xu_pc_event_bits(5)
110 iu_pc_event_bits(5)
111 ac_an_debug_bus(1)

46:48 SELEB2 0b000 Select Signal Driven on ac_an_event_bus(2)

000 xu_pc_event_bits(2)
001 iu_pc_event_bits(2)
010 fu_pc_event_bits(2)
011 mm_pc_event_bits(2)
100 lsu_pc_event_bits(2)
101 xu_pc_event_bits(6)
110 iu_pc_event_bits(6)
111 ac_an_debug_bus(2)

49:51 SELEB3 0b000 Select Signal Driven on ac_an_event_bus(3)

000 xu_pc_event_bits(3)
001 iu_pc_event_bits(3)
010 fu_pc_event_bits(3)
011 mm_pc_event_bits(3)
100 lsu_pc_event_bits(3)
101 xu_pc_event_bits(7)
110 iu_pc_event_bits(7)
111 ac_an_debug_bus(3)

52:54 SELEB4 0b000 Select Signal Driven on ac_an_event_bus(4)

000 xu_pc_event_bits(4)
001 iu_pc_event_bits(4)
010 fu_pc_event_bits(4)
011 mm_pc_event_bits(4)
100 lsu_pc_event_bits(4)
101 xu_pc_event_bits(0)
110 iu_pc_event_bits(0)
111 ac_an_debug_bus(4)

55:57 SELEB5 0b000 Select Signal Driven on ac_an_event_bus(5)

000 xu_pc_event_bits(5)
001 iu_pc_event_bits(5)
010 fu_pc_event_bits(5)
011 mm_pc_event_bits(5)
100 lsu_pc_event_bits(5)
101 xu_pc_event_bits(1)
110 iu_pc_event_bits(1)
111 ac_an_debug_bus(5)

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 548 of 897
Version 1.3

October 23, 2012

58:60 SELEB6 0b000 Select Signal Driven on ac_an_event_bus(6)

000 xu_pc_event_bits(6)
001 iu_pc_event_bits(6)
010 fu_pc_event_bits(6)
011 mm_pc_event_bits(6)
100 lsu_pc_event_bits(6)
101 xu_pc_event_bits(2)
110 iu_pc_event_bits(2)
111 ac_an_debug_bus(6)

61:63 SELEB7 0b000 Select Signal Driven on ac_an_event_bus(7)

000 xu_pc_event_bits(7)
001 iu_pc_event_bits(7)
010 fu_pc_event_bits(7)
011 mm_pc_event_bits(7)
100 lsu_pc_event_bits(7)
101 xu_pc_event_bits(3)
110 iu_pc_event_bits(3)
111 ac_an_debug_bus(7)

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 549 of 897

14.5.8 CR - Condition Register

Register Short Name: CR Read Access: Any

Decimal SPR Number: N/A Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:35 CR0 0b0000 Condition Register Field 0

36:39 CR1 0b0000 Condition Register Field 1

40:43 CR2 0b0000 Condition Register Field 2

44:47 CR3 0b0000 Condition Register Field 3

48:51 CR4 0b0000 Condition Register Field 4

52:55 CR5 0b0000 Condition Register Field 5

56:59 CR6 0b0000 Condition Register Field 6

60:63 CR7 0b0000 Condition Register Field 7

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 550 of 897
Version 1.3

October 23, 2012

14.5.9 CSRR0 - Critical Save/Restore Register 0

Register Short Name: CSRR0 Read Access: Hypv

Decimal SPR Number: 58 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Critical Save/Restore Register 0

This register is used to save the machine state on critical interrupts and to restore the
machine state when an rfci is executed. When a critical interrupt is taken, the CSRR0 is set
to the current or next instruction address. When rfci is executed, instruction execution con-
tinues at the address in CSRR0. In general, CSRR0 contains the address of the instruction
that caused the critical interrupt,or the address of the instruction to return to after a critical
interrupt is serviced.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 551 of 897

14.5.10 CSRR1 - Critical Save/Restore Register 1

Register Short Name: CSRR1 Read Access: Hypv

Decimal SPR Number: 59 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode; it can execute any instruction and can
access any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode; it cannot execute any privileged instruction and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 552 of 897
Version 1.3

October 23, 2012

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 553 of 897

14.5.11 CTR - Count Register

Register Short Name: CTR Read Access: Any

Decimal SPR Number: 9 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 CTR 0x0 Counter

The Count Register (CTR) is a 64-bit register. It can be used to hold a loop count that can
be decremented during execution of branch instructions that contain an appropriately
coded BO field. If the value in the Count Register is 0 before being decremented, it is -1
afterward. The Count Register can also be used to provide the branch target address for
the Branch Conditional to Count Register instruction.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 554 of 897
Version 1.3

October 23, 2012

14.5.12 DAC1 - Data Address Compare 1

Register Short Name: DAC1 Read Access: Hypv

Decimal SPR Number: 316 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC1 0x0 Data Address Compare 1

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC1 and
DAC2.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 555 of 897

14.5.13 DAC2 - Data Address Compare 2

Register Short Name: DAC2 Read Access: Hypv

Decimal SPR Number: 317 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC2 0x0 Data Address Compare 2

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC1 and
DAC2.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 556 of 897
Version 1.3

October 23, 2012

14.5.14 DAC3 - Data Address Compare 3

Register Short Name: DAC3 Read Access: Hypv

Decimal SPR Number: 849 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC3 0x0 Data Address Compare 3

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC3 and
DAC4.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 557 of 897

14.5.15 DAC4 - Data Address Compare 4

Register Short Name: DAC4 Read Access: Hypv

Decimal SPR Number: 850 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DAC4 0x0 Data Address Compare 4

A debug event can be enabled to occur upon loads, stores, or cache operations to an
address specified, or to blocks of addresses specified by the combination of the DAC3 and
DAC4.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 558 of 897
Version 1.3

October 23, 2012

14.5.16 DBCR0 - Debug Control Register 0

Register Short Name: DBCR0 Read Access: Hypv

Decimal SPR Number: 308 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: dcfg

Bits Field Name Initial
Value Description

32 EDM RO 0b0 External Debug Mode RO

Reports the state of external debug mode.
0 External debug mode is disabled.
1 External debug mode is enabled. External debug mode is set, and the corre-

sponding debug action selected, from the decoded value of PCCR0[DBA] bits.

33 IDM 0b0 Internal Debug Mode

Enable internal debug mode. If MSR[DE] = 1, the occurrence of a debug event or the
recording of an earlier debug event in the Debug Status Register when MSR[DE] = 0 or
DBCR0[IDM] = 0 causes a debug interrupt.

34:35 RST 0b00 Reset

00 No Action
01 Reset1
10 Reset2
11 Reset3

36 ICMP 0b0 Instruction Completion Debug Event

0 ICMP debug events are disabled.
1 ICMP debug events are enabled when MSR[DE] = 1.

37 BRT 0b0 Branch Taken Debug Event

0 BRT debug events are disabled.
1 BRT debug events are enabled when MSR[DE] = 1.

38 IRPT 0b0 Interrupt Taken Debug Event Enable

0 IRPT debug events are disabled.
1 IRPT debug events are enabled.

39 TRAP 0b0 Trap Debug Event Enable

0 TRAP debug events cannot occur.
1 TRAP debug events can occur.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event Enable

0 IAC1 debug events cannot occur.
1 IAC1 debug events can occur.

41 IAC2 0b0 Instruction Address Compare 2 Debug Event Enable

0 IAC2 debug events cannot occur.
1 IAC2 debug events can occur.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event Enable

0 IAC3 debug events cannot occur.
1 IAC3 debug events can occur.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event Enable

0 IAC4 debug events cannot occur.
1 IAC4 debug events can occur.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 559 of 897

44:45 DAC1 0b00 Data Address Compare 1 Debug Event Enable

00 Disabled: DAC1 debug events cannot occur.
01 Store only: DAC1 debug events can occur only if a store-type data storage

access.
10 Load only: DAC1 debug events can occur only if a load-type data storage access.
11 Any: DAC1 debug events can occur on any data storage access.

46:47 DAC2 0b00 Data Address Compare 2 Debug Event Enable

00 Disabled: DAC2 debug events cannot occur.
01 Store only: DAC2 debug events can occur only if a store-type data storage

access.
10 Load only: DAC2 debug events can occur only if a load-type data storage access.
11 Any: DAC2 debug events can occur on any data storage access.

48 RET 0b0 Return Debug Event Enable

0 RET debug events cannot occur.
1 RET debug events can occur.

49:58 /// 0x0 Reserved

59:60 DAC3 0b00 Data Address Compare 3 Debug Event Enable

00 Disabled: DAC3 debug events cannot occur.
01 Store only: DAC3 debug events can occur only if a store-type data storage

access.
10 Load only: DAC3 debug events can occur only if a load-type data storage access.
11 Any: DAC3 debug events can occur on any data storage access.

61:62 DAC4 0b00 Data Address Compare 4 Debug Event Enable

00 Disabled: DAC4 debug events cannot occur.
01 Store only: DAC4 debug events can occur only if a store-type data storage

access.
10 Load only: DAC4 debug events can occur only if a load-type data storage access.
11 Any: DAC4 debug events can occur on any data storage access.

63 FT 0b0 Freeze Timers on Debug Event

0 Enable clocking of timers.
1 Disable clocking of timers if any DBSR bit is set (except MRR).

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 560 of 897
Version 1.3

October 23, 2012

14.5.17 DBCR1 - Debug Control Register 1

Register Short Name: DBCR1 Read Access: Hypv

Decimal SPR Number: 309 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 IAC1US 0b00 Instruction Address Compare 1 User/Supervisor Mode

00 Enabled: IAC1 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC1 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC1 debug events can occur only if MSR[PR] = 1.

34:35 IAC1ER 0b00 Instruction Address Compare 1 Effective/Real Mode

00 Effective: IAC1 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC1 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC1 debug events are based on effective addresses and if

MSR[IS] = 1.

36:37 IAC2US 0b00 Instruction Address Compare 2 User/Supervisor Mode

00 Enabled: IAC2 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC2 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC2 debug events can occur only if MSR[PR] = 1.

38:39 IAC2ER 0b00 Instruction Address Compare 2 Effective/Real Mode

00 Effective: IAC2 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC2 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC2 debug events are based on effective addresses and if

MSR[IS] = 1.

40 /// 0b0 Reserved

41 IAC12M 0b0 Instruction Address Compare 1/2 Mode

0 Exact address compare.
1 Address bit match.

42:47 /// 0x0 Reserved

48:49 IAC3US 0b00 Instruction Address Compare 3 User/Supervisor Mode

00 Enabled: IAC3 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC3 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC3 debug events can occur only if MSR[PR] = 1.

50:51 IAC3ER 0b00 Instruction Address Compare 3 Effective/Real Mode

00 Effective: IAC3 debug events are based on effective addresses.
01 Not Implemented.
10 Effective IS0: IAC3 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC3 debug events are based on effective addresses and if

MSR[IS] = 1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 561 of 897

52:53 IAC4US 0b00 Instruction Address Compare 4 User/Supervisor Mode

00 Enabled: IAC4 debug events can occur.
01 Reserved.
10 Enabled PR0: IAC4 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: IAC4 debug events can occur only if MSR[PR] = 1.

54:55 IAC4ER 0b00 Instruction Address Compare 4 Effective/Real Mode

00 Effective: IAC4 debug events are based on effective addresses.
01 Not implemented.
10 Effective IS0: IAC4 debug events are based on effective addresses and if

MSR[IS] = 0.
11 Effective IS1: IAC4 debug events are based on effective addresses and if

MSR[IS] = 1.

56 /// 0b0 Reserved

57 IAC34M 0b0 Instruction Address Compare 3/4 Mode

0 Exact address compare.
1 Address bit match.

58:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 562 of 897
Version 1.3

October 23, 2012

14.5.18 DBCR2 - Debug Control Register 2

Register Short Name: DBCR2 Read Access: Hypv

Decimal SPR Number: 310 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 DAC1US 0b00 Data Address Compare 1 User/Supervisor Mode

00 Enabled: DAC1 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC1 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC1 debug events can occur only if MSR[PR] = 1.

34:35 DAC1ER 0b00 Data Address Compare 1 Effective/Real Mode

00 Effective: DAC1 debug events are based on effective addresses.
01 Not implemented.
10 Effective DS0: DAC1 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC1 debug events are based on effective addresses and if

MSR[DS] = 1.

36:37 DAC2US 0b00 Data Address Compare 2 User/Supervisor Mode

00 Enabled: DAC2 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC2 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC2 debug events can occur only if MSR[PR] = 1.

38:39 DAC2ER 0b00 Data Address Compare 2 Effective/Real Mode

00 Effective: DAC2 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC2 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC2 debug events are based on effective addresses and if

MSR[DS] = 1.

40 /// 0b0 Reserved

41 DAC12M 0b0 Data Address Compare 1/2 Mode

0 Exact: Exact address compare.
1 Bit Match: Address bit match.

42:43 /// 0b00 Reserved

44:45 DVC1M 0b00 Data Value Compare 1 Mode

00 DVC Disabled: DAC1 debug events can occur.
01 DVC All: DAC1 debug events can occur only when all bytes specified by DVC1BE

in the data value of the data storage access match their corresponding bytes in
DVC1.

10 DVC Any: DAC1 debug events can occur only when at least one of the bytes
specified by DVC1BE in the data value of the data storage access matches its cor-
responding byte in DVC1.

11 DVC HW: DAC1 debug events can occur only when all bytes specified in DVC1BE
within at least one of the halfwords of the data value of the data storage access
match their corresponding bytes in DVC1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 563 of 897

46:47 DVC2M 0b00 Data Value Compare 2 Mode

00 DVC Disabled: DAC2 debug events can occur.
01 DVC All: DAC2 debug events can occur only when all bytes specified by DVC2BE

in the data value of the data storage access match their corresponding bytes in
DVC2.

10 DVC Any: DAC2 debug events can occur only when at least one of the bytes
specified by DVC2BE in the data value of the data storage access matches its cor-
responding byte in DVC2.

11 DVC HW: DAC2 debug events can occur only when all bytes specified in DVC2BE
within at least one of the halfwords of the data value of the data storage access
match their corresponding bytes in DVC2.

48:55 DVC1BE 0x0 Data Value Compare 1 Byte Enables

Specifies which bytes in the aligned data value being read or written by the storage access
are compared to the corresponding bytes in DVC1.

56:63 DVC2BE 0x0 Data Value Compare 2 Byte Enables

Specifies which bytes in the aligned data value being read or written by the storage access
are compared to the corresponding bytes in DVC2.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 564 of 897
Version 1.3

October 23, 2012

14.5.19 DBCR3 - Debug Control Register 3

Register Short Name: DBCR3 Read Access: Hypv

Decimal SPR Number: 848 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 DAC3US 0b00 Data Address Compare 3 User/Supervisor Mode

00 Enabled: DAC3 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC3 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC3 debug events can occur only if MSR[PR] = 1.

34:35 DAC3ER 0b00 Data Address Compare 3 Effective/Real Mode

00 Effective: DAC3 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC3 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC3 debug events are based on effective addresses and if

MSR[DS] = 1.

36:37 DAC4US 0b00 Data Address Compare 4 User/Supervisor Mode

00 Enabled: DAC4 debug events can occur.
01 Reserved.
10 Enabled PR0: DAC4 debug events can occur only if MSR[PR] = 0.
11 Enabled PR1: DAC4 debug events can occur only if MSR[PR] = 1.

38:39 DAC4ER 0b00 Data Address Compare 4 Effective/Real Mode

00 Effective: DAC4 debug events are based on effective addresses.
01 Not Implemented.
10 Effective DS0: DAC4 debug events are based on effective addresses and if

MSR[DS] = 0.
11 Effective DS1: DAC4 debug events are based on effective addresses and if

MSR[DS] = 1.

40 /// 0b0 Reserved

41 DAC34M 0b0 Data Address Compare 3/4 Mode

0 Exact address compare.
1 Address bit match.

42:62 /// 0x0 Reserved

63 IVC 0b0 Instruction Value Compare Event

0 Instruction value compare events disabled.
1 Instruction value compare events enabled.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 565 of 897

14.5.20 DBSR - Debug Status Register

Register Short Name: DBSR Read Access: Hypv

Decimal SPR Number: 304 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: WC

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 IDE 0b0 Imprecise Debug Event

Set to 1 if MSRDE = 0 and a debug event causes its respective Debug Status Register bit
to be set to 1.

33 UDE 0b0 Unconditional Debug Event

Set to 1 if an unconditional debug event occurred.

34:35 MRR 0b00 Most Recent Reset
Set to one of three values when a reset occurs:
00 No Action
01 Reset1
10 Reset2
11 Reset3

36 ICMP 0b0 Instruction Complete Debug Event
Set to 1 if an instruction completion debug event occurred and DBCR0[ICMP] = 1.

37 BRT 0b0 Branch Taken Debug Event
Set to 1 if a branch taken debug event occurred and DBCR0[BRT] = 1.

38 IRPT 0b0 Interrupt Taken Debug Event

Set to 1 if an interrupt taken debug event occurred and DBCR0[IRPT] = 1.

39 TRAP 0b0 Trap Instruction Debug Event

Set to 1 if a trap instruction debug event occurred and DBCR0[TRAP] = 1.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event

Set to 1 if an IAC1 debug event occurred and DBCR0[IAC1] = 1.

41 IAC2 0b0 Instruction Address Compare 2 Debug Event

Set to 1 if an IAC2 debug event occurred and DBCR0[IAC2] = 1.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event

Set to 1 if an IAC3 debug event occurred and DBCR0[IAC3] = 1.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event

Set to 1 if an IAC4 debug event occurred and DBCR0[IAC4] = 1.

44 DAC1R 0b0 Data Address Compare 1 Read Debug Event

Set to 1 if a read-type DAC1 debug event occurred and DBCR0[DAC1] = 0b10 or
DBCR0[DAC1] = 0b11.

45 DAC1W 0b0 Data Address Compare 1 Write Debug Event

Set to 1 if a write-type DAC1 debug event occurred and DBCR0[DAC1] = 0b01 or
DBCR0[DAC1] = 0b11.

46 DAC2R 0b0 Data Address Compare 2 Read Debug Event

Set to 1 if a read-type DAC2 debug event occurred and DBCR0[DAC2] = 0b10 or
DBCR0[DAC2] = 0b11.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 566 of 897
Version 1.3

October 23, 2012

47 DAC2W 0b0 Data Address Compare 2 Write Debug Event

Set to 1 if a write-type DAC2 debug event occurred and DBCR0[DAC2] = 0b01 or
DBCR0[DAC2] = 0b11.

48 RET 0b0 Return Debug Event

Set to 1 if a return debug event occurred and DBCR0[RET] = 1.

49:58 /// 0x0 Reserved

59 DAC3R 0b0 Data Address Compare 3 Read Debug Event

Set to 1 if a read-type DAC3 debug event occurred and DBCR0[DAC3] = 0b10 or
DBCR0[DAC3] = 0b11.

60 DAC3W 0b0 Data Address Compare 3 Write Debug Event

Set to 1 if a write-type DAC3 debug event occurred and DBCR0[DAC3] = 0b01 or
DBCR0[DAC3] = 0b11.

61 DAC4R 0b0 Data Address Compare 4 Read Debug Event

Set to 1 if a read-type DAC4 debug event occurred and DBCR0[DAC4] = 0b10 or
DBCR0[DAC4] = 0b11.

62 DAC4W 0b0 Data Address Compare 4 Write Debug Event

Set to 1 if a write-type DAC4 debug event occurred and DBCR0[DAC4] = 0b01 or
DBCR0[DAC4] = 0b11.

63 IVC 0b0 Instruction Value Compare Event

Set to 1 if an IVC debug event occurred with DBCR3[IVC] = 1.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 567 of 897

14.5.21 DBSRWR - Debug Status Register Write Register

Register Short Name: DBSRWR Read Access: None

Decimal SPR Number: 306 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 IDE 0b0 Imprecise Debug Event

Sets corresponding DBSR bit.

33 UDE 0b0 Unconditional Debug Event

Sets corresponding DBSR bit.

34:35 MRR 0b00 Most Recent Reset

Sets corresponding DBSR bit.

36 ICMP 0b0 Instruction Complete Debug Event

Sets corresponding DBSR bit.

37 BRT 0b0 Branch Taken Debug Event

Sets corresponding DBSR bit.

38 IRPT 0b0 Interrupt Taken Debug Event

Sets corresponding DBSR bit.

39 TRAP 0b0 Trap Instruction Debug Event

Sets corresponding DBSR bit.

40 IAC1 0b0 Instruction Address Compare 1 Debug Event

Sets corresponding DBSR bit.

41 IAC2 0b0 Instruction Address Compare 2 Debug Event

Sets corresponding DBSR bit.

42 IAC3 0b0 Instruction Address Compare 3 Debug Event

Sets corresponding DBSR bit.

43 IAC4 0b0 Instruction Address Compare 4 Debug Event

Sets corresponding DBSR bit.

44 DAC1R 0b0 Data Address Compare 1 Read Debug Event

Sets corresponding DBSR bit.

45 DAC1W 0b0 Data Address Compare 1 Write Debug Event

Sets corresponding DBSR bit.

46 DAC2R 0b0 Data Address Compare 2 Read Debug Event

Sets corresponding DBSR bit.

47 DAC2W 0b0 Data Address Compare 2 Write Debug Event

Sets corresponding DBSR bit.

48 RET 0b0 Return Debug Event

Sets corresponding DBSR bit.

49:58 /// 0x0 Reserved

59 DAC3R 0b0 Data Address Compare 3 Read Debug Event

Sets corresponding DBSR bit.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 568 of 897
Version 1.3

October 23, 2012

60 DAC3W 0b0 Data Address Compare 3 Write Debug Event

Sets corresponding DBSR bit.

61 DAC4R 0b0 Data Address Compare 4 Read Debug Event

Sets corresponding DBSR bit.

62 DAC4W 0b0 Data Address Compare 4 Write Debug Event

Sets corresponding DBSR bit.

63 IVC 0b0 Instruction Value Compare Event

Sets corresponding DBSR bit.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 569 of 897

14.5.22 DEAR - Data Exception Address Register

Register Short Name: DEAR Read Access: Priv

Decimal SPR Number: 61 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GDEAR Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DEAR 0x0 Data Exception Address Register

The DEAR contains the address that was referenced by a load, store or cache manage-
ment instruction that caused an alignment, data TLB miss, or data storage interrupt.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 570 of 897
Version 1.3

October 23, 2012

14.5.23 DEC - Decrementer

Register Short Name: DEC Read Access: Hypv

Decimal SPR Number: 22 Write Access: Hypv

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 DEC 0x7FFFFFFF Decrementer

The Decrementer (DEC) is a 32-bit decrementing counter that provides a mechanism for
causing a decrementer interrupt after a programmable delay. The contents of the Decre-
menter are treated as a signed integer.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 571 of 897

14.5.24 DECAR - Decrementer Auto-Reload

Register Short Name: DECAR Read Access: Hypv

Decimal SPR Number: 54 Write Access: Hypv

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 DECAR 0x7FFFFFFF Decrementer Auto-Reload

If TCRARE = 1, TSRDIS is set to 1, the contents of the Decrementer Auto-Reload Register is
then placed into the DEC, and the decrementer continues decrementing from the reloaded
value.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 572 of 897
Version 1.3

October 23, 2012

14.5.25 DVC1 - Data Value Compare 1

Register Short Name: DVC1 Read Access: Hypv

Decimal SPR Number: 318 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DVC1 0x0 Data Value Compare 1

A DAC1R, DAC1W debug event can be enabled to occur upon loads or stores of a specific
data value specified in DVC1. DBCR2[DVC1M] and DBCR2[DVC1BE] control how the con-
tents of the DVC1 are compared with the value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 573 of 897

14.5.26 DVC2 - Data Value Compare 2

Register Short Name: DVC2 Read Access: Hypv

Decimal SPR Number: 319 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 DVC2 0x0 Data Value Compare 2

A DAC2R, DAC2W debug event can be enabled to occur upon loads or stores of a specific
data value specified in DVC2. DBCR2[DVC2M] and DBCR2[DVC2BE] control how the con-
tents of the DVC2 are compared with the value.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 574 of 897
Version 1.3

October 23, 2012

14.5.27 EPCR - Embedded Processor Control Register

Register Short Name: EPCR Read Access: Hypv

Decimal SPR Number: 307 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EXTGS 0b0 External Input Interrupt Directed to Guest State

Controls whether an external input interrupt is taken in the guest state or the hypervisor
state.
0 External input interrupts are directed to the hypervisor state. External input inter-

rupts pend until MSR[GS] = 1 or MSR[EE] = 1.
1 External input interrupts are directed to the guest state. External input interrupts

pend until MSR[GS] = 1 and MSR[EE] = 1.

33 DTLBGS 0b0 Data TLB Error Interrupt Directed to Guest State

Controls whether a data TLB error interrupt that occurs in the guest state is taken in the
guest state or the hypervisor state.
0 Data TLB error interrupts that occur in the guest state are directed to the hypervi-

sor state.
1 Data TLB error interrupts that occur in the guest state are directed to the guest

state.

34 ITLBGS 0b0 Instruction TLB Error Interrupt Directed to Guest State

Controls whether an instruction TLB error interrupt that occurs in the guest state is taken in
the guest state or the hypervisor state.
0 Instruction TLB error interrupts that occur in the guest state are directed to the

hypervisor state.
1 Instruction TLB error interrupts that occur in the guest state are directed to the

guest state.

35 DSIGS 0b0 Data Storage Interrupt Directed to Guest State

Controls whether a data storage interrupt that occurs in the guest state is taken in the guest
state or the hypervisor state.
0 Data storage interrupts that occur in the guest state are directed to the hypervisor

state.
1 Data storage interrupts that occur in the guest state are directed to the guest state,

except that a data storage interrupt due to a TLB ineligible exception is directed to
the hypervisor state, regardless of the existence of other exceptions that cause a
data storage interrupt.

36 ISIGS 0b0 Instruction Storage Interrupt Directed to Guest State

Controls whether an instruction storage interrupt that occurs in the guest state is taken in
the guest state or the hypervisor state.
0 Instruction storage interrupts that occur in the guest state are directed to the

hypervisor state.
1 Instruction storage interrupts that occur in the guest state are directed to the guest

state, except that an instruction storage interrupt due to a TLB ineligible exception
is directed to the hypervisor state, regardless of the existence of other exceptions
that cause an instruction storage interrupt.

37 DUVD 0b0 Disable Hypervisor Debug

Controls whether debug events occur in the hypervisor state.
0 Debug events can occur in the hypervisor state.
1 Debug events are suppressed in the hypervisor state.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 575 of 897

38 ICM 0b0 Interrupt Computation Mode

Controls the computational mode of the processor when an interrupt occurs that is directed
to the hypervisor state. At interrupt time, EHCSR[ICM] is copied into MSR[CM] if the inter-
rupt is directed to the hypervisor state.
0 Interrupts that are directed to the hypervisor state execute in 32-bit mode.
1 Interrupts that are directed to the hypervisor state execute in 64-bit mode.

39 GICM 0b0 Guest Interrupt Computation Mode
Controls the computational mode of the processor when an interrupt occurs that is directed
to the guest state. At interrupt time, EHCSR[GICM] is copied into MSR[CM] if the interrupt
is directed to the guest state.
0 Interrupts that are directed to the guest state execute in 32-bit mode.
1 Interrupts that are directed to the guest state execute in 64-bit mode.

40 DGTMI 0b0 Disable TLB Guest Management Instructions

Controls whether guest state can execute any TLB management instructions.
0 tlbilx, tlbwe, and tlbsrx (for a logical-to-real-address translation hit) are allowed

to execute normally when MSR[GS,PR] = 0b10.
1 tlbilx, tlbwe, and tlbsrx always cause an embedded hypervisor privilege interrupt

when MSR[GS,PR] = 0b10.

41 DMIUH 0b0 Disable MAS Interrupt Updates for Hypervisor

Controls whether MAS registers are updated by hardware when a data or instruction TLB
error interrupt or a data or instruction storage interrupt is taken in the hypervisor.
0 MAS registers are set when a data or instruction TLB error interrupt or a data or

instruction storage interrupt is taken in the hypervisor.
1 MAS registers updates are disabled and left unchanged when a data or instruction

TLB error interrupt or a data or instruction storage interrupt is taken in the hypervi-
sor.

42:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 576 of 897
Version 1.3

October 23, 2012

14.5.28 EPLC - External Process ID Load Context

Register Short Name: EPLC Read Access: Priv

Decimal SPR Number: 947 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EPR 0b0 External Load Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID load instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Load Context AS Bit

Used in place of MSR[DS] for translation when an external process ID load instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Load Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID load instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Load Context Logical Process ID Value HO

Used in place of LPID register value for load translation when an external PID load instruc-
tion is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Load Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
load instruction is executed.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 577 of 897

14.5.29 EPSC - External Process ID Store Context

Register Short Name: EPSC Read Access: Priv

Decimal SPR Number: 948 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 EPR 0b0 External Store Context PR Bit

Used in place of MSR[PR] by the storage access control mechanism when an external pro-
cess ID store instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS 0b0 External Store Context AS Bit

Used in place of MSR[DS] for translation when an external process ID store instruction is
executed.
0 Address space 0.
1 Address space 1.

34 EGS HO 0b0 External Store Context GS Bit HO

Used in place of MSR[GS] for translation when an external process ID store instruction is
executed.
0 Embedded hypervisor state.
1 Guest state.
This field is only writable in hypervisor state.

35:39 /// 0x0 Reserved

40:47 ELPID HO 0x0 External Store Context Logical Process ID Value HO

Used in place of the LPID register value for load translation when an external PID store
instruction is executed. Compared with TLB[TLPID] during translation.
This field is only writable in hypervisor state.

48:49 /// 0b00 Reserved

50:63 EPID 0x0 External Store Context Process ID Value

Used in place of all process ID register values for translation when an external process ID
store instruction is executed.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 578 of 897
Version 1.3

October 23, 2012

14.5.30 EPTCFG - Embedded Page Table Configuration Register

Register Short Name: EPTCFG Read Access: Hypv

Decimal SPR Number: 350 Write Access: None

Initial Value: 0x0000000000091942 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:43 /// 0x0 Reserved

44:48 PS1 0x12 Page Size 1

Indicates whether an indirect entry with page size 2PS1 KB combined with the sub-page
size indicated by SPS1 is supported by the TLB. (The A2 supports an indirect page size of
256 MB with a sub-page size of 64 KB.)

49:53 SPS1 0x6 Sub-Page Size 1

Indicates whether an indirect entry with sub-page size 2SPS1 KB combined with the page
size indicated by PS1 is supported by the TLB. (The A2 supports an indirect page size of
256 MB with a sub-page size of 64 KB.)

54:58 PS0 0xA Page Size 0

Indicates whether an indirect entry with page size 2PS0 KB combined with the sub-page
size indicated by SPS0 is supported by the TLB. (The A2 supports an indirect page size of
1 MB with a sub-page size of 4 KB.)

59:63 SPS0 0x2 Sub-Page Size 0

Indicates whether an indirect entry with sub-page size 2SPS0 KB combined with page size
indicated by PS0 is supported by the TLB. (The A2 supports an indirect page size of 1 MB
with a sub-page size of 4 KB.)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 579 of 897

14.5.31 ESR - Exception Syndrome Register

Register Short Name: ESR Read Access: Priv

Decimal SPR Number: 62 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GESR Scan Ring: func

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36 PIL 0b0 Illegal Instruction Exception

1 Indicates an illegal instruction exception.

37 PPR 0b0 Privileged Instruction Exception

1 Indicates a privileged instruction exception.

38 PTR 0b0 Trap Exception

1 Indicates a trap exception.

39 FP 0b0 Floating-Point Operation

1 Indicates floating-point operation.

40 ST 0b0 Store Operation

1 Indicates store operation.

41 /// 0b0 Reserved

42 DLK0 0b0 Data Locking Exception 0

1 Indicates a dcbtls, dcbtstls, or dcblc instruction was executed with MSR[PR] = 1
and MSR[UCLE] = 0.

43 DLK1 0b0 Data Locking Exception 1

1 Indicates an icbtls or icblc instruction was executed MSR[PR] = 1 and
MSR[UCLE] = 0.

44 AP 0b0 Auxiliary Processor Operation

1 Indicates auxiliary processor operation.

45 PUO 0b0 Unimplemented Operation Exception

1 Indicates an unimplemented operation exception.

46 BO 0b0 Byte Ordering Exception

1 Indicates a byte ordering exception.

47 PIE 0b0 Imprecise Exception

1 Indicates an imprecise exception.

48 /// 0b0 Reserved

49 UCT 0b0 Unavailable Coprocessor Type

1 Indicates that execution of an icswx instruction was attempted that specified a
coprocessor type that was marked as unavailable.

50:52 /// 0b000 Reserved

53 DATA 0b0 Data Access

1 Indicates if the interrupt is due to an LRAT miss resulting from a page table trans-
lation of a load, store, or cache management operand address.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 580 of 897
Version 1.3

October 23, 2012

54 TLBI 0b0 TLB Ineligible

1 Indicates a TLB ineligible exception occurred during a page table translation for
the instruction causing the interrupt.

55 PT 0b0 Page Table

1 Indicates a page table fault or read or write access control exception occurred dur-
ing a page table translation for the instruction causing the interrupt.

56 SPV 0b0 Vector Operation

1 Indicates vector operation.

57 EPID 0b0 External Process ID Operation

1 Indicates that the instruction causing the interrupt is an external process ID
instruction.

58:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 581 of 897

14.5.32 GDEAR - Guest Data Exception Address Register

Register Short Name: GDEAR Read Access: Priv

Decimal SPR Number: 381 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

0:63 GDEAR 0x0 Guest Data Exception Address Register

The GDEAR contains the address that was referenced by a load, store , or cache manage-
ment instruction that caused an alignment, data TLB miss, or data storage interrupt when
directed to the guest state.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 582 of 897
Version 1.3

October 23, 2012

14.5.33 GESR - Guest Exception Syndrome Register

Register Short Name: GESR Read Access: Priv

Decimal SPR Number: 383 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36 PIL 0b0 Illegal Instruction Exception

1 Indicates an illegal instruction exception.

37 PPR 0b0 Privileged Instruction Exception

1 Indicates a privileged instruction exception.

38 PTR 0b0 Trap Exception

1 Indicates a trap exception.

39 FP 0b0 Floating-Point Operation

1 Indicates floating-point operation.

40 ST 0b0 Store Operation

1 Indicates store operation.

41 /// 0b0 Reserved

42 DLK0 0b0 Data Locking Exception 0

1 Indicates that a dcbtls, dcbtstls, or dcblc instruction was executed in user mode.

43 DLK1 0b0 Data Locking Exception 1

1 Indicates that an icbtls or icblc was executed in user mode.

44 AP 0b0 Auxiliary Processor Operation

1 Indicates auxiliary processor operation.

45 PUO 0b0 Unimplemented Operation Exception

1 Indicates an unimplemented operation exception.

46 BO 0b0 Byte Ordering Exception

1 Indicates a byte ordering exception.

47 PIE 0b0 Imprecise Exception

1 Indicates an imprecise exception.

48 /// 0b0 Reserved

49 UCT 0b0 Unavailable Coprocessor Type

1 Indicates that execution of an icswx instruction was attempted that specified a
coprocessor type that was marked as unavailable in the HACOP or ACOP (if
MSR[PR] = 1) registers.

50:52 /// 0b000 Reserved

53 DATA 0b0 Data Access

1 Indicates if the interrupt is due to is an LRAT miss resulting from a page table
translation of a load, store or cache management operand address.

54 TLBI 0b0 TLB Ineligible

1 Indicates that a TLB ineligible exception occurred during a page table translation
for the instruction causing the interrupt.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 583 of 897

55 PT 0b0 Page Table

1 Indicates a that page table fault or read or write access control exception occurred
during a page table translation for the instruction causing the interrupt.

56 SPV 0b0 Vector Operation

1 Indicates vector operation.

57 EPID 0b0 External Process ID Operation

1 Indicates that the instruction causing the interrupt is an external process ID
instruction.

58:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 584 of 897
Version 1.3

October 23, 2012

14.5.34 GIVPR - Guest Interrupt Vector Prefix Register

Register Short Name: GIVPR Read Access: Priv

Decimal SPR Number: 447 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 GIVPR 0x0 Interrupt Vector Prefix Register

Provides the high-order bits of the address of the exception processing routines when in
guest state.

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 585 of 897

14.5.35 GPIR - Guest Processor ID Register

Register Short Name: GPIR Read Access: Priv

Decimal SPR Number: 382 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32:49 VPTAG 0x0 Virtual Processor Tag

Storage used by the guest operating system to identify the virtual processor on which the
operating system is running.

50:63 DBTAG 0x0 Doorbell Tag

Used to match guest doorbell messages that are sent to all the processors and virtual pro-
cessors in a coherence domain. If a sent guest doorbell message tag matches the DBTAG
field, a guest doorbell is said to be accepted on the (virtual) processor.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 586 of 897
Version 1.3

October 23, 2012

14.5.36 GSPRG0 - Guest Software Special Purpose Register 0

Register Short Name: GSPRG0 Read Access: Priv

Decimal SPR Number: 368 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG0 0x0 Guest Software Special Purpose Register 0

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 587 of 897

14.5.37 GSPRG1 - Guest Software Special Purpose Register 1

Register Short Name: GSPRG1 Read Access: Priv

Decimal SPR Number: 369 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG1 0x0 Guest Software Special Purpose Register 1

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 588 of 897
Version 1.3

October 23, 2012

14.5.38 GSPRG2 - Guest Software Special Purpose Register 2

Register Short Name: GSPRG2 Read Access: Priv

Decimal SPR Number: 370 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG2 0x0 Guest Software Special Purpose Register 2

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 589 of 897

14.5.39 GSPRG3 - Guest Software Special Purpose Register 3

Register Short Name: GSPRG3 Read Access: Priv

Decimal SPR Number: 371 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: array

Bits Field Name Initial
Value Description

0:63 GSPRG3 0x0 Guest Software Special Purpose Register 3

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 590 of 897
Version 1.3

October 23, 2012

14.5.40 GSRR0 - Guest Save/Restore Register 0

Register Short Name: GSRR0 Read Access: Priv

Decimal SPR Number: 378 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

0:61 GSRR0 0x0 Guest Save/Restore Register 0

This register is used to save the machine state on interrupts directed to the guest state and
to restore the machine state when an rfgi is executed. When an interrupt is taken, the
GSRR0 is set to the current or next instruction address. When rfgi is executed, instruction
execution continues at the address in GSRR0. In general, GSRR0 contains the address of
the instruction that caused the interrupt or the address of the instruction to return to after a
critical interrupt is serviced.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 591 of 897

14.5.41 GSRR1 - Guest Save/Restore Register 1

Register Short Name: GSRR1 Read Access: Priv

Decimal SPR Number: 379 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Y Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

When set, indicates that the processor is running in the guest state under the control of an
hypervisor program.
0 The processor is not running in the guest state.
1 The processor is running in the guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 592 of 897
Version 1.3

October 23, 2012

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 593 of 897

14.5.42 HACOP - Hypvervisor Available Coprocessor

Register Short Name: HACOP Read Access: Priv

Decimal SPR Number: 351 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:63 CT 0x0 Coprocessor Type

Indicates the available coprocessor types for the icswx instruction. Bit n of the register indi-
cates availability of coproccessor type n.
0 Coprocessor unavailable. Accesses generate an unavailable coprocessor type of

data storage interrupt.
1 Coprocessor available.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 594 of 897
Version 1.3

October 23, 2012

14.5.43 IAC1 - Instruction Address Compare 1

Register Short Name: IAC1 Read Access: Hypv

Decimal SPR Number: 312 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC1 0x0 Instruction Address Compare 1

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC1 and
IAC2. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 595 of 897

14.5.44 IAC2 - Instruction Address Compare 2

Register Short Name: IAC2 Read Access: Hypv

Decimal SPR Number: 313 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC2 0x0 Instruction Address Compare 2

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC1 and
IAC2. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 596 of 897
Version 1.3

October 23, 2012

14.5.45 IAC3 - Instruction Address Compare 3

Register Short Name: IAC3 Read Access: Hypv

Decimal SPR Number: 314 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC3 0x0 Instruction Address Compare 3

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC3 and
IAC4. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 597 of 897

14.5.46 IAC4 - Instruction Address Compare 4

Register Short Name: IAC4 Read Access: Hypv

Decimal SPR Number: 315 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 IAC4 0x0 Instruction Address Compare 4

A debug event can be enabled to occur upon an attempt to execute an instruction from an
address specified, or to blocks of addresses specified by the combination of the IAC3 and
IAC4. Because all instruction addresses are required to be word-aligned, the 2 low-order
bits of the Instruction Address Compare Registers are reserved and do not participate in
the comparison to the instruction address.

62:63 /// 0b00 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 598 of 897
Version 1.3

October 23, 2012

14.5.47 IAR - Instruction Address Register

Register Short Name: IAR Read Access: Hypv

Decimal SPR Number: 882 Write Access: Hypv

Initial Value: 0xFFFFFFFFFFFFFFFC Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial Value Description

0:61 IAR 0x3FFFFFFF
FFFFFFF

Instruction Address Register

Indicates the address of the current instruction at the completion point, or of the last instruction
that passed the completion point. The completion point is the point at which all interrupts have
been process and the instruction is guaranteed to complete.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 599 of 897

14.5.48 IESR1 - IU Event Select Register 1

Register Short Name: IESR1 Read Access: Priv

Decimal SPR Number: 914 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(iu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(iu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(iu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31].
1 T1_Events[0:31].

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(iu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 600 of 897
Version 1.3

October 23, 2012

14.5.49 IESR2 - IU Event Select Register 2

Register Short Name: IESR2 Read Access: Priv

Decimal SPR Number: 915 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(iu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(iu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(iu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31].
1 T3_Events[0:31].

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(iu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 601 of 897

14.5.50 IMMR - Instruction Match Mask Register

Register Short Name: IMMR Read Access: Hypv

Decimal SPR Number: 881 Write Access: Hypv

Initial Value: 0x00000000FFFFFFFF Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 MASK 0xFFFFFFFF Instruction Mask

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 602 of 897
Version 1.3

October 23, 2012

14.5.51 IMPDEP0 - Implementation Dependent Region 0

Register Short Name: IMPDEP0 Read Access: Hypv

Decimal SPR Number: 976 - 991 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N/A

Slow SPR: Y Notes:

Guest Supervisor Mapping: N/A Scan Ring: N/A

Bits Field Name Initial
Value Description

0:63 IMPDEP0 0x0 Implementation Dependent Fields

The registers in this range are implemented in the A2 core, but are reserved for attached
auxiliary units. If an SPR in this range is not implemented by any attached auxiliary units,
mtspr instructions are dropped silently, and mfspr instructions return -1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 603 of 897

14.5.52 IMPDEP1 - Implementation Dependent Region 1

Register Short Name: IMPDEP1 Read Access: Priv

Decimal SPR Number: 912 - 927 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N/A

Slow SPR: Y Notes:

Guest Supervisor Mapping: N/A Scan Ring: N/A

Bits Field Name Initial
Value Description

0:63 IMPDEP1 0x0 Implementation Dependent Fields

The registers in this range are implemented in the A2 core, but are reserved for attached
auxiliary units. If an SPR in this range is not implemented by any attached auxiliary units,
mtspr instructions are dropped silently, and mfspr instructions return -1.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 604 of 897
Version 1.3

October 23, 2012

14.5.53 IMR - Instruction Match Register

Register Short Name: IMR Read Access: Hypv

Decimal SPR Number: 880 Write Access: Hypv

Initial Value: 0x00000000FFFFFFFF Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 MATCH 0xFFFFFFFF Instruction Match

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 605 of 897

14.5.54 IUCR0 - Instruction Unit Configuration Register 0

Register Short Name: IUCR0 Read Access: Hypv

Decimal SPR Number: 1011 Write Access: Hypv

Initial Value: 0x00000000000010FA Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:47 /// 0x0 Reserved

48 IC_CLKG_DIS 0b0 Instruction Cache Clock Gating Disable

0 Use clock gating for the instruction cache.
1 Disable clock gating for the instruction cache.

49 IERAT_CLKG_DIS 0b0 I-ERAT Clock Gating Disable

0 Use clock gating for the instruction ERAT.
1 Disable clock gating for the instruction ERAT.

50 CLS RO 0b0 Cache Line Size RO

0 L1 data cache uses 64 B cache lines.
1 L1 data cache uses 128 B cache lines.

51 ICBI_ACK_EN 0b1 ICBI L2 Acknowledge Enable

0 ICBI acknowledged by A2.
1 ICBI acknowledged by L2.

52:55 BP_GS_LEN 0b0000 Gshare History Length

Sets length of gshare history.

56 BP_BC_EN 0b1 Branch Conditional Predict Enable

1 Enables prediction for branch conditional instructions.

57 BP_BCLR_EN 0b1 bclr Predict Enable

1 Enables prediction for branch to link register instructions.

58 BP_BCCTR_EN 0b1 bcctr Predict Enable

1 Enables prediction for branch to count register instructions.

59 BP_SW_EN 0b1 Software Predict Enable

1 Enables software prediction (hints).

60 BP_DY_EN 0b1 Dynamic Predict Enable

1 Enables dynamic hardware prediction (branch history table).

61 BP_ST_EN 0b0 Static Predict Enable

1 Enables static hardware prediction (always predict taken).

62 BP_TI_EN 0b1 Branch History Table Thread Isolation Enable

1 Enables thread isolation for the branch history table.

63 BP_GS_EN 0b0 Gshare Enable

1 Enables gshare for the branch history table.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 606 of 897
Version 1.3

October 23, 2012

14.5.55 IUCR1 - Instruction Unit Configuration Register 1

Register Short Name: IUCR1 Read Access: Hypv

Decimal SPR Number: 883 Write Access: Hypv

Initial Value: 0x0000000000001000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:51 HIPRI 0b01 High Priority Privilege Level

The A2 core has three priority values implemented in hardware. This field configures which
value in PPR32[PRI] corresponds to the implementations highest priority.
00 Medium normal.
01 Medium high.
10 High.
11 Very high.

52:57 /// 0x0 Reserved

58:63 THRES 0x0 Low Priority Minimum Issue Count

Sets the number of cycles between low priority issues, which is set by PPR32[PRI]. The
number of cycles is equal to THRES 4. This field is not used when a thread is set to high
or medium priority.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 607 of 897

14.5.56 IUCR2 - Instruction Unit Configuration Register 2

Register Short Name: IUCR2 Read Access: Hypv

Decimal SPR Number: 884 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:39 AXU 0x0 AXU Implementation Dependent Bits

These bits are defined for AXU implementation use.

40:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 608 of 897
Version 1.3

October 23, 2012

14.5.57 IUDBG0 - Instruction Unit Debug Register 0

Register Short Name: IUDBG0 Read Access: Hypv

Decimal SPR Number: 888 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:51 WAY 0b00 Instruction Cache Directory Way Select

Selects way for an instruction cache directory read.

52:57 ROW 0x0 Instruction Cache Directory Row Select

Selects row for an instruction cache directory read.

58:61 /// 0b0000 Reserved

62 EXEC NP 0b0 Instruction Cache Directory Read Execute NP

1 Executes an instruction cache directory read.

63 DONE 0b0 Instruction Cache Directory Read Done

1 Indicates that an instruction cache directory read operation has completed and the
IUDBG1 and IUDBG2 registers are valid.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 609 of 897

14.5.58 IUDBG1 - Instruction Unit Debug Register 1

Register Short Name: IUDBG1 Read Access: Hypv

Decimal SPR Number: 889 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:52 /// 0x0 Reserved

53:55 LRU 0b000 Instruction Cache Directory LRU

Indicates value of the LRU in the instruction cache directory.

56:59 PARITY 0b0000 Instruction Cache Directory Parity

Indicates value of the parity bits in the instruction cache directory.

60 ENDIAN 0b0 Instruction Cache Directory Endian

0 Big endian.
1 Little endian.

61:62 /// 0b00 Reserved

63 VALID 0b0 Instruction Cache Directory Read Valid

0 Directory entry is not valid.
1 Directory entry is valid.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 610 of 897
Version 1.3

October 23, 2012

14.5.59 IUDBG2 - Instruction Unit Debug Register 2

Register Short Name: IUDBG2 Read Access: Hypv

Decimal SPR Number: 890 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:63 TAG 0x0 Instruction Cache Directory Tag

Indicates value of the tag bit in the instruction cache directory.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 611 of 897

14.5.60 IULFSR - Instruction Unit LFSR

Register Short Name: IULFSR Read Access: Hypv

Decimal SPR Number: 891 Write Access: Hypv

Initial Value: 0x000000000000001a Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:59 LFSR 0x1 LFSR random number generator

60 ICRF 0b1 I$ Select Randomize on Flush

0 Do not randomize.
1 Randomize issue priority on a flush for affected threads.

61 ICRA 0b0 I$Select Randomize Always

0 Do not randomize.
1 Continuously randomize issue priority on every cycle (this mode overrides Ran-

domize on Flush).

62 ISRF 0b1 Instruction Issue Randomize on Flush

0 Do not randomize.
1 Randomize issue priority on a flush for affected threads.

63 ISRA 0b0 Instruction Issue Randomize Always

0 Do not randomize.
1 Continuously randomize issue priority on every cycle (this mode overrides Ran-

domize on Flush).

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 612 of 897
Version 1.3

October 23, 2012

14.5.61 IULLCR - Instruction Unit Live Lock Control Register

Register Short Name: IULLCR Read Access: Hypv

Decimal SPR Number: 892 Write Access: Hypv

Initial Value: 0x0000000000020040 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:45 /// 0x0 Reserved

46:49 LL_TRIG_DLY 0b1000 IU Live Lock Trigger Delay

Sets the number of cycles between events:
0000 Reserved
0001 16,384 - 18,368
0010 32,768 - 35,776
0011 49,152 - 53,184
0100 65,536 - 70,592
0101 81,920 - 88,000
0110 98,304 - 105,408
0111 114,688 - 122,816
1000 131,072 - 140,224
1001 147,456 - 157,632
1010 163,840 - 175,040
1011 180,224 - 192,448
1100 196,608 - 209,856
1101 212,992 - 227,264
1110 229,376 - 244,672
1111 245,760 - 262,080

50:53 /// 0b0000 Reserved

54:59 LL_HOLD_DLY 0x4 IU Live Lock Hold Delay

Sets the length of time that threads are held. Hold time is equal to 16the encode in this
field. 0 is reserved.

60:62 /// 0b000 Reserved

63 IULL_EN 0b0 IU Live Lock Buster Enable

When enabled, every TRIG_DLY cycles instruction issue is disabled for HOLD_DLY
cycles. Once HOLD_DLY is complete, issue priority is randomized and instruction issue
resumes. Bits from the IULFSR are used to provide some variability in the trigger delay
time.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 613 of 897

14.5.62 IVPR - Interrupt Vector Prefix Register

Register Short Name: IVPR Read Access: Hypv

Decimal SPR Number: 63 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 IVPR 0x0 Interrupt Vector Prefix Register

Provides the high-order bits of the address of the exception processing routines.

52:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 614 of 897
Version 1.3

October 23, 2012

14.5.63 LPER - Logical Page Exception Register

Register Short Name: LPER Read Access: Hypv

Decimal SPR Number: 56 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:21 /// 0x0 Reserved

22:51 ALPN 0x0 Abbreviated Logical Page Number

This field is used to capture the abbreviated logical page number from the PTE translation
that caused an LRAT miss exception.

52:59 /// 0x0 Reserved

60:63 LPS 0b0000 Logical Page Size

This field is used to capture the logical page size from the PTE translation that caused an
LRAT miss exception.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 615 of 897

14.5.64 LPERU - Logical Page Exception Register (Upper)

Register Short Name: LPERU Read Access: Hypv

Decimal SPR Number: 57 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:63 ALPNU 0x0 Abbreviated Logical Page Number (Upper Bits 22:31)

This field is used to capture the MSbs of the abbreviated logical page number from a PTE
translation that caused an LRAT miss exception (supports 32-bit accesses).

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 616 of 897
Version 1.3

October 23, 2012

14.5.65 LPIDR - Logical Partition ID Register

Register Short Name: LPIDR Read Access: Hypv

Decimal SPR Number: 338 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:55 /// 0x0 Reserved

56:63 LPID 0x0 Logical Partition ID

The LPID is part of the virtual address and is used during address translation comparing
LPID to the TLPID field in the TLB entry to determine a matching TLB entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 617 of 897

14.5.66 LR - Link Register

Register Short Name: LR Read Access: Any

Decimal SPR Number: 8 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:63 LR 0x0 Link Register

The Link Register (LR) is a 64-bit register. It can be used to provide the branch target
address for the Branch Conditional to Link Register instruction, and it holds the return
address after branch instructions for which LK = 1.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 618 of 897
Version 1.3

October 23, 2012

14.5.67 LRATCFG - LRAT Configuration Register

Register Short Name: LRATCFG Read Access: Hypv

Decimal SPR Number: 342 Write Access: None

Initial Value: 0x0000000000542008 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:39 ASSOC 0x0 Associativity

Indicates the number of ways that are implemented in this processor's LRAT. This field is
always set to ‘00000000’ for this processor (fully associative LRAT).

40:46 LASIZE 0x2A Logical Address Size

Indicates the number of logical address (LA) bits that are implemented by this processor's
LRAT. This field is always set to ‘0101010’ for this processor (42 bits).

47:49 /// 0b000 Reserved

50 LPID 0b1 Logical Partition ID

Indicates that the LPID field is supported in the LRAT entries. This bit is always set to '1' for
this processor (the A2 does implement the LPID field in LRAT entries).

51 /// 0b0 Reserved

52:63 NENTRY 0x8 Number of Entries
Indicates the number of entries that are implemented in this processor's LRAT. This field is
always set to ‘0000_0000_1000’ for this processor (8 entries).

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 619 of 897

14.5.68 LRATPS - LRAT Page Size Register

Register Short Name: LRATPS Read Access: Hypv

Decimal SPR Number: 343 Write Access: None

Initial Value: 0x0000000051544400 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 /// 0b0 Reserved

33 PS30 0b1 Page Size 30

Indicates whether a 230 KB (1 TB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 TB page sizes for the LRAT).

34 /// 0b0 Reserved

35 PS28 0b1 Page Size 28

Indicates whether a 228 KB (256 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 256 GB page sizes for the LRAT).

36:38 /// 0b000 Reserved

39 PS24 0b1 Page Size 24

Indicates whether a 224 KB (16 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 16 GB page sizes for the LRAT).

40 /// 0b0 Reserved

41 PS22 0b1 Page Size 22

Indicates whether a 222 KB (4 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 4 GB page sizes for the LRAT).

42 /// 0b0 Reserved

43 PS20 0b1 Page Size 20

Indicates whether a 220 KB (1 GB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 GB page sizes for the LRAT).

44 /// 0b0 Reserved

45 PS18 0b1 Page Size 18

Indicates whether a 218 KB (256 MB) page size is supported by this processor's LRAT.
This bit is always set to ‘1’ for this processor (the A2 supports 256 MB page sizes for the
LRAT).

46:48 /// 0b000 Reserved

49 PS14 0b1 Page Size 14

Indicates whether a 214 KB (16 MB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 16 MB page sizes for the LRAT).

50:52 /// 0b000 Reserved

53 PS10 0b1 Page Size 10

Indicates whether a 210 KB (1 MB) page size is supported by this processor's LRAT. This
bit is always set to ‘1’ for this processor (the A2 supports 1 MB page sizes for the LRAT).

54:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 620 of 897
Version 1.3

October 23, 2012

14.5.69 MAS0 - MMU Assist Register 0

Register Short Name: MAS0 Read Access: Priv

Decimal SPR Number: 624 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ATSEL 0b0 Array Type Select

TLB or LRAT structure selection. When in guest mode (MSR[GS] = 1), ATSEL is treated as
if it were zero such that the TLB is always selected.
0 TLB
1 LRAT

33:44 /// 0x0 Reserved

45:47 ESEL 0b000 Entry Select

TLB and LRAT entry selection. Identifies an entry in the selected array to be used for tlbwe
and tlbre. Valid values for ESEL are from 0 to TLBnCFG[ASSOC] - 1. When
MAS0[ATSEL] = 0 (TLB), ESEL becomes effectively a TLB way select and valid values are
0 - 3 (bit 45 is treated as reserved). When MAS0[ATSEL] = 1 (LRAT), valid values are 0 - 7.

48 /// 0b0 Reserved

49 HES 0b0 Hardware Entry Select

Determines how the TLB entry way is selected by tlbwe when MAS0[ATSEL] = 0 (TLB).
This bit must be set to ‘0’ when MAS0[ATSEL] = 1 (LRAT) or an illegal instruction exception
can occur for tlbwe.
0 The TLB entry way is selected by MAS0.ESEL[1:2].
1 The TLB entry way is selected by the hardware LRU replacement algorithm.

50:51 WQ 0b00 Write Qualifier

Qualifies the TLB write operation performed by tlbwe when MAS0.ATSEL = 0 (TLB). This
field must be set to ‘00’ or ‘11’ when MAS0.ATSEL = 1 (LRAT) or an illegal instruction
exception might occur for tlbwe.
00 The selected TLB entry is written regardless of the TLB reservation.
01 The selected TLB entry is written if and only if the TLB reservation exists (see

Section 12.2.4 TLB Search and Reserve Indexed (tlbsrx.) on page 506). A tlbwe
with this value is called a TLB write conditional.

10 The TLB reservation is cleared; no TLB entry is written.
11 The selected TLB entry is written regardless of the TLB reservation.

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 621 of 897

14.5.70 MAS0_MAS1 - MMU Assist Registers 0 and 1

Register Short Name: MAS0_MAS1 Read Access: Priv

Decimal SPR Number: 373 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS0 0x0 MMU Assist Register 0

This field is an alias of MAS0[32:63].

32:63 MAS1 0x0 MMU Assist Register 1

This field is an alias of MAS1[32:63].

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 622 of 897
Version 1.3

October 23, 2012

14.5.71 MAS1 - MMU Assist Register 1

Register Short Name: MAS1 Read Access: Priv

Decimal SPR Number: 625 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 V 0b0 Valid

TLB or LRAT Valid bit:
0 This TLB or LRAT entry is invalid.
1 This TLB or LRAT entry is valid.

33 IPROT 0b0 Invalidate Protect

Indicates that this TLB entry is protected from invalidate operations due to tlbivax or tlbilx
instructions or remote invalidate snoops from other processors. IPROT is not implemented
in the LRAT array entries.
0 This TLB entry is not protected.
1 This TLB entry is protected.

34:47 TID 0x0 Translation Identifier

This TLB entry's identifier used to compare against the current value of the PID during
translations, or against the MAS6.SPID value for searches.

48:49 /// 0b00 Reserved

50 IND 0b0 Indirect

Designates this TLB entry as an indirect entry that is used by the hardware table walker
(HTW) to compute real addresses into the page table. IND is not implemented in the LRAT
array entries.
0 This TLB entry is used to directly translate virtual to real addresses.
1 This TLB entry is used by the HTW as an indirect page table pointer.

51 TS 0b0 Translation Space

This TLB entry's address space identifier used to compare against the current value of the
MSR.IS or DS bit during translations, or against the MAS6.SAS value for searches. TS is
not implemented in the LRAT array entries.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 623 of 897

52:55 TSIZE 0b0000 Translation Size

The selected TLB entry (when MAS0.ATSEL = 0) or LRAT entry (when MAS0.ATSEL = 1)
page size value.
This implementation supports five page sizes for direct TLB entries (IND = 0). All other non-
specified page size encodings are treated as reserved.
IND = 0 direct TLB entries:
0001 4 KB
0011 64 KB
0101 1 MB
0111 16 MB
1010 1 GB
Others Reserved
This implementation supports two page sizes for indirect TLB entries (IND = 1). All other
nonspecified page size encodings are treated as reserved.
IND = 1 indirect TLB entries:
0101 1 MB
1001 256 MB
Others Reserved
This implementation supports 8 page sizes for LRAT entries. All other nonspecified page
size encodings are treated as reserved.
LRAT entries:
0101 1 MB
0111 16 MB
1001 256 MB
1010 1 GB
1011 4 GB
1100 16 GB
1110 256 GB
1111 1 TB
Others Reserved

56:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 624 of 897
Version 1.3

October 23, 2012

14.5.72 MAS2 - MMU Assist Register 2

Register Short Name: MAS2 Read Access: Priv

Decimal SPR Number: 626 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:51 EPN 0x0 Effective Page Number

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the entry effective page
number. Only bits associated with a page size boundary are significant. The other bits are
treated as an offset within this page and ignored.
This field is treated as a logical page number (LPN) for LRAT entries (MAS0.ATSEL = 1)
and used to transfer the LRAT.LPN value.
The upper EPN[0:31] bits are instantiated in the 64-bit A2 implementation.

52:58 /// 0x0 Reserved

59 W 0b0 Write Through

This page's write-through storage attribute.
0 This page is not write-through required storage.
1 This page is write-through required storage.

60 I 0b0 Caching Inhibited

This page's caching inhibited storage attribute.
0 This page is not caching inhibited required storage.
1 This page is caching inhibited required storage.

61 M 0b0 Memory Coherence Required

This page's memory coherence required storage attribute.
0 This page is not memory coherence required storage.
1 This page is memory coherence required storage.

62 G 0b0 Guarded

This page's guarded storage attribute.
0 This page is not guarded storage.
1 This page is guarded storage.

63 E 0b0 Endianess

This page's endianess storage attribute.
0 This page is accessed in big-endian byte order.
1 This page is accessed in little-endian byte order.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 625 of 897

14.5.73 MAS2U - MMU Assist Register 2 (Upper)

Register Short Name: MAS2U Read Access: Priv

Decimal SPR Number: 631 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 EPNU 0x0 Effective Page Number (Upper Bits 0:31)

This field is an alias to MAS2.EPN[0:31] and is primarily for use by 32-bit machine state
(CM = 0) software.
For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the entry effective page
number upper bits 0:31.
For LRAT entries (MAS0.ATSEL = 1), this field is treated as a logical page number (LPN)
and used to transfer the LRAT.LPN[22:31] value.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 626 of 897
Version 1.3

October 23, 2012

14.5.74 MAS3 - MMU Assist Register 3

Register Short Name: MAS3 Read Access: Priv

Decimal SPR Number: 627 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:52 RPNL 0x0 Real Page Number (Lower Bits 32:52)

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the LSbs of the entry real
page number. RPNL[52] is only significant for indirect TLB entries (IND = 1) and is unused
for direct TLB entries (IND = 0) and LRAT entries. That is, the TLB entry RPNL[52] bit can
only be written to a ‘1’ by a tlbwe instruction when MAS1.IND = 1 and MAS0.ATSEL = 0.
This bit is always set to '0' after a tlbre instruction if the chosen TLB entry contains IND = 0.
RPNL[32:51] is treated as a TLB direct entry logical page number (LPNL) when an LRAT is
present and enabled. RPNL[32:51] is treated as a real page number (RPNL) for LRAT
entries (MAS0.ATSEL = 1) and used to transfer the LRAT.RPN[32:51] value. Only bits
associated with a particular TLB or LRAT entry page size boundary are significant. The
other bits are treated as an offset within this page and ignored. The upper RPNU[22:31]
bits are instantiated in the 64-bit A2 implementation in MAS7.

53 /// 0b0 Reserved

54 U0 0b0 User Definable Storage Attribute 0

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

55 U1 0b0 User Definable Storage Attribute 1

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

56 U2 0b0 User Definable Storage Attribute 2

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

57 U3 0b0 User Definable Storage Attribute 3

Specifies a system-dependent storage attribute for this TLB entry. This field is not imple-
mented in LRAT entries. This field has no effect within the A2 core.

58 UX/SPSIZE0 0b0 User Mode Execute Enable (IND = 0) / SPSIZE0 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) execute access per-
mission. See Section 6.4 Access Control on page 211 for the definition of execute access.
0 This page does not have execute access permission in user mode (problem

state).
1 This page has execute access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 0.

59 SX/SPSIZE1 0b0 Supervisor Mode Execute Enable (IND = 0) / SPSIZE1 (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) execute access
permission. See Section 6.4 Access Control on page 211 for the definition of execute
access.
0 This page does not have execute access permission in supervisor mode (privi-

leged state).
1 This page has execute access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 1.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 627 of 897

60 UW/SPSIZE2 0b0 User Mode Execute Enable (IND = 0) / SPSIZE2 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) write access permis-
sion. See Section 6.4 Access Control on page 211 for the definition of execute access.
0 This page does not have execute access permission in user mode (problem

state).
1 This page has execute access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 2.

61 SW/SPSIZE3 0b0 Supervisor Mode Write Enable (IND = 0) / SPSIZE3 (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) write access
permission. See Section 6.4 Access Control on page 211 for the definition of write access.
0 This page does not have write access permission in supervisor mode (privileged

state).
1 This page has write access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 3.

62 UR/SPSIZE4 0b0 User Mode Read Enable (IND = 0) / SPSIZE4 (IND = 1)

For direct TLB (IND = 0) entries, specifies user mode (MSR.PR = 1) read access permis-
sion. See Section 6.4 Access Control on page 211 for the definition of read access.
0 This page does not have read access permission in user mode (problem state).
1 This page has read access permission in user mode (problem state).
For indirect TLB (IND = 1) entries, specifies sub-page size bit 4 (treated as reserved by A2,
which implements only power of 4  1 K sub-page sizes).

63 SR/UND 0b0 Supervisor Mode Read Enable (IND = 0) / UND (IND = 1)

For direct TLB (IND = 0) entries, specifies supervisor mode (MSR.PR = 0) read access per-
mission. See Section 6.4 Access Control on page 211 the definition of read access.
0 This page does not have read access permission in supervisor mode (privileged

state).
1 This page has read access permission in supervisor mode (privileged state).
For indirect TLB (IND = 1) entries, this bit is undefined (UND).

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 628 of 897
Version 1.3

October 23, 2012

14.5.75 MAS4 - MMU Assist Register 4

Register Short Name: MAS4 Read Access: Priv

Decimal SPR Number: 628 Write Access: Priv

Initial Value: 0x0000000000000100 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:47 /// 0x0 Reserved

48 INDD 0b0 Default Indirect Value

Specifies the default value loaded into MAS1.IND and MAS6.SIND on a TLB miss excep-
tion.

49:51 /// 0b000 Reserved

52:55 TSIZED 0b0001 Default Translation Size Value

Specifies the default value loaded into MAS1.TSIZE on a TLB miss exception. If
MMUCFG.TWC = 1, TSIZED is also the default value loaded into MAS6.ISIZE upon the
exception.

56:58 /// 0b000 Reserved

59 WD 0b0 Default Write Through Value

Specifies the default value loaded into MAS2.W on a TLB miss exception.

60 ID 0b0 Default Caching Inhibited Value

Specifies the default value loaded into MAS2.I on a TLB miss exception.

61 MD 0b0 Default Memory Coherence Required Value

Specifies the default value loaded into MAS2.M on a TLB miss exception.

62 GD 0b0 Default Guarded Value

Specifies the default value loaded into MAS2.G on a TLB miss exception.

63 ED 0b0 Default Endianess Value

Specifies the default value loaded into MAS2.E on a TLB miss exception.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 629 of 897

14.5.76 MAS5 - MMU Assist Register 5

Register Short Name: MAS5 Read Access: Hypv

Decimal SPR Number: 339 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 SGS 0b0 Search Guest State

Specifies the GS value used when searching the TLB during execution of tlbsx and tlbsrx.
and for selecting TLB entries to be invalidated by tlbivax or tlbilx. The SGS field is com-
pared with the TGS field of each TLB entry to find a matching entry.

33:55 /// 0x0 Reserved

56:63 SLPID 0x0 Search Logical Partition Identifier

Specifies the LPID value used when searching the TLB during execution of tlbsx and
tlbsrx. and for selecting TLB entries to be invalidated by tlbivax or tlbilx. The SLPID field
is compared with the TLPID field of each TLB entry to find a matching entry.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 630 of 897
Version 1.3

October 23, 2012

14.5.77 MAS5_MAS6 - MMU Assist Registers 5 and 6

Register Short Name: MAS5_MAS6 Read Access: Hypv

Decimal SPR Number: 348 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS5 0x0 MMU Assist Register 5

This field is an alias of MAS5[32:63].

32:63 MAS6 0x0 MMU Assist Register 6

This field is an alias of MAS6[32:63].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 631 of 897

14.5.78 MAS6 - MMU Assist Register 6

Register Short Name: MAS6 Read Access: Priv

Decimal SPR Number: 630 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 /// 0b00 Reserved

34:47 SPID 0x0 Search Process Identifier

Specifies the value of PID used when searching the TLB during execution of tlbsx. It also
defines the PID of the TLB entry to be invalidated by tlbilx with T = 1 or T = 3 and tlbivax.

48:51 /// 0b0000 Reserved

52:55 ISIZE 0b0000 Invalidate Size

Specifies the page size of the TLB entry to be invalidated by tlbilx T = 3 or tlbivax.

56:61 /// 0x0 Reserved

62 SIND 0b0 Search Indirect

Specifies the value of IND used when searching the TLB during execution of tlbsx. It also
defines the IND of the TLB entry to be invalidated by tlbilx T = 3 and tlbivax.

63 SAS 0b0 Search Address Space

Specifies the value of AS used when searching the TLB during execution of tlbsx. It also
defines the AS of the TLB entry to be invalidated by tlbilx T = 3 and tlbivax.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 632 of 897
Version 1.3

October 23, 2012

14.5.79 MAS7 - MMU Assist Register 7

Register Short Name: MAS7 Read Access: Priv

Decimal SPR Number: 944 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:63 RPNU 0x0 Real Page Number (Upper Bits 22:31)

For TLB entries (MAS0.ATSEL = 0), this field is used to transfer the MSbs of the entry real
page number. This value is treated as a TLB entry logical page number (LPNU) when an
LRAT is present and enabled. This field is treated as a real page number (RPNU) for LRAT
entries (MAS0.ATSEL = 1) and used to transfer the LRAT.RPN[22:31] value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 633 of 897

14.5.80 MAS7_MAS3 - MMU Assist Registers 7 and 3

Register Short Name: MAS7_MAS3 Read Access: Priv

Decimal SPR Number: 372 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS7 0x0 MMU Assist Register 7

This field is an alias of MAS7[32:63].

32:63 MAS3 0x0 MMU Assist Register 3

This field is an alias of MAS3[32:63].

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 634 of 897
Version 1.3

October 23, 2012

14.5.81 MAS8 - MMU Assist Register 8

Register Short Name: MAS8 Read Access: Hypv

Decimal SPR Number: 341 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 TGS 0b0 Translation Guest Space

Specifies the value that is written to the TLB entry TGS bit by the execution of tlbwe. This
bit is loaded from the TLB entry TGS by the execution of tlbre and by the execution of
tlbsx that finds a matching entry. The TLB entry TGS identifies that value of the guest state
associated with the TLB entry.

33 VF 0b0 Translation Virtualization Fault

Specifies the value that is written to TLB entry VF bit by the execution of tlbwe. This bit is
loaded from the TLB entry VF bit by the execution of tlbre and by the execution of tlbsx
that finds a matching entry. VF identifies that the TLB entry is used to provide virtualized
memory mapped I/O. A data access that uses a TLB entry with the VF field equal to 1
causes a data storage interrupt, regardless of the settings of the permission bits. The
resulting data storage interrupt is always directed to the embedded hypervisor state,
regardless of the EHCSR.DSIGS value.

34:55 /// 0x0 Reserved

56:63 TLPID 0x0 Translation Logical Partition Identifier

Specifies the value that is written to the TLB entry TLPID field by the execution of tlbwe.
This field is loaded from the TLB entry TLPID by the execution of tlbre and by the execu-
tion of tlbsx that finds a matching entry. The TLB entry TLPID identifies the logical partition
associated with the TLB entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 635 of 897

14.5.82 MAS8_MAS1 - MMU Assist Registers 8 and 1

Register Short Name: MAS8_MAS1 Read Access: Hypv

Decimal SPR Number: 349 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 MAS8 0x0 MMU Assist Register 8

This field is an alias of MAS8[32:63].

32:63 MAS1 0x0 MMU Assist Register 1

This field is an alias of MAS1[32:63].

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 636 of 897
Version 1.3

October 23, 2012

14.5.83 MCSR - Machine Check Syndrome Register

Register Short Name: MCSR Read Access: Hypv

Decimal SPR Number: 572 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:47 /// 0x0 Reserved

48 /// 0b0 Reserved
This bit is set to 0 at reset and must not be set to 1. When read, this bit might be 1 or 0.

49 DDMH 0b0 Data Cache Directory Multihit Error

1 Indicates a multihit condition detected in the data cache directory when enabled
by XUCR4[MDDMH] = 1.

50 TLBIVAXSR 0b0 tlbivax Snoop Reject

1 Indicates that a tlbivax snoop (which is tagged with a local core indication) can be
rejected back to the L2 when the snoop's LPID mismatches the current core's
LPIDR value. This can only occur when CCR2[NOTLB] = 1 or
MMUCR1[TLBI_REJ] = 1.

51 TLBLRUPE 0b0 TLB LRU Parity Error

1 Indicates a parity error detected for TLB LRU tlbre, tlbsx, or reload.

52 IL2ECC 0b0 Instruction Cache L2 ECC Error

1 Indicates that the instruction cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for a checkstop on this error.

53 DL2ECC 0b0 Data Cache L2 ECC Error

1 Indicates that a data cache detected an L2 uncorrectable ECC error.
Note: Machine check recovery is currently unsupported for this error. FIR actions bits
should be configured for checkstop on this error.

54 DDPE 0b0 Data Cache Directory Parity Error

1 Indicates a parity error detected in the data cache directory when enabled by
XUCR0[MDDP] = 1.

55 EXT 0b0 External Machine Check

1 Indicates that an external machine check was asserted.

56 DCPE 0b0 Data Cache Parity Error

1 Indicates a parity error detected in data cache when enabled by
XUCR0[MDCP] = 1.

57 IEMH 0b0 I-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for an I-ERAT compare.

58 DEMH 0b0 D-ERAT Multi-Hit Error

1 Indicates a multiple entry hit error detected for a D-ERAT compare.

59 TLBMH 0b0 TLB Multi-Hit Error

1 Indicates a multiple entry hit error detected for a TLB compare.

60 IEPE 0b0 I-ERAT Parity Error

1 Indicates a parity error detected for an I-ERAT eratre, eratsx, or compare.

translation lookaside buffer

least recently used

error-correcting code

fault isolation register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 637 of 897

61 DEPE 0b0 D-ERAT Parity Error

1 Indicates a parity error detected for a D-ERAT eratre, eratsx, or compare.

62 TLBPE 0b0 TLB Parity Error

1 Indicates a parity error detected for a TLB tlbre, tlbsx, or reload.

63 /// 0b0 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 638 of 897
Version 1.3

October 23, 2012

14.5.84 MCSRR0 - Machine Check Save/Restore Register 0

Register Short Name: MCSRR0 Read Access: Hypv

Decimal SPR Number: 570 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Critical Save/Restore Register 0

Machine Check Save/Restore Register 0 (MCSRR0) is used to save the machine state on
machine check interrupts and to restore the machine state when an rfmci is executed.
When a machine check interrupt is taken, the MCSRR0 is set to the current or next instruc-
tion address. When rfmci is executed, instruction execution continues at the address in
MCSRR0. In general, MCSRR0 contains the address of an instruction that was executing
or about to be executed when the machine check exception occurred.

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 639 of 897

14.5.85 MCSRR1 - Machine Check Save/Restore Register 1

Register Short Name: MCSRR1 Read Access: Hypv

Decimal SPR Number: 571 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (that is, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores and moves.

1 The processor can execute floating-point instructions.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 640 of 897
Version 1.3

October 23, 2012

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 641 of 897

14.5.86 MESR1 - MMU Event Select Register 1

Register Short Name: MESR1 Read Access: Priv

Decimal SPR Number: 916 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

33:36 MUXSELEB0 0b0000 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(mm_pc_event_bits[0]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 ‘1111’).

37 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

38:41 MUXSELEB1 0b0000 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(mm_pc_event_bits[1]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 ‘1111’).

42 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

43:46 MUXSELEB2 0b0000 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(mm_pc_event_bits[2]].
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

47 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:15].
1 T1_Events[0:15].

48:51 MUXSELEB3 0b0000 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(mm_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

52:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 642 of 897
Version 1.3

October 23, 2012

14.5.87 MESR2 - MMU Event Select Register 2

Register Short Name: MESR2 Read Access: Priv

Decimal SPR Number: 917 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

33:36 MUXSELEB4 0b0000 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(mm_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

37 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

38:41 MUXSELEB5 0b0000 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(mm_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

42 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

43:46 MUXSELEB6 0b0000 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(mm_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

47 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:15].
1 T3_Events[0:15].

48:51 MUXSELEB7 0b0000 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(mm_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘0000’) through multiplexer 15 (‘1111’).

52:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 643 of 897

14.5.88 MMUCFG - MMU Configuration Register

Register Short Name: MMUCFG Read Access: Hypv

Decimal SPR Number: 1015 Write Access: None

Initial Value: 0x0000000008558341 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:35 /// 0b0000 Reserved

36:39 LPIDSIZE 0b1000 Logical Partition Identifier Size

Indicates the number of bits in the LPID register that are implemented by the processor.
This field will always be set to ‘1000’ for this processor (8 bits).

40:46 RASIZE 0x2A Real Address Size

Indicates the number of real address (RA) bits that are implemented by the processor. This
field will always be set to ‘0101010’ for this processor (42 bits).

47 LRAT 0b1 Logical to Real Address Translation

Indicates whether the Embedded.Hypervisor.LRAT category is supported by this proces-
sor. This bit is part of the boot configuration ring for this processor.
0 LRAT array is not supported and RPN fields are treated as real page numbers (not

logical addresses).
1 LRAT array is supported and logical address are translated to real addresses as

required.

48 TWC 0b1 TLB Write Conditional

Indicates whether the Embedded.TLB Write Conditional category is supported by this pro-
cessor. This bit is part of the boot configuration ring for this processor.
0 TLB write conditional operations and reservations are not supported.
1 TLB write conditional operations and reservations are supported.

49:52 /// 0b0000 Reserved

53:57 PIDSIZE 0xD Process Identifier Size

Indicates one less than the number of bits in the PID register that are implemented by the
processor. This field will always be set to ‘01101’ for this processor (14 bits in PID).

58:59 /// 0b00 Reserved

60:61 NTLBS 0b00 Number of TLBs

Indicates one less than the number of TLB structures that are implemented by this proces-
sor. This field will always be set to ‘00’ for this processor (1 TLB).

62:63 MAVN 0b01 MMU Architecture Version Number

Indicates the version number of the architecture of the MMU implemented by the proces-
sor. This field will always be set to ‘01’ for this processor (Version 2.0).

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 644 of 897
Version 1.3

October 23, 2012

14.5.89 MMUCR0 - Memory Management Unit Control Register 0

Register Short Name: MMUCR0 Read Access: Hypv

Decimal SPR Number: 1020 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ECL 0b0 Extended Class

Used to transfer the ExtClass field of the selected ERAT entry.

33 TID_NZ 0b0 Translation ID Non-Zero

Used to transfer the TID_NZ field of the selected ERAT entry.

34 TGS 0b0 Translation Guest State

Used to transfer the TGS bit of the selected ERAT entry.

35 TS 0b0 Translation Space

Used to transfer the TS bit of the selected ERAT entry.

36:37 TLBSEL 0b00 TLB Select

ERAT structure selection:
00 Reserved.
01 Reserved.
10 I-ERAT.
11 D-ERAT.

38:49 /// 0x0 Reserved

50:63 TID 0x0 Translation ID

Used to transfer the TID field of the selected ERAT entry.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 645 of 897

14.5.90 MMUCR1 - Memory Management Unit Control Register 1

Register Short Name: MMUCR1 Read Access: Hypv

Decimal SPR Number: 1021 Write Access: Hypv

Initial Value: 0x000000000C000000 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32 IRRE 0b0 I-ERAT LRU Round-Robin Enable

0 LRU normal operation.
1 LRU atomically increments upon eratwe.

33 DRRE 0b0 D-ERAT LRU Round-Robin Enable

0 LRU normal operation.
1 LRU atomically increments upon eratwe.

34 REE 0b0 Reference Exception Enable

0 Not enabled.
1 Translation hit with R bit cleared generates an instruction storage interrupt or a

data storage interrupt.

35 CEE 0b0 Change Exception Enable

0 Not enabled.
1 Translation hit with C bit cleared generates an instruction storage interrupt or a

data storage interrupt.

36:37 CSINV 0b11 Context Sync Invalidate

This field controls how certain ERAT context affecting instructions affect the invalidation of
nonprotected (EXTCLASS = 0) I-ERAT and D-ERAT entries. See the CSINV field descrip-
tion for a definition of the set of ERAT context affecting instructions.
Bit 36:
 0 ERAT context-affecting instructions other than isync invalidate nonprotected

ERAT entries (enabled).
 1 ERAT context-affecting instructions other than isync do not invalidate ERAT

entries (disabled).
Bit 37:
 0 The isync instruction invalidates nonprotected ERAT entries (enabled).
 1 The isync instruction does not invalidate ERAT entries (disabled).

38:43 PEI 0x0 Parity Error Inject

Parity Error Inject Bits:
0 Normal parity calculation.
1 Invert parity (when writing).
38 I-ERAT WS = 0 parity error inject.
39 I-ERAT WS = 1 parity error inject.
40 D-ERAT WS = 0 parity error inject.
41 D-ERAT WS = 1 parity error inject.
42 TLB parity error inject.
43 TLB LRU parity error inject.

44 ICTID 0b0 I-ERAT Class Translation ID Enable

0 I-ERAT Class field operates as a class ID.
1 I-ERAT Class field operates as TID[0:1] bits (of TID[0:13] total value).

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 646 of 897
Version 1.3

October 23, 2012

45 ITTID 0b0 I-ERAT ThdID Translation ID Enable

0 I-ERAT ThdID field operates as a thread ID.
1 I-ERAT ThdID field operates as TID[2:5] bits (of TID[0:13] total value).

46 DCTID 0b0 D-ERAT Class Translation ID Enable

0 D-ERAT Class field operates as a class ID.
1 D-ERAT Class field operates as TID[0:1] bits (of TID[0:13] total value).

47 DTTID 0b0 D-ERAT ThdID Translation ID Enable

0 D-ERAT ThdID field operates as a thread ID.
1 D-ERAT ThdID field operates as TID[2:5] bits (of TID[0:13] total value).

48 DCCD 0b0 D-ERAT Class Compare Disable

0 D-ERAT Class field is used for normal and external PID translation compares.
1 D-ERAT Class field is ignored for translation compares (mutually exclusive to

using external PID operations).

49 TLBWE_BINV 0b0 TLBWE Back Invalidate

0 No back invalidates are generated to the ERATs for tlbwe instructions.
1 When tlbwe with MAS0[HES] = 0 instruction overwrites a valid, direct TLB entry

without an exception being generated, send a back invalidate to the ERATs target-
ing the old virtual address.

50 TLBI_MSB 0b0 TLB Invalidate Most Significant Bit

0 TLB invalidate snoops from bus assume EPN[31:51] is significant (EPN[27:30] is
ignored).

1 TLB invalidate snoops from bus assume EPN[27:51] is significant.

51 TLBI_REJ 0b0 TLB Invalidate Reject

0 TLB invalidate snoops from bus are accepted and compared against LPID values
in the TLB.

1 TLB invalidate snoops from bus compare against LPIDR.LPID value for accep-
tance or rejection.

52 IERRDET 0b0 I-ERAT Error Detect

0 No error detected.
1 I-ERAT error detected and the EEN field contains a snapshot of the first entry

number with an error detected.

53 DERRDET 0b0 D-ERAT Error Detect

0 No error detected.
1 D-ERAT error detected and the EEN field contains a snapshot of the first entry

number with an error detected.

54 TERRDET 0b0 TLB Error Detect

0 No error detected.
1 TLB error detected and the EEN field contains a snapshot of the first entry number

with an error detected.

55:63 EEN 0x0 Error Entry Number

I-ERAT, D-ERAT, or TLB entry number for which the first error was found after a read of
this register.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 647 of 897

14.5.91 MMUCR2 - Memory Management Unit Control Register 2

Register Short Name: MMUCR2 Read Access: Hypv

Decimal SPR Number: 1022 Write Access: Hypv

Initial Value: 0x00000000000A7531 Duplicated for Multithread: N

Slow SPR: Y Notes: AM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:39 CLKG_CTL 0x0 MMU Clock Gating Control

Power clock gating overrides for various parts of the MMU. Setting these bits has no func-
tional impact.

40:43 EXT_DBG_SEL 0b0000 MMU Extended Debug Select

Alternate debug group selects for the MMU. See Appendix C.6 MMU and PC Debug Select
Register and Debug Group Tables on page 810.
Bit 40: Alternate debug groups 10 and 11 select.
Bit 41: Alternate debug groups 12 and 13 select.
Bit 42: Alternate debug groups 14 and 15 select.
Bit 43: Alternate debug trigger group 3.

44:47 PS4 0b1010 TLB Page Size 4 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

48:51 PS3 0b0111 TLB Page Size 3 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

52:55 PS2 0b0101 TLB Page Size 2 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 648 of 897
Version 1.3

October 23, 2012

56:59 PS1 0b0011 TLB Page Size 1 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

60:63 PS0 0b0001 TLB Page Size 0 Select

0000 Disabled (do not apply the hash for this page size).
0001 Page size = 4 KB.
0011 Page size = 64 KB.
0101 Page size = 1 MB.
0111 Page size = 16 MB.
1010 Page size = 1 GB.
Others Reserved.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 649 of 897

14.5.92 MMUCR3 - Memory Management Unit Control Register 3

Register Short Name: MMUCR3 Read Access: Priv

Decimal SPR Number: 1023 Write Access: Priv

Initial Value: 0x000000000000000F Duplicated for Multithread: Y

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:48 /// 0x0 Reserved

49 X 0b0 Exclusion Range Enable

This bit is used to transfer the X bit to or from the selected TLB entry.

50 R 0b0 Reference

This bit is used to transfer the R bit to or from the selected TLB entry.

51 C 0b0 Change

This bit is used to transfer the C bit to or from the selected TLB entry.

52 ECL 0b0 Extended Class

This field is used to transfer the extended class field to or from the selected TLB entry.

53 TID_NZ 0b0 Translation ID Non-Zero

This field is used to transfer the TID_NZ field from the selected TLB entry.

54:55 Class 0b00 Class

This field is used to transfer the Class field to or from the selected TLB entry.

56:57 WLC 0b00 L1 D-Cache Way Locking Class Attribute

This field is used to transfer the WLC bits to or from the selected TLB entry.

58 ResvAttr 0b0 Reserved Attributes

This field is used to transfer the reserved attributes to or from the selected TLB entry.

59 /// 0b0 Reserved

60:63 ThdID 0b1111 Thread Identifier

This field is used to transfer the thread ID field to or from the selected TLB entry.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 650 of 897
Version 1.3

October 23, 2012

14.5.93 MMUCSR0 - MMU Control and Status Register 0

Register Short Name: MMUCSR0 Read Access: Hypv

Decimal SPR Number: 1012 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:60 /// 0x0 Reserved

61 TLB0_FI 0b0 TLB 0 Full Invalidate

This bit controls or indicates when an invalidate all function is requested or in progress.
0 When this bit is read as a '0', there is no invalidate all operation in progress. Writ-

ing this bit to a zero while an invalidate all operation is in progress is ignored.
1 When this bit is read as a '1', there is an invalidate all operation in progress. Hard-

ware sets this bit to a zero when the invalidate all operation is completed. Writing
this bit to a '1' initiates the invalidate all operation (unless one is already in
progress, in which case writing this bit to a '1' is ignored).

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 651 of 897

14.5.94 MSR - Machine State Register

Register Short Name: MSR Read Access: Priv

Decimal SPR Number: N/A Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in hypervisor state if MSR[PR] = 0.
1 The processor is in guest state.
MSR[GS] cannot be changed unless MSR[GS] = 0.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode; it can execute any instruction and can
access any resource (for example, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode; it cannot execute any privileged instruction and
cannot access any privileged resource.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 652 of 897
Version 1.3

October 23, 2012

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 653 of 897

14.5.95 MSRP - Machine State Register Protect

Register Short Name: MSRP Read Access: Hypv

Decimal SPR Number: 311 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:36 /// 0x0 Reserved

37 UCLEP 0b0 User Cache Lock Enable Protect

0 Guest privileged state can modify MSR[UCLE].
1 Guest privileged state cannot modify MSR[UCLE].
When MSRP[UCLEP] = 1, cache locking instructions are not permitted to execute in the
guest privileged state and cause an embedded hypervisor privilege exception when exe-
cuted.

38:53 /// 0x0 Reserved

54 DEP 0b0 Debug Enable Protect

0 Guest privileged state can modify MSR[DE].
1 Guest privileged state cannot modify MSR[DE].

55:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 654 of 897
Version 1.3

October 23, 2012

14.5.96 PID - Process ID

Register Short Name: PID Read Access: Priv

Decimal SPR Number: 48 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:49 /// 0x0 Reserved

50:63 PID 0x0 Process ID

Process ID Register is used by system software to specify which TLB entries are used by
the processor to accomplish address translation for loads, stores, and instruction fetches.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 655 of 897

14.5.97 PIR - Processor ID Register

Register Short Name: PIR Read Access: Priv

Decimal SPR Number: 286 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: GPIR Scan Ring: func

Bits Field Name Initial
Value Description

32:53 /// 0x0 Reserved

54:61 CID IO 0x0 Processor Core ID IO

Returns the value of the I/O pin an_ac_coreid. This can be used to distinguish a processor
core from other processor cores in the system.

62:63 TID 0b00 Processor Thread ID

This field can be used to distinguish the thread from other threads on the processor.
Threads are numbered sequentially, with valid values ranging from 0 to 3.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 656 of 897
Version 1.3

October 23, 2012

14.5.98 PPR32 - Program Priority Register

Register Short Name: PPR32 Read Access: Any

Decimal SPR Number: 898 Write Access: Any

Initial Value: 0x00000000000C0000 Duplicated for Multithread: Y

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:42 /// 0x0 Reserved

43:45 PRI 0b011 Thread Priority

001 Very low (privileged).
010 Low.
011 Medium low.
100 Medium.
101 Medium high (privileged).
110 High (privileged).
111 Very high (hypervisor).
Access violations or writing a value of zero will result in a nop.

46:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 657 of 897

14.5.99 PVR - Processor Version Register

Register Short Name: PVR Read Access: Priv

Decimal SPR Number: 287 Write Access: None

Initial Value: 0x0000000000490001 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:47 VERSION 0x49 Processor Version

Blue Gene/Q 0x0049

48:63 REVISION 0x1 Processor Revision

DD1 0x0000
DD2 0x0200
DDM.m 0x0M0m

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 658 of 897
Version 1.3

October 23, 2012

14.5.100 SPRG0 - Software Special Purpose Register 0

Register Short Name: SPRG0 Read Access: Priv

Decimal SPR Number: 272 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG0 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG0 0x0 Software Special Purpose Register 0

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 659 of 897

14.5.101 SPRG1 - Software Special Purpose Register 1

Register Short Name: SPRG1 Read Access: Priv

Decimal SPR Number: 273 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG1 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG1 0x0 Software Special Purpose Register 1

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 660 of 897
Version 1.3

October 23, 2012

14.5.102 SPRG2 - Software Special Purpose Register 2

Register Short Name: SPRG2 Read Access: Priv

Decimal SPR Number: 274 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG2 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG2 0x0 Software Special Purpose Register 2

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 661 of 897

14.5.103 SPRG3 - Software Special Purpose Register 3

Register Short Name: SPRG3 Read Access: Priv/Any

Decimal SPR Number: 275/259 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSPRG3 Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG3 0x0 Software Special Purpose Register 3

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 662 of 897
Version 1.3

October 23, 2012

14.5.104 SPRG4 - Software Special Purpose Register 4

Register Short Name: SPRG4 Read Access: Priv/Any

Decimal SPR Number: 276/260 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG4 0x0 Software Special Purpose Register 4

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 663 of 897

14.5.105 SPRG5 - Software Special Purpose Register 5

Register Short Name: SPRG5 Read Access: Priv/Any

Decimal SPR Number: 277/261 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG5 0x0 Software Special Purpose Register 5

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 664 of 897
Version 1.3

October 23, 2012

14.5.106 SPRG6 - Software Special Purpose Register 6

Register Short Name: SPRG6 Read Access: Priv/Any

Decimal SPR Number: 278/262 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG6 0x0 Software Special Purpose Register 6

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 665 of 897

14.5.107 SPRG7 - Software Special Purpose Register 7

Register Short Name: SPRG7 Read Access: Priv/Any

Decimal SPR Number: 279/263 Write Access: Priv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG7 0x0 Software Special Purpose Register 7

An SPR for software use that has no defined functionality.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 666 of 897
Version 1.3

October 23, 2012

14.5.108 SPRG8 - Software Special Purpose Register 8

Register Short Name: SPRG8 Read Access: Hypv

Decimal SPR Number: 604 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

0:63 SPRG8 0x0 Software Special Purpose Register 8

An SPR for software use that has no defined functionality.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 667 of 897

14.5.109 SRR0 - Save/Restore Register 0

Register Short Name: SRR0 Read Access: Priv

Decimal SPR Number: 26 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSRR0 Scan Ring: func

Bits Field Name Initial
Value Description

0:61 SRR0 0x0 Save/Restore Register 0

This register is used to save the machine state on noncritical interrupts and to restore the
machine state when an rfi is executed. On a noncritical interrupt, SRR0 is set to the current
or next instruction address. When rfi is executed, instruction execution continues at the
address in SRR0. In general, SRR0 contains the address of the instruction that caused the
noncritical interrupt,or the address of the instruction to return to after a noncritical interrupt
is serviced.

62:63 /// 0b00 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 668 of 897
Version 1.3

October 23, 2012

14.5.110 SRR1 - Save/Restore Register 1

Register Short Name: SRR1 Read Access: Priv

Decimal SPR Number: 27 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: GSRR1 Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32 CM 0b0 Computation Mode

0 The processor runs in 32-bit mode.
1 The processor runs in 64-bit mode.

33:34 /// 0b00 Reserved

35 GS 0b0 Guest State

0 The processor is in the hypervisor state if MSR[PR] = 0.
1 The processor is in the guest state.

36 /// 0b0 Reserved

37 UCLE 0b0 User Cache Locking Enable

0 Cache locking instructions are privileged.
1 Cache locking instructions can be executed in user mode (MSR[PR] = 1).

38 SPV 0b0 Vector Available

0 The processor cannot execute any vector instruction.
1 The processor can execute vector instructions.

39:45 /// 0x0 Reserved

46 CE 0b0 Critical Enable

0 Critical input, watchdog timer, and processor doorbell critical interrupts are dis-
abled.

1 Critical input, watchdog timer, and processor doorbell critical interrupts are
enabled.

47 /// 0b0 Reserved

48 EE 0b0 External Enable

0 External Input, decrementer, fixed-interval timer, processor doorbell, guest pro-
cessor doorbell, and performance monitor interrupts are disabled.

1 External input, decrementer, fixed-interval timer, processor doorbell, guest proces-
sor doorbell, and performance monitor interrupts are enabled.

When an interrupt masked by MSR[EE] is directed to the hypervisor state, the interrupt is
enabled if MSR[EE] = 1 or MSR[GS] = 1 except for the guest processor doorbell, which is
enabled if MSR[EE] = 1 and MSR[GS] = 1.
When an interrupt masked by MSR[EE] is directed to the guest state, the interrupt is
enabled if MSR[EE] = 1 and MSR[GS] = 1.

49 PR 0b0 Problem State

0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (for example, GPRs, SPRs, MSR, and so forth).

1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 669 of 897

50 FP 0b0 Floating-Point Available

0 The processor cannot execute any floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

51 ME 0b0 Machine Check Enable

0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

52 FE0 0b0 Floating-Point Exception Mode 0

Sets floating-point exception mode.

53 /// 0b0 Reserved

54 DE 0b0 Debug Interrupt Enable

0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.

55 FE1 0b0 Floating-Point Exception Mode 1

Sets floating-point exception mode.

56:57 /// 0b00 Reserved

58 IS 0b0 Instruction Address Space

0 The processor directs all instruction fetches to address space 0 (TS = 0 in the rel-
evant TLB entry).

1 The processor directs all instruction fetches to address space 1 (TS = 1 in the rel-
evant TLB entry).

59 DS 0b0 Data Address Space

0 The processor directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The processor directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60:63 /// 0b0000 Reserved

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 670 of 897
Version 1.3

October 23, 2012

14.5.111 TB - Timebase

Register Short Name: TB Read Access: Any

Decimal SPR Number: 268 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 TBU 0x0 Time Base Upper

Provides access to the upper portion of the time base.

32:63 TBL 0x0 Time Base Lower

Provides access to the lower portion of the time base.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 671 of 897

14.5.112 TBL - Timebase Lower

Register Short Name: TBL Read Access: None

Decimal SPR Number: 284 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 TBL 0x0 Time Base Lower

Provides access to the lower portion of the time base.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 672 of 897
Version 1.3

October 23, 2012

14.5.113 TBU - Timebase Upper

Register Short Name: TBU Read Access: None/Any

Decimal SPR Number: 285/269 Write Access: Hypv/None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 TBU 0x0 Time Base Upper

Provides access to the upper portion of the time base.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 673 of 897

14.5.114 TCR - Timer Control Register

Register Short Name: TCR Read Access: Hypv

Decimal SPR Number: 340 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:33 WP 0b00 Watchdog Timer Period

Specifies one of four bit locations of the time base used to signal a watchdog timer excep-
tion on a transition from 0 to 1.
00 219 time base clocks.
01 223 time base clocks.
10 225 time base clocks.
11 231 time base clocks.

34:35 WRC 0b00 Watchdog Timer Reset Control

00 NoReset: No watchdog timer reset request will occur.
01 Reset1 request.
10 Reset2 request.
11 Reset3 request.
Note:

• Type of reset request to cause upon watchdog timer exception with TSR[ENW,WIS] =
0b11.

• These bits are set only by software. After a 1 has been written to one of these bits,
that bit remains a 1 until a reset request occurs. This is to prevent errant code from
disabling the watchdog reset function.

36 WIE 0b0 Watchdog Timer Interrupt Enable

0 Disable watchdog timer interrupt.
1 Enable watchdog timer interrupt.

37 DIE 0b0 Decrementer Interrupt Enable

0 Disable decrementer interrupt.
1 Enable decrementer interrupt.

38:39 FP 0b00 Fixed-Interval Timer Period

Specifies one of four bit locations of the time base used to signal a fixed-interval timer
exception on a transition from 0 to 1.
00 211 time base clocks.
01 215 time base clocks.
10 219 time base clocks.
11 223 time base clocks.

40 FIE 0b0 Fixed-Interval Timer Interrupt Enable

0 Disable fixed interval timer interrupt.
1 Enable fixed interval timer interrupt.

41 ARE 0b0 Auto-Reload Enable

0 Disable auto reload.
1 Enable auto reload.

42 UDIE 0b0 User Decrementer Interrupt Enable

0 Disable user decrementer interrupt.
1 Enable user decrementer interrupt.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 674 of 897
Version 1.3

October 23, 2012

43:50 /// 0x0 Reserved

51 UD 0b0 User Decrementer Available

0 mtspr or mfspr to the UDEC register causes an illegal instruction exception.
1 mtspr or mfspr to the UDEC register succeeds.
Note: Changing this bit requires a CSI for the next instruction to see the new context.

52:63 /// 0x0 Reserved

Bits Field Name Initial
Value Description

context synchronizing instruction

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 675 of 897

14.5.115 TENC - Thread Enable Clear Register

Register Short Name: TENC Read Access: Hypv

Decimal SPR Number: 439 Write Access: Hypv

Initial Value: 0x0000000000000001 Duplicated for Multithread: N

Slow SPR: N Notes: WC

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TEN 0b0001 Thread Enable Clear

For t < 4, bit 63-t corresponds to thread t. When bit 63-t is set to 1, thread t is disabled, if it
is not already. When bit 63-t is set 0, thread t is unaffected.
When bit 63-t is read, the current value of the thread enable is returned.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 676 of 897
Version 1.3

October 23, 2012

14.5.116 TENS - Thread Enable Set Register

Register Short Name: TENS Read Access: Hypv

Decimal SPR Number: 438 Write Access: Hypv

Initial Value: 0x0000000000000001 Duplicated for Multithread: N

Slow SPR: N Notes: WS

Guest Supervisor Mapping: Scan Ring: bcfg

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TEN 0b0001 Thread Enable Set

For t < 4, bit 63-t corresponds to thread t. When bit 63-t is set to 1, thread t is enabled, if it
is not already. When bit 63-t is set 0, thread t is unaffected.
When bit 63-t is read, the current value of the thread enable is returned.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 677 of 897

14.5.117 TENSR - Thread Enable Status Register

Register Short Name: TENSR Read Access: Hypv

Decimal SPR Number: 437 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:59 /// 0x0 Reserved

60:63 TENSR 0b0000 Thread Enable Status Register

Bit 63-t of the TENSR corresponds to thread t.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 678 of 897
Version 1.3

October 23, 2012

14.5.118 TIR - Thread Identification Register

Register Short Name: TIR Read Access: Hypv

Decimal SPR Number: 446 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32:61 /// 0x0 Reserved

62:63 TID 0b00 Processor Thread ID
This field can be used to distinguish the thread from other threads on the processor.
Threads are numbered sequentially, with valid values ranging from 0 to 3.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 679 of 897

14.5.119 TLB0CFG - TLB 0 Configuration Register

Register Short Name: TLB0CFG Read Access: Hypv

Decimal SPR Number: 688 Write Access: None

Initial Value: 0x000000000407A200 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:39 ASSOC 0x4 Associativity

Indicates the number of ways that are implemented in this processor's TLB0. This field is
always set to ‘00000100’ for this processor (4 ways).

40:44 /// 0x0 Reserved

45 PT 0b1 Page Table

Indicates whether this TLB can be loaded from the hardware page table. This bit is part of
the boot configuration ring for this processor.
0 TLB is not eligible to be loaded from the hardware page table (attempts to install

page table entries by the hardware walker result in TLB Ineligible exceptions).
1 TLB can be loaded from the hardware page table.

46 IND 0b1 Indirect

Indicates that an indirect entry can be created in this TLB and that there is a corresponding
EPTCFG register that defines the page sizes and sub-page sizes. This bit is part of the
boot configuration ring for this processor.
0 Indirect entries are not supported and this TLB treats the IND bit as reserved (this

infers software TLB management only).
1 Indirect entries are supported (infers that hardware page table walking is sup-

ported).

47 GTWE 0b1 Guest TLB Write Enable

Indicates that a guest supervisor can write to this TLB because an LRAT array exists for
this TLB. This bit is part of the boot configuration ring for this processor.
0 Guest cannot write TLB entries without hypervisor intervention.
1 Guest can write TLB entries, which will be translated via the LRAT.

48 IPROT 0b1 Invalidate Protect

Indicates whether invalidation protection is implemented by this processor's TLB 0. This bit
is always set to '1' for this processor (the A2 does support the invalidate protect bit in TLB 0
entries).

49 /// 0b0 Reserved

50 HES 0b1 Hardware Entry Select

Indicates whether hardware entry selection is supported by this processor's TLB 0. This bit
is always set to '1' for this processor (the A2 does support hardware calculation of the entry
number for TLB 0 for tlbwe instructions when MAS0.HES = 1).

51 /// 0b0 Reserved

52:63 NENTRY 0x200 Number of Entries

Indicates the number of entries that are implemented in this processor's TLB 0. This field is
always set to ‘0010_0000_0000’ for this processor (512 entries).

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 680 of 897
Version 1.3

October 23, 2012

14.5.120 TLB0PS - TLB 0 Page Size Register

Register Short Name: TLB0PS Read Access: Hypv

Decimal SPR Number: 344 Write Access: None

Initial Value: 0x0000000000104444 Duplicated for Multithread: N

Slow SPR: Y Notes: HM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:42 /// 0x0 Reserved

43 PS20 0b1 Page Size 20

Indicates whether a 220 KB (1 GB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (the A2 supports 1 GB page sizes for TLB 0).

44:48 /// 0x0 Reserved

49 PS14 0b1 Page Size 14

Indicates whether a 214 KB (16 MB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (the A2 supports 16 MB page sizes for TLB 0).

50:52 /// 0b000 Reserved

53 PS10 0b1 Page Size 10

Indicates whether a 210 KB (1 MB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (A2 supports 1 MB page sizes for TLB 0).

54:56 /// 0b000 Reserved

57 PS6 0b1 Page Size 6

Indicates whether a 26 KB (64 KB) page size is supported by this processor's TLB 0. This
bit is always set to '1' for this processor (A2 supports 64 KB page sizes for TLB 0).

58:60 /// 0b000 Reserved

61 PS2 0b1 Page Size 2

Indicates whether a 22 KB (4 KB) page size is supported by this processor's TLB 0. This bit
is always set to '1' for this processor (A2 supports 4 KB page sizes for TLB 0).

62:63 /// 0b00 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 681 of 897

14.5.121 TRACE - Hardware Trace Macro Control Register

Register Short Name: TRACE Read Access: None

Decimal SPR Number: 1006 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:63 DATA 0x0 Trace Control Data

This register can be used to control trace features on some L2 implementations. Writing to
this register causes a store-like transaction on the L2 interface, with a TTYPE of
MTSPR_TRACE if the expression (CCR2[EN_TRACE] and (XUCR0[TRACE_UM] or not
MSR[PR])) = 1 for the executing thread. If the expression is false, the operation is treated
as a nop. The data written to this field is placed in the address on the L2 interface accord-
ing to the table below.
Trace L2 req_ra
-------- --------------------
50:59 34:43
60 45
61 48
62 47
63 46

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 682 of 897
Version 1.3

October 23, 2012

14.5.122 TSR - Timer Status Register

Register Short Name: TSR Read Access: Hypv

Decimal SPR Number: 336 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes: WC,AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 ENW 0b0 Enable Next Watchdog Timer

0 Action taken on the next watchdog timer exception will be to set TSR{ENW].
1 Action taken on the next watchdog timer exception is governed by TSR[WIS].

33 WIS 0b0 Watchdog Timer Interrupt Status

0 A watchdog timer event has not occurred.
1 A watchdog timer event has occurred. When (MSR[CE] = 1 or MSR[GS] = 1) and

TCR[WIE] = 1, a watchdog timer interrupt is taken.

34:35 WRS 0b00 Watchdog Timer Reset Status

00 No reset: No watchdog timer reset has occurred.
01 Reset1: A watchdog timer initiated Reset1 reset occurred.
10 Reset2: A watchdog timer initiated Reset2 reset occurred.
11 Reset3: A watchdog timer initiated Reset3 reset occurred

36 DIS 0b0 Decrementer Interrupt Status

A decrementer event has occurred.

37 FIS 0b0 Fixed-Interval Timer Interrupt Status

A fixed-interval timer event has occurred.

38 UDIS 0b0 User Decrementer Interrupt Status

A user decrementer event has occurred.

39:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 683 of 897

14.5.123 UDEC - User Decrementer

Register Short Name: UDEC Read Access: Any

Decimal SPR Number: 550 Write Access: Any

Initial Value: 0x000000007FFFFFFF Duplicated for Multithread: Y

Slow SPR: N Notes: AM

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial Value Description

32:63 UDEC 0x7FFFFFFF User Decrementer

The User Decrementer (UDEC) is a 32-bit decrementing counter that provides a mechanism
for causing a user decrementer interrupt after a programmable delay. The contents of the User
Decrementer are treated as a signed integer.
Note: If TCR[UD] = 0, this access to this register is treated as an illegal SPR.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 684 of 897
Version 1.3

October 23, 2012

14.5.124 VRSAVE - Vector Register Save

Register Short Name: VRSAVE Read Access: Any

Decimal SPR Number: 256 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: array

Bits Field Name Initial
Value Description

32:63 VRSAVE 0x0 Vector Register Save

Provided for application and operating system use; can be used to indicate which VRs are
currently being used by a program.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 685 of 897

14.5.125 XER - Fixed Point Exception Register

Register Short Name: XER Read Access: Any

Decimal SPR Number: 1 Write Access: Any

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

0:31 /// 0x0 Reserved

32 SO 0b0 Summary Overflow

The Summary Overflow bit is set to 1 whenever an instruction (except mtspr) sets the
Overflow bit.

33 OV 0b0 Overflow

The Overflow bit is set to indicate that an overflow has occurred during execution of an
instruction.

34 CA 0b0 Carry

Carry bit from extend arithmetic operations.

35:56 /// 0x0 Reserved

57:63 SI 0x0 String Index

This field specifies the number of bytes to be transferred by a Load String Indexed or Store
String Indexed instruction.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 686 of 897
Version 1.3

October 23, 2012

14.5.126 XESR1 - XU Event Select Register 1

Register Short Name: XESR1 Read Access: Priv

Decimal SPR Number: 918 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 0
(xu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(xu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(xu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(xu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 687 of 897

14.5.127 XESR2 - XU Event Select Register 2

Register Short Name: XESR2 Read Access: Priv

Decimal SPR Number: 919 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(xu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(xu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(xu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(xu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 688 of 897
Version 1.3

October 23, 2012

14.5.128 XESR3 - XU Event Select Register 3

Register Short Name: XESR3 Read Access: Priv

Decimal SPR Number: 920 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB0 0b0 Multiplexer Event_Bits[0] Input Select

For event multiplexer, bit 0, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

33:37 MUXSELEB0 0x0 Multiplexer Event_Bits[0] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event mux bit 0
(lsu_pc_event_bits[0]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB1 0b0 Multiplexer Event_Bits[1] Input Select

For event multiplexer, bit 1, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

39:43 MUXSELEB1 0x0 Multiplexer Event_Bits[1] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 1
(lsu_pc_event_bits[1]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB2 0b0 Multiplexer Event_Bits[2] Input Select

For event multiplexer, bit 2, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

45:49 MUXSELEB2 0x0 Multiplexer Event_Bits[2] 2:1 Mux Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 2
(lsu_pc_event_bits[2]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB3 0b0 Multiplexer Event_Bits[3] Input Select

For event multiplexer, bit 3, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T0_Events[0:31]
1 T1_Events[0:31]

51:55 MUXSELEB3 0x0 Multiplexer Event_Bits[3] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 3
(lsu_pc_event_bits[3]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 689 of 897

14.5.129 XESR4 - XU Event Select Register 4

Register Short Name: XESR4 Read Access: Priv

Decimal SPR Number: 921 Write Access: Priv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 INPSELEB4 0b0 Multiplexer Event_Bits[4] Input Select

For event multiplexer, bit 4, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

33:37 MUXSELEB4 0x0 Multiplexer Event_Bits[4] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 4
(lsu_pc_event_bits[4]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

38 INPSELEB5 0b0 Multiplexer Event_Bits[5] Input Select

For event multiplexer, bit 5, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

39:43 MUXSELEB5 0x0 Multiplexer Event_Bits[5] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 5
(lsu_pc_event_bits[5]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

44 INPSELEB6 0b0 Multiplexer Event_Bits[6] Input Select

For event multiplexer, bit 6, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

45:49 MUXSELEB6 0x0 Multiplexer Event_Bits[6] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 6
(lsu_pc_event_bits[6]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

50 INPSELEB7 0b0 Multiplexer Event_Bits[7] Input Select

For event multiplexer, bit 7, determines which group of performance event inputs are
selected to drive the bank of 2:1 multiplexers.
0 T2_Events[0:31]
1 T3_Events[0:31]

51:55 MUXSELEB7 0x0 Multiplexer Event_Bits[7] 2:1 Multiplexer Select

Determines which 2:1 multiplexer is gated for driving event multiplexer bit 7
(lsu_pc_event_bits[7]).
Decoded values select multiplexer 0 (‘00000’) through multiplexer 31 (‘11111’).

56:63 /// 0x0 Reserved

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 690 of 897
Version 1.3

October 23, 2012

14.5.130 XUCR0 - Execution Unit Configuration Register 0

Register Short Name: XUCR0 Read Access: Hypv

Decimal SPR Number: 1014 Write Access: Hypv

Initial Value: 0x00000000000708C0 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:36 CLKG_CTL 0x0 XU Clock Gating Control

Debug feature. Setting a bit to 1 disables the use of clock gating for the specified unit. Use
0 for maximum power savings.
(0) FXUA, DATA
(1) CNTRL, DERAT
(2) CPL, FXUB
(3) L2CMDQ
(4) SPR

37:40 TRACE_UM 0b0000 Hardware Trace Control Register User Mode Enable

Each bit 37+t, corresponds to thread t:
0 Writes to TRACE SPR in user mode (MSR[PR] = 1) behave as a nop.
1 Writes to TRACE SPR in user mode (MSR[PR] = 1) are enabled.

41 MBAR_ACK 0b0 Memory Barrier Acknowledge

0 lwsync and mbar complete internal to the core.
1 lwsync and mbar complete after sync_done is received on the A2 L2 interface

(same behavior as heavyweight sync).

42 TLBSYNC 0b0 TLBSYNC Ack Behavior

0 tlbsync acknowledged by A2.
1 tlbsync acknowledged by L2.

43:47 SSDLY RO 0x7 Slow SPR Delay RO

Number of delay cycles + 7 for slow SPR “hole”.
Note: This field is read only and can only be set by the chip configuration ring.

48 CLS RO 0b0 Cache Line Size RO

0 L1 data cache uses 64 B cache lines.
1 L1 data cache uses 128 B cache lines.

49 AFLSTA 0b0 Force Load/Store Alignment for AXU

0 Normal operation. Supported misaligned accesses are handled natively by hard-
ware.

1 An alignment exception occurs on AXU storage access instructions if the data
address is not on an operand boundary.

Note: This bit is ORed with the interface signal iu_xu_is2_axu_ldst_forceexcept.

50 MDDP 0b0 Machine Check on Data Cache Directory Parity Error

0 Data cache directory parity errors are recovered by hardware.
1 Data cache directory parity errors are recovered by software (machine check inter-

rupt).

51 CRED 0b0 L2 Credit Control

0 No restrictions when the A2 core has one store credit and one load credit.
1 The A2 core can only send one load or store (but not both) when the A2 core has

one store credit and one load credit.
Note: The A2 core must be quiesced before changing this bit.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 691 of 897

52 REL RO 0b1 L2 Reload Control RO

0 Critical quadword first and data every other cycle.
1 Critical quadword first and data in back-to-back cycles.
Note: This field is read only and can only be set by the chip configuration ring.

53 MDCP 0b0 Machine Check on Data Cache Parity Error

0 Data cache parity errors are recovered by hardware.
1 Data cache parity errors are recovered by software (machine check interrupt).

54 TCS 0b0 Timer Clock Select

0 Core clock.
1 External pulse.

55 FLSTA 0b0 Force Load/Store Alignment for Integer

0 Normal operation. Supported misaligned accesses are handled natively by hard-
ware.

1 An alignment exception occurs on integer storage access instructions if the data
address is not on an operand boundary.

56 L2SIW RO 0b1 L2 Store Interface Width RO

0 16 B
1 32 B
Note: This field is read only and can only be set by the chip configuration ring.

57 FLH2L2 RO 0b1 Forward Load Hits to L2 RO

0 Load or store hits operate normally.
1 Force all load hits to be forwarded to the L2. Force all store hits to invalidate the L1

cache.
Note: This field is read only and can only be set by the chip configuration ring.

Note: This bit is ANDed with the interface signal an_ac_flh2l2_gate.

58 DCDIS 0b0 Data Cache Disable

0 Data cache is enabled.
1 Data cache is disabled.
Note: Changing the state of DC_DIS does not change the state of the D-cache. To main-
tain D-cache coherency, the data cache should be invalidated using a DCI instruction
before the D-cache is re-enabled.

59 WLK 0b0 Data Cache Way Locking Enable

0 L1 data cache way locking is disabled.
1 L1 data cache way locking is enabled, and TLB[WLC] specifies the L1 replace-

ment management table entry.

60 CSLC 0b0 Cache Snoop Lock Clear

Sticky bit set by hardware if a dcbi snoop (either internally or externally generated) invali-
dated a locked cache block. Note that the lock bit for that line is cleared whenever the line
is invalidated. This bit can be cleared only by software.
0 The cache has not encountered a dcbi snoop that invalidated a locked line.
1 The cache has encountered a dcbi snoop that invalidated a locked line.

61 CUL 0b0 Cache Unable to Lock

Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock set or lock clear instruction was effective in the cache.
1 Indicates a lock set or lock clear instruction was not effective in the cache.

62 CLO 0b0 Cache Lock Overflow

Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates that a lock overflow condition was not encountered in the cache.
1 Indicates that a lock overflow condition was encountered in the cache.

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 692 of 897
Version 1.3

October 23, 2012

63 CLFC NP 0b0 Cache Lock Bits Flash Clear NP

Writing a 1 during a flash clear operation causes an undefined operation. Writing a 0 during
a flash clear operation is ignored. Clearing occurs regardless of the enable (CE) value.
0 Default.
1 Hardware initiates a cache lock bits flash clear operation. Resets to 0 when the

operation completes.

Bits Field Name Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 693 of 897

14.5.131 XUCR1 - Execution Unit Configuration Register 1

Register Short Name: XUCR1 Read Access: Hypv

Decimal SPR Number: 851 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: Y

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: ccfg

Bits Field Name Initial
Value Description

32:56 /// 0x0 Reserved

57:59 LL_TB_SEL 0b000 LiveLock Buster Hang Pulse Timebase Select

Selects pulse for the livelock avoidance logic:
000 29 time base clocks.
001 211 time base clocks.
010 213 time base clocks.
011 215 time base clocks.
100 219 time base clocks.
101 223 time base clocks.
110 225 time base clocks.
111 227 time base clocks.

60:61 LL_STATE RO 0b00 LiveLock Buster State RO

Indicates the current state of the livelock avoidance logic:
00 Normal operation.
01 Potential livelock.
10 Livelock: attempting forward progress on this thread only.
11 Livelock multithreaded: attempting forward progress on another thread.

62 LL_SEL 0b0 LiveLock Buster Hang Pulse Select

0 Hang pulse derived from a timebase as selected by LL_TB_SEL.
1 Hang pulse derived from an external pulse.

63 LL_EN 0b0 LiveLock Buster Disable

0 Disables livelock buster logic.
1 Enables livelock buster logic.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 694 of 897
Version 1.3

October 23, 2012

14.5.132 XUCR2 - Execution Unit Configuration Register 2

Register Short Name: XUCR2 Read Access: Hypv

Decimal SPR Number: 1016 Write Access: Hypv

Initial Value: 0x00000000FFFFFFFF Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:39 RMT3 0xFF L1 Replacement Management Table Entry 3

An RMT entry indicates which sets are eligible for replacement for a given data cache miss.
Each RMT entry is 8 bits, 1 bit corresponding to each way in the data cache.
The value of each bit indicates the following:
 0 Way is not eligible for replacement.
 1 Way is eligible for replacement.

40:47 RMT2 0xFF L1 Replacement Management Table Entry 2

An RMT entry indicates which sets are eligible for replacement for a given data cache miss.
Each RMT entry is 8 bits, 1 bit corresponding to each way in the data cache.
The value of each bit indicates the following:
 0 Way is not eligible for replacement.
 1 Way is eligible for replacement.

48:55 RMT1 0xFF L1 Replacement Management Table Entry 1

An RMT entry indicates which sets are eligible for replacement for a given data cache miss.
Each RMT entry is 8 bits, 1 bit corresponding to each way in the data cache.
The value of each bit indicates the following:
 0 Way is not eligible for replacement.
 1 Way is eligible for replacement.

56:63 RMT0 0xFF L1 Replacement Management Table Entry 0

An RMT entry indicates which sets are eligible for replacement for a given data cache miss.
Each RMT entry is 8 bits, 1 bit corresponding to each way in the data cache.
The value of each bit indicates the following:
 0 Way is not eligible for replacement.
 1 Way is eligible for replacement.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 695 of 897

14.5.133 XUCR3 - Execution Unit Configuration Register 3

Register Short Name: XUCR3 Read Access: Hypv

Decimal SPR Number: 852 Write Access: Hypv

Initial Value: 0x0000000002401441 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: dcfg

Bits Field Name Initial
Value Description

32:35 HOLD1_DLY 0b0000 CPL Thread Hold1 Delay

Debug mode that sets the number of cycles that flush is held after an event that held the
thread.
This field should not be set to a value that is less than the initialization value.

36:39 CM_HOLD_DLY 0b0010 CPL CM Hold Delay

Debug mode that sets the number of cycles before the MSR[CM] bit is allowed to update
the IAR.
This field should not be set to a value that is less than the initialization value.

40:43 STOP_DLY 0b0100 CPL Thread Stop Delay

Debug mode that sets the number of cycles that flush is held after the thread is stopped.
This field should not be set to a value that is less than the initialization value.

44:47 HOLD0_DLY 0b0000 CPL Thread Hold0 Delay

Debug mode that sets the number of cycles flush is held after an event that held the thread.
This field should not be set to a value that is less than the initialization value.

48:51 CSI_DLY 0b0001 CPL Context Sync Instruction Delay

Debug mode that sets the number of extra cycles flush is asserted after a context synchro-
nizing instruction.
This field should not be set to a value that is less than the initialization value.

52:55 INT_DLY 0b0100 CPL Interrupt Delay

Debug mode that sets the minimum number of cycles between asynchronous interrupts.
This field should not be set to a value that is less than the initialization value.

56:59 ASYNCBLK_DLY 0b0100 CPL Async Interrupt Delay

Debug mode that sets the minimum number of cycles asynchronous interrupts are blocked
after an mtmsr, mtiar, or slowspr write.
This field should not be set to a value that is less than the initialization value.

60:63 FLUSH_DLY 0b0001 CPL Flush Delay

Debug mode that sets the number of extra cycles that flush is asserted.
This field should not be set to a value that is less than the initialization value.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 696 of 897
Version 1.3

October 23, 2012

14.5.134 XUCR4 - Execution Unit Configuration Register 4

Register Short Name: XUCR4 Read Access: Hypv

Decimal SPR Number: 853 Write Access: Hypv

Initial Value: 0x0000000000000500 Duplicated for Multithread: N

Slow SPR: N Notes:

Guest Supervisor Mapping: Scan Ring: dcfg

Bits Field Name Initial
Value Description

32:45 /// 0x0 Reserved

46 MMU_MCHK 0b0 MMU Machine Check Control
This bit is used in conjunction with the CCR2.NOTLB bit to determine hardware behavior
after an ERAT or TLB address translation parity or multihit error is detected. When
CCR2.NOTLB = 1 (ERAT-only mode), this bit is effectively ignored and the instruction that
caused the parity or multihit error is flushed and a machine check exception occurs. When
CCR2.NOTLB = 0 (TLB mode), this bit determines behavior as follows:
0 The instruction generating the parity or multihit is flushed, no machine check

exception is generated, and the structure detecting the error is flash invalidated for
all entries (in the case of an ERAT detection) or all entries in the congruence class
(in the case of a TLB detection). This invalidation ignores entry protection state.

1 The instruction generating the parity or multihit is flushed and a machine check
exception is generated (no invalidation occurs to TLB or ERAT entries).

47 MDDMH 0b0 Machine Check on Data Cache Directory Multihit
0 Data cache directory multihit errors are recovered by hardware.
1 Data cache directory multihit errors are recovered by software (machine check

interrupt).

48:55 DIV_BARR_THRES 0x5 Divide Barrier Request Threshold
Debug mode that sets the threshold for setting a barrier for an instruction that collided with
a pending divide. This field sets the minimum number of cycles left on the original divide,
before a barrier is requested for the collided instruction.
This field should not be set to a value that is less than the initialization value.

56:57 /// 0b00 Reserved

58 DIV_BAR_DIS 0b0 Divide Barrier Disable
Debug mode that disables setting a barrier for multiply and divide instructions that collided
with an in progress divide from another thread.

59 LSU_BAR_DIS 0b0 LSU Hit Barrier Disable
Debug mode that disables setting a barrier for loads that hit a cache line for which there is
a currently outstanding load miss from another thread.

60:63 BARR_DLY 0b0000 Barrier Flush Delay
Debug mode that sets the number of extra cycles that a barrier request flush is asserted.
This field should not be set to a value that is less than the initialization value.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 697 of 897

14.5.135 XUDBG0 - Execution Unit Debug Register 0

Register Short Name: XUDBG0 Read Access: Hypv

Decimal SPR Number: 885 Write Access: Hypv

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:48 /// 0x0 Reserved

49:51 WAY 0b000 Data Cache Directory Way Select
Selects way for a data cache directory read.

52 /// 0b0 Reserved

53:57 ROW 0x0 Data Cache Directory Row Select
Selects row for a data cache directory read.

58:61 /// 0b0000 Reserved

62 EXEC NP 0b0 Data Cache Directory Read Execute NP

1 Executes a data cache directory read.

63 DONE 0b0 Data Cache Directory Read Done

1 Indicates a data cache directory read operation has completed and the XUDBG1
and XUDBG2 registers are valid.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 698 of 897
Version 1.3

October 23, 2012

14.5.136 XUDBG1 - Execution Unit Debug Register 1

Register Short Name: XUDBG1 Read Access: Hypv

Decimal SPR Number: 886 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32:44 /// 0x0 Reserved

45:48 WATCH 0b0000 Data Cache Directory Watch Bits
0 Directory entry has no watch set.
1 Directory entry has watch set.

49:55 LRU 0x0 Data Cache Directory LRU
Indicates value of the LRU in the data cache directory.

56:59 PARITY 0b0000 Data Cache Directory Parity
Indicates value of the parity bits in the data cache directory.

60:61 /// 0b00 Reserved

62 LOCK 0b0 Data Cache Directory Lock Bits
0 Directory entry is unlocked.
1 Directory entry is locked.

63 VALID 0b0 Data Cache Directory Read Valid
0 Directory entry is not valid.
1 Directory entry is valid.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Alphabetical Register Listing

Page 699 of 897

14.5.137 XUDBG2 - Execution Unit Debug Register 2

Register Short Name: XUDBG2 Read Access: Hypv

Decimal SPR Number: 887 Write Access: None

Initial Value: 0x0000000000000000 Duplicated for Multithread: N

Slow SPR: Y Notes:

Guest Supervisor Mapping: Scan Ring: func

Bits Field Name Initial
Value Description

32 /// 0b0 Reserved

33:63 TAG 0x0 Data Cache Directory Tag

Indicates value of the tag bit in the data cache directory.

User’s Manual

A2 Processor

Alphabetical Register Listing

Page 700 of 897
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 701 of 864

15. SCOM Accessible Registers

The serial communications (SCOM) interface provides access to registers used for pervasive operations. A
SCOM satellite within the PC unit provides the external connections and address decode needed for
accessing these registers. All SCOM accessible registers reside within the PC unit. Access to other core
registers through the SCOM interface is enabled by the Ram Instruction, Ram Command, and Ram Data
Registers. These registers are used for debug access to core facilities and to enable “instruction stuffing” into
a stopped thread’s pipeline.

15.1 Serial Communications (SCOM) Description

The SCOM interface is the primary method for pervasive access to A2 registers in the chip. This section
provides a brief introduction to SCOM as it relates to register access within the A2 core. An overview of the
SCOM components and connections is shown in Figure 15-1 on page 702.

Register accesses initiated by master devices (JTAG, POR engine, alter/display unit) go through the perva-
sive control bus (PCB) to the chiplet-level SCOM controller. Upper bits of the SCOM address determine the
destination ring number that the device uses for routing the packet and which SCOM2 satellite is selected.
The SCOM2 satellite completes the address decode and performs the read or write operation.

The external interface for the SCOM2 satellite is comprised of a 2-wire serial connection for data and control;
in addition, 4 bits are used for programming the satellite address. The serial interface is further described by
direction of data flow: DL (downlink from the controller to the SCOM2 satellite) and UL (uplink from the
SCOM2 satellite back to the controller). The following signals make up the SCOM2 interface to the A2 core:

Figure 15-2 on page 702 shows the basic use of the SCOM2 interface signals during SCOM read and write
operations. The address information sent by the PCB to the controller consists of 13 bits and is broken up into
the following fields:

DL-CCH (1 bit) Downlink control channel. Controls clock and power-gating and satellite reset.

UL-CCH (1 bit) Uplink control channel to the next SCOM2 satellite in the chain or the controller.

DL-DCH (1 bit) Downlink data channel. Carries the address and data packets.

UL-DCH (1 bit) Uplink data channel to the next SCOM2 satellite in the chain or the controller.

Satellite ID (4 bits) Core inputs tied high or low that set the satellite ID on its SCOM ring. Compared
against the SCOM address to select a device.

Ring Number (3 bits) The controller uses this field to select the ring number for forwarding the packet.
Valid ring numbers for connecting to a SCOM2 satellite are rings 1 through 7
(0b001 through 0b111). The ring number field is stripped off the serial address
bits forwarded to the SCOM2 satellites on the DCH signal.

Satellite Number (4 bits) The SCOM2 satellite compares these bits against its own satellite ID and, on a
match, responds to the packet by decoding the remaining address bits.

Register Number (6 bits) Allows access of up to 64 registers from a single SCOM2 satellite.

data channel

control channel

data channel

processor control

Joint Test Action Group

power-on reset

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 702 of 864
Version 1.3

October 23, 2012

Figure 15-1. Chip Level Infrastructure Example to Access SCOM Registers in the A2 Core

Figure 15-2. Principle Timing of Information Carried on CCH and DCH

chiplet

PSCOM
LE

kernel kernel kernel

Sat. 0 Sat. 1 Sat. 2

Ring-No. K

Ring-No. K+1

1

1

1

DL data channel

UL Data Channel

DL Control Channel

UL Control Channel 1

1

1

PCB
Slave

PCB
Master

Access
(JTAG)

POR
I2C

slave

MM S MS

Arbiter
Pervasive Interconnect Bus (PIB)

S

M

PCB
network

Alter/Display

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 703 of 864

15.2 SCOM Register Summary

15.2.1 Read and Write Access Methods

Besides basic read and write access, some SCOM register addresses provide a Reset with AND mask or Set
with OR mask capability. This section describes these additional access methods.

15.2.1.1 Reset with AND Mask

The register bit is reset when the corresponding bit written to the AND mask is a ‘0’. See the example below:

100101100  Initial state of register
111010100  SCOM write to AND mask
100000100  New state of register

15.2.1.2 Set with OR Mask

The mask is ORed bit-by-bit with the corresponding register. A bit is set when the original register bit was set,
or when the corresponding bit written to the OR mask is a ‘1’. See the example below:

000100110  Initial state of register
101100000  SCOM write to OR mask
101100110  New state of register

15.2.2 SCOM Register Summary Table

Table 15-1 lists the SCOM-accessible registers in order of ascending register address. The 6-bit register
address is part of the total SCOM address sent to the PSCOMLE controller. The full SCOM address is “ring
number || satellite number || register address”. The values applied for ring number and satellite number are
determined at the chip level, and are beyond the scope of this document.

Each read or write operation transfers 64 bits of data over the SCOM interface. Not all of the SCOM acces-
sible registers implement the full 64 bits; the unused bits are designated as reserved. Reserved bits are read
as 0 and should be written as 0. Writing 1 to a reserved bit location can result in parity errors.

Table 15-1. SCOM Register Summary (Sheet 1 of 3)

Hexadecimal
Address

Decimal
Address Description Access

x’00’ 0 Fault Isolation Register 0 (FIR0) RW

x’01’ 1 Fault Isolation Register 0 (Reset with AND mask) WO

x’02’ 2 Fault Isolation Register 0 (Set with OR mask) WO

x’03’ 3 FIR0 Action0 Register (FIR0A0) RW

x’04’ 4 FIR0 Action1 Register (FIR0A1) RW

x’05’ 5 Reserved

x’06’ 6 FIR0 Mask Register (FIR0M) RW

x’07’ 7 FIR0 Mask Register (Reset with AND mask) WO

x’08’ 8 FIR0 Mask Register (Set with OR mask) WO

read/write

write only

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 704 of 864
Version 1.3

October 23, 2012

x’09’ 9 Error Injection Register (ERRINJ) RW

x’0A’ 10 Fault Isolation Register 1 (FIR1) RW

x’0B’ 11 Fault Isolation Register 1 (Reset with AND mask) WO

x’0C’ 12 Fault Isolation Register 1 (Set with OR mask) WO

x’0D’ 13 FIR1 Action0 Register (FIR1A0) RW

x’0E’ 14 FIR1 Action1 Register (FIR1A1) RW

x’0F’ 15 Reserved

x’10’ 16 FIR1 Mask Register (FIR1M) RW

x’11’ 17 FIR1 Mask Register (Reset with AND mask) WO

x’12’ 18 FIR1 Mask Register (Set with OR mask) WO

x’13’ 19 FIR0 and FIR1 Registers (Read Only) (FIR01RD) RO

x’14’ 20 Fault Isolation Register 2 (FIR2) RW

x’15’ 21 Fault Isolation Register 2 (Reset with AND mask) WO

x’16’ 22 Fault Isolation Register 2 (Set with OR mask) WO

x’17’ 23 FIR2 Action0 Register (FIR2A0) RW

x’18’ 24 FIR2 Action1 Register (FIR2A1) RW

x’19’ 25 Reserved

x’1A’ 26 FIR2 Mask Register (FIR2M) RW

x’1B’ 27 FIR2 Mask Register (Reset with AND mask) WO

x’1C’ 28 FIR2 Mask Register (Set with OR mask) WO

x’1D’
through

x’27’

29
through

39

Reserved

x’28’ 40 Ram Instruction and Command Registers (RAMIC) RW

x’29’ 41 Ram Instruction Register (RAMI) RW

x’2A’ 42 Ram Command Register (RAMC) RW

x’2B’ 43 Ram Command Register (Reset with AND mask) WO

x’2C’ 44 Ram Command Register (Set with OR mask) WO

x’2D’ 45 Ram Data Register (RAMD) RW

x’2E’ 46 Ram Data Register High (RAMDH) RW

x’2F’ 47 Ram Data Register Low (RAMDL) RW

x’30’ 48 Thread Control and Status Register (THRCTL) RW

x’31’ 49 Thread Control and Status Register (Reset with AND mask) WO

x’32’ 50 Thread Control and Status Register (Set with OR mask) WO

x’33’ 51 PC Control Register 0 (PCCR0) RW

x’34’ 52 PC Control Register 0 (Reset with AND mask) WO

x’35’ 53 PC Control Register 0 (Set with OR mask) WO

Table 15-1. SCOM Register Summary (Sheet 2 of 3)

Hexadecimal
Address

Decimal
Address Description Access

read only

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 705 of 864

15.3 Alphabetical Register Listing

15.3.1 AXU Debug Select Register (ABDSR)

x’36’ 54 Special Attention Register (SPATTN) RW

x’37’ 55 Special Attention Register (Reset with AND mask) WO

x’38’ 56 Special Attention Register (Set with OR mask) WO

x’39’
through

x’3A’

57
through

58

Reserved

x’3B’ 59 AXU Debug Select Register (ABDSR) RW

x’3C’ 60 IU Debug Select Register (IDSR) RW

x’3D’ 61 MMU/PC Debug Select Register (MPDSR) RW

x’3E’ 62 XU Debug Select Register1 (XDSR1) RW

x’3F’ 63 XU Debug Select Register2 (XDSR2) RW

Register Short Name: ABDSR Access: RW

Register Address: x‘3B’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

AXU Debug Mux1 Controls (4:1 Debug Multiplexer)

32:33 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output.
00 Debug group 0.
01 Debug group 1.
10 Debug group 2.
11 Debug group 3.

34:36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data.
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

Table 15-1. SCOM Register Summary (Sheet 3 of 3)

Hexadecimal
Address

Decimal
Address Description Access

auxiliary execution unit

instruction unit

memory management unit

execution unit

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 706 of 864
Version 1.3

October 23, 2012

15.3.2 Error Injection Register (ERRINJ)

Note: Although bits of the Error Injection Register can be set at any time through SCOM writes, the error
inject signals are gated by an Error Inject Enable bit (PCCR0[34] = ‘1’). After activation, an error inject signal
remains active until the corresponding error bit in the FIR has been latched. If an error is selected for multiple
threads, the first selected error that sets a bit in the FIR shuts off the corresponding error bit in the ERRINJ
register.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output.
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data.
0 Trigger Group data [0:11] - No rotate.
1 Trigger Group data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

48:63 Reserved 0 Do not set to 1.

Table 15-2. Error Injection Register

Register Short Name: ERRINJ Access: RW

Register Address: x‘09’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 707 of 864

15.3.3 Fault Isolation Register 0 and Associated Registers

The FIRs are implemented as a group of interrelated registers. This section contains register definitions for
FIR0:

• Fault Isolation Register 0 (FIR0)
• FIR0 Action 0 Register (FIR0A0)
• FIR0 Action 1 Register (FIR0A1)
• FIR0 Mask Register (FIR0M)
• FIR0 and FIR1 Register Read (FIR01RD)

32:35 Error Injection Thread Select 0 Thread select bits associated with injected error signal.
0 Error signal activated for thread 0.
1 Error signal activated for thread 1.
2 Error signal activated for thread 2.
3 Error signal activated for thread 3.

36:39 Reserved 0

40 I-Cache Parity Error 0 Causes an I-cache parity error.
Note: This error is independent of any thread select value.

41 I-Cache Directory Parity Error 0 Causes an I-cache directory parity error.
Note: This error is independent of any thread select value.

42 D-Cache Parity Error 0 Causes a D-cache parity error.
Note: This error is independent of any thread select value.

43 D-Cache Directory Parity Error 0 Causes a D-cache directory parity error.
Note: This error is independent of any thread select value.

44 XU Register File Parity Error 0 Causes a parity error in the XU regfile array for the selected thread.

45 FU Register File Parity Error 0 Causes a parity error in the FU regfile array for the selected thread.

46 SPRG Array ECC Error 0 Causes an ECC error in the SPRG array for the selected thread.

47 Inbox Array ECC Error 0 Causes an ECC error in the inbox array.
Note: This error is independent of any thread select value.

48 Outbox Array ECC Error 0 Causes an ECC error in the outbox array.
Note: This error is independent of any thread select value.

49 Livelock Buster Attempted 0 Livelock buster logic is activated for the selected thread

50 Livelock Buster Failed 0 Livelock buster logic is active and fails to free up the hang condition

51 Watchdog Timer Reset 0 Causes a WDT reset error to occur for the selected thread.

52 SCOM Register Parity Error 0 Forces a parity error on a SCOM register write.
Note: This error is independent of any thread select value.

53 I-Cache Directory Multihit Error 0 Causes an I-cache directory multihit error.
Note: This error is independent of any thread select value.

54 D-Cache Directory Multihit Error 0 Causes a D-cache directory multihit error.
Note: This error is independent of any thread select value.

55:63 Reserved 0

Bits Function Initial
Value Description

execution unit

floating-point unit

error-correcting code

Special Purpose Registers General

watchdog timer

fault isolation register

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 708 of 864
Version 1.3

October 23, 2012

Bits in the Mask, Action0, and Action1 registers have a 1-to-1 correspondence to the FIR, and together deter-
mine how an unmasked error is reported. The following table describes the function of the Mask and Action
bits:

Mask(n) Action0(n) Action1(n) Resulting Action for FIR(n)

1 X X Masked. The error is latched in the FIR, but is not reported.

X 0 0 Masked. The error is latched in the FIR, but does is not reported.

0 0 1 Recoverable. The error is latched and reported as recoverable.

0 1 0 System checkstop. The error is latched and reported as a checkstop; new errors are blocked from
setting the FIR.

0 1 1 Local checkstop. The error is latched and reported as a local core checkstop. Not used in the A2
core.

Table 15-3. Fault Isolation Register 0 (FIR0)

Register Short Name: FIR0 Access: RW, WO_AND, WO_OR

Register Address: x‘00’ RW
x‘01’ WO with AND Mask
x‘02’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 iu_pc_err_icache_parity 0 An instruction cache parity error was detected. The failing cache line is
invalidated.

33 iu_pc_err_icachedir_parity 0 An instruction cache directory parity error was detected. The failing
cache line is invalidated.

34 xu_pc_err_dcache_parity 0 A data cache parity error was detected. The failing cache line is invali-
dated.

35 xu_pc_err_dcachedir_parity 0 A data cache directory parity error was detected. The failing cache line
is invalidated.

36 xu_pc_err_sprg_ecc, T0 0 An ECC correctable error was detected on data read out of the SPRG
array by thread 0. Hardware error recovery will correct the data.

37 xu_pc_err_sprg_ecc, T1 0 An ECC correctable error was detected on data read out of the SPRG
array by thread 1. Hardware error recovery will correct the data.

38 xu_pc_err_sprg_ecc, T2 0 An ECC correctable error was detected on data read out of the SPRG
array by thread 2. Hardware error recovery will correct the data.

39 xu_pc_err_sprg_ecc, T3 0 Am ECC correctable error was detected on data read out of the SPRG
array by thread 3. Hardware error recovery will correct the data.

40 xu_pc_err_regfile_parity, T0 0 An XU register file parity error was detected by thread 0. Hardware
error recovery will correct the data and update the array.

41 xu_pc_err_regfile_parity, T1 0 An XU register file parity error was detected by thread 1. Hardware
error recovery will correct the data and update the array.

42 xu_pc_err_regfile_parity, T2 0 An XU register file parity error was detected by thread 2. Hardware
error recovery will correct the data and update the array.

43 xu_pc_err_regfile_parity, T3 0 An XU register file parity error was detected by thread 3. Hardware
error recovery will correct the data and update the array.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 709 of 864

44 fu_pc_err_regfile_parity, T0 0 An FU register file parity error was detected by thread 0. Hardware
error recovery will correct the data and update the array.

45 fu_pc_err_regfile_parity, T1 0 An FU register file parity error was detected by thread 1. Hardware
error recovery will correct the data and update the array.

46 fu_pc_err_regfile_parity, T2 0 An FU register file parity error was detected by thread 2. Hardware
error recovery will correct the data and update the array.

47 fu_pc_err_regfile_parity, T3 0 An FU register file parity error was detected by thread 3. Hardware
error recovery will correct the data and update the array.

48 Reserved 0 Reserved

49 Reserved 0 Reserved

50 scom_reg_parity_err 0 A parity error was detected in any of the following SCOM-accessible
registers: PCCR0, ABDSR, IDSR, MPDSR, XDSR1, XDSR2, or
SPATTN. The specific register that caused the error can be deter-
mined by scanning out error reporting macro data from the PC unit
bcfg scan rings.

51 scom_reg_ack_err 0 An invalid SCOM register access occurred either through an invalid
address or by an invalid read/write request to a valid address. This bit
can also be caused by an error in the SCOM satellite.

52 xu_pc_err_wdt_reset, T0 0 A watchdog timer reset was requested by thread 0.

53 xu_pc_err_wdt_reset, T1 0 A watchdog timer reset was requested by thread 1.

54 xu_pc_err_wdt_reset, T2 0 A watchdog timer reset was requested by thread 2.

55 xu_pc_err_wdt_reset, T3 0 A watchdog timer reset was requested by thread 3.

56 xu_pc_err_llbust_attempt, T0 0 The XU livelock buster logic has detected a hang condition for thread
0. The thread priority will be increased.

57 xu_pc_err_llbust_attempt, T1 0 The XU livelock buster logic has detected a hang condition for thread
1. The thread priority will be increased.

58 xu_pc_err_llbust_attempt, T2 0 The XU livelock buster logic has detected a hang condition for thread
2. The thread priority will be increased.

59 xu_pc_err_llbust_attempt, T3 0 The XU livelock buster logic has detected a hang condition for thread
3. The thread priority will be increased.

60 xu_pc_err_llbust_failed, T0 0 The XU livelock buster’s attempt to fix a thread 0 hang was not suc-
cessful within the selected delay threshold period. Forward progress
on another hung thread will be attempted before returning to this one.

61 xu_pc_err_llbust_failed, T1 0 The XU livelock buster’s attempt to fix a thread 1 hang was not suc-
cessful within the selected delay threshold period. Forward progress
on another hung thread will be attempted before returning to this one.

62 xu_pc_err_llbust_failed, T2 0 The XU livelock buster’s attempt to fix a thread 2 hang was not suc-
cessful within the selected delay threshold period. Forward progress
on another hung thread will be attempted before returning to this one.

63 xu_pc_err_llbust_failed, T3 0 The XU livelock buster’s attempt to fix a thread 3 hang was not suc-
cessful within the selected delay threshold period. Forward progress
on another hung thread will be attempted before returning to this one.

Table 15-4. FIR0 Action1 Register (FIR0A1)

Register Short Name: FIR0A1 Access: RW

Register Address: x‘04’ RW Scan Ring: bcfg

Initial Value: 0x00000000FFFFF0FF

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 710 of 864
Version 1.3

October 23, 2012

Bits Function Initial
Value Description

0:31 Reserved 0

32 iu_pc_err_icache_parity 1 I-cache recoverable error.

33 iu_pc_err_icachedir_parity 1 I-cache directory recoverable error.

34 xu_pc_err_dcache_parity 1 D-cache recoverable error.

35 xu_pc_err_dcachedir_parity 1 D-cache directory recoverable error.

36:39 xu_pc_err_sprg_ecc, T0 - T3 1111 SPRG array recoverable error.

40:43 xu_pc_err_regfile_parity, T0 - T3 1111 XU register file recoverable error.

44:47 fu_pc_err_regfile_parity, T0 - T3 1111 FU register file recoverable error.

48 Reserved 0 Reserved

49 Reserved 0 Reserved

50 scom_reg_parity_err 1 SCOM register recoverable error.

51 scom_reg_ack_err 1 SCOM access recoverable error.

52:55 xu_pc_err_wdt_reset, T0 - T3 0000 Watchdog timer reset requested - checkstop.

56:59 xu_pc_err_llbust_attempt, T0 - T3 1111 XU livelock buster logic recoverable error.

60:63 xu_pc_err_llbust_failed, T0 - T3 1111 XU livelock buster logic recoverable error.

Table 15-5. FIR0 Mask Register (FIR0M)

Register Short Name: FIR0M Access: RW, WO_AND, WO_OR

Register Address: x‘06’ RW
x‘07’ WO with AND Mask
x‘08’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x00000000FFFFFFFF

Bits Function Initial
Value Description

0:31 Reserved 0

32 iu_pc_err_icache_parity 1 I-cache recoverable error.

33 iu_pc_err_icachedir_parity 1 I-cache directory recoverable error.

34 xu_pc_err_dcache_parity 1 D-cache recoverable error.

35 xu_pc_err_dcachedir_parity 1 D-cache directory recoverable error.

36:39 xu_pc_err_sprg_ecc, T0 - T3 1111 SPRG array recoverable error.

40:43 xu_pc_err_regfile_parity, T0 - T3 1111 XU register file recoverable error.

44:47 fu_pc_err_regfile_parity, T0 - T3 1111 FU register file recoverable error.

48 Reserved 0 Reserved

49 Reserved 0 Reserved

50 scom_reg_parity_err 1 SCOM register recoverable error.

51 scom_reg_ack_err 1 SCOM access recoverable error.

52:55 xu_pc_err_wdt_reset, T0 - T3 1111 Watchdog timer reset requested - checkstop.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 711 of 864

15.3.4 Fault Isolation Register 1 and Associated Registers

The FIRs are implemented as a group of interrelated registers. This section contains register definitions for
FIR1:

• Fault Isolation Register 1 (FIR1)
• FIR1 Action 0 Register (FIR1A0)
• FIR1 Action 1 Register (FIR1A1)
• FIR1 Mask Register (FIR1M)

Bits in the Mask, Action0, and Action1 registers have a 1-to-1 correspondence to the FIR, and together deter-
mine how an unmasked error is reported. The following table describes the function of the Mask and Action
bits:

56:59 xu_pc_err_llbust_attempt, T0 - T3 1111 XU livelock buster logic recoverable error.

60:63 xu_pc_err_llbust_failed, T0 - T3 1111 XU livelock buster logic recoverable error.

Table 15-6. FIR0 and FIR1 Registers (Read Only) (FIR01RD)

Register Short Name: FIR01RD Access: RO

Register Address: x‘13’ RO Scan Ring: bcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 FIR0(32 to 63) 0 Provides a single read operation of both FIR0 and FIR1 in implemen-
tations supporting 64-bit access.
See the FIR0 and FIR1 registers for individual bit descriptions.32:63 FIR1(32 to 63) 0

Mask(n) Action0(n) Action1(n) Resulting Action for FIR(n)

1 X X Masked. The error is latched in the FIR, but is not reported.

X 0 0 Masked. The error is latched in the FIR, but is not reported.

0 0 1 Recoverable. The error is latched and reported as recoverable.

0 1 0 System checkstop. The error is latched and reported as a checkstop; new errors are blocked from
setting the FIR.

0 1 1 Local checkstop. The error is latched and reported as a local core checkstop. Not used in the A2
core.

Table 15-7. Fault Isolation Register 1 (FIR1)

Short Name FIR1 Access RW, WO_AND, WO_OR

Register
Address

x’0A’ RW
x’0B’ WO with AND Mask
x’0C’ WO with OR Mask

Scan Ring
Initial Value

bcfg
0x0000000000000000

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 712 of 864
Version 1.3

October 23, 2012

Bits Function Initial
Value Description

0:31 Reserved 0

32 max_recov_err_cntr_value 0 The recoverable error counter has incremented to its maximum value
of b‘1111’. Additional unmasked recoverable errors will wrap the
counter to 0, before it continues a new count.

33 xu_pc_err_l2intrf_ecc 0 An ECC error was detected on data sent to the core on the L2 inter-
face. The L2 will resend the data.

34 xu_pc_err_l2intrf_ue 0 An uncorrectable error was detected on data sent to the core on the L2
interface. This error should be reported as a checkstop.

35 xu_pc_err_l2credit_overrun 0 The store queue or load queue received more credits from the L2
interface than is allowable. This error should be reported as a check-
stop.

36 xu_pc_err_sprg_ue, T0 0 An uncorrectable error was detected on data read out of the SPRG
array by thread 0. This error should be reported as a checkstop.

37 xu_pc_err_sprg_ue, T1 0 An uncorrectable error was detected on data read out of the SPRG
array by thread 1. This error should be reported as a checkstop.

38 xu_pc_err_sprg_ue, T2 0 An uncorrectable error was detected on data read out of the SPRG
array by thread 2. This error should be reported as a checkstop.

39 xu_pc_err_sprg_ue, T3 0 An uncorrectable error was detected on data read out of the SPRG
array by thread 3. This error should be reported as a checkstop.

40 xu_pc_err_regfile_ue, T0 0 An uncorrectable error was detected on data read out of the XU regis-
ter file by thread 0. This error should be reported as a checkstop.

41 xu_pc_err_regfile_ue, T1 0 An uncorrectable error was detected on data read out of the XU regis-
ter file by thread 1. This error should be reported as a checkstop.

42 xu_pc_err_regfile_ue, T2 0 An uncorrectable error was detected on data read out of the XU regis-
ter file by thread 2. This error should be reported as a checkstop.

43 xu_pc_err_regfile_ue, T3 0 An uncorrectable error was detected on data read out of the XU regis-
ter file by thread 3. This error should be reported as a checkstop.

44 fu_pc_err_regfile_ue, T0 0 An uncorrectable error was detected on data read out of the FU regis-
ter file by thread 0. This error should be reported as a checkstop.

45 fu_pc_err_regfile_ue, T1 0 An uncorrectable error was detected on data read out of the FU regis-
ter file by thread 1. This error should be reported as a checkstop.

46 fu_pc_err_regfile_ue, T2 0 An uncorrectable error was detected on data read out of the FU regis-
ter file by thread 2. This error should be reported as a checkstop.

47 fu_pc_err_regfile_ue, T3 0 An uncorrectable error was detected on data read out of the FU regis-
ter file by thread 3. This error should be reported as a checkstop.

48 xu_pc_err_nia_miscmpr, T0 0 Thread 0 reported a miscompare between the expected and actual
next instruction address. This error should be reported as a checkstop.

49 xu_pc_err_nia_miscmpr, T1 0 Thread 1 reported a miscompare between the expected and actual
next instruction address. This error should be reported as a checkstop.

50 xu_pc_err_nia_miscmpr, T2 0 Thread 2 reported a miscompare between the expected and actual
next instruction address. This error should be reported as a checkstop.

51 xu_pc_err_nia_miscmpr, T3 0 Thread 3 reported a miscompare between the expected and actual
next instruction address. This error should be reported as a checkstop.

52 xu_pc_err_debug_event, T0 0 A debug compare event on thread 0 occurred and was enabled to set
a bit in the FIR. The default action is to cause a checkstop.

53 xu_pc_err_debug_event, T1 0 A debug compare event on thread 1 occurred and was enabled to set
a bit in the FIR. The default action is to cause a checkstop.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 713 of 864

54 xu_pc_err_debug_event, T2 0 A debug compare event on thread 2 occurred and was enabled to set
a bit in the FIR. The default action is to cause a checkstop.

55 xu_pc_err_debug_event, T3 0 A debug compare event on thread 3 occurred and was enabled to set
a bit in the FIR. The default action is to cause a checkstop.

56 iu_pc_err_ucode_illegal, T0 0 The microcode engine detected an illegal instruction on thread 0. The
default action is to cause a checkstop.

57 iu_pc_err_ucode_illegal, T1 0 The microcode engine detected an illegal instruction on thread 1. The
default action is to cause a checkstop.

58 iu_pc_err_ucode_illegal, T2 0 The microcode engine detected an illegal instruction on thread 2. The
default action is to cause a checkstop.

59 iu_pc_err_ucode_illegal, T3 0 The microcode engine detected an illegal instruction on thread 3. The
default action is to cause a checkstop.

60 Reserved 0 Reserved

61 Reserved 0 Reserved

62 xu_pc_err_invld_reld 0 The load-store unit received load data from the L2 when there were no
outstanding load requests. This error should be reported as a check-
stop.

63 fir_regs_parity_err 0 Parity error detected in one of the FIR related registers (Action0,
Action1, or Mask registers). The specific register that caused the error
can be determined by scanning out error reporting macro data from
the PC unit bcfg scan rings. This error should be reported as a check-
stop.

Table 15-8. FIR1 Action0 Register (FIR1A0)

Register Short Name: FIR1A0 Access: RW

Register Address: x‘0D’ RW Scan Ring: bcfg

Initial Value: 0x000000003FFFFFFF

Bits Function Initial
Value Description

0:31 Reserved 0

32 max_recov_err_cntr_value 0 Recoverable error counter maximum value - recoverable.

33 xu_pc_err_l2intrf_ecc 0 L2 interface recoverable error.

34 xu_pc_err_l2intrf_ue 1 L2 interface checkstop error.

35 xu_pc_err_l2credit_overrun 1 Store or load queue credit overrun checkstop error.

36:39 xu_pc_err_sprg_ue, T0 - T3 1111 SPRG array checkstop error.

40:43 xu_pc_err_regfile_ue, T0 - T3 1111 XU register file checkstop error.

44:47 fu_pc_err_regfile_ue, T0 - T3 1111 FU register file checkstop error.

48:51 xu_pc_err_nia_miscmpr, T0 - T3 1111 NIA miscompare checkstop error.

52:55 xu_pc_err_debug_event, T0 - T3 1111 Debug compare event.

56:59 iu_pc_err_ucode_illegal, T0 - T3 1111 Illegal microcoded instruction checkstop error.

60 Reserved 0 Reserved

Bits Function Initial
Value Description

next instruction address

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 714 of 864
Version 1.3

October 23, 2012

61 Reserved 0 Reserved

62 xu_pc_err_invld_reld 1 Load-store unit checkstop error.

63 fir_regs_parity_err 1 FIR related register (Action0, Action1, or Mask) checkstop error.

Table 15-9. FIR1 Action1 Register (FIR1A1)

Register Short Name: FIR1A1 Access: RW

Register Address: x‘0E’ RW Scan Ring: bcfg

Initial Value: 0x00000000C0000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 max_recov_err_cntr_value 1 Recoverable error counter maximum value - recoverable.

33 xu_pc_err_l2intrf_ecc 1 L2 interface recoverable error.

34 xu_pc_err_l2intrf_ue 0 L2 interface checkstop error.

35 xu_pc_err_l2credit_overrun 0 Store or load queue credit overrun checkstop error.

36:39 xu_pc_err_sprg_ue, T0 - T3 0000 SPRG array checkstop error.

40:43 xu_pc_err_regfile_ue, T0 - T3 0000 XU register file checkstop error.

44:47 fu_pc_err_regfile_ue, T0 - T3 0000 FU register file checkstop error.

48:51 xu_pc_err_nia_miscmpr, T0 - T3 0000 NIA miscompare checkstop error.

52:55 xu_pc_err_debug_event, T0 - T3 0000 Debug compare event.

56:59 iu_pc_err_ucode_illegal, T0 - T3 0000 Illegal microcoded instruction checkstop error.

60 Reserved 0 Reserved

61 Reserved 0 Reserved

62 xu_pc_err_invld_reld 0 Load-store unit checkstop error.

63 fir_regs_parity_err 0 FIR related register (Action0, Action1, or Mask) checkstop error.

Table 15-10. FIR1 Mask Register (FIR1M)

Register Short Name: FIR1M Access: RW, WO_AND, WO_OR

Register Address: x‘10’ RW
x‘11’ WO with AND Mask
x‘12’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x00000000FFFFFFFF

Bits Function Initial
Value Description

0:31 Reserved 0

32 max_recov_err_cntr_value 1 Recoverable error counter maximum value - recoverable.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 715 of 864

33 xu_pc_err_l2intrf_ecc 1 L2 interface recoverable error.

34 xu_pc_err_l2intrf_ue 1 L2 interface checkstop error.

35 xu_pc_err_l2credit_overrun 1 Store or load queue credit overrun checkstop error.

36:39 xu_pc_err_sprg_ue, T0 - T3 1111 SPRG array checkstop error.

40:43 xu_pc_err_regfile_ue, T0 - T3 1111 XU register file checkstop error.

44:47 fu_pc_err_regfile_ue, T0 - T3 1111 FU register file checkstop error.

48:51 xu_pc_err_nia_miscmpr, T0 - T3 1111 NIA miscompare checkstop error.

52:55 xu_pc_err_debug_event, T0 - T3 1111 Debug compare event.

56:59 iu_pc_err_ucode_illegal, T0 - T3 1111 Illegal microcoded instruction checkstop error.

60 Reserved 0 Reserved

61 Reserved 0 Reserved

62 xu_pc_err_invld_reld 1 Load-store unit checkstop error.

63 fir_regs_parity_err 1 FIR related register (Action0, Action1, or Mask) checkstop error.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 716 of 864
Version 1.3

October 23, 2012

15.3.5 Fault Isolation Register 2 and Associated Registers

The FIRs are implemented as a group of interrelated registers. This section contains register definitions for
FIR2:

• Fault Isolation Register 2 (FIR2)
• FIR2 Action 0 Register (FIR2A0)
• FIR2 Action 1 Register (FIR2A1)
• FIR2 Mask Register (FIR2M)

Bits in the Mask, Action0, and Action1 registers have a 1-to-1 correspondence to the FIR, and together deter-
mine how an unmasked error is reported. The following table describes the function of the Mask and Action
bits:

Mask(n) Action0(n) Action1(n) Resulting Action for FIR(n)

1 X X Masked. The error is latched in the FIR, but is not reported.

X 0 0 Masked. The error is latched in the FIR, but is not reported.

0 0 1 Recoverable. The error is latched and reported as recoverable.

0 1 0 System checkstop. The error is latched and reported as a checkstop; new errors blocked from set-
ting the FIR.

0 1 1 Local checkstop. The error r is latched and reported as a local core checkstop. Not used in the A2
core.

Table 15-11. Fault Isolation Register 2 (FIR2)

Register Short Name: FIR2 Access: RW, WO_AND, WO_OR

Register Address: x‘14’ RW
x‘15’ WO with AND Mask
x‘16’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 Thread 0 MCSR Error 0 These bits are set when the corresponding thread’s Machine Check
Syndrome Register (MCSR) has one or more of the errors listed below
(FIR2 - bits 36 through 46) active. These bits summarize the state of
each thread’s MCSR relative to the indicated errors.
The errors listed in FIR2[36:46] are the OR of the corresponding fails
from each thread’s MCSR. These errors are reported to software in
the failing thread’s MCSR,and, if enabled, cause a machine check
interrupt.

33 Thread 1 MCSR Error 0

34 Thread 2 MCSR Error 0

35 Thread 3 MCSR Error 0

36 xu_pc_err_ierat_parity 0 An I-ERAT parity error was detected by one or more threads.

37 xu_pc_err_derat_parity 0 A D-ERAT parity error was detected by one or more threads.

38 xu_pc_err_tlb_parity 0 A TLB parity error was detected by one or more threads.

39 xu_pc_err_tlb_lru_parity 0 A TLB LRU parity error was detected by one or more threads.

40 xu_pc_err_ierat_multihit 0 A multiple entry hit error was detected by the I-ERAT compare logic by
one or more threads.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 717 of 864

41 xu_pc_err_derat_multihit 0 A multiple entry hit error was detected by the D-ERAT compare logic
by one or more threads.

42 xu_pc_err_tlb_multihit 0 A multiple entry hit error was detected by the TLB compare logic by
one or more threads.

43 xu_pc_err_ext_mchk 0 An external device activated a machine check interrupt into the core.

44 xu_pc_err_local_snoop_reject 0 A local back-invalidate snoop was rejected due to an LPAR ID mis-
match.

45 Reserved 0 This field must be set to 0; it must not be set to 1. A value of 1 is
reserved.

46 xu_pc_err_mchk_disabled 0 A machine check interrupt occurred while machine checks were not
enabled. This error should be reported as a checkstop.
Note: Activation of an external machine check interrupt when
machine checks are disabled does not set this bit. The core does not
respond to the interrupt input when not enabled.

47:51 Reserved 0

52 iu_pc_err_icachedir_multihit 0 An I-cache directory multihit error was detected. The failing cache line
is invalidated.

53 xu_pc_err_dcachedir_multihit 0 A D-cache directory multihit error was detected. The failing cache line
is invalidated.

54:63 Reserved 0

Table 15-12. FIR2 Action0 Register (FIR2A0)

Register Short Name: FIR2A0 Access: RW

Register Address: x‘17’ RW Scan Ring: bcfg

Initial Value: 0x0000000000020000

Bits Function Initial
Value Description

0:31 Reserved 0

32 Thread 0 MCSR Error 0 T0 MCSR error summary. (Informational - indicates that T0 reported
an error on FIR2[36:46]).

33 Thread 1 MCSR Error 0 T1 MCSR error summary. (Informational - indicates that T1 reported
an error on FIR2[36:46]).

34 Thread 2 MCSR Error 0 T2 MCSR error summary. (Informational - indicates that T2 reported
an error on FIR2[36:46]).

35 Thread 3 MCSR Error 0 T3 MCSR error summary. (Informational - indicates that T3 reported
an error on FIR2[36:46]).

36 xu_pc_err_ierat_parity 0 I-ERAT parity recoverable error.

37 xu_pc_err_derat_parity 0 D-ERAT parity recoverable error.

38 xu_pc_err_tlb_parity 0 TLB parity recoverable error.

39 xu_pc_err_tlb_lru_parity 0 TLB LRU parity recoverable error.

40 xu_pc_err_ierat_multihit 0 I-ERAT multihit recoverable error.

41 xu_pc_err_derat_multihit 0 D-ERAT multihit recoverable error.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 718 of 864
Version 1.3

October 23, 2012

42 xu_pc_err_tlb_multihit 0 TLB multihit recoverable error.

43 xu_pc_err_ext_mchk 0 External machine check interrupt.

44 xu_pc_err_local_snoop_reject 0 Local back-invalidate snoop rejected. Should be set to recoverable.

45 Reserved 0 This bit is set to 0 at reset and must not be set to 1. When read, this bit
can be 1 or 0.

46 xu_pc_err_mchk_disabled 1 A machine check interrupt occurred while machine checks were not
enabled. This error should be reported as a checkstop.
Note: Activation of an external machine check interrupt when
machine checks are disabled does not set this bit. The core does not
respond to the interrupt input when not enabled.

47:51 Reserved 0

52 iu_pc_err_icachedir_multihit 0 I-cache directory multihit recoverable error.

53 xu_pc_err_dcachedir_multihit 0 D-cache directory multihit recoverable error.

54:63 Reserved 0

Table 15-13. FIR2 Action1 Register (FIR2A1)

Register Short Name: FIR2A1 Access: RW

Register Address: x‘18’ RW Scan Ring: bcfg

Initial Value: 0x000000000FFC0C00

Bits Function Initial
Value Description

0:31 Reserved 0

32 Thread 0 MCSR Error 0 T0 MCSR error summary. (Informational - indicates that T0 reported
an error on FIR2[36:46]).

33 Thread 1 MCSR Error 0 T1 MCSR error summary. (Informational - indicates that T1 reported
an error on FIR2[36:46]).

34 Thread 2 MCSR Error 0 T2 MCSR error summary. (Informational - indicates that T2 reported
an error on FIR2[36:46]).

35 Thread 3 MCSR Error 0 T3 MCSR error summary. (Informational - indicates that T3 reported
an error on FIR2[36:46]).

36 xu_pc_err_ierat_parity 1 I-ERAT parity recoverable error.

37 xu_pc_err_derat_parity 1 D-ERAT parity recoverable error.

38 xu_pc_err_tlb_parity 1 TLB parity recoverable error.

39 xu_pc_err_tlb_lru_parity 1 TLB LRU parity recoverable error.

40 xu_pc_err_ierat_multihit 1 I-ERAT multihit recoverable error.

41 xu_pc_err_derat_multihit 1 D-ERAT multihit recoverable error.

42 xu_pc_err_tlb_multihit 1 TLB multihit recoverable error.

43 xu_pc_err_ext_mchk 1 External machine check interrupt.

44 xu_pc_err_local_snoop_reject 1 Local back-invalidate snoop rejected. Can be set to recoverable.

45 Reserved 1 This bit is set to 0 at reset and must not be set to 1. When read, this bit
can be 1 or 0.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 719 of 864

46 xu_pc_err_mchk_disabled 0 A machine check interrupt occurred while machine checks were not
enabled. This error can be reported as a checkstop.
Note: Activation of the external machine check interrupt when
machine checks are disabled does not set this bit. The core does not
respond to the interrupt input when not enabled.

47:51 Reserved 0

52 iu_pc_err_icachedir_multihit 1 I-cache directory multihit recoverable error.

53 xu_pc_err_dcachedir_multihit 1 D-cache directory multihit recoverable error.

54:63 Reserved 0

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 720 of 864
Version 1.3

October 23, 2012

15.3.6 IU Debug Select Register (IDSR)

Table 15-14. FIR2 Mask Register (FIR2M)

Register Short Name: FIR2M Access: RW, WO_AND, WO_OR

Register Address: x‘1A’ RW
x‘1B’ WO with AND Mask
x‘1C’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x00000000FFFE0C00

Bits Function Initial
Value Description

0:31 Reserved 0

32 Thread 0 MCSR Error 1 T0 MCSR error summary.

33 Thread 1 MCSR Error 1 T1 MCSR error summary.

34 Thread 2 MCSR Error 1 T2 MCSR error summary.

35 Thread 3 MCSR Error 1 T3 MCSR error summary.

36 xu_pc_err_ierat_parity 1 I-ERAT parity error.

37 xu_pc_err_derat_parity 1 D-ERAT parity error.

38 xu_pc_err_tlb_parity 1 TLB parity error.

39 xu_pc_err_tlb_lru_parity 1 TLB LRU parity error.

40 xu_pc_err_ierat_multihit 1 I-ERAT multihit error.

41 xu_pc_err_derat_multihit 1 D-ERAT multihit error.

42 xu_pc_err_tlb_multihit 1 TLB multihit error.

43 xu_pc_err_ext_mchk 1 External machine check interrupt.

44 xu_pc_err_local_snoop_reject 1 Local back-invalidate snoop rejected error.

45 Reserved 1 This bit is set to 0 at reset and must not be set to 1. When read, this bit
can be 1 or 0.

46 xu_pc_err_mchk_disabled 1 A mchk interrupt occurred while machine checks were not enabled.

47:51 Reserved 0

52 iu_pc_err_icachedir_multihit 1 I-cache directory multihit error.

53 xu_pc_err_dcachedir_multihit 1 D-cache directory multihit error.

54:63 Reserved 0

Register Short Name: IDSR Access: RW

Register Address: x‘3C’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 721 of 864

IU Debug Mux1 Controls (8:1 Debug Multiplexer)

32:34 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
000 Debug group 0.
001 Debug group 1.
010 Debug group 2.
 | |
111 Debug group 7.

35:36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No Rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug GrouP Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 722 of 864
Version 1.3

October 23, 2012

IU Debug Mux2 Controls (16:1 Debug Multiplexer)

48:51 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 723 of 864

15.3.7 MMU/PC Debug Select Register (MPDSR)

Register Short Name: MPDSR Access: RW

Register Address: x‘3D’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

MMU Debug Mux1 Controls (16:1 Debug Multiplexer)

32:35 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No Rotate.
1 Trigger Group Data [6:11 and 0:5].

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 724 of 864
Version 1.3

October 23, 2012

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

PC Debug Mux1 Controls (8:1 Debug Multiplexer)

48:50 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
000 Debug group 0.
001 Debug group 1.
010 Debug group 2.
 | |
111 Debug group 7.

51:52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 725 of 864

15.3.8 PC Configuration Register 0 (PCCR0)

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Table 15-15. PC Configuration Register 0 (PCCR0)

Register Short Name: PCCR0 Access: RW, WO_AND, WO_OR

Register Address: x‘33’ RW
x‘34’ WO with AND Mask
x‘35’ WO with OR Mask

Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 Enable Debug Mode 0 This bit places the core in debug mode.
It is used to enable debug logic such as the trace and trigger multiplexer
controls and buses.
Enabling debug mode allows various debug functions to be performed
(that is: instruction stepping; activating unconditional debug events; and
miscellaneous debug controls such as THRCTL[ASYNC_DIS, TB_DIS,
and DEC_DIS]).

33 Enable Ram Operations 0 This bit enables Ram mode operation through the RAMI, RAMC, and
RAMD registers.
It is gated with various RAMC control signals, such as: Ram Mode, Ram
Execute, MSR Override Enable, Flush Thread, and Force Ram.

34 Enable Error Injection 0 This bit enables control signals set in the ERRINJ register to force errors
to test error recovery methods.

35 Enable External Debug Stop 0 When set, this bit enables the input signal an_ac_debug_stop to stop all
threads.

36 Disable Xstop Reporting in Ram Mode 0 Setting this bit blocks the reporting of checkstop errors outside of the core
(to the chiplet FIR) when in Ram mode. A checkstop error is still indicated
by the RAMCError bit and the FIR.

37 Enable Fast Clockstop 0 This bit enables a checkstop error to directly force all core tholds active,
thereby quickly stopping clocks.
Note: The core must be in debug mode (PC Configuration Register 0, bit
32 = 1) for this bit to be valid.

38 Disable Power-savings 0 This bit blocks power-saving controls from raising the run tholds, and
thereby forcing off the associated latch clocks.
Other power-savings control signals (that is, ac_an_rvwinkle_mode) are
still active, but all core latch clocks remain enabled.

39:47 Reserved 0

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 726 of 864
Version 1.3

October 23, 2012

15.3.9 Ram Data Registers (RAMD, RAMDH, RAMDL)

48:51 Recoverable Error Counter 0 This 4-bit counter increments whenever an unmasked recoverable error
occurs. When the count value reaches 15, an error bit is set in FIR1.
The count value can be read to obtain the current value or written to pre-
set or clear it.
Note: Write access to the Recoverable Error Counter is only supported
through the RW SCOM address.

52:54 T0_DBA 000 Additional actions that can be selected when a debug compare event
occurs for the indicated thread (sets DBCR0[EDM] status bit).
Debug Action Select:
000 No action.
001 Reserved (no action).
010 Stop specified thread.
011 Stop all threads.
100 Activate error signal (sets FIR1[52:55] for the appropriate

thread).
101 Activate external signal (ac_an_debug_trigger pulse).
110 Activate external signal and stop specified thread.
111 Activate external signal and stop all threads.

55:57 T1_DBA 000

58:60 T2_DBA 000

61:63 T3_DBA 000

Table 15-16. Ram Data Register (RAMD)

Register Short Name: RAMD Access: RW

Register Address: x‘2D’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:63 Ram Data(0 to 63) 0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
Provides read/write control over the Ram Data Registers in implementations supporting 64-bit
access.
The Ram Data Registers are updated upon activation of RAMCDone.

Table 15-17. Ram Data Register High (RAMDH)

Register Short Name: RAMDH Access: RW

Register Address: x‘2E’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Data(0 to 31) 0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
The Ram Data Registers are updated upon activation of RAMCDone.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 727 of 864

15.3.10 Ram Instruction and Command Registers (RAMC, RAMI, RAMIC)

Note: Although bits of the Ram Command register can be set at any time through SCOM writes, the Ram
mode function and control signals are only active when Ram Mode Enable (PCCR0[33] = ‘1’) has been set.

Table 15-18. Ram Data Register Low (RAMDL)

Register Short Name: RAMDL Access: RW

Register Address: x‘2F’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Data
(32 to 63)

0 When in Ram mode, the results of any instruction operation are written to the Ram Data Reg-
isters.
The Ram Data Registers are updated upon activation of RAMCDone.

Table 15-19. Ram Command Register (RAMC)

Register Short Name: RAMC Access: RW, WO_AND, WO_OR

Register Address: x‘2A’ RW
x‘2B’ WO with AND Mask
x‘2C’ WO with OR Mask

Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32 Ram Instruction Tgt1 Field Extension 0 Provides the highest order bit of the Tgt1 field when using uCode ROM
scratch register as the instruction target.

33 Ram Instruction Src1 Field Extension 0 Provides the highest order bit of the Src1 field when using uCode ROM
scratch register as the instruction source.

34 Ram Instruction Src2 Field Extension 0 Provides the highest order bit of the Src2 field when using uCode ROM
scratch register as the instruction source.

35 Ram Instruction Src3 Field Extension 0 Provides the highest order bit of the Src3 field when using uCode ROM
scratch register as the instruction source.

36:43 Reserved 0

44 Ram Mode 0 Sets Ram mode for the selected thread.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) for this bit to be valid.

45:46 Thread Select 0 Encoded thread selects for Ram operation.
00 Thread 0.
01 Thread 1.
10 Thread 2.
11 Thread 3.

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 728 of 864
Version 1.3

October 23, 2012

47 Execute 0 When set, the Ram instruction is forced into the processor pipeline for the
selected thread.
This bit is nonpersistent; it is pulsed for one cycle and reset.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the Ram Execute signal to be valid.

48 MSR Override Enable 0 This bit enables the override of certain MSR bits for the Rammed thread.
This capability allows access to SPRs for debug where normal program
permissions would restrict that access. It can also be used to force debug
interrupts active or inactive.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR Override Enable signal to be
valid.

49 MSR[PR] Override 0 Along with MSR Override Enable, determines the problem state for the
thread. It replaces the MSR output, but does not alter the actual register
bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR[PR] Override signal to be
valid.

50 MSR[GS] Override 0 Along with MSR Override Enable, determines the guest state for the
thread. It replaces the MSR output, but does not alter the actual register
bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the MSR[GS] Override signal to be
valid.

51 Force Ram 0 When set, the Rammed instruction is forced to completion. The intention
for this bit is to work around situations where the pipeline is stalled waiting
for load data or other conflicts.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram mode active for the Force Ram signal to be valid.

52 Flush Thread 0 When set, the Rammed thread’s pipeline is flushed.
This bit is nonpersistent; it is pulsed for one cycle and reset.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) for the Flush Thread signal to be valid.

53 MSR[DE] Override 0 Along with MSR Override Enable, determines if debug interrupts are
enabled for the thread. It replaces the MSR output, but does not alter the
actual register bit.
Note: Ram operations must be enabled (PC Configuration Register 0, bit
33 = 1) with Ram Mode active for the MSR[DE] Override signal to be
valid.

54:60 Reserved 0

61 Interrupt 0 Status bit indicating that the Rammed instruction resulted in an enabled
exception. Interrogation of interrupt facilities (SRR0, SRR1, and so forth)
might be required to determine the cause of the exception.

62 Error 0 Status bit indicating that the FIR contains a checkstop error. While in Ram
mode, the reporting of checkstops outside the core (to the chiplet FIR)
can be blocked by setting PC Configuration Register 0, bit 36 = 1.

63 Done 0 Status bit indicating that the previously executed Ram Instruction has
completed.
This bit is cleared when RAMC[Execute] is activated.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 729 of 864

15.3.11 Special Attention Register (SPATTN)

The Special Attention Register (SPATTN) is a 32-bit SCOM accessible register used to control reporting of
special attentions outside of the core. Functionally, the SPATTN register is divided into two halves: special
attention sources and their corresponding mask bits. SPATTN[32:47] provide information about which special
attention sources are active. SPATTN[48:63] contain the corresponding mask bit for each special attention
source.

The mask bits are initialized to 1, which blocks reporting of all special attention sources. When a mask bit is
cleared, the corresponding special attention source bit is enabled to report a special attention outside of the
core when active. A special attention is reported either through an actual special attention condition or
through a SCOM write that sets the source bit. The A2 core reports special attentions (per thread) through the
ac_an_special_attn[0:3] output.

Table 15-20. Ram Instruction Register (RAMI)

Register Short Name: RAMI Access: RW

Register Address: x‘29’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

32:63 Ram Instruction 0 Instruction to be executed through a Ram operation.
See the RAMC Register for related Ram control bits.

Table 15-21. Ram Instruction and Command Register (RAMIC)

Register Short Name: RAMIC Access: RW

Register Address: x‘28’ RW Scan Ring: func

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 RAMI(32 to 63) 0 Provides read/write control over the Ram Instruction and Command Registers in implementa-
tions supporting 64-bit access.
See the RAMI and RAMC registers for individual bit descriptions.

32:63 RAMC(32 to 63) 0

Table 15-22. Special Attention Register

Register Short Name: SPATTN Access: RW, WO_AND, WO_OR

Register Address: x‘36’ RW
x‘37’ WO with AND Mask
x‘38’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x000000000000F000

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 730 of 864
Version 1.3

October 23, 2012

15.3.12 Thread Control and Status Register (THRCTL)

Bits Function Initial
Value Description

0:31 Reserved 0

32 Attention Instruction, T0 0 Execution of an attention (attn) instruction by a thread sets the corre-
sponding SPATTN register bit.
Note: CCR2[EN_ATTN] must be set in order for the attention instruc-
tion to update the SPATTN register. With CCR2[EN_ATTN] cleared,
an attention is treated as an illegal instruction type of program inter-
rupt.

33 Attention Instruction, T1 0

34 Attention Instruction, T2 0

35 Attention Instruction, T3 0

36:47 Reserved 0

48 Attention Instruction Mask, T0 1 When this bit is 1, reporting of special attentions through SPATTN[32]
is masked off. When cleared, setting SPATTN[32] activates
ac_an_special_attn[0] to report a thread 0 special attention.

49 Attention Instruction Mask, T1 1 When this bit is 1, reporting of special attentions through SPATTN[33]
is masked off. When cleared, setting SPATTN[33] activates
ac_an_special_attn[1] to report a thread 1 special attention.

50 Attention Instruction Mask, T2 1 When this bit is 1, reporting of special attentions through SPATTN[34]
is masked off. When cleared, setting SPATTN[34] activates
ac_an_special_attn[2] to report a thread 2 special attention.

51 Attention Instruction Mask, T3 1 When this bit is 1, reporting of special attentions through SPATTN[35])
is masked off. When cleared, setting SPATTN[35] activates
ac_an_special_attn[3] to report a thread 3 special attention.

52:63 Reserved 0

Table 15-23. Thread Control and Status Register (THRCTL)

Register Short Name: THRCTL Access: RW, WO_AND, WO_OR

Register Address: x‘30’ RW
x‘31’ WO with AND Mask
x‘32’ WO with OR Mask

Scan Ring: bcfg

Initial Value: 0x0000000000000000

Bits Field Name Initial
Value Description

0:31 Reserved 0

32 T0_STOP 0 When set, this thread stops instruction fetch and enters a stopped state. Instructions cur-
rently in the pipeline continue to completion.
When reset, program execution resumes at the next instruction address available before
stopping.
In addition to a SCOM write, these bits can be set by the following conditions:

• An enabled checkstop error.
• A debug compare event (when PCCR0[Tx_DBA] bits are configured to stop the

thread upon occurrence of the compare event).
• An attn instruction when configured by CCR2[EN_ATTN].

33 T1_STOP 0

34 T2_STOP 0

35 T3_STOP 0

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 731 of 864

15.3.13 XU Debug Select Register1 (XDSR1)

36 T0_STEP 0 Writing a ‘1’ to this location causes one instruction for this thread to be issued. This bit is
reset upon completion of the stepped instruction.
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for the
single-step signals to be valid.

Note: Before activating Tx_STEP, the corresponding thread should be stopped
(Tx_STOP = 1 and Tx_RUN = 0).

37 T1_STEP 0

38 T2_STEP 0

39 T3_STEP 0

40 T0_RUN 0 Status bit indicating that the thread is in a running state when set.
When ‘0’, the thread is stopped.
This bit is read only. Writes have no effect.

41 T1_RUN 0

42 T2_RUN 0

43 T3_RUN 0

44 T0_PM 0 Status bit indicating that the thread is stopped due to power management. This could be
the result of a power-savings (wait) instruction or the an_ac_pm_thread_stop input con-
trol.
This bit is read only. Writes have no effect.

45 T1_PM 0

46 T2_PM 0

47 T3_PM 0

48 T0_UDE 0 A low-to-high transition activates an unconditional debug event pulse, which sets the
corresponding DBSR[UDE] bit for this thread.
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for the
UDE signals to be valid.

Note: Activation of the unconditional debug event does not clear this bit. Another SCOM
write must be performed to reset it.

49 T1_UDE 0

50 T2_UDE 0

51 T3_UDE 0

52 ASYNC_DIS 0 This bit provides a global disable to any thread’s asynchronous interrupts as long as the
associated thread is stopped through pervasive (THRCTL[Tx_STOP],
an_ac_debug_stop or an_ac_pm_thread_stop) controls. The asynchronous interrupts
are re-enabled whenever the thread is put in a running state (this includes activation dur-
ing a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

53 TB_DIS 0 Setting this bit blocks incrementing of the time base whenever all threads are stopped
through pervasive (THRCTL[Tx_STOP], an_ac_debug_stop or an_ac_pm_thread_stop)
controls. The time base count continues whenever any thread is in a running state (this
includes activation during a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

54 DEC_DIS 0 Setting this bit blocks the counting of any thread’s decrementer, as long as that thread is
stopped through pervasive (THRCTL[Tx_STOP], an_ac_debug_stop or
an_ac_pm_thread_stop) controls. Decrementer counting is re-enabled whenever the
thread is put in a running state (this includes activation during a single-step pulse).
Note: The core must be in debug mode (PC Configuration Register 0, bit 32 = 1) for this
signal to be valid.

55:63 Reserved 0

Register Short Name: XDSR1 Access: RW

Register Address: x‘3E’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Field Name Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 732 of 864
Version 1.3

October 23, 2012

Bits Function Initial
Value Description

0:31 Reserved 0

XU Debug Mux1 Controls (16:1 Debug Multiplexer)

32:35 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger Group 0.
01 Trigger Group 1.
10 Trigger Group 2.
11 Trigger Group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group data [0:11] - No Rotate.
1 Trigger Group data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5]
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 733 of 864

XU Debug Mux2 Controls (32:1 Debug Multiplexer)

48:52 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00000 Debug group 0.
00001 Debug group 1.
00010 Debug group 2.
 | |
11111 Debug group 31.

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 734 of 864
Version 1.3

October 23, 2012

15.3.14 XU Debug Select Register2 (XDSR2)

Register Short Name: XDSR2 Access: RW

Register Address: x‘3F’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

XU Debug Mux3 Controls (32:1 Debug Multiplexer)

32:36 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00000 Debug group 0.
00001 Debug group 1.
00010 Debug group 2.
 | |
11111 Debug group 31.

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

SCOM Accessible Registers

Page 735 of 864

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

XU Debug Mux4 Controls (4:1 Debug Multiplexer)

48:49 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00 Debug group 0.
01 Debug group 1.
10 Debug group 2.
11 Debug group 3.

50:52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

SCOM Accessible Registers

Page 736 of 864
Version 1.3

October 23, 2012

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 737 of 864

Appendix A. Processor Instruction Summary

This appendix lists all of the A2 core instructions, summarized alphabetically by mnemonic. Extended
mnemonics are not included in the opcode list. Reserved-nop opcodes are included.

A.1 Instruction Formats

Instructions are 4 bytes long. Instruction addresses are always word aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode
in another field. Remaining instruction bits contain additional fields. All instruction fields belong to one of the
following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format dia-
grams specify the values of defined fields.

• Variable

These fields contain operands, such as GPR selectors and immediate values, that can vary from execu-
tion to execution. The instruction format diagrams specify the operands in the variable fields.

• Reserved

Bits in reserved fields should be set to 0. In the instruction format diagrams, /, //, or /// denotes a reserved
field, in a register, instruction, field, or bit string.

If any bit in a defined field does not contain the expected value, the instruction is illegal, and an illegal instruc-
tion exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid; its result
is architecturally undefined. The A2 core executes all invalid instruction forms without causing an illegal
instruction exception.

A.2 Implemented Instructions Sorted by Mnemonic

The Form column in Table A-1 refers to the arrangement of valid field combinations within the 4-byte instruc-
tion. See the Power ISA, V 2.06B for a definition of the terms used in this column and the Category column.

In the Implemented column, “Y” indicates that the A2 core does implement this instruction. An “N” indicates
that this instruction is not implemented.

In the Microcoded column, “Y” indicates that the A2 implementation is via microcode.

general purpose register

User’s Manual

A2 Processor

Processor Instruction Summary

Page 738 of 864
Version 1.3

October 23, 2012

Table A-1. A2 Core Instructions by Mnemonic (Sheet 1 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

31 266 XO add B Y 6:10 11:15 16:20 2 Add

31 266 XO add. B Y 6:10 11:15 16:20 2 Add and Record

31 10 XO addc B Y 6:10 11:15 16:20 2 Add with Carry

31 10 XO addc. B Y 6:10 11:15 16:20 2 Add with Carry and Record

31 10 XO addco B Y 6:10 11:15 16:20 2 Add with Carry and Overflow

31 10 XO addco. B Y 6:10 11:15 16:20 2 Add with Carry and Overflow and
Record

31 138 XO adde B Y 6:10 11:15 16:20 2 Add Extended

31 138 XO adde. B Y 6:10 11:15 16:20 2 Add Extended with Record

31 138 XO addeo B Y 6:10 11:15 16:20 2 Add Extended with Overflow

31 138 XO addeo. B Y 6:10 11:15 16:20 2 Add Extended with Overflow and
Record

31 74 XO addg6s B N 6:10 11:15 16:20 Add and Generate Sixes

14 D addi B Y 6:10 11:15 2 Add Immediate

12 D addic B Y 6:10 11:15 2 Add Immediate and Carry

13 D addic. B Y 6:10 11:15 2 Add Immediate with Carry and Record

15 D addis B Y 6:10 11:15 2 Add Immediate Shifted

31 234 XO addme B Y 6:10 11:15 2 Add to Minus One Extended

31 234 XO addme. B Y 6:10 11:15 2 Add to Minus One Extended and
Record

31 234 XO addmeo B Y 6:10 11:15 2 Add to Minus One Extended with Over-
flow

31 234 XO addmeo. B Y 6:10 11:15 2 Add to Minus One Extended with Over-
flow and Record

31 266 XO addo B Y 6:10 11:15 16:20 2 Add with Overflow

31 266 XO addo. B Y 6:10 11:15 16:20 2 Add with Overflow and Record

31 202 XO addze B Y 6:10 11:15 2 Add to Zero Extended

31 202 XO addze. B Y 6:10 11:15 2 Add to Zero Extended and Record

31 202 XO addzeo B Y 6:10 11:15 2 Add to Zero Extended with Overflow

31 202 XO addzeo. B Y 6:10 11:15 2 Add to Zero Extended with Overflow
and Record

31 28 X and B Y 11:15 6:10 16:20 1 And

31 28 X and. B Y 11:15 6:10 16:20 1 And and Record

31 60 X andc B Y 11:15 6:10 16:20 1 And with Complement

31 60 X andc. B Y 11:15 6:10 16:20 1 And with Complement and Record

28 D andi. B Y 11:15 6:10 1 And Immediate and Record

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 739 of 864

29 D andis. B Y 11:15 6:10 1 And Immediate Shifted and Record

0 256 TAG attn SP Y n/a Attention

18 I b B Y 1 Branch

18 I ba B Y 1 Branch Absolute

16 B bc B Y Branch Conditional

16 B bca B Y 1 Branch Conditional Absolute

19 528 XL bcctr B Y 1 Branch Conditional to Count

19 528 XL bcctrl B Y Branch Conditional to Count and Link

16 B bcl B Y Branch Conditional and Link

16 B bcla B Y Branch Conditional Absolute and Link

19 16 XL bclr B Y Branch Conditional to Link Register

19 16 XL bclrl B Y Branch Conditional to Link Register and
Link

18 I bl B Y Branch and Link

18 I bla B Y Branch Absolute and Link

31 252 X bpermd 64 Y Y 11:15 6:10 16:20 Bit Permute Doubleword

4 527 EVX brinc SP N 6:10 11:15 16:20 Bit Reversed Increment

31 314 X cbcdtd B N 11:15 6:10 Convert Binary Coded Decimal To
Declets

31 282 X cdtbcd B N 11:15 6:10 Convert Declets To Binary Coded Deci-
mal

31 0 X cmp B Y 11:15 16:20 2 Compare

31 508 X cmpb B Y 11:15 6:10 16:20 2 Compare Byte

11 D cmpi B Y 11:15 2 Compare Immediate

31 32 X cmpl B Y 11:15 16:20 2 Compare Logical

10 D cmpli B Y 11:15 2 Compare Logical Immediate

31 58 X cntlzd 64 Y Y 11:15 6:10 Count Leading Zeros Doubleword

31 58 X cntlzd. 64 Y Y 11:15 6:10 Count Leading Zeros Doubleword and
Record

31 26 X cntlzw B Y Y 11:15 6:10 Count Leading Zeros Word

31 26 X cntlzw. B Y Y 11:15 6:10 Count Leading Zeros Word and Record

19 257 XL crand B Y 1 Condition Register And

19 129 XL crandc B Y 1 Condition Register And with Comple-
ment

19 289 XL creqv B Y 1 Condition Register Equivalent

19 225 XL crnand B Y 1 Condition Register NAND

Table A-1. A2 Core Instructions by Mnemonic (Sheet 2 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

not And

User’s Manual

A2 Processor

Processor Instruction Summary

Page 740 of 864
Version 1.3

October 23, 2012

19 33 XL crnor B Y 1 Condition Register NOR

19 449 XL cror B Y 1 Condition Register OR

19 417 XL crorc B Y 1 Condition Register OR with Comple-
ment

19 193 XL crxor B Y 1 Condition Register XOR

31 758 X dcba E Y 11:15 16:20 1 Data Cache Block Allocate

31 86 X dcbf B Y 11:15 16:20 1 Data Cache Block Flush

31 127 X dcbfep E.PD Y 11:15 16:20 1 Data Cache Block Flush by External
PID

31 470 X dcbi E Y 11:15 16:20 1 Data Cache Block Invalidate

31 390 X dcblc E.CL Y 7:10 11:15 16:20 1 Data Cache Block Lock Clear

31 54 X dcbst B Y 11:15 16:20 1 Data Cache Block Store

31 63 X dcbstep E.PD Y 11:15 16:20 1 Data Cache Block Store by External
PID

31 278 X dcbt B Y 11:15 16:20 1 Data Cache Block Touch

31 319 X dcbtep E.PD Y 11:15 16:20 1 Data Cache Block Touch by External
PID

31 166 X dcbtls E.CL Y 11:15 16:20 1 Data Cache Block Touch and Lock Set

31 246 X dcbtst B Y 11:15 16:20 1 Data Cache Block Touch for Store

31 255 X dcbtstep E.PD Y 11:15 16:20 1 Data Cache Block Touch for Store by
External PID

31 134 X dcbtstls E.CL Y 11:15 16:20 1 Data Cache Block Touch for Store and
Lock Set

31 1014 X dcbz B Y 11:15 16:20 1 Data Cache Block set to Zero

31 1023 X dcbzep E.PD Y 11:15 16:20 1 Data Cache Block set to Zero by Exter-
nal PID

31 454 X dci E.CI Y Data Cache Invalidate

31 326 X dcread E.CD N 6:10 11:15 16:20 Data Cache Read [Alternate Encoding]

31 486 X dcread E.CD N 6:10 11:15 16:20 Data Cache Read

31 489 XO divd 64 Y 6:10 11:15 16:20 Divide Doubleword

31 489 XO divd. 64 Y 6:10 11:15 16:20 Divide Doubleword and Record

31 425 XO divde 64 Y 6:10 11:15 16:20 Divide Doubleword Extended

31 425 XO divde. 64 Y 6:10 11:15 16:20 Divide Doubleword Extended and
Record

31 425 XO divdeo 64 Y 6:10 11:15 16:20 Divide Doubleword Extended with
Overflow

31 425 XO divdeo. 64 Y 6:10 11:15 16:20 Divide Doubleword Extended with
Overflow and Record

31 393 XO divdeu 64 Y 6:10 11:15 16:20 Divide Doubleword Extended

Table A-1. A2 Core Instructions by Mnemonic (Sheet 3 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

not OR

exclusive OR

processor ID

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 741 of 864

31 393 XO divdeu. 64 Y 6:10 11:15 16:20 Divide Doubleword Extended and
Record

31 393 XO divdeuo 64 Y 6:10 11:15 16:20 Divide Doubleword Extended with
Overflow

31 393 XO divdeuo. 64 Y 6:10 11:15 16:20 Divide Doubleword Extended with
Overflow and Record

31 489 XO divdo 64 Y 6:10 11:15 16:20 Divide Doubleword with Overflow

31 489 XO divdo. 64 Y 6:10 11:15 16:20 Divide Doubleword with Overflow and
Record

31 457 XO divdu 64 Y 6:10 11:15 16:20 Divide Doubleword Unsigned

31 457 XO divdu. 64 Y 6:10 11:15 16:20 Divide Doubleword Unsigned and
Record

31 457 XO divduo 64 Y 6:10 11:15 16:20 Divide Doubleword Unsigned with
Overflow

31 457 XO divduo. 64 Y 6:10 11:15 16:20 Divide Doubleword Unsigned with
Overflow and Record

31 491 XO divw B Y 6:10 11:15 16:20 Divide Word

31 491 XO divw. B Y 6:10 11:15 16:20 Divide Word and Record

31 427 XO divwe B Y 6:10 11:15 16:20 Divide Word Extended

31 427 XO divwe. B Y 6:10 11:15 16:20 Divide Word Extended and Record

31 427 XO divweo B Y 6:10 11:15 16:20 Divide Word Extended with Overflow

31 427 XO divweo. B Y 6:10 11:15 16:20 Divide Word Extended with Overflow
and Record

31 395 XO divweu B Y 6:10 11:15 16:20 Divide Word Extended Unsigned

31 395 XO divweu. B Y 6:10 11:15 16:20 Divide Word Extended Unsigned and
Record

31 395 XO divweuo B Y 6:10 11:15 16:20 Divide Word Extended Unsigned with
Overflow

31 395 XO divweuo. B Y 6:10 11:15 16:20 Divide Word Extended Unsigned with
Overflow and Record

31 491 XO divwo B Y 6:10 11:15 16:20 Divide Word with Overflow

31 491 XO divwo. B Y 6:10 11:15 16:20 Divide Word with Overflow and Record

31 459 XO divwu B Y 6:10 11:15 16:20 Divide Word Unsigned

31 459 XO divwu. B Y 6:10 11:15 16:20 Divide Word Unsigned and Record

31 459 XO divwuo B Y 6:10 11:15 16:20 Divide Word Unsigned with Overflow

31 459 XO divwuo. B Y 6:10 11:15 16:20 Divide Word Unsigned with Overflow
and Record

31 78 X dlmzb LMV N 11:15 6:10 16:20 Determine Leftmost Zero Byte

31 78 X dlmzb. LMV N 11:15 6:10 16:20 Determine Leftmost Zero Byte and
Record

Table A-1. A2 Core Instructions by Mnemonic (Sheet 4 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 742 of 864
Version 1.3

October 23, 2012

19 198 XFX dnh E.ED N Debugger Notify Halt

19 402 XL doze S N Doze

dss N Data Stream Stop

dst N Data Stream Touch

dstst N Data Stream Touch for Store

31 310 X eciwx EC N 6:10 11:15 16:20 External Control in Word Indexed

31 438 X ecowx EC N 6:10 11:15 16:20 External Control out Word Indexed

31 270 XL ehpriv E.HV Y ~16 Generate Embedded Hypervisor Privi-
lege Exception

31 854 X eieio S N Enforce In-order Execution of I/O

31 284 X eqv B Y 11:15 6:10 16:20 2 Equivalent

31 284 X eqv. B Y 11:15 6:10 16:20 2 Equivalent and Record

31 51 X eratilx E.A2 Y 11:15 16:20 ~16 ERAT Invalidate Local Indexed

31 819 X erativax E.A2 Y 11:15 16:20 6:10 ~16 ERAT Invalidate Virtual Address
Indexed

31 179 X eratre E.A2 Y 6:10 11:15 16:20 ~16 ERAT Read Entry

31 883 X eratsrx. E.A2 N 11:15 16:20 ~16 ERAT Search and Reserve Indexed
and Record

31 147 X eratsx E.A2 Y 6:10 11:15 16:20 ~16 ERAT Search Indexed

31 147 X eratsx. E.A2 Y 6:10 11:15 16:20 ~16 ERAT Search Indexed and Record

31 211 X eratwe E.A2 Y 6:10 11:15 16:20 ~16 ERAT Write Entry

31 954 X extsb B Y 11:15 6:10 2 Extend Sign Byte

31 954 X extsb. B Y 11:15 6:10 2 Extend Sign Byte and Record

31 922 X extsh B Y 11:15 6:10 2 Extend Sign Halfword

31 922 X extsh. B Y 11:15 6:10 2 Extend Sign Halfword and Record

31 986 X extsw 64 Y 11:15 6:10 2 Extend Sign Word

31 986 X extsw. 64 Y 11:15 6:10 2 Extend Sign Word and Record

19 274 XL hrfid S N Hypervisor Return from Interrupt Dou-
bleword

31 982 X icbi B Y 11:15 16:20 ~16 Instruction Cache Block Invalidate

31 991 X icbiep E.PD Y 11:15 16:20 ~16 Instruction Cache Block Invalidate by
External PID

31 230 X icblc E.CL Y 11:15 16:20 1 Instruction Cache Block Lock Clear

31 22 X icbt E Y 11:15 16:20 1 Instruction Cache Block Touch

31 486 X icbtls E.CL Y 11:15 16:20 1 Instruction Cache Block Touch and
Lock Set

31 966 X ici E.CI Y Instruction Cache Invalidate

Table A-1. A2 Core Instructions by Mnemonic (Sheet 5 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

effective to real address translation

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 743 of 864

31 998 X icread E.CD N 11:15 16:20 Instruction Cache Read

31 950 X icswepx Cop Y 11:15 16:20 6:10 1 Initiate Coprocessor Store Word Exter-
nal PID Indexed

31 950 X icswepx. Cop Y 11:15 16:20 6:10 sys Initiate Coprocessor Store Word Exter-
nal PID Indexed and Record

31 406 X icswx Cop Y 11:15 16:20 6:10 1 Initiate Coprocessor Store Word
Indexed

31 406 X icswx. Cop Y 11:15 16:20 6:10 sys Initiate Coprocessor Store Word
Indexed and Record

31 15 A isel B Y 6:10 11:15 16:20 2 Integer Select

19 150 XL isync B Y ~16:16 Instruction Synchronize

31 95 X lbepx E.PD Y 6:10 11:15 16:20 6 Load Byte by External Process ID
Indexed

34 D lbz B Y 6:10 11:15 6 Load Byte and Zero

35 D lbzu B Y Y 6:10 11:15 Load Byte and Zero with Update

31 119 X lbzux B Y Y 6:10 11:15 16:20 Load Byte and Zero with Update
Indexed

31 87 X lbzx B Y 6:10 11:15 16:20 6 Load Byte and Zero Indexed

58 0 DS ld 64 Y 6:10 11:15 6 Load Doubleword

31 84 X ldarx 64 Y 6:10 11:15 16:20 sys Load Doubleword and Reserve Indexed

31 212 X ldawx. Y 6:10 11:15 16:20 6 Load Doubleword and Watch Indexed

31 532 X ldbrx 64 Y 6:10 11:15 16:20 6 Load Double Byte and Reverse
Indexed

31 29 X ldepx 64 Y 6:10 11:15 16:20 6 Load Doubleword by External Process
ID Indexed

58 1 DS ldu 64 Y Y 6:10 11:15 Load Doubleword with Update

31 53 X ldux 64 Y Y 6:10 11:15 16:20 Load Doubleword with Update Indexed

31 21 X ldx 64 Y 6:10 11:15 16:20 6 Load Doubleword Indexed

42 D lha B Y 6:10 11:15 6 Load Halfword Algebraic

43 D lhau B Y Y 6:10 11:15 Load Halfword Algebraic with Update

31 375 X lhaux B Y Y 6:10 11:15 16:20 Load Halfword Algebraic with Update
Indexed

31 343 X lhax B Y 6:10 11:15 16:20 6 Load Halfword Algebraic Indexed

31 790 X lhbrx B Y 6:10 11:15 16:20 6 Load Halfword Byte-Reverse Indexed

31 287 X lhepx E.PD Y 6:10 11:15 16:20 6 Load Halfword by External Process ID
Indexed

40 D lhz B Y 6:10 11:15 6 Load Halfword and Zero

41 D lhzu B Y Y 6:10 11:15 Load Halfword and Zero with Update

Table A-1. A2 Core Instructions by Mnemonic (Sheet 6 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 744 of 864
Version 1.3

October 23, 2012

31 311 X lhzux B Y Y 6:10 11:15 16:20 Load Halfword and Zero with Update
Indexed

31 279 X lhzx B Y 6:10 11:15 16:20 6 Load Halfword and Zero Indexed

46 D lmw B Y Y 6:10 11:15 uc Load Multiple Word

56 DQ lq LSQ N 6:10 11:15 Load Quadword

31 597 X lswi B Y Y 6:10 11:15 Load String Word Immediate

31 533 X lswx B Y Y 6:10 11:15 16:20 Load String Word Indexed

58 2 DS lwa 64 Y 6:10 11:15 6 Load Word Algebraic

31 20 X lwarx B Y 6:10 11:15 16:20 sys Load Word and Reserve Indexed

31 373 X lwaux 64 Y Y 6:10 11:15 16:20 Load Word Algebraic with Update
Indexed

31 341 X lwax 64 Y 6:10 11:15 16:20 6 Load Word Algebraic Indexed

31 534 X lwbrx B Y 6:10 11:15 16:20 6 Load Word Byte-Reverse indexed

31 31 X lwepx E.PD Y 6:10 11:15 16:20 6 Load Word by External Process ID
Indexed

32 D lwz B Y 6:10 11:15 6 Load Word and Zero

33 D lwzu B Y Y 6:10 11:15 Load Word and Zero with Update

31 55 X lwzux B Y Y 6:10 11:15 16:20 Load Word and Zero with update
Indexed

31 23 X lwzx B Y 6:10 11:15 16:20 6 Load Word and Zero Indexed

4 172 XO macchw LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Signed

4 172 XO macchw. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Signed and Record

4 172 XO macchwo LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Signed with Overflow

4 172 XO macchwo. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Signed with Record and
Overflow

4 236 XO macchws LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Signed

4 236 XO macchws. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Signed and Record

4 236 XO macchwso LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Signed with Overflow

4 236 XO macchwso. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Signed with Record and
Overflow

4 204 XO macchwsu LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Unsigned

Table A-1. A2 Core Instructions by Mnemonic (Sheet 7 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 745 of 864

4 204 XO macchwsu. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Unsigned and Record

4 204 XO macchwsuo LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Unsigned with Overflow

4 204 XO macchwsuo. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Saturate Unsigned with Record
and Overflow

4 140 XO macchwu LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Unsigned

4 140 XO macchwu. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Unsigned and Record

4 140 XO macchwuo LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Unsigned with Overflow

4 140 XO macchwuo. LMA N 6:10 11:15 16:20 Multiply Accumulate Cross Halfword to
Word Modulo Unsigned with Overflow
and Record

4 44 XO machhw LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Signed

4 44 XO machhw. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Signed and Record

4 44 XO machhwo LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Signed with Overflow

4 44 XO machhwo. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Signed with Overflow and
Record

4 108 XO machhws LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Signed

4 108 XO machhws. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Signed and Record

4 108 XO machhwso LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Signed with Overflow

4 108 XO machhwso. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Signed with Record and
Overflow

4 76 XO machhwsu LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Unsigned

4 76 XO machhwsu. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Unsigned and Record

4 76 XO machhwsuo LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Unsigned with Overflow

4 76 XO machhwsuo. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Saturate Unsigned with Record
and Overflow

4 12 XO machhwu LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Unsigned

Table A-1. A2 Core Instructions by Mnemonic (Sheet 8 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 746 of 864
Version 1.3

October 23, 2012

4 12 XO machhwu. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Unsigned and Record

4 12 XO machhwuo LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Unsigned with Overflow

4 12 XO machhwuo. LMA N 6:10 11:15 16:20 Multiply Accumulate High Halfword to
Word Modulo Unsigned with Record
and Overflow

4 428 XO maclhw LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Signed

4 428 XO maclhw. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Signed and Record

4 428 XO maclhwo LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Signed with Overflow

4 428 XO maclhwo. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Signed with Record and
Overflow

4 492 XO maclhws LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Signed

4 492 XO maclhws. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Signed and Record

4 492 XO maclhwso LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Signed with Overflow

4 492 XO maclhwso. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Signed with Record and
Overflow

4 460 XO maclhwsu LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Unsigned

4 460 XO maclhwsu. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Unsigned and Record

4 460 XO maclhwsuo LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Unsigned with Overflow

4 460 XO maclhwsuo. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Saturate Unsigned with Record
and Overflow

4 396 XO maclhwu LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Unsigned

4 396 XO maclhwu. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Unsigned and Record

4 396 XO maclhwuo LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Unsigned with Overflow

4 396 XO maclhwuo. LMA N 6:10 11:15 16:20 Multiply Accumulate Low Halfword to
Word Modulo Unsigned with Record
and Overflow

31 854 XFX mbar E Y sys Memory Barrier

19 0 XL mcrf B Y 1 Move Condition Register Field

Table A-1. A2 Core Instructions by Mnemonic (Sheet 9 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 747 of 864

31 512 X mcrxr B Y Y Move to Condition Register from XER

31 19 XFX mfcr B Y 6:10 5 Move from Condition Register

31 323 XFX mfdcr E Y 6:10 sys Move from Device Control Register

31 291 X mfdcrux E Y 6:10 11:15 sys Move from Device Control Register
User Indexed

31 259 X mfdcrx E Y 6:10 11:15 sys Move from Device Control Register
Indexed

31 83 X mfmsr B Y 6:10 4 Move from Machine State Register

31 19 XFX mfocrf B Y 6:10 1 Move from One Condition Register
Field

31 334 XFX mfpmr E.PM N 6:10 Move from Performance Monitor Regis-
ter

31 339 XFX mfspr B Y 6:10 Move from Special Purpose Register

31 595 X mfsr S N 6:10 12:15 Move from Segment Register

31 659 X mfsrin S N 6:10 16:20 Move from Segment Register Indirect

31 371 XFX mftb B Y 6:10 4 Move from Time Base

31 238 X msgclr E.PC Y 16:20 1 Message Clear

31 206 X msgsnd E.PC Y 16:20 1 Message Send

31 144 XFX mtcrf B Y 6:10 Move to Condition Register Fields

31 451 XFX mtdcr E Y 6:10 1 Move to Device Control Register

31 419 X mtdcrux E Y 6:10 11:15 1 Move to Device Control Register User
Indexed

31 387 X mtdcrx E Y 6:10 11:15 1 Move to Device Control Register
Indexed

31 146 X mtmsr E Y 6:10 ~16 Move to Machine State Register

31 178 X mtmsrd S N 6:10 Move to Machine State Register Dou-
bleword

31 144 XFX mtocrf B Y 6:10 6 Move to One Condition Register Field

31 462 XFX mtpmr E.PM N 6:10 Move to Performance Monitor Register

31 467 XFX mtspr B Y 6:10 6 Move to Special Purpose Register

31 210 X mtsr S N 6:10 Move to Segment Register

31 242 X mtsrin S N 6:10 16:20 Move to Segment Register Indirect

4 168 X mulchw LMA N 6:10 11:15 16:20 Multiply Cross Halfword to Word
Signed

4 168 X mulchw. LMA N 6:10 11:15 16:20 Multiply Cross Halfword to Word
Signed and Record

4 136 X mulchwu LMA N 6:10 11:15 16:20 Multiply Cross Halfword to Word
Unsigned

Table A-1. A2 Core Instructions by Mnemonic (Sheet 10 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

Integer Exception Register

User’s Manual

A2 Processor

Processor Instruction Summary

Page 748 of 864
Version 1.3

October 23, 2012

4 136 X mulchwu. LMA N 6:10 11:15 16:20 Multiply Cross Halfword to Word
Unsigned and Record

31 73 XO mulhd 64 Y 6:10 11:15 16:20 Multiply High Doubleword

31 73 XO mulhd. 64 Y 6:10 11:15 16:20 Multiply High Doubleword and Record

31 9 XO mulhdu 64 Y 6:10 11:15 16:20 Multiply High Doubleword Unsigned

31 9 XO mulhdu. 64 Y 6:10 11:15 16:20 Multiply High Doubleword Unsigned
and Record

4 40 X mulhhw LMA N 6:10 11:15 16:20 Multiply High Halfword to Word Signed

4 40 X mulhhw. LMA N 6:10 11:15 16:20 Multiply High Halfword to Word Signed
and Record

4 8 X mulhhwu LMA N 6:10 11:15 16:20 Multiply High Halfword to Word
Unsigned

4 8 X mulhhwu. LMA N 6:10 11:15 16:20 Multiply High Halfword to Word
Unsigned and Record

31 75 XO mulhw B Y 6:10 11:15 16:20 Multiply High Word

31 75 XO mulhw. B Y 6:10 11:15 16:20 Multiply High Word and Record

31 11 XO mulhwu B Y 6:10 11:15 16:20 Multiply High Word Unsigned

31 11 XO mulhwu. B Y 6:10 11:15 16:20 Multiply High Word Unsigned and
Record

31 233 XO mulld 64 Y 6:10 11:15 16:20 Multiply Low Doubleword

31 233 XO mulld. 64 Y 6:10 11:15 16:20 Multiply Low Doubleword and Record

31 233 XO mulldo 64 Y 6:10 11:15 16:20 Multiply Low Doubleword with Overflow

31 233 XO mulldo. 64 Y 6:10 11:15 16:20 Multiply Low Doubleword with Over-
flow and Record

4 424 X mullhw LMA N 6:10 11:15 16:20 Multiply Low Halfword to Word Signed

4 424 X mullhw. LMA N 6:10 11:15 16:20 Multiply Low Halfword to Word Signed
and Record

4 392 X mullhwu LMA N 6:10 11:15 16:20 Multiply Low Halfword to Word
Unsigned

4 392 X mullhwu. LMA N 6:10 11:15 16:20 Multiply Low Halfword to Word
Unsigned and Record

7 D mulli B Y 6:10 11:15 Multiply Low Immediate

31 235 XO mullw B Y 6:10 11:15 16:20 Multiply Low Word

31 235 XO mullw. B Y 6:10 11:15 16:20 Multiply Low Word and Record

31 235 XO mullwo B Y 6:10 11:15 16:20 Multiply Low Word with Overflow

31 235 XO mullwo. B Y 6:10 11:15 16:20 Multiply Low Word with Overflow and
Record

31 476 X nand B Y 11:15 6:10 16:20 1 NAND

31 476 X nand. B Y 11:15 6:10 16:20 1 NAND and Record

Table A-1. A2 Core Instructions by Mnemonic (Sheet 11 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 749 of 864

19 434 XL nap S N Nap

31 104 XO neg B Y 6:10 11:15 1 Negate

31 104 XO neg. B Y 6:10 11:15 1 Negate and Record

31 104 XO nego B Y 6:10 11:15 1 Negate with Overflow

31 104 XO nego. B Y 6:10 11:15 1 Negate with Overflow and Record

4 174 XO nmacchw LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Modulo Signed

4 174 XO nmacchw. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Modulo Signed and
Record

4 174 XO nmacchwo LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Modulo Signed with
Overflow

4 174 XO nmacchwo. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Modulo Signed with
Record and Overflow

4 238 XO nmacchws LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Saturate Signed

4 238 XO nmacchws. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Saturate Signed and
Record

4 238 XO nmacchwso LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Saturate Signed with
Overflow

4 238 XO nmacchwso. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Cross
Halfword to Word Saturate Signed with
Record and Overflow

4 46 XO nmachhw LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Modulo Signed

4 46 XO nmachhw. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Modulo Signed and
Record

4 46 XO nmachhwo LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Modulo Signed with
Overflow

4 46 XO nmachhwo. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Modulo Signed with
Record and Overflow

4 110 XO nmachhws LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Saturate Signed

4 110 XO nmachhws. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Saturate Signed and
Record

4 110 XO nmachhwso LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Saturate Signed with
Overflow

Table A-1. A2 Core Instructions by Mnemonic (Sheet 12 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 750 of 864
Version 1.3

October 23, 2012

4 110 XO nmachhwso. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate High
Halfword to Word Saturate Signed with
Record and Overflow

4 430 XO nmaclhw LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Modulo Signed

4 430 XO nmaclhw. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Modulo Signed and
Record

4 430 XO nmaclhwo LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Modulo Signed with
Overflow

4 430 XO nmaclhwo. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Modulo Signed with
Record and Overflow

4 494 XO nmaclhws LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Saturate Signed

4 494 XO nmaclhws. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Saturate Signed and
Record

4 494 XO nmaclhwso LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Saturate Signed with
Overflow

4 494 XO nmaclhwso. LMA N 6:10 11:15 16:20 Negative Multiply Accumulate Low Half-
word to Word Saturate Signed with
Record and Overflow

31 124 X nor B Y 11:15 6:10 16:20 1 NOR

31 124 X nor. B Y 11:15 6:10 16:20 1 NOR and Record

31 444 X or B Y 11:15 6:10 16:20 1 OR

31 444 X or. B Y 11:15 6:10 16:20 1 OR and Record

31 412 X orc B Y 11:15 6:10 16:20 1 OR with Complement

31 412 X orc. B Y 11:15 6:10 16:20 1 OR with Complement and Record

24 D ori B Y 11:15 6:10 1 OR Immediate

25 D oris B Y 11:15 6:10 1 OR Immediate Shifted

31 122 X popcntb B Y Y 11:15 6:10 Population Count Bytes

31 506 X popcntd 64 Y Y 11:15 6:10 Population Count Doubleword

31 378 X popcntw B Y Y 11:15 6:10 Population Count Words

31 186 X prtyd 64 Y Y 11:15 6:10 Parity Doubleword

31 154 X prtyw B Y Y 11:15 6:10 Parity Word

31 530 X reserved B Y 1 Reserved Nop

31 562 X reserved B Y 1 Reserved Nop

31 594 X reserved B Y 1 Reserved Nop

Table A-1. A2 Core Instructions by Mnemonic (Sheet 13 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 751 of 864

31 626 X reserved B Y 1 Reserved Nop

31 658 X reserved B Y 1 Reserved Nop

31 690 X reserved B Y 1 Reserved Nop

31 722 X reserved B Y 1 Reserved Nop

31 754 X reserved B Y 1 Reserved Nop

19 51 XL rfci E Y ~16 Return from Critical Interrupt

19 39 X rfdi E.ED N Return from Debug Interrupt

19 102 XL rfgi E.HV Y ~16 Return From Guest Interrupt

19 50 XL rfi E Y ~16 Return from Interrupt

19 18 XL rfid S N Return from Interrupt Doubleword

19 38 XL rfmci E Y ~16 Return from Machine Check Interrupt

30 8 MDS rldcl 64 Y 11:15 6:10 16:20 2 Rotate Left Doubleword then Clear Left

30 8 MDS rldcl. 64 Y 11:15 6:10 16:20 2 Rotate Left Doubleword then Clear Left
and Record

30 9 MDS rldcr 64 Y 11:15 6:10 16:20 2 Rotate Left Doubleword then Clear
Right

30 9 MDS rldcr. 64 Y 11:15 6:10 16:20 2 Rotate Left Doubleword then Clear
Right and Record

30 2 MD rldic 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear

30 2 MD rldic. 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear and Record

30 0 MD rldicl 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear Left

30 0 MD rldicl. 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear Left and Record

30 1 MD rldicr 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear Right

30 1 MD rldicr. 64 Y 11:15 6:10 2 Rotate Left Doubleword Immediate
then Clear Right and Record

30 3 MD rldimi 64 Y 11:15 6:10 11:15 2 Rotate Left Doubleword Immediate
then Mask Insert

30 3 MD rldimi. 64 Y 11:15 6:10 11:15 2 Rotate Left Doubleword Immediate
then Mask Insert and Record

20 M rlwimi B Y 11:15 6:10 11:15 2 Rotate Left Word Immediate then Mask
Insert

20 M rlwimi. B Y 11:15 6:10 11:15 2 Rotate Left Word Immediate then Mask
Insert and Record

21 M rlwinm B Y 11:15 6:10 2 Rotate Left Word Immediate then AND
with Mask

Table A-1. A2 Core Instructions by Mnemonic (Sheet 14 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 752 of 864
Version 1.3

October 23, 2012

21 M rlwinm. B Y 11:15 6:10 2 Rotate Left Word Immediate then AND
with Mask and Record

23 M rlwnm B Y 11:15 6:10 16:20 2 Rotate Left Word then AND with Mask

23 M rlwnm. B Y 11:15 6:10 16:20 2 Rotate Left Word then AND with Mask
and Record

19 498 XL rwinkle S N Rip Van Winkle

17 1 SC sc B Y ~16 System Call

31 498 X slbia S N SLB Invalidate All

31 434 X slbie S N 16:20 SLB Invalidate Entry

31 915 X slbmfee S N 6:10 16:20 SLB Move From Entry ESID

31 851 X slbmfev S N 6:10 16:20 SLB Move From Entry VSID

31 402 X slbmte S N 6:10 16:20 SLB Move to Entry

31 27 X sld 64 Y 11:15 6:10 16:20 2 Shift Left Doubleword

31 27 X sld. 64 Y 11:15 6:10 16:20 2 Shift Left Doubleword and Record

19 466 XL sleep S N Sleep

31 24 X slw B Y 11:15 6:10 16:20 2 Shift Left Word

31 24 X slw. B Y 11:15 6:10 16:20 2 Shift Left Word and Record

31 794 X srad 64 Y 11:15 6:10 16:20 2 Shift Right Algebraic Doubleword

31 794 X srad. 64 Y 11:15 6:10 16:20 2 Shift Right Algebraic Doubleword and
Record

31 413 XS sradi 64 Y 11:15 6:10 2 Shift Right Algebraic Doubleword
Immediate

31 413 XS sradi. 64 Y 11:15 6:10 2 Shift Right Algebraic Doubleword
Immediate and Record

31 792 X sraw B Y 11:15 6:10 16:20 2 Shift Right Algebraic Word

31 792 X sraw. B Y 11:15 6:10 16:20 2 Shift Right Algebraic Word and Record

31 824 X srawi B Y 11:15 6:10 2 Shift Right Algebraic Word Immediate

31 824 X srawi. B Y 11:15 6:10 2 Shift Right Algebraic Word Immediate
and Record

31 539 X srd 64 Y 11:15 6:10 16:20 2 Shift Right Doubleword

31 539 X srd. 64 Y 11:15 6:10 16:20 2 Shift Right Doubleword and Record

31 536 X srw B Y 11:15 6:10 16:20 2 Shift Right Word

31 536 X srw. B Y 11:15 6:10 16:20 2 Shift Right Word and Record

38 D stb B Y 11:15 6:10 1 Store Byte

31 223 X stbepx E.PD Y 11:15 16:20 6:10 1 Store Byte by External Process ID
Indexed

39 D stbu B Y 11:15 11:15 6:10 2 Store Byte with Update

Table A-1. A2 Core Instructions by Mnemonic (Sheet 15 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

segment lookaside buffer

effective segment ID

virtual segment ID

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 753 of 864

31 247 X stbux B Y 11:15 11:15 16:20 6:10 2 Store Byte with Update Indexed

31 215 X stbx B Y 11:15 16:20 6:10 1 Store Byte Indexed

62 0 DS std 64 Y 11:15 6:10 1 Store Doubleword

31 660 X stdbrx 64 Y 11:15 16:20 6:10 1 Store Double Byte and Reverse
Indexed

31 214 X stdcx. 64 Y 11:15 16:20 6:10 1 Store Doubleword Conditional Indexed

31 157 X stdepx 64 Y 11:15 16:20 6:10 1 Store Doubleword by External Process
ID Indexed

62 1 DS stdu 64 Y 11:15 11:15 6:10 2 Store Doubleword with Update

31 181 X stdux 64 Y 11:15 11:15 16:20 6:10 2 Store Doubleword with Update Indexed

31 149 X stdx 64 Y 11:15 16:20 6:10 1 Store Doubleword Indexed

44 D sth B Y 11:15 6:10 1 Store Halfword

31 918 X sthbrx B Y 11:15 16:20 6:10 1 Store Halfword Byte-Reverse Indexed

31 415 X sthepx E.PD Y 11:15 16:20 6:10 1 Store Halfword by External Process ID
Indexed

45 D sthu B Y 11:15 11:15 6:10 2 Store Halfword with Update

31 439 X sthux B Y 11:15 11:15 16:20 6:10 2 Store Halfword with Update Indexed

31 407 X sthx B Y 11:15 16:20 6:10 1 Store Halfword Indexed

47 D stmw B Y Y 11:15 6:10 uc Store Multiple Word

62 DS stq LSQ N 11:15 6:10 Store Quadword

31 725 X stswi B Y Y 11:15 6:10 Store String Word Immediate

31 661 X stswx B Y Y 11:15 16:20 6:10 Store String Word Indexed

36 D stw B Y 11:15 6:10 1 Store Word

31 662 X stwbrx B Y 11:15 16:20 6:10 1 Store Word Byte-Reverse Indexed

31 150 X stwcx. B Y 11:15 16:20 6:10 1 Store Word Conditional Indexed

31 159 X stwepx E.PD Y 11:15 16:20 6:10 1 Store Word by External Process ID
Indexed

37 D stwu B Y 11:15 11:15 6:10 2 Store Word with Update

31 183 X stwux B Y 11:15 11:15 16:20 6:10 2 Store Word with Update Indexed

31 151 X stwx B Y 11:15 16:20 6:10 1 Store Word Indexed

31 40 XO subf B Y 6:10 11:15 16:20 2 Subtract From

31 40 XO subf. B Y 6:10 11:15 16:20 2 Subtract From and Record

31 8 XO subfc B Y 6:10 11:15 16:20 2 Subtract From Carrying

31 8 XO subfc. B Y 6:10 11:15 16:20 2 Subtract From Carrying and Record

31 8 XO subfco B Y 6:10 11:15 16:20 2 Subtract From Carrying with Overflow

Table A-1. A2 Core Instructions by Mnemonic (Sheet 16 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

Processor Instruction Summary

Page 754 of 864
Version 1.3

October 23, 2012

31 8 XO subfco. B Y 6:10 11:15 16:20 2 Subtract From Carrying with Overflow
and Record

31 136 XO subfe B Y 6:10 11:15 16:20 2 Subtract From Extended

31 136 XO subfe. B Y 6:10 11:15 16:20 2 Subtract From Extended and Record

31 136 XO subfeo B Y 6:10 11:15 16:20 2 Subtract From Extended with Overflow

31 136 XO subfeo. B Y 6:10 11:15 16:20 2 Subtract From Extended with Overflow
and Record

8 D subfic B Y 6:10 11:15 2 Subtract From Immediate Carrying

31 232 XO subfme B Y 6:10 11:15 2 Subtract From Minus One Extended

31 232 XO subfme. B Y 6:10 11:15 2 Subtract From Minus One Extended
and Record

31 232 XO subfmeo B Y 6:10 11:15 2 Subtract From Minus One Extended
with Overflow

31 232 XO subfmeo. B Y 6:10 11:15 2 Subtract From Minus One Extended
with Overflow and Record

31 40 XO subfo B Y 6:10 11:15 16:20 2 Subtract From with Overflow

31 40 XO subfo. B Y 6:10 11:15 16:20 2 Subtract From with Overflow and
Record

31 200 XO subfze B Y 6:10 11:15 2 Subtract From Zero Extended

31 200 XO subfze. B Y 6:10 11:15 2 Subtract From Zero Extended and
Record

31 200 XO subfzeo B Y 6:10 11:15 2 Subtract From Zero Extended with
Overflow

31 200 XO subfzeo. B Y 6:10 11:15 2 Subtract From Zero Extended with
Overflow and Record

31 598 X sync B Y 6 Synchronize

31 68 X td 64 Y 11:15 16:20 2 Trap Doubleword

2 D tdi 64 Y 11:15 2 Trap Doubleword Immediate

31 370 X tlbia S N TLB Invalidate All

31 306 X tlbie S N 6:10 16:20 TLB Invalidate Entry

1F 313 X tlbiel S N 6:10 16:20 TLB Invalidate Entry Local

31 18 X tlbilx E.MF Y 11:15 16:20 TLB Invalidate Local Indexed

31 786 X tlbivax E.MF Y 11:15 16:20 TLB Invalidate Virtual Address Indexed

31 946 X tlbre E.MF Y TLB Read Entry

31 850 X tlbsrx. E.MF Y 11:15 16:20 TLB Search and Reserve Indexed and
Record

31 914 X tlbsx E.MF Y 11:15 16:20 TLB Search Indexed

31 914 X tlbsx. E.MF Y 11:15 16:20 TLB Search Indexed and Record

31 566 X tlbsync B Y TLB Synchronize

Table A-1. A2 Core Instructions by Mnemonic (Sheet 17 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

translation lookaside buffer

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Processor Instruction Summary

Page 755 of 864

31 978 X tlbwe E.MF Y TLB Write Entry

31 4 X tw B Y 11:15 16:20 2 Trap Word

3 D twi B Y 11:15 2 Trap Word Immediate

31 62 X wait WT Y 1* Wait

31 902 X wchkall Y 6 Watch Check All

31 934 X wclr Y 11:15 16:20 6 Watch Clear

31 131 X wrtee E Y 6:10 6 Write MSR External Enable

31 163 X wrteei E Y 6 Write MSR External Enable Immediate

31 316 X xor B Y 11:15 6:10 16:20 2 XOR

31 316 X xor. B Y 11:15 6:10 16:20 2 XOR and Record

26 D xori B Y 11:15 6:10 2 XOR Immediate

27 D xoris B Y 11:15 6:10 2 XOR Immediate Shifted

Table A-1. A2 Core Instructions by Mnemonic (Sheet 18 of 18)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

C
at

eg
or

y

Im
pl

em
en

te
d

M
ic

ro
co

de
d

Ta
rg

et
 1

 B
its

S
ou

rc
e

1
B

its

S
ou

rc
e

2
B

its

S
ou

rc
e

3
B

its

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

Machine State Register

User’s Manual

A2 Processor

FU Instruction Summary

Page 756 of 864
Version 1.3

October 23, 2012

Appendix B. FU Instruction Summary

This appendix contains floating-point unit instructions summarized alphabetically and by opcode.

FU Instructions Sorted by Opcode lists all A2 processor instructions, sorted by primary and secondary
opcodes. Extended mnemonics are not included in the opcode list.

Instruction Formats illustrates the A2 processor instruction forms (allowed arrangements of fields within
instructions).

B.1 FU Instructions Sorted by Opcode

All instructions are 4 bytes long and word aligned. All instructions have a primary opcode field in bits 0:5.
Some instructions also have a secondary opcode field. A2 core FU instructions, sorted by primary and
secondary opcode, are listed in Table B-1.

The Form column in Table B-1 refers to the arrangement of valid field combinations within the 4-byte instruc-
tion.

The A, X, D, and XFL instruction formats are described in PowerISA Version 2.06 Revision B.

Table B-1. FU Instructions by Opcode (Sheet 1 of 5)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

U
co

de

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

63 264 X fabs 6 Floating Absolute Value

63 264 X fabs. 6:4 Floating Absolute Value and record CR1

63 21 A fadd 6 Floating Add

63 21 A fadd. 6:4 Floating Add and record CR1

59 21 A fadds 6 Floating Add Single

59 21 A fadds. 6:4 Floating Add Single and record CR1

63 846 X fcfid 6 Floating Convert From Integer Doubleword

63 846 X fcfid. 6:4 Floating Convert From Integer Doubleword and record CR1

63 974 X fcfidu 6 Floating Convert From Integer Doubleword Unsigned

63 974 X fcfidu. 6:4 Floating Convert From Integer Doubleword Unsigned and record CR1

59 846 X fcfids 6 Floating Convert From Integer Doubleword Single

59 846 X fcfids. 6:4 Floating Convert From Integer Doubleword Single and record CR1

59 974 X fcfidus 6 Floating Convert From Integer Doubleword Unsigned Single

59 974 X fcfidus. 6:4 Floating Convert From Integer Doubleword Unsigned Single and record CR1

63 32 X fcmpo 5 Floating Compare Ordered

63 0 X fcmpu 5 Floating Compare Unordered

63 8 X fcpsgn 6 Floating Copy Sign

63 8 X fcpsgn. 6:4 Floating Copy Sign and record CR1

floating-point unit

floating-point unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Instruction Summary

Page 757 of 864

63 814 X fctid 6 Floating Convert to Integer Doubleword

63 814 X fctid. 6:4 Floating Convert To Integer Doubleword and record CR1

63 942 X fctidu 6 Floating Convert to Integer Doubleword Unsigned

63 942 X fctidu. 6:4 Floating Convert To Integer Doubleword Unsigned and record CR1

63 815 X fctidz 6 Floating Convert To Integer Doubleword with round toward Zero

63 815 X fctidz. 6:4 Floating Convert To Integer Doubleword with round toward Zero and record CR1

63 943 X fctiduz 6 Floating Convert To Integer Doubleword Unsigned with round toward Zero

63 943 X fctiduz. 6:4 Floating Convert To Integer Doubleword Unsigned with round toward Zero and
record CR1

63 14 X fctiw 6 Floating Convert To Integer Word

63 14 X fctiw. 6:4 Floating Convert To Integer Word and record CR1

63 142 X fctiwu 6 Floating Convert To Integer Word Unsigned

63 142 X fctiwu. 6:4 Floating Convert To Integer Word Unsigned and record CR1

63 15 X fctiwz 6 Floating Convert To Integer Word with round toward Zero

63 15 X fctiwz. 6:4 Floating Convert To Integer Word with round to Zero and record CR1

63 143 X fctiwuz 6 Floating Convert To Integer Word Unsigned with round toward Zero

63 143 X fctiwuz. 6:4 Floating Convert To Integer Word Unsigned with round to Zero and record CR1

63 18 A fdiv Y 72:72 Floating Divide

63 18 A fdiv. Y 75:75 Floating Divide and record CR1

59 18 A fdivs Y 59:59 Floating Divide Single

59 18 A fdivs. Y 62:62 Floating Divide Single and record CR1

63 29 A fmadd 6 Floating Multiply-Add

63 29 A fmadd. 6:4 Floating Multiply-Add and record CR1

59 29 A fmadds 6 Floating Multiply-Add Single

59 29 A fmadds. 6:4 Floating Multiply-Add Single and record CR1

63 72 X fmr 6 Floating Move Register

63 72 X fmr. 6:4 Floating Move Register and record CR1

63 28 A fmsub 6 Floating Multiply-Subtract

63 28 A fmsub. 6:4 Floating Multiply-Subtract and record CR1

59 28 A fmsubs 6 Floating Multiply-Subtract Single

59 28 A fmsubs. 6:4 Floating Multiply-Subtract Single and record CR1

63 25 A fmul 6 Floating Multiply

63 25 A fmul. 6:4 Floating Multiply and record CR1

59 25 A fmuls 6 Floating Multiply Single

59 25 A fmuls. 6:4 Floating Multiply Single and record CR1

Table B-1. FU Instructions by Opcode (Sheet 2 of 5)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

U
co

de

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

A2 Processor

FU Instruction Summary

Page 758 of 864
Version 1.3

October 23, 2012

63 136 X fnabs 6 Floating Negative Absolute

63 136 X fnabs. 6:4 Floating Negative Absolute Value and record CR1

63 40 X fneg 6 Floating Negate

63 40 X fneg. 6:4 Floating Negate and record CR1

63 31 A fnmadd 6 Floating Negative Multiply-Add

63 31 A fnmadd. 6:4 Floating Negative Multiply-Add and record CR1

59 31 A fnmadds 6 Floating Negative Multiply-Add Single

59 31 A fnmadds. 6:4 Floating Negative Multiply-Add Single and record CR1

63 30 A fnmsub 6 Floating Negative Multiply-Subtract

63 30 A fnmsub. 6:4 Floating Negative Multiply-Subtract and record CR1

59 30 A fnmsubs 6 Floating Negative Multiply-Subtract Single

59 30 A fnmsubs. 6:4 Floating Negative Multiply-Subtract Single and record CR1

63 24 A fre 6 Floating Reciprocal Estimate

63 24 A fre. 6:4 Floating Reciprocal Estimate and record CR1

59 24 A fres 6 Floating Reciprocal Estimate Single

59 24 A fres. 6:4 Floating Reciprocal Estimate Single and record CR1

63 488 X frim 6 Floating Round To Integer Minus

63 488 X frim. 6:4 Floating Round To Integer Minus and record CR1

63 392 X frin 6 Floating Round To Integer Nearest

63 392 X frin. 6:4 Floating Round To Integer Nearest and record CR1

63 456 X frip 6 Floating Round To Integer Plus

63 456 X frip. 6:4 Floating Round To Integer Plus and record CR1

63 424 X friz 6 Floating Round To Integer toward Zero

63 424 X friz. 6:4 Floating Round To Integer toward Zero and record CR1

63 12 X frsp 6 Floating Round to Single Precision

63 12 X frsp. 6:4 Floating Round to Single-Precision and record CR1

63 26 A frsqrte 6 Floating Reciprocal Square Root Estimate

63 26 A frsqrte. 6:4 Floating Reciprocal Square Root Estimate and record CR1

59 26 A frsqrtes 6 Floating Reciprocal Square Root Estimate Single

59 26 A frsqrtes. 6:4 Floating Reciprocal Square Root Estimate Single and record CR1

63 23 A fsel 6 Floating Select

63 23 A fsel. 6:4 Floating Select and record CR1

63 22 A fsqrt Y 69:69 Floating Square Root

63 22 A fsqrt. Y 72:72 Floating Square Root and record CR1

59 22 A fsqrts Y 65:65 Floating Square Root Single

Table B-1. FU Instructions by Opcode (Sheet 3 of 5)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

U
co

de

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

FU Instruction Summary

Page 759 of 864

59 22 A fsqrts. Y 68:68 Floating Square Root Single and record CR1

63 20 A fsub 6 Floating Subtract

63 20 A fsub. 6:4 Floating Subtract and record CR1

59 20 A fsubs 6 Floating Subtract Single

59 20 A fsubs. 6:4 Floating Subtract Single and record CR1

63 128 X ftdiv 5 Floating Test for software Divide

63 160 X ftsqrt 5 Floating Test for software Square Root

50 D lfd 7 Load Floating-Point Double

31 607 X lfdepx 7 Load Floating-Point Double by External Process ID Indexed

51 D lfdu 7 Load Floating-Point Double with Update

31 631 X lfdux 7 Load Floating-Point Double with Update Indexed

31 599 X lfdx 7 Load Floating-Point Double Indexed

31 855 X lfiwax 7 Load Floating-Point as Integer Word Algebraic Indexed

31 887 X lfiwzx 7 Load Floating-Point as Integer Word and Zero Indexed

48 D lfs 7 Load Floating-Point Single

49 D lfsu 7 Load Floating-Point Single with Update

31 567 X lfsux 7 Load Floating-Point Single with Update Indexed

31 535 X lfsx 7 Load Floating-Point Single Indexed

63 64 X mcrfs 8:4 Move to Condition Register from FPSCR

63 583 X mffs 6 Move From FPSCR

63 583 X mffs. 6:4 Move From FPSCR and record CR1

63 70 X mtfsb0 6 Move To FPSCR Bit 0

63 70 X mtfsb0. 6:4 Move To FPSCR Bit 0 and record CR1

63 38 X mtfsb1 6 Move To FPSCR Bit 1

63 38 X mtfsb1. 6:4 Move To FPSCR Bit 1 and record CR1

63 711 XFL mtfsf 6 Move To FPSCR Fields

63 711 XFL mtfsf. 6:4 Move To FPSCR Fields and record CR1

63 134 X mtfsfi 6 Move to FPSCR Field Immediate

63 134 X mtfsfi. 6:4 Move To FPSCR Field Immediate and record CR1

54 D stfd 1 Store Floating-Point Double

31 735 stfdepx 1 Store Floating-Point Double by External Process ID Indexed

55 D stfdu 1 Store Floating-Point Double with Update

31 759 X stfdux 1 Store Floating-Point Double with Update Indexed

31 727 X stfdx 1 Store Floating-Point Double Indexed

31 983 X stfiwx 1 Store Floating-Point as Integer Word Indexed

Table B-1. FU Instructions by Opcode (Sheet 4 of 5)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

U
co

de

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

Floating-Point Status and Control Register

User’s Manual

A2 Processor

FU Instruction Summary

Page 760 of 864
Version 1.3

October 23, 2012

52 D stfs 1 Store Floating-Point Single

53 D stfsu 1 Store Floating-Point Single with Update

31 695 X stfsux 1 Store Floating-Point Single with Update Indexed

31 663 X stfsx 1 Store Floating-Point Single Indexed

Table B-1. FU Instructions by Opcode (Sheet 5 of 5)

P
rim

ar
y

E
xt

en
de

d

F
or

m

M
ne

m
on

ic

U
co

de

La
te

nc
y:

T
hr

ou
gh

pu
t

Instruction Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 761 of 864

Appendix C. Debug and Trigger Groups

C.1 Unit Debug Multiplexer Component

Figure C-1. is included for reference in setting up the debug select registers for the individual units. See
Section 10.12 Trace and Trigger Bus on page 445 for general information about the A2 core trace and trigger
ramp bus implementation.

C.2 Debug Multiplexer Component Ordering on the Ramp Bus

The following table shows ordering of debug multiplexer components on the ramp bus through the core. The
AXU unit implements the starting debug multiplexer component, and the MMU implements the last. The MMU
output latches are driven out of the core as the external trace trigger bus. Currently, latching of trace/trigger

Figure C-1. Debug Multiplexer Component

2 to 1
MUX

2 to 1
MUX

2 to 1
MUX

2 to 1
MUX

Debug Group 0 (0:87)
Debug Group 1 (0:87)

Debug Group n (0:87)

Trace Data Out (0:87)

Latch Trace Data In (0:87)

(0:21)

(22:43)

(44:65)

(66:87)

Rotate
(22 bit)

MUX
(4, 8, 16

or
32 to 1) Latch

Debug Mux Component

(0:87) (0:87)

(Where n is 3, 7 , 15 or 31)

Debug Group Mux Select Bits
Debug Group Rotate Select Bits

Debug Group Output Select Bits

Trigger Group Rotate Select Bit

Trigger Group Output Select Bits

MUX
(4 to 1)

Trigger Group 0 (0:11)

Trigger Data Out (0:11)

Trigger Data In (0:11)

2 to 1
MUX

Latch
2 to 1
MUX

Latch

(0:5)

Trigger Group 3 (0:11)

Trigger Group 2 (0:11)
Trigger Group 1 (0:11) Rotate

(6 bit)
(0:11) (0:11)

(6:11)

Trigger Group Mux Select Bits

(2-5 bits) (2 bits)

(2 bits)

(1 bit)(2 bits)

(4 bits)

(See Note)

(See Note)

Note: Latches on input trace / trigger data only used if required for timing .

unused unit

memory management unit

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 762 of 864
Version 1.3

October 23, 2012

data is implemented on each debug multiplexer output, and on the input of the MMU’s debug multiplexer. The
following table also shows the cycles of delay of each debug multiplexer component’s output, relative to the
external trace trigger bus.

For debug/trigger groups from one unit to be driven out on the external buses, all downstream debug multi-
plexer components must be set to pass through the input trace/trigger data from the previous multiplexer.
This is the default initialization value for the debug select registers.

C.3 Example Debug Multiplexer Configuration Settings

C.3.1 Multiplexer Configuration for Trace/Trigger Signals from a Single Unit

This example selects a set of debug/trigger groups from one unit and drives them out on the external trace
and trigger buses. For this example, the signals all come from IU1 debug group 6 and trigger group 3.

1. SCOM write 0x00000000_00000000 to XDSR1, XDSR2, and MPDSR.
Sets the debug/trigger group output selects for each downstream debug/trigger multiplexer to pass
through the input trace and trigger data.

2. SCOM write 0x00000000_C1FB0000 to IDSR.
• IDSR(32:34) = 110; selects debug group 6.
• IDSR(35:36) = 00; reserved.
• IDSR(37:38) = 00; debug data not rotated.
• IDSR(39:42) = 1111; IU debug data driven on debug multiplexer outputs.
• IDSR(43:44) = 11; selects trigger group 3.
• IDSR(45) = 0; trigger data not rotated.
• IDSR(46:47) = 11; IU trigger data driven on trigger multiplexer outputs.

C.3.2 Multiplexer Configuration for Trace/Trigger Signals from Multiple Units

This example selects debug/trigger data from both the AXU and XU1 debug multiplexers. The AXU debug
data is rotated so that bits 0 to 43 of debug group 1 are driven out on bits 44 to 87 of the debug bus. Likewise,
the AXU trigger data is rotated so that bits 0 to 5 of trigger group 2 are driven on bits 6 to 11 of the trigger bus.
The XU1 data is from debug group 5 and trigger group 0 and is not rotated.

1. SCOM write 0x00000000_00000000 to IDSR, XDSR2 and MPDSR.
Sets the debug/trigger group output selects for each downstream debug/trigger multiplexer to pass
through the input trace and trigger data.

2. SCOM write 0x00000000_44750000 to ABDSR.
• ABDSR(32:33) = 01; selects debug group 1.
• ABDSR(34:36) = 000; reserved.
• ABDSR(37:38) = 10; rotate bits 0 to 43 of debug group to bits 44 to 87 of the debug multiplexer out-

put.

Ramp bus order 1 2 3 4 5 6 7 8 9

Ramp bus component AXU PC IU1 IU2 XU1 XU2 XU3 XU4 MMU
(The MMU multiplexer component output is
the external trace/trigger bus)

Stages behind output bus -9 -8 -7 -6 -5 -4 -3 -2 0

serial communications

XU Debug Select Register1

XU Debug Select Register2

MMU/PC Debug Select Register

IU Debug Select Register

instruction unit

auxiliary execution unit

execution unit

AXU/BX Debug Select Register

processor control

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 763 of 864

• ABDSR(39:42) = 0011; AXU debug data(44:87) is driven on debug multiplexer outputs (see note).
• ABDSR(43:44) = 10; selects trigger group 2.
• ABDSR(45) = 1; rotate bits 0 to 5 of trigger group to bits 6 to 11 of the trigger multiplexer output.
• ABDSR(46:47) = 01; AXU trigger data(6:11) is driven on the trigger multiplexer outputs (see note).
• ABDSR(48:63) = 0x0000; required. These bits must not be set to 1.

3. SCOM write 0x00000000_29820000 to XDSR1.
• XDSR1(32:36) = 00101; selects debug group 5.
• XDSR1(37:38) = 00; debug data not rotated.
• XDSR1(39:42) = 1100; XU1 debug data(0:43) and input trace data(44:87) is driven on debug multi-

plexer outputs.
• XDSR1(43:44) = 00; selects trigger group 0.
• XDSR1(45) = 0; trigger data not rotated.
• XDSR1(46:47) = 10; XU1 trigger data(0:5) and input trigger data(6:11) is driven on trigger multiplexer

outputs.
• XDSR1(48:63) = 0x0000; sets XU2 debug/trigger data to not drive.

C.4 AXU Debug Select Register and Debug Group Tables

Table C-1. AXU Debug Select Register (ADBSR)

Register Short Name: ABDSR Access: RW

Register Address: x‘3B’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

AXU Debug Mux1 Controls (4:1 Debug Multiplexer)

32:33 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output.
00 Debug group 0.
01 Debug group 1.
10 Debug group 2.
11 Debug group 3.

34:36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data.
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 764 of 864
Version 1.3

October 23, 2012

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output.
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data.
0 Trigger Group data [0:11] - No rotate.
1 Trigger Group data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

48:63 Reserved 0 Do not set to 1.

Table C-2. AXU Debug Multiplexer Debug and Trigger Groups (Sheet 1 of 2)

Debug Group Signal List

0
dbg_group0 (0 to 63) <= ex7_ram_data(0 to 63);
dbg_group0 (64 to 87) <= ex7_ram_expo(3 to 13) & ex7_ram_frac(0) & ex7_ram_done & (0 to 10 => '0');

1 dbg_group1 (0 to 87) <= uc_hooks_debug(0 to 55) & (56 to 87 => '0');

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 765 of 864

2

dbg_group2 (0 to 31) <= rf1_instr(0 to 31);
dbg_group2 (32 to 35) <= f_scr_ex7_fx_thread0(0 to 3);
dbg_group2 (36 to 39) <= f_scr_ex7_fx_thread1(0 to 3);
dbg_group2 (40 to 43) <= f_scr_ex7_fx_thread2(0 to 3);
dbg_group2 (44 to 47) <= f_scr_ex7_fx_thread3(0 to 3);
dbg_group2 (48 to 52) <= ex4_eff_addr(59 to 63);
dbg_group2 (53 to 55) <= perr_sm_l2(0 to 2);
dbg_group2 (56 to 61) <= perr_addr_l2(0 to 5);
dbg_group2 (62 to 65) <= perr_tid_l2(0 to 3);
dbg_group2 (66) <= rf1_perr_move_f0_to_f1;
dbg_group2 (67) <= rf1_perr_move_f1_to_f0;
dbg_group2 (68) <= rf1_regfile_ce;
dbg_group2 (69) <= rf1_regfile_ue;
dbg_group2 (70 to 87) <= (70 to 87=> till);

3

dbg_group3 (0) <= rf1_regfile_ce;
dbg_group3 (1) <= rf1_regfile_ue;
dbg_group3 (2) <= rf1_bypsel_a_res0;
dbg_group3 (3) <= rf1_bypsel_c_res0;
dbg_group3 (4) <= rf1_bypsel_b_res0;
dbg_group3 (5) <= rf1_bypsel_a_res1;
dbg_group3 (6) <= rf1_bypsel_c_res1;
dbg_group3 (7) <= rf1_bypsel_b_res1;
dbg_group3 (8) <= rf1_bypsel_a_load0;
dbg_group3 (9) <= rf1_bypsel_c_load0;
dbg_group3 (10) <= rf1_bypsel_b_load0;
dbg_group3 (11) <= rf1_bypsel_a_load1;
dbg_group3 (12) <= rf1_bypsel_c_load1;
dbg_group3 (13) <= rf1_bypsel_b_load1;
dbg_group3 (14) <= rf1_frs_byp;
dbg_group3 (15) <= rf1_v;
dbg_group3 (16 to 31) <= (16 to 31 => '0');
dbg_group3 (32 to 63) <= t0_events(0 to 7) & t1_events(0 to 7) & t2_events(0 to 7) & t3_events(0 to 7);
dbg_group3 (64 to 87) <= (64 to 87=> tilo);

Trigger Group Signal List

0

trg_group0 (0 to 3) <= evnt_fpu_fx(0 to 3);
trg_group0 (4 to 7) <= evnt_fpu_fex(0 to 3);
trg_group0 (8) <= ex6_instr_valid;
trg_group0 (9) <= ex6_is_ucode;
trg_group0 (10 to 11) <= ex6_instr_tid(0 to 1);

1

trg_group1 (0 to 2) <= perr_sm_l2(0 to 2);
trg_group1 (3) <= rf1_regfile_ce;
trg_group1 (4) <= rf1_regfile_ue;
trg_group1 (5) <= ex6_instr_valid;
trg_group1 (6 to 7) <= ex6_instr_tid(0 to 1);
trg_group1 (8) <= ex3_instr_match;
trg_group1 (9) <= ex6_record;
trg_group1 (10) <= ex6_mcrfs;
trg_group1 (11) <= ex4_b_den_flush;

2 trg_group2 (0 to 11) <= uc_hooks_debug(0 to 11); --thread 0:1 hooks scr

3 trg_group3 (0 to 11) <= uc_hooks_debug(16 to 27); --thread 2:3 hooks scr

Table C-2. AXU Debug Multiplexer Debug and Trigger Groups (Sheet 2 of 2)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 766 of 864
Version 1.3

October 23, 2012

C.5 IU Debug Select Register and Debug Group Tables
Table C-3. IU Debug Select Register (IDSR)

Register Short Name: IDSR Access: RW

Register Address: x‘3C’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

IU Debug Mux1 Controls (8:1 Debug Multiplexer)

32:34 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
000 Debug group 0.
001 Debug group 1.
010 Debug group 2.
 | |
111 Debug group 7.

35:36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No Rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug GrouP Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 767 of 864

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

IU Debug Mux2 Controls (16:1 Debug Multiplexer)

48:51 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

Bits Function Initial
Value Description

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 768 of 864
Version 1.3

October 23, 2012

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 1 of 6)

Debug Group Signal List

0 (0:7) <= iuq_bp0.iu6_ls_t00_q(54 to 61);
(8:15) <= iuq_bp0.iu6_ls_t01_q(54 to 61);
(16:23) <= iuq_bp0.iu6_ls_t02_q(54 to 61);
(24:31) <=iuq_bp0.iu6_ls_t03_q(54 to 61);

(32:39) <= iuq_bp0.iu6_ls_t10_q(54 to 61);
(40:47) <= iuq_bp0.iu6_ls_t11_q(54 to 61);
(48:55) <= iuq_bp0.iu6_ls_t12_q(54 to 61);
(56:63) <= iuq_bp0.iu6_ls_t13_q(54 to 61);

(64:67) <= iuq_bp0.iu6_ls_t0_ptr_q;
(68:71) <= iuq_bp0.iu6_ls_t1_ptr_q;
(72:75) <= iuq_bp0.ex7_ls_t0_ptr_q;
(76:79) <= iuq_bp0.ex7_ls_t1_ptr_q;

(80:83) <= iuq_bp0.ex6_tid_q;
(84) <= iuq_bp0.ex6_val_q;
(85) <= iuq_bp0.ex6_br_update_q;
(86:87) <= iuq_bp0.ex6_br_hist_q(0 to 1);

1 (0:7) <= iuq_bp0.iu6_ls_t20_q(54 to 61);
(8:15) <= iuq_bp0.iu6_ls_t21_q(54 to 61);
(16:23) <= iuq_bp0.iu6_ls_t22_q(54 to 61);
(24:31) <=iuq_bp0.iu6_ls_t23_q(54 to 61);

(32:39) <= iuq_bp0.iu6_ls_t30_q(54 to 61);
(40:47) <= iuq_bp0.iu6_ls_t31_q(54 to 61);
(48:55) <= iuq_bp0.iu6_ls_t32_q(54 to 61);
(56:63) <= iuq_bp0.iu6_ls_t33_q(54 to 61);

(64:67) <= iuq_bp0.iu6_ls_t2_ptr_q;
(68:71) <= iuq_bp0.iu6_ls_t3_ptr_q;
(72:75) <= iuq_bp0.ex7_ls_t2_ptr_q;
(76:79) <= iuq_bp0.ex7_ls_t3_ptr_q;

(80:83) <= iuq_bp0.ex6_gshare_q(0 to 3);
(84) <= iuq_bp0.ex6_br_taken_q;
(85) <= iuq_bp0.ex6_bclr_q;
(86) <= iuq_bp0.ex6_lk_q;
(87) <= tidn

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 769 of 864

2 (0:3) <= ibuf0.bp_ib_iu4_val(0 to 3);
(4) <= ibuf0.rm_ib_iu4_val;
(5) <= ibuf0.uc_ib_iu4_val;
(6) <= ibuf0.redirect_l2;
(7) <= ibuf0.ib_ic_below_water;
(8) <= ibuf0.stall_l2(0);
(9:11) <= ibuf0.buffer1_valid_l2 & ibuf0.buffer2_valid_l2 & ibuf0.buffer3_valid_l2;
(12:15) <= ibuf0.buffer4_valid_l2 & ibuf0.buffer5_valid_l2 & ibuf0.buffer6_valid_l2 & ibuf0.buffer7_valid_l2;

(16:19) <= ibuf1.bp_ib_iu4_val(0 to 3);
(20) <= ibuf1.rm_ib_iu4_val;
(21) <= ibuf1.uc_ib_iu4_val;
(22) <= ibuf1.redirect_l2;
(23) <= ibuf1.ib_ic_below_water;
(24) <= ibuf1.stall_l2(0);
(25:27) <= ibuf1.buffer1_valid_l2 &ibuf1.buffer2_valid_l2 &ibuf1.buffer3_valid_l2;
(28:31) <= ibuf1.buffer4_valid_l2 & ibuf1.buffer5_valid_l2 & ibuf1.buffer6_valid_l2 & ibuf1.buffer7_valid_l2;

(32:35) <= ibuf2.bp_ib_iu4_val(0 to 3);
(36) <= ibuf2.rm_ib_iu4_val;
(37) <= ibuf2.uc_ib_iu4_val;
(38) <= ibuf2.redirect_l2;
(39) <= ibuf2.ib_ic_below_water
(40) <= ibuf2.stall_l2(0);
(41:43) <= ibuf2.buffer1_valid_l2 & ibuf2.buffer2_valid_l2 & ibuf2.buffer3_valid_l2;
(44:47) <= ibuf2.buffer4_valid_l2 & ibuf2.buffer5_valid_l2 & ibuf2.buffer6_valid_l2 & ibuf2.buffer7_valid_l2;

(48:51) <= ibuf3.bp_ib_iu4_val(0 to 3);
(52) <= ibuf3.rm_ib_iu4_val;
(53) <= ibuf3.uc_ib_iu4_val;
(54) <= ibuf3.redirect_l2;
(55) <= ibuf3.ib_ic_below_water;
(56) <= ibuf3.stall_l2(0);
(57:59) <= ibuf3.buffer1_valid_l2 & ibuf3.buffer2_valid_l2 & ibuf3.buffer3_valid_l2;
(60:63) <= ibuf3.buffer4_valid_l2 & ibuf3.buffer5_valid_l2 & ibuf3.buffer6_valid_l2 & ibuf3.buffer7_valid_l2;

(64:67) <= iuq_axu_fu_iss0.highpri_v(0 to 3)
(68:71) <= iuq_axu_fu_iss0.medpri_v(0 to 3)
(72) <= iuq_axu_fu_iss0.hi_did3no0
(73) <= iuq_axu_fu_iss0.hi_did3no1
(74) <= iuq_axu_fu_iss0.hi_did3no2
(75) <= iuq_axu_fu_iss0.hi_did2no1
(76) <= iuq_axu_fu_iss0.hi_did2no0
(77) <= iuq_axu_fu_iss0.hi_did1no0
(78) <= iuq_axu_fu_iss0.md_did3no0
(79) <= iuq_axu_fu_iss0.md_did3no1
(80) <= iuq_axu_fu_iss0.md_did3no2
(81) <= iuq_axu_fu_iss0.md_did2no1
(82) <= iuq_axu_fu_iss0.md_did2no0
(83) <= iuq_axu_fu_iss0.md_did1no0
(84:87) <= iuq_axu_fu_iss0.is2_issue_sel_db(0 to 3);

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 2 of 6)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 770 of 864
Version 1.3

October 23, 2012

3 (0) <= iuq_slice0.iu_fxu_dep0.barrier_l2;
(1) <= iuq_slice0.iu_fxu_dep0.is2_instr_is_barrier;
(2) <= iuq_slice0.iu_fxu_dep0.is2_mult_hole_barrier;
(3) <= iuq_slice0.iu_fxu_dep0.xu_barrier_L2;
(4) <= iuq_slice0.iu_fxu_dep0.xu_iu_larx_done_tid;
(5) <= iuq_slice0.iu_fxu_dep0.an_ac_sync_ack;
(6) <= iuq_slice0.iu_fxu_dep0.an_ac_stcx_complete;
(7) <= iuq_slice0.iu_fxu_dep0.ic_fdep_icbi_ack;
(8) <= iuq_slice0.iu_fxu_dep0.sp_barrier_clr;
(9) <= iuq_slice0.iu_fxu_dep0.xu_iu_slowspr_done;
(10) <= iuq_slice0.iu_fxu_dep0.xu_iu_multdiv_done;
(11) <= iuq_slice0.iu_fxu_dep0.mm_iu_barrier_done;
(12) <= iuq_slice0.iu_fxu_dep0.xu_iu_set_barr_tid;
(13) <= iuq_slice0.iu_fxu_dep0.xu_iu_membar_tid;
(14) <= iuq_slice0.iu_fxu_dep0.fdec_fdep_is1_vld;
(15) <= iuq_slice0.iu_fxu_dep0.internal_is2_stall;
(16) <= iuq_slice0.iu_fxu_dep0.RAW_dep_hit;
(17) <= iuq_slice0.iu_fxu_dep0.br_sprs_dep_hit;
(18) <= iuq_slice0.iu_fxu_dep0.sync_dep_hit;
(19) <= iuq_slice0.iu_fxu_dep0.single_instr_dep_hit;
(20) <= iuq_slice0.iu_fxu_dep0.WAW_LMQ_dep_hit;
(21) <= iuq_slice0.iu_fxu_dep0.fdec_fdep_is1_force_ram;

(22:43) <= same as 0:21, except for iuq_slice1
(44:65) <= same as 0:21, except for iuq_slice2
(66:87) <= same as 0:21, except for iuq_slice3

4 (0:3) <= iuq_fxu_issue0.high_pri_mask_l2(0 to 3);
(4:7) <= iuq_fxu_issue0.med_pri_mask_l2(0 to 3);
(8) <= iuq_fxu_issue0.hi_did3no0;
(9) <= iuq_fxu_issue0.hi_did3no1;
(10) <= iuq_fxu_issue0.hi_did3no2;
(11) <= iuq_fxu_issue0.hi_did2no0;
(12) <= iuq_fxu_issue0.hi_did2no1;
(13) <= iuq_fxu_issue0.hi_did1no0;
(14) <= iuq_fxu_issue0.md_did3no0;
(15) <= iuq_fxu_issue0.md_did3no1;
(16) <= iuq_fxu_issue0.md_did3no2;
(17) <= iuq_fxu_issue0.md_did2no0;
(18) <= iuq_fxu_issue0.md_did2no1;
(19) <= iuq_fxu_issue0.md_did1no0;
(20:25) <= iuq_fxu_issue0.low_pri_counter0_l2(0 to 5);
(26:31) <= iuq_fxu_issue0.low_pri_counter1_l2(0 to 5);
(32:37) <= iuq_fxu_issue0.low_pri_counter2_l2(0 to 5);
(38:43) <= iuq_fxu_issue0.low_pri_counter3_l2(0 to 5);
(44) <= iuq_fxu_issue0.iu_xu_is2_vld_int;
(45) <= iuq_fxu_issue0.fiss_uc_is2_ucode_vld_int;
(46:49) <= iuq_fxu_issue0.iu_xu_is2_tid_int(0 to 3);
(50:81) <= iuq_fxu_issue0.iu_xu_is2_instr_int(0 to 31);
(82) <= iuq_fxu_issue0.iu_xu_is2_pred_update_int;
(83:84) <= iuq_fxu_issue0.iu_xu_is2_pred_taken_cnt_int(0 to 1);
(85:87) <= iuq_fxu_issue0.iu_xu_is2_error_int(0 to 2);

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 3 of 6)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 771 of 864

5 (0) <= iuq_slice0.dec0.is1_instr_v
(1) <= iuq_slice0.dec0.is1_frt_v
(2) <= iuq_slice0.dec0.is1_fra_v
(3) <= iuq_slice0.dec0.is1_frb_v
(4) <= iuq_slice0.dec0.is1_frc_v
(5) <= iuq_slice0.dec0.is1_ldst
(6) <= iuq_slice0.dec0.is1_st
(7) <= iuq_slice0.dec0.is1_cr_setter
(8) <= iuq_slice0.dec0.is1_cr_writer
(9) <= iuq_slice0.dec0.is1_is_ucode
(10) <= iuq_slice0.dec0.is1_to_ucode
(11) <= iuq_slice0.dec0.is1_frt_buf(1)
(12) <= iuq_slice0.dec0.is1_fmul_uc
(13) <= iuq_slice0.dec0.is1_in_divsqrt_mode_or1d;

(14) <= iuq_slice0.dep0.is1_dep_hit_db
(15) <= iuq_slice0.dep0.is1_raw_hit_db
(16) <= iuq_slice0.dep0.raw_fra_hit_db
(17) <= iuq_slice0.dep0.raw_frb_hit_db
(18) <= iuq_slice0.dep0.raw_frc_hit_db
(19) <= iuq_slice0.dep0.is1_prebubble_skip_db
(20) <= iuq_slice0.dep0.raw_cr_hit_db
(21) <= iuq_slice0.dep0.bubble3_is1_db
(22) <= iuq_slice0.dep0.is1_lmq_waw_hit_db
(23) <= iuq_slice0.dep0.is1_waw_load_hit_db
(24) <= iuq_slice0.dep0.iu_au_is1_hold_db
(25) <= iuq_slice0.dep0.iu_au_is2_stall_db
(26) <= iuq_slice0.dep0.iu_au_is1_flush_db
(27) <= iuq_slice0.dep0.iu_au_is2_flush_db
(28) <= iuq_slice0.dep0.iu_au_rf0_flush_db
(29) <= iuq_slice0.dep0.is1_instr_v_din_db
(30) <= iuq_slice0.dep0.is2_instr_v
(31) <= iuq_slice0.dep0.rf0_instr_v
(32) <= iuq_slice0.dep0.rf1_instr_v
(33:37) <= iuq_slice0.dep0.is2_ta(1 to 5);

(38:75) same as 0:37, except for iuq_slice1

(76:87) <= tidn

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 4 of 6)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 772 of 864
Version 1.3

October 23, 2012

6 (0) <= iuq_slice2.dec0.is1_instr_v
(1) <= iuq_slice2.dec0.is1_frt_v
(2) <= iuq_slice2.dec0.is1_fra_v
(3) <= iuq_slice2.dec0.is1_frb_v
(4) <= iuq_slice2.dec0.is1_frc_v
(5) <= iuq_slice2.dec0.is1_ldst
(6) <= iuq_slice2.dec0.is1_st
(7) <= iuq_slice2.dec0.is1_cr_setter
(8) <= iuq_slice2.dec0.is1_cr_writer
(9) <= iuq_slice2.dec0.is1_is_ucode
(10) <= iuq_slice2.dec0.is1_to_ucode
(11) <= iuq_slice2.dec0.is1_frt_buf(1)
(12) <= iuq_slice2.dec0.is1_fmul_uc
(13) <= iuq_slice2.dec0.is1_in_divsqrt_mode_or1d;

(14) <= iuq_slice2.dep0.is1_dep_hit_db
(15) <= iuq_slice2.dep0.is1_raw_hit_db
(16) <= iuq_slice2.dep0.raw_fra_hit_db
(17) <= iuq_slice2.dep0.raw_frb_hit_db
(18) <= iuq_slice2.dep0.raw_frc_hit_db
(19) <= iuq_slice2.dep0.is1_prebubble_skip_db
(20) <= iuq_slice2.dep0.raw_cr_hit_db
(21) <= iuq_slice2.dep0.bubble3_is1_db
(22) <= iuq_slice2.dep0.is1_lmq_waw_hit_db
(23) <= iuq_slice2.dep0.is1_waw_load_hit_db
(24) <= iuq_slice2.dep0.iu_au_is1_hold_db
(25) <= iuq_slice2.dep0.iu_au_is2_stall_db
(26) <= iuq_slice2.dep0.iu_au_is1_flush_db
(27) <= iuq_slice2.dep0.iu_au_is2_flush_db
(28) <= iuq_slice2.dep0.iu_au_rf0_flush_db
(29) <= iuq_slice2.dep0.is1_instr_v_din_db
(30) <= iuq_slice2.dep0.is2_instr_v
(31) <= iuq_slice2.dep0.rf0_instr_v
(32) <= iuq_slice2.dep0.rf1_instr_v
(33:37) <= iuq_slice2.dep0.is2_ta(1 to 5);

(38:75) same as 0:37, except for iuq_slice3

(76:87) <= tidn

7 (0:7) <= iuq_misc0.r_addr(0 to 7);
(8:9) <= iuq_misc0.data_out0_int(0 to 1)
(10:11) <= iuq_misc0.data_out1_int(0 to 1)
(12:13) <= iuq_misc0.data_out2_int(0 to 1)
(14:15) <= iuq_misc0.data_out3_int(0 to 1);
(16:23) <= iuq_misc0.w_addr(0 to 7);
(24:25) <= iuq_misc0.data_in(0 to 1);
(26) <= tidn
(27) <= iuq_misc0.r_act;
(28:31) <= iuq_misc0.w_act(0 to 3);
(32:87) <= tidn

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 5 of 6)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 773 of 864

Trigger Group Signal List

0 (0) <= ibuf0.bp_ib_iu4_val(0);
(1) <= ibuf0.rm_ib_iu4_val;
(2) <= ibuf0.uc_ib_iu4_val;
(3) <= ibuf1.bp_ib_iu4_val(0);
(4) <= ibuf1.rm_ib_iu4_val;
(5) <= ibuf1.uc_ib_iu4_val;
(6) <= ibuf2.bp_ib_iu4_val(0);
(7) <= ibuf2.rm_ib_iu4_val;
(8) <= ibuf2.uc_ib_iu4_val;
(9) <= ibuf3.bp_ib_iu4_val(0);
(10) <= ibuf3.rm_ib_iu4_val;
(11) <= ibuf3.uc_ib_iu4_val;

1 (0:3) <= iuq_fxu_issue0.high_pri_mask_l2(0 to 3);
(4:7) <= iuq_fxu_issue0.med_pri_mask_l2(0 to 3);
(8) <= iuq_fxu_issue0.iu_xu_is2_vld_int;
(9) <= iuq_fxu_issue0.fiss_uc_is2_ucode_vld_int;
(10) <= iuq_bp0.ex6_val_q;
(11) <= iuq_bp0.ex6_br_update_q;

2 (0) <= iuq_slice0.iu_fxu_dep0.fdec_fdep_is1_vld;
(1) <= iuq_slice1.iu_fxu_dep0.fdec_fdep_is1_vld;
(2) <= iuq_slice2.iu_fxu_dep0.fdec_fdep_is1_vld;
(3) <= iuq_slice3.iu_fxu_dep0.fdec_fdep_is1_vld;
(4) <= iuq_misc0.r_act;
(5:8) <= iuq_misc0.w_act(0 to 3);
(9) <= iuq_bp0.ex6_br_taken_q;
(10) <= iuq_bp0.ex6_bclr_q;
(11) <= iuq_bp0.ex6_lk_q;

3 (0) <= iuq_slice0.dec0.is1_to_ucode
(1) <= iuq_slice1.dec0.is1_to_ucode
(2) <= iuq_slice2.dec0.is1_to_ucode
(3) <= iuq_slice3.dec0.is1_to_ucode
(4) <= iuq_slice0.dep0.bubble3_is1_db
(5) <= iuq_slice1.dep0.bubble3_is1_db
(6) <= iuq_slice2.dep0.bubble3_is1_db
(7) <= iuq_slice3.dep0.bubble3_is1_db
(8:11) <= iuq_axu_fu_iss0.is2_issue_sel_db(0 to 3);

Table C-4. IU Debug Mux1 Debug and Trigger Groups (Sheet 6 of 6)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 774 of 864
Version 1.3

October 23, 2012

Table C-5. IU Debug Mux2 Debug and Trigger Groups (Sheet 1 of 5)

Debug Group Signal List

0 --Group 0 -iuq_ic_select
(0) <= xu_iu_flush_l2(0)
(1) <= uc_flush_tid(0)
(2) <= ib_ic_iu5_redirect_tid(0)
(3) <= bp_ic_iu5_redirect_tid(0)
(4) <= icd_ics_iu3_parity_flush(0)
(5) <= icd_ics_iu2_miss_flush_prev(0)
(6) <= ierat_iu_iu2_flush_req(0)
(7) <= icm_ics_iu1_ecc_flush
(8) <= xu_iu_flush_l2(1)
(9) <= uc_flush_tid(1)
(10) <= ib_ic_iu5_redirect_tid(1)
(11) <= bp_ic_iu5_redirect_tid(1)
(12) <= icd_ics_iu3_parity_flush(1)
(13) <= icd_ics_iu2_miss_flush_prev(1)
(14) <= ierat_iu_iu2_flush_req(1)
(15) <= icm_ics_iu2_miss_match_prev
(16) <= xu_iu_flush_l2(2)
(17) <= uc_flush_tid(2)
(18) <= ib_ic_iu5_redirect_tid(2)
(19) <= bp_ic_iu5_redirect_tid(2)
(20) <= icd_ics_iu3_parity_flush(2)
(21) <= icd_ics_iu2_miss_flush_prev(2)
(22) <= ierat_iu_iu2_flush_req(2)
(23) <= ierat_iu_iu2_miss
(24) <= xu_iu_flush_l2(3)
(25) <= uc_flush_tid(3)
(26) <= ib_ic_iu5_redirect_tid(3)
(27) <= bp_ic_iu5_redirect_tid(3)
(28) <= icd_ics_iu3_parity_flush(3)
(29) <= icd_ics_iu2_miss_flush_prev(3)
(30) <= ierat_iu_iu2_flush_req(3)
(31) <= icd_ics_iu1_valid
(32:35) <= icd_ics_iu1_tid(0 to 3)
(36:39) <= ib_ic_empty(0 to 3)
(40:43) <= ib_ic_below_water(0 to 3)
(44:49) <= hi_did3no0 & hi_did3no1 & hi_did3no2 & hi_did2no0 & hi_did2no1 & hi_did1no0
(50:55) <= md_did3no0 & md_did3no1 & md_did3no2 & md_did2no0 & md_did2no1 & md_did1no0
(56:59) <= high_mask_l2(0 to 3)
(60:63) <= low_mask_l2(0 to 3)
(64) <= spr_idir_read_l2
(65) <= xu_icbi_buffer_val(0)
(66) <= back_inv_l2
(67) <= icm_ics_hold_iu0
(68) <= xu_iu_run_thread_l2(0)
(69:72) <= uc_ic_hold_thread(0) & bp_ic_iu5_hold_tid(0) & icm_ics_hold_thread_dbg(0) & ierat_iu_hold_req(0)
(73) <= xu_iu_run_thread_l2(1)
(74:77) <= uc_ic_hold_thread(1) & bp_ic_iu5_hold_tid(1) & icm_ics_hold_thread_dbg(1) & ierat_iu_hold_req(1)
(78) <= xu_iu_run_thread_l2(2)
(79:82) <= uc_ic_hold_thread(2) & bp_ic_iu5_hold_tid(2) & icm_ics_hold_thread_dbg(2) & ierat_iu_hold_req(2)
(83) <= xu_iu_run_thread_l2(3)
(84:87) <= uc_ic_hold_thread(3) & bp_ic_iu5_hold_tid(3) & icm_ics_hold_thread_dbg(3) & ierat_iu_hold_req(3)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 775 of 864

1 --Group 1 - iuq_ic_dir
(0:10) <= data_datain(21 to 31)
(11:21) <= iu2_data_dataout_l2(21 to 31)
(22) <= dbg_dir_write_l2
(23) <= data_write
(24:31) <= icm_icd_reload_addr(52 to 59)
(32:35) <= icm_icd_reload_way(0 to 3)
(36) <= dbg_dir_rd_act_l2
(37) <= icm_icd_dir_write_endian
(38:43) <= iu2_ifar_eff_l2(52 to 57)
(44:47) <= iu2_dir_rd_val_l2(0 to 3)
(48:51) <= dbg_iu2_rd_way_tag_hit_l2(0 to 3)
(52:55) <= iu3_dir_parity_err_way_l2(0 to 3)
(56:59) <= iu3_multihit_err_way_l2(0 to 3)
(60:63) <= iu3_data_parity_err_way_l2(0 to 3)
(64:67) <= xu_iu_ici_l2 & iu2_inval_l2 & icm_icd_dir_val & icm_icd_dir_inval
(68:69) <= icm_icd_ecc_inval & icm_icd_lru_write
(70) <= dbg_iu2_lru_rd_update_l2
(71:73) <= iu2_spr_idir_lru_l2(0 to 2)
(74:79) <= icm_icd_lru_write_addr(52 to 57)
(80:83) <= icm_icd_lru_write_way(0 to 3)
(84:87) <= perf_event_t0_d(5) & perf_event_t1_d(5) & perf_event_t2_d(5) & perf_event_t3_d(5)
[iu2_valid and iu2_tid_l2]

2 --Group 2 - iuq_ic_dir (IU3)
(0:61) <= iu3_ifar_l2(0 to 61)
(62:67) <= iu3_0_instr_rot(0 to 5)
(68:71) <= iu3_instr_valid_l2(0 to 3)
(72:75) <= iu3_tid_l2(0 to 3)
(76:79) <= ic_bp_iu3_flush & ic_bp_iu3_error(0 to 2)
(80:83) <= ics_icd_all_flush_prev(0 to 3)
(84:87) <= dbg_load_iu2_l2 & uc_illegal & iu3_2ucode_l2 & iu3_2ucode_type_l2

3 --Group 3 - iuq_ic_dir (IU2) & iuq_ic_miss (reloads)
(0:3) <= iuq_ic_dir0.iu2_valid & iuq_ic_dir0.iu3_erat_err_l2(0 to 2)
(4:7) <= iuq_ic_dir0.iu2_tid_l2(0 to 3)
(8:11) <= iuq_ic_dir0.dbg_iu2_rd_way_hit_l2(0 to 3)
(12:13) <= iuq_ic_dir0.iu2_ci & iuq_ic_dir0.iu2_endian
(14:43) <= iuq_ic_dir0.ierat_iu_iu2_rpn_noncmp(22 to 51)
(44:53) <= icd_icm_addr_real(52 to 61)
(54:57) <= iuq_ic_miss0.miss_tid0_sm_l2(0) & miss_tid1_sm_l2(0) & miss_tid2_sm_l2(0) & miss_tid3_sm_l2(0)
(58:71) <= iuq_ic_miss0.req_thread_l2(0 to 3) & request_l2 & req_wimge_l2(0 to 4) & req_userdef_l2(0 to 3)
(72:75) <= iuq_ic_miss0.iu3_miss_match_l2 & preload_hold_iu0 & dir_inval & r3_need_back_inval_l2
(76:79) <= write_dir_val(0 to 3)
(80:83) <= load_tid_no_block(0 to 3)
(84:87) <= reld_r2_tid_l2(0 to 3)

4 --Group 4 - iuq_ic_miss (states)
(0:11) <= miss_tid0_sm_l2(0 to 11)
(12:15) <= miss_flush_occurred0_l2 & miss_flushed0_l2 & miss_inval0_l2 & miss_block_fp0_l2
(16:19) <= miss_ecc_err0_l2 & miss_ecc_err_ue0_l2 & miss_wrote_dir0_l2 & miss_need_hold0_l2
(20:21) <= reld_r2_tid_l2(0) & load_tid_no_block(0)
(22:43) <= same as (0:21), except for Thread 1
(44:65) <= same as (0:21), except for Thread 2
(66:87) <= same as (0:21), except for Thread 3

Table C-5. IU Debug Mux2 Debug and Trigger Groups (Sheet 2 of 5)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 776 of 864
Version 1.3

October 23, 2012

5 --Group 5 - iuq_ic_miss
(0:11) <= miss_tid0_sm_l2(0 to 11)
(12:23) <= miss_tid1_sm_l2(0 to 11)
(24) <= miss_tid2_sm_l2(0)
(25) <= miss_tid3_sm_l2(0)
(26:35) <= r2_load_addr(52 to 61)
(36:39) <= row_val_l2(0 to 3)
(40:43) <= lru_write_hit_l2 & row_lru_l2(0 to 2)
(44:47) <= select_lru(0 to 3)
(48:59) <= lru_valid(0 to 3) & row_match_way_l2(0 to 3) & next_way_l2(0 to 3)
(60:63) <= perf_event_t0_l2(1) & perf_event_t1_l2(1) & perf_event_t2_l2(1) & perf_event_t3_l2(1)[reload

dropped]
(64:67) <= data_write(0 to 3)
(68:71) <= miss_inval0_l2 & miss_inval1_l2 & miss_inval2_l2 & miss_inval3_l2
(72:75) <= icd_icm_iu2_inval & r2_load_2ucode & dir_inval & r3_need_back_inval_l2
(76:79) <= write_dir_val(0 to 3)
(80:83) <= load_tid_no_block(0 to 3)
(84:87) <= reld_r2_tid_l2(0 to 3)

6 --Group 6 - ic_bp_iu3 interface
(0:21) <= ic_bp_iu3_val(0) & ic_bp_iu3_0_instr(0 to 5) & ic_bp_iu3_0_instr(21 to 31) & ic_bp_iu3_0_instr(32 to

35)
(22:43) <= ic_bp_iu3_val(1) & ic_bp_iu3_1_instr(0 to 5) & ic_bp_iu3_1_instr(21 to 31) & ic_bp_iu3_1_instr(32 to

35)
(44:65) <= ic_bp_iu3_val(2) & ic_bp_iu3_2_instr(0 to 5) & ic_bp_iu3_2_instr(21 to 31) & ic_bp_iu3_2_instr(32 to

35)
(66:87) <= ic_bp_iu3_val(3) & ic_bp_iu3_3_instr(0 to 5) & ic_bp_iu3_3_instr(21 to 31) & ic_bp_iu3_3_instr(32 to

35)

7 --Group 7 - iuq_uc
(0:3) <= uc_control0.bubble_l2 & uc_control0.valid_l2 & uc_control0.wait_l2 & uc_control0.skip_l2
(4:7) <= uc_control1.bubble_l2 & uc_control1.valid_l2 & uc_control1.wait_l2 & uc_control1.skip_l2
(8:11) <= uc_control2.bubble_l2 & uc_control2.valid_l2 & uc_control2.wait_l2 & uc_control2.skip_l2
(12:15) <= uc_control3.bubble_l2 & uc_control3.valid_l2 & uc_control3.wait_l2 & uc_control3.skip_l2
(16:23) <= xu_iu_flush_l2(0 to 3) & ib_uc_buff_avail_l2(0 to 3)
(24:26) <= fiss_uc_is2_ucode_vld_l2 & fiss_uc_is2_2ucode_l2 & fiss_uc_is2_2ucode_type_l2
(27:32) <= fiss_uc_is2_instr_l2(0 to 5)
(33:43) <= fiss_uc_is2_instr_l2(21 to 31)
(44:63) <= dbg_iu4_instr_l2_l2(0 to 15) & iu4_ext_l2(0 to 3)
(64:65) <= iu4_ifar_l2(41 to 42)
(66:73) <= iu4_ifar_l2(54 to 61)
(74:79) <= iu4_ifar_l2(48) & iu4_ifar_l2(43 to 47)
(80:87) <= iu4_valid_tid_l2(0 to 3) & romtoken_l2(0 to 3)

8 --Group 8 - iuq_ic_ierat
(0:83) <= iu2_cam_cmp_data_q(0 to 83)
(84) <= ex3_eratsx_data_q(1)
(85) <= iu2_debug_q(0)[comp_request]
(86) <= iu2_debug_q(1)[comp_invalidate]
(87) <= iu2_debug_q(9)[snoop_val_q(0) and snoop_val_q(1)]

Table C-5. IU Debug Mux2 Debug and Trigger Groups (Sheet 3 of 5)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 777 of 864

9 --Group 9 - iuq_ic_ierat
(0:67) <= iu2_array_cmp_data_q(0 to 67)
(68) <= ex3_eratsx_data_q(1) --cam_hit delayed
(69) <= iu2_debug_q(16)[iu1_multihit]
(70:74) <= iu2_debug_q(11 to 15)[’0’ & iu1_first_hit_entry(0 to 3)]
(75) <=iu2_debug_q(0)[comp_request]
(76) <= iu2_debug_q(1)[comp_invalidate]
(77) <= iu2_debug_q(2)[or_reduce(ex6_valid_q) and or_reduce(ex6_ttype_q(4 to 5))] -- csync or isync

enabled
(78) <= iu2_debug_q(3)[’0’]
(79) <= iu2_debug_q(4)[snoop_val_q(0) and snoop_val_q(1) and not or_reduce(tlb_rel_val_q(0 to 3))]
(80) <= iu2_debug_q(5)[ex1_ieratsx]
(81) <= iu2_debug_q(6)[iu_ierat_iu0_val]
(82) <= iu2_debug_q(7)[or_reduce(tlb_rel_val_q(0 to 3)) and tlb_rel_val_q(4)]
(83) <= iu2_debug_q(8)[or_reduce(tlb_rel_val_q(0 to 3))] -- any tlb reload
(84) <= iu2_debug_q(9)[snoop_val_q(0) and snoop_val_q(1)]
(85) <= iu2_debug_q(10)[’0’]
(86) <= ‘0’
(87) <= [lru_update_event_q(7) or lru_update_event_q(8)] -- any lru update event

10 --Group 10 - iuq_ic_ierat
(0:15) <= entry_valid_q(0 to 15)
(16:31) <= entry_match_q(0 to 15)
(32:47) <= ‘0’ & lru_q(1 to 15)
(48:63) <= ‘0’ & lru_debug_q(5 to 19)[lru_eff(1 to 15)]
(64:73) <= lru_update_event_q(0 to 8) & iu2_debug_q(16)[iu1_multihit]
(74:78) <= ‘0’ & lru_debug_q(20 to 23)[lru_way_encode(0 to 3)]
(79:83) <= ‘0’ & watermark_q(0 to 3)
(84) <= ex3_eratsx_data_q(1)
(85) <= iu2_debug_q(0)[comp_request]
(86) <= iu2_debug_q(1)[comp_invalidate]
(87) <= iu2_debug_q(9)[snoop_val_q(0) and snoop_val_q(1)]

11 --Group 11 - iuq_ic_ierat
(0) <= ex3_eratsx_data_q(1) --cam_hit delayed
(1) <= iu2_debug_q(0)[comp_request]
(2) <= iu2_debug_q(1)[comp_invalidate]
(3) <= iu2_debug_q(9)[snoop_val_q(0) and snoop_val_q(1)]
(4:8) <= iu2_debug_q(11 to 15)[’0’ & iu1_first_hit_entry(0 to 3)]
(9) <= [lru_update_event_q(7) or lru_update_event_q(8)] -- any lru update event
(10:14) <= lru_debug_q(0 to 4) -- tlb_reload, snoop, csync/isync, eratwe, fetch hit
(15:19) <= ‘0’ & watermark_q(0 to 3)
(20:35) <= entry_valid_q(0 to 15)
(36:51) <= entry_match_q(0 to 15)
(52:67) <= ‘0’ & lru_q(1 to 15)
(68:83) <= ‘0’ & lru_debug_q(5 to 19)[lru_eff(1 to 15)]
(84:87) <= lru_debug_q(20 to 23)[lru_way_encode]

12 (0 to 87 =>’0’)

13 (0 to 87 =>’0’)

14 (0 to 87 =>’0’)

15 (0 to 87 =>’0’)

Table C-5. IU Debug Mux2 Debug and Trigger Groups (Sheet 4 of 5)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 778 of 864
Version 1.3

October 23, 2012

C.6 MMU and PC Debug Select Register and Debug Group Tables

Table C-6. MMU and PC Debug Select Register (MPDSR)

Trigger Group Signal List

0 (0) <= iuq_ic_select0.xu_icbi_buffer_val(0)
(1) <= iuq_ic_select0.back_inv_l2
(2) <= iuq_ic_dir0.iu1_valid_l2
(3) <= iuq_ic_dir0.iu1_inval_l2
(4:7) <= iuq_ic_dir0.iu1_tid_l2(0 to 3)
(8) <= iuq_ic_dir0.iu3_rd_miss_l2
(9) <= iuq_ic_dir0.iu3_instr_valid_l2(0)
(10) <= iuq_ic_miss0.an_ac_reld_ecc_err_l2
(11) <= iuq_ic_miss0.reld_r0_vld

1 (0:9) <= iuq_ic_dir0.iu2_ifar_eff_l2(52 to 61)
(10) <= iuq_ic_dir0.iu2_valid_l2
(11) <= iuq_ic_dir0.iu2_inval_l2

2 (0:5) <= iuq_ic_miss0.req_ra_l2(52 to 57)
(6) <= iuq_ic_miss0.request_l2
(7) <= iuq_ic_miss0.reld_r0_vld
(8:9) <= iuq_ic_miss0.an_ac_reld_core_tag_l2(3 to 4)
(10) <= iuq_ic_miss0.an_ac_reld_ecc_err_l2
(11) <= iuq_ic_miss0.an_ac_reld_ecc_err_ue_l2

3 (0 to 11 => ’0’)

Register Short Name: MPDSR Access: RW

Register Address: x‘3D’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

MMU Debug Mux1 Controls (16:1 Debug Multiplexer)

32:35 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

Table C-5. IU Debug Mux2 Debug and Trigger Groups (Sheet 5 of 5)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 779 of 864

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No Rotate.
1 Trigger Group Data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

PC Debug Mux1 Controls (8:1 Debug Multiplexer)

48:50 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
000 Debug group 0.
001 Debug group 1.
010 Debug group 2.
 | |
111 Debug group 7.

51:52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

Bits Function Initial
Value Description

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 780 of 864
Version 1.3

October 23, 2012

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 781 of 864

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 1 of 16)

Debug Group Signal List

0 dbg_group0(0) <= spr_dbg_slowspr_val_int; -- spr_int phase
dbg_group0(1) <= spr_dbg_slowspr_rw_int;
dbg_group0(2 to 3) <= spr_dbg_slowspr_etid_int;
dbg_group0(4 to 13) <= spr_dbg_slowspr_addr_int;
dbg_group0(14) <= spr_dbg_slowspr_done_out; -- spr_out phase
dbg_group0(15) <= spr_dbg_match_any_mmu; -- spr_int phase
dbg_group0(16) <= spr_dbg_match_any_mas;
dbg_group0(17) <= spr_dbg_match_pid;
dbg_group0(18) <= spr_dbg_match_lpidr;
dbg_group0(19) <= spr_dbg_match_mas2;
dbg_group0(20) <= spr_dbg_match_mas01_64b;
dbg_group0(21) <= spr_dbg_match_mas56_64b;
dbg_group0(22) <= spr_dbg_match_mas73_64b;
dbg_group0(23) <= spr_dbg_match_mas81_64b;
-- alternate bit multiplexers when 64-bit decodes 19:23=00000
dbg_group0a(24) <= spr_dbg_match_mmucr0;
dbg_group0a(25) <= spr_dbg_match_mmucr1;
dbg_group0a(26) <= spr_dbg_match_mmucr2;
dbg_group0a(27) <= spr_dbg_match_mmucr3;
dbg_group0a(28) <= spr_dbg_match_mmucsr0;
dbg_group0a(29) <= spr_dbg_match_mmucfg;
dbg_group0a(30) <= spr_dbg_match_tlb0cfg;
dbg_group0a(31) <= spr_dbg_match_tlb0ps;
dbg_group0a(32) <= spr_dbg_match_lratcfg;
dbg_group0a(33) <= spr_dbg_match_lratps;
dbg_group0a(34) <= spr_dbg_match_eptcfg;
dbg_group0a(35) <= spr_dbg_match_lper;
dbg_group0a(36) <= spr_dbg_match_lperu;
dbg_group0a(37) <= spr_dbg_match_mas0;
dbg_group0a(38) <= spr_dbg_match_mas1;
dbg_group0a(39) <= spr_dbg_match_mas2u;
dbg_group0a(40) <= spr_dbg_match_mas3;
dbg_group0a(41) <= spr_dbg_match_mas4;
dbg_group0a(42) <= spr_dbg_match_mas5;
dbg_group0a(43) <= spr_dbg_match_mas6;
dbg_group0a(44) <= spr_dbg_match_mas7;
dbg_group0a(45) <= spr_dbg_match_mas8;
dbg_group0a(46) <= tlb_mas_tlbre;
dbg_group0a(47) <= tlb_mas_tlbsx_hit;
dbg_group0a(48) <= tlb_mas_tlbsx_miss;
dbg_group0a(49) <= tlb_mas_dtlb_error;
dbg_group0a(50) <= tlb_mas_itlb_error;
dbg_group0a(51) <= tlb_mas_thdid(2) or tlb_mas_thdid(3); -- encoded
dbg_group0a(52) <= tlb_mas_thdid(1) or tlb_mas_thdid(3); -- encoded
dbg_group0a(53) <= lrat_mas_tlbre;
dbg_group0a(54) <= lrat_mas_thdid(2) or lrat_mas_thdid(3); -- encoded
dbg_group0a(55) <= lrat_mas_thdid(1) or lrat_mas_thdid(3); -- encoded
-- alternate bit multiplexers when 64-bit decodes 19:23/=00000
dbg_group0(24 to 55) <= ((24 to 55 => spr_dbg_match_64b) and spr_dbg_slowspr_data_out(0 to 31)) or
((24 to 55 => not(spr_dbg_match_64b)) and dbg_group0a(24 to 55));
dbg_group0(56 to 87) <= spr_dbg_slowspr_data_out(32 to 63);

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 782 of 864
Version 1.3

October 23, 2012

1 --group1 (invalidate, local generation)
dbg_group1(0 to 4) <= inval_dbg_seq_q(0 to 4);
dbg_group1(5) <= inval_dbg_ex6_valid;
dbg_group1(6 to 7) <= inval_dbg_ex6_thdid(0 to 1); -- encoded
dbg_group1(8 to 9) <= inval_dbg_ex6_ttype(1 to 2); -- encoded
dbg_group1(10) <= htw_lsu_req_valid;
dbg_group1(11) <= mmucsr0_tlb0fi;
dbg_group1(12) <= tlbwe_back_inv_valid;
dbg_group1(13) <= inval_dbg_snoop_forme;
dbg_group1(14) <= inval_dbg_an_ac_back_inv_q(4); -- L bit
dbg_group1(15) <= inval_dbg_an_ac_back_inv_q(7); -- local bit
dbg_group1(16 to 50) <= inval_dbg_snoop_attr_q(0 to 34);
dbg_group1(51 to 52) <= inval_dbg_snoop_attr_tlb_spec_q(18 to 19);
dbg_group1(53 to 87) <= inval_dbg_snoop_vpn_q(17 to 51);

2 --group2 (invalidate, bus snoops)
dbg_group2(0 to 4) <= inval_dbg_seq_q(0 to 4);
dbg_group2(5) <= inval_dbg_snoop_forme;
dbg_group2(6) <= inval_dbg_snoop_local_reject;
dbg_group2(7 to 13) <= inval_dbg_an_ac_back_inv_q(2 to 8); -- 2=valid b, 3=target b, 4=L, 5=GS, 6=IND,

7=local, 8=reject
dbg_group2(14 to 21) <= inval_dbg_an_ac_back_inv_lpar_id_q(0 to 7);
dbg_group2(22 to 63) <= inval_dbg_an_ac_back_inv_addr_q(22 to 63);
dbg_group2(64 to 66) <= inval_dbg_snoop_valid_q(0 to 2);
dbg_group2(67 to 87) <= inval_dbg_snoop_attr_q(0 to 19) & inval_dbg_snoop_attr_q(34);

3 --group3 (lsu interface)
dbg_group3(0 to 4) <= inval_dbg_seq_q(0 to 4);
dbg_group3(5) <= inval_dbg_ex6_valid;
dbg_group3(6 to 7) <= inval_dbg_ex6_thdid(0 to 1); -- encoded
dbg_group3(8 to 9) <= inval_dbg_ex6_ttype(1 to 2); -- encoded
dbg_group3(10) <= inval_dbg_snoop_forme;
dbg_group3(11) <= inval_dbg_an_ac_back_inv_q(7); -- 2=valid b, 3=target b, 4=L, 5=GS, 6=IND, 7=local,

8=reject
dbg_group3(12) <= xu_mm_lmq_stq_empty;
dbg_group3(13) <= iu_mm_lmq_empty;
dbg_group3(14 to 15) <= htw_dbg_seq_q(0 to 1);
dbg_group3(16) <= htw_lsu_req_valid;
dbg_group3(17 to 18) <= htw_dbg_lsu_thdid(0 to 1);
dbg_group3(19 to 20) <= htw_lsu_ttype(0 to 1);
dbg_group3(21) <= xu_mm_lsu_token;
dbg_group3(22) <= inval_dbg_lsu_tokens_q(1);
dbg_group3(23) <= or_reduce(mm_xu_lsu_req);
dbg_group3(24 to 25) <= mm_xu_lsu_ttype; -- 0=tlbivax_op L=0, 1=tlbi_complete, 2=mmu read with

core_tag=01100, 3=mmu read with core_tag=01101
dbg_group3(26 to 30) <= mm_xu_lsu_wimge;
dbg_group3(31) <= mm_xu_lsu_ind; -- tlbivax sec enc data
dbg_group3(32) <= mm_xu_lsu_gs; -- tlbivax sec enc data
dbg_group3(33) <= mm_xu_lsu_lbit; -- tlbivax sec enc data, "L" bit, for large versus small
dbg_group3(34 to 37) <= mm_xu_lsu_u;
dbg_group3(38 to 45) <= mm_xu_lsu_lpid; -- tlbivax lpar id data
dbg_group3(46 to 87) <= mm_xu_lsu_addr(22 to 63);

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 2 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 783 of 864

4 --group4 (sequencers, the big picture)
dbg_group4(0 to 5) <= tlb_ctl_dbg_seq_q(0 to 5); -- tlb_seq_q
dbg_group4(6 to 7) <= tlb_ctl_dbg_tag0_thdid(0 to 1); -- encoded
dbg_group4(8 to 10) <= tlb_ctl_dbg_tag0_type(0 to 2); -- encoded
dbg_group4(11) <= tlb_ctl_dbg_any_tag_flush_sig;
dbg_group4(12 to 15) <= tlb_cmp_dbg_tag4_wayhit(0 to 3);
dbg_group4(16 to 19) <= mm_xu_eratmiss_done(0 to 3);
dbg_group4(20 to 23) <= mm_iu_barrier_done(0 to 3);
dbg_group4(24 to 27) <= mm_xu_ex3_flush_req(0 to 3);
dbg_group4(28) <= tlb_cmp_dbg_tag5_iorderat_rel_val; -- i or d
dbg_group4(29) <= tlb_cmp_dbg_tag5_iorderat_rel_hit; -- i or d
dbg_group4(30 to 31) <= htw_dbg_seq_q(0 to 1);
dbg_group4(32 to 34) <= htw_dbg_pte0_seq_q(0 to 2);
dbg_group4(35 to 37) <= htw_dbg_pte1_seq_q(0 to 2);
dbg_group4(38 to 42) <= inval_dbg_seq_q(0 to 4);
dbg_group4(43) <= mmucsr0_tlb0fi;
dbg_group4(44) <= inval_dbg_ex6_valid;
dbg_group4(45 to 46) <= inval_dbg_ex6_thdid(0 to 1); -- encoded
dbg_group4(47 to 49) <= inval_dbg_ex6_ttype(0 to 2); -- encoded tlbilx & tlbivax & eratilx & erativax, csync, isync
dbg_group4(50) <= inval_dbg_snoop_forme;
dbg_group4(51 to 57) <= inval_dbg_an_ac_back_inv_q(2 to 8); -- 2=valid b, 3=target b, 4=L, 5=GS, 6=IND,

7=local, 8=reject
dbg_group4(58) <= xu_mm_lmq_stq_empty;
dbg_group4(59) <= iu_mm_lmq_empty;
dbg_group4(60 to 63) <= mm_xu_hold_req(0 to 3);
dbg_group4(64 to 67) <= xu_mm_hold_ack(0 to 3);
dbg_group4(68 to 71) <= mm_xu_hold_done(0 to 3);
dbg_group4(72 to 74) <= inval_dbg_snoop_valid_q(0 to 2);
dbg_group4(75 to 77) <= inval_dbg_snoop_ack_q(0 to 2);
dbg_group4(78) <= or_reduce(mm_xu_lsu_req);
dbg_group4(79 to 80) <= mm_xu_lsu_ttype; -- 0=tlbivax_op L=0, 1=tlbi_complete, 2=mmu read with

core_tag=01100, 3=mmu read with core_tag=01101
dbg_group4(81) <= or_reduce(mm_xu_illeg_instr);
dbg_group4(82 to 85) <= tlb_cmp_dbg_tag5_except_type_q(0 to 3); -- tag5 except valid/type, (hv_priv |

lrat_miss | pt_fault | pt_inelig)
dbg_group4(86 to 87) <= tlb_cmp_dbg_tag5_except_thdid_q(0 to 1); -- tag5 encoded thdid

Where:
tlb_cmp_dbg_tag5_iorderat_rel_val <= or_reduce(tlb_cmp_dbg_tag5_erat_rel_val(0 to 3) or
tlb_cmp_dbg_tag5_erat_rel_val(5 to 8)); -- i or d

tlb_cmp_dbg_tag5_iorderat_rel_hit <= tlb_cmp_dbg_tag5_erat_rel_val(4) or tlb_cmp_dbg_tag5_erat_rel_val(9); --
i or d

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 3 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 784 of 864
Version 1.3

October 23, 2012

5 --group5 (tlb_req)
dbg_group5(0) <= tlb_req_dbg_ierat_iu5_valid_q;
dbg_group5(1 to 2) <= tlb_req_dbg_ierat_iu5_thdid(0 to 1); -- encoded
dbg_group5(3 to 6) <= tlb_req_dbg_ierat_iu5_state_q(0 to 3);
dbg_group5(7) <= tlb_seq_ierat_req;
dbg_group5(8 to 9) <= tlb_req_dbg_ierat_inptr_q(0 to 1);
dbg_group5(10 to 11) <= tlb_req_dbg_ierat_outptr_q(0 to 1);
dbg_group5(12 to 15) <= tlb_req_dbg_ierat_req_valid_q(0 to 3);
dbg_group5(16 to 19) <= tlb_req_dbg_ierat_req_nonspec_q(0 to 3);
dbg_group5(20 to 27) <= tlb_req_dbg_ierat_req_thdid(0 to 7); -- encoded
dbg_group5(28 to 31) <= tlb_req_dbg_ierat_req_dup_q(0 to 3);
dbg_group5(32) <= tlb_req_dbg_derat_ex6_valid_q;
dbg_group5(33 to 34) <= tlb_req_dbg_derat_ex6_thdid(0 to 1); -- encoded
dbg_group5(35 to 38) <= tlb_req_dbg_derat_ex6_state_q(0 to 3);
dbg_group5(39) <= tlb_seq_derat_req;
dbg_group5(40 to 41) <= tlb_req_dbg_derat_inptr_q(0 to 1);
dbg_group5(42 to 43) <= tlb_req_dbg_derat_outptr_q(0 to 1);
dbg_group5(44 to 47) <= tlb_req_dbg_derat_req_valid_q(0 to 3);
dbg_group5(48 to 55) <= tlb_req_dbg_derat_req_thdid(0 to 7); -- encoded
dbg_group5(56 to 63) <= tlb_req_dbg_derat_req_ttype_q(0 to 7);
dbg_group5(64 to 67) <= tlb_req_dbg_derat_req_dup_q(0 to 3);
dbg_group5(68 to 87) <= tlb_cmp_dbg_erat_dup_q(0 to 19);

6 --group6 (general erat and search compare values, truncated epn)
dbg_group6(0) <= tlb_cmp_dbg_tag4_valid; -- or_reduce of thdid;
dbg_group6(1 to 2) <= tlb_cmp_dbg_tag4_thdid(0 to 1); -- encoded
dbg_group6(3 to 5) <= tlb_cmp_dbg_tag4_type(0 to 2); -- encoded
dbg_group6(6 to 7) <= tlb_cmp_dbg_tag4(tagpos_class to tagpos_class+1);
dbg_group6(8 to 9) <= tlb_cmp_dbg_tag4(tagpos_is to tagpos_is+1);
dbg_group6(10 to 12) <= tlb_cmp_dbg_tag4(tagpos_esel to tagpos_esel+2);
dbg_group6(13) <= tlb_cmp_dbg_tag4(tagpos_cm);
dbg_group6(14) <= tlb_cmp_dbg_tag4(tagpos_pr);
dbg_group6(15) <= tlb_cmp_dbg_tag4(tagpos_ind);
dbg_group6(16) <= tlb_cmp_dbg_tag4(tagpos_endflag);
dbg_group6(17 to 23) <= tlb_cmp_dbg_addr4(0 to 6);
dbg_group6(24 to 27) <= tlb_cmp_dbg_tag4_wayhit(0 to tlb_ways-1);
dbg_group6(28) <= tlb_cmp_dbg_tag4(tagpos_gs);
dbg_group6(29 to 36) <= tlb_cmp_dbg_tag4(tagpos_lpid to tagpos_lpid+7);
dbg_group6(37) <= tlb_cmp_dbg_tag4(tagpos_as);
dbg_group6(38 to 51) <= tlb_cmp_dbg_tag4(tagpos_pid to tagpos_pid+13);
dbg_group6(52 to 87) <= tlb_cmp_dbg_tag4(tagpos_epn+16 to tagpos_epn+51);

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 4 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 785 of 864

7 --group7 (detailed compare/match)
dbg_group7(0) <= tlb_cmp_dbg_tag4_valid;
dbg_group7(1 to 2) <= tlb_cmp_dbg_tag4_thdid(0 to 1);
dbg_group7(3 to 5) <= tlb_cmp_dbg_tag4_type(0 to 2);
dbg_group7(6 to 7) <= tlb_cmp_dbg_tag4(tagpos_is to tagpos_is+1);
dbg_group7(8 to 9) <= tlb_cmp_dbg_tag4(tagpos_class to tagpos_class+1);
dbg_group7(10 to 12) <= tlb_cmp_dbg_tag4(tagpos_esel to tagpos_esel+2);
dbg_group7(13 to 19) <= tlb_cmp_dbg_addr4(0 to 6);
dbg_group7(20 to 23) <= tlb_cmp_dbg_tag4_wayhit(0 to 3);

debug_d(24 to 32) <= tlb_cmp_dbg_addr_enable(0 to 8); -- these are tag3 versions coming in
debug_d(33) <= tlb_cmp_dbg_pgsize_enable;
debug_d(34) <= tlb_cmp_dbg_class_enable;
debug_d(35 to 36) <= tlb_cmp_dbg_extclass_enable(0 to 1);
debug_d(37 to 38) <= tlb_cmp_dbg_state_enable(0 to 1);
debug_d(39) <= tlb_cmp_dbg_thdid_enable;
debug_d(40) <= tlb_cmp_dbg_pid_enable;
debug_d(41) <= tlb_cmp_dbg_lpid_enable;
debug_d(42) <= tlb_cmp_dbg_ind_enable;
debug_d(43) <= tlb_cmp_dbg_iprot_enable;
debug_d(44) <= tlb_cmp_dbg_way0_entry_v;
debug_d(45) <= tlb_cmp_dbg_way0_addr_match;
debug_d(46) <= tlb_cmp_dbg_way0_pgsize_match;
debug_d(47) <= tlb_cmp_dbg_way0_class_match;
debug_d(48) <= tlb_cmp_dbg_way0_extclass_match;
debug_d(49) <= tlb_cmp_dbg_way0_state_match;
debug_d(50) <= tlb_cmp_dbg_way0_thdid_match;
debug_d(51) <= tlb_cmp_dbg_way0_pid_match;
debug_d(52) <= tlb_cmp_dbg_way0_lpid_match;
debug_d(53) <= tlb_cmp_dbg_way0_ind_match;
debug_d(54) <= tlb_cmp_dbg_way0_iprot_match;
debug_d(55) <= tlb_cmp_dbg_way1_entry_v;
debug_d(56) <= tlb_cmp_dbg_way1_addr_match;
debug_d(57) <= tlb_cmp_dbg_way1_pgsize_match;
debug_d(58) <= tlb_cmp_dbg_way1_class_match;
debug_d(59) <= tlb_cmp_dbg_way1_extclass_match;
debug_d(60) <= tlb_cmp_dbg_way1_state_match;
debug_d(61) <= tlb_cmp_dbg_way1_thdid_match;
debug_d(62) <= tlb_cmp_dbg_way1_pid_match;
debug_d(63) <= tlb_cmp_dbg_way1_lpid_match;
debug_d(64) <= tlb_cmp_dbg_way1_ind_match;
debug_d(65) <= tlb_cmp_dbg_way1_iprot_match;
debug_d(66) <= tlb_cmp_dbg_way2_entry_v;
debug_d(67) <= tlb_cmp_dbg_way2_addr_match;
debug_d(68) <= tlb_cmp_dbg_way2_pgsize_match;
debug_d(69) <= tlb_cmp_dbg_way2_class_match;
debug_d(70) <= tlb_cmp_dbg_way2_extclass_match;
debug_d(71) <= tlb_cmp_dbg_way2_state_match;
debug_d(72) <= tlb_cmp_dbg_way2_thdid_match;
debug_d(73) <= tlb_cmp_dbg_way2_pid_match;
debug_d(74) <= tlb_cmp_dbg_way2_lpid_match;
debug_d(75) <= tlb_cmp_dbg_way2_ind_match;
debug_d(76) <= tlb_cmp_dbg_way2_iprot_match;
debug_d(77) <= tlb_cmp_dbg_way3_entry_v;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 5 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 786 of 864
Version 1.3

October 23, 2012

7
(continued)

debug_d(78) <= tlb_cmp_dbg_way3_addr_match;
debug_d(79) <= tlb_cmp_dbg_way3_pgsize_match;
debug_d(80) <= tlb_cmp_dbg_way3_class_match;
debug_d(81) <= tlb_cmp_dbg_way3_extclass_match;
debug_d(82) <= tlb_cmp_dbg_way3_state_match;
debug_d(83) <= tlb_cmp_dbg_way3_thdid_match;
debug_d(84) <= tlb_cmp_dbg_way3_pid_match;
debug_d(85) <= tlb_cmp_dbg_way3_lpid_match;
debug_d(86) <= tlb_cmp_dbg_way3_ind_match;
debug_d(87) <= tlb_cmp_dbg_way3_iprot_match;

dbg_group7(24 to 87) <= debug_q(24 to 87); -- tag4 phase, see below

8 --group8 (erat miss, tlbre, tlbsx mas updates and parerr)
dbg_group8(0) <= tlb_cmp_dbg_tag4_valid;
dbg_group8(1 to 2) <= tlb_cmp_dbg_tag4_thdid(0 to 1);
dbg_group8(3 to 5) <= tlb_cmp_dbg_tag4_type(0 to 2);
dbg_group8(6 to 7) <= tlb_cmp_dbg_tag4(tagpos_class to tagpos_class+1);
dbg_group8(8) <= tlb_cmp_dbg_tag4(tagpos_cm);
dbg_group8(9) <= tlb_cmp_dbg_tag4(tagpos_gs);
dbg_group8(10) <= tlb_cmp_dbg_tag4(tagpos_pr);
dbg_group8(11) <= tlb_cmp_dbg_tag4(tagpos_endflag);
dbg_group8(12) <= tlb_cmp_dbg_tag4(tagpos_atsel);
dbg_group8(13 to 15) <= tlb_cmp_dbg_tag4(tagpos_esel to tagpos_esel+2);
dbg_group8(16 to 19) <= tlb_cmp_dbg_tag4(tagpos_size to tagpos_size+3);
dbg_group8(20 to 33) <= tlb_cmp_dbg_tag4(tagpos_pid to tagpos_pid+13);
dbg_group8(34 to 58) <= tlb_cmp_dbg_tag4(tagpos_epn+27 to tagpos_epn+51);
dbg_group8(59 to 65) <= tlb_cmp_dbg_addr4(0 to 6);
dbg_group8(66 to 69) <= tlb_cmp_dbg_tag4_wayhit(0 to tlb_ways-1);
dbg_group8(70) <= tlb_mas_dtlb_error;
dbg_group8(71) <= tlb_mas_itlb_error;
dbg_group8(72) <= tlb_mas_tlbsx_hit;
dbg_group8(73) <= tlb_mas_tlbsx_miss;
dbg_group8(74) <= tlb_mas_tlbre;
dbg_group8(75) <= lrat_mas_tlbre;
dbg_group8(76) <= lrat_mas_tlbsx_hit;
dbg_group8(77) <= lrat_mas_tlbsx_miss;
dbg_group8(78 to 80) <= lrat_tag4_hit_entry(0 to 2);
dbg_group8(81 to 85) <= tlb_cmp_dbg_tag4_parerr(0 to 4); -- way0 to 3, lru
dbg_group8(86) <= or_reduce(mm_xu_cr0_eq_valid);
dbg_group8(87) <= or_reduce(mm_xu_cr0_eq and mm_xu_cr0_eq_valid);

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 6 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 787 of 864

9 --group9 (tlbwe, ptereload write control)
dbg_group9(0) <= tlb_cmp_dbg_tag4_valid;
dbg_group9(1 to 2) <= tlb_cmp_dbg_tag4_thdid(0 to 1);
dbg_group9(3 to 5) <= tlb_cmp_dbg_tag4_type(0 to 2);
dbg_group9(6) <= tlb_cmp_dbg_tag4(tagpos_gs);
dbg_group9(7) <= tlb_cmp_dbg_tag4(tagpos_pr);
dbg_group9(8) <= tlb_cmp_dbg_tag4(tagpos_cm);
dbg_group9(9) <= tlb_cmp_dbg_tag4(tagpos_hes);
dbg_group9(10 to 11) <= tlb_cmp_dbg_tag4(tagpos_wq to tagpos_wq+1);
dbg_group9(12) <= tlb_cmp_dbg_tag4(tagpos_atsel);
dbg_group9(13 to 15) <= tlb_cmp_dbg_tag4(tagpos_esel to tagpos_esel+2);
dbg_group9(16 to 17) <= tlb_cmp_dbg_tag4(tagpos_is to tagpos_is+1);
dbg_group9(18) <= tlb_cmp_dbg_tag4(tagpos_pt);
dbg_group9(19) <= tlb_cmp_dbg_tag4(tagpos_recform);
dbg_group9(20) <= tlb_cmp_dbg_tag4(tagpos_ind);
dbg_group9(21 to 27) <= tlb_cmp_dbg_addr4(0 to 6);
dbg_group9(28 to 31) <= tlb_cmp_dbg_tag4_wayhit(0 to tlb_ways-1);
dbg_group9(32 to 43) <= tlb_cmp_dbg_tag4_lru_dataout_q(0 to 11); -- current valid. lru, iprot
dbg_group9(44 to 47) <= lrat_tag4_hit_status(0 to 3);
dbg_group9(48 to 50) <= lrat_tag4_hit_entry(0 to 2);
dbg_group9(51) <= or_reduce(mm_iu_barrier_done);
dbg_group9(52 to 55) <= tlb_ctl_dbg_resv_valid(0 to 3);
dbg_group9(56 to 59) <= tlb_ctl_dbg_resv_match_vec_q(0 to 3); -- tag4
dbg_group9(60 to 63) <= tlb_ctl_dbg_tag5_tlb_write_q(0 to 3); -- tag5
dbg_group9(64 to 75) <= tlb_cmp_dbg_tag5_lru_datain_q(0 to 11); -- tag5
dbg_group9(76) <= tlb_cmp_dbg_tag5_lru_write; -- all bits the same
dbg_group9(77) <= or_reduce(mm_xu_illeg_instr);
dbg_group9(78 to 81) <= tlb_cmp_dbg_tag5_except_type_q(0 to 3); -- tag5 except valid/type, (hv_priv |

lrat_miss | pt_fault | pt_inelig)
dbg_group9(82 to 83) <= tlb_cmp_dbg_tag5_except_thdid_q(0 to 1); -- tag5 encoded thdid
dbg_group9(84) <= tlbwe_back_inv_valid; -- valid
dbg_group9(85) <= tlbwe_back_inv_attr(18); -- not extclass enable
dbg_group9(86) <= tlbwe_back_inv_attr(19); -- tid_nz
dbg_group9(87) <= ‘0’;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 7 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 788 of 864
Version 1.3

October 23, 2012

10 --group10 (erat reload bus, epn) --------> can multiplex tlb_datain(0:83) epn for tlbwe/ptereload operations
dbg_group10a(0) <= tlb_cmp_dbg_tag5_iorderat_rel_val;
dbg_group10a(1 to 2) <= tlb_cmp_dbg_tag5_thdid(0 to 1);
dbg_group10a(3 to 5) <= tlb_cmp_dbg_tag5_type(0 to 2);
dbg_group10a(6 to 7) <= tlb_cmp_dbg_tag5_class(0 to 1); -- what kind of derat is it?
dbg_group10a(8 to 11)<= tlb_cmp_dbg_tag5_wayhit(0 to tlb_ways-1);
dbg_group10a(12 to 21)<= tlb_cmp_dbg_tag5_erat_rel_val(0 to 9);
dbg_group10a(22 to 87)<= tlb_cmp_dbg_tag5_erat_rel_data(eratpos_epn to eratpos_wren);

-- tlb_low_data
-- [0:51] EPN
-- [52:55] SIZE (4b)
-- [56:59] ThdID
-- [60:61] Class
-- [62] ExtClass
-- [63] TID_NZ
-- [64:65] Reserved (2b)
-- [66:73] 8b for LPID
-- [74:83] Parity 10 bits

dbg_group10b(0 to 83) <= tlb_cmp_dbg_tag5_tlb_datain_q(0 to 83); -- tlb_datain epn
dbg_group10b(84) <= Eq(tlb_cmp_dbg_tag5_type(0 to 2),"110") and

or_reduce(tlb_ctl_dbg_tag5_tlb_write_q); -- tlbwe
dbg_group10b(85) <= Eq(tlb_cmp_dbg_tag5_type(0 to 2),"111") and

or_reduce(tlb_ctl_dbg_tag5_tlb_write_q); -- ptereload
dbg_group10b(86) <= (tlb_ctl_dbg_tag5_tlb_write_q(2) or tlb_ctl_dbg_tag5_tlb_write_q(3));
dbg_group10b(87) <= (tlb_ctl_dbg_tag5_tlb_write_q(1) or tlb_ctl_dbg_tag5_tlb_write_q(3));

dbg_group10 <= dbg_group10b when mmucr2(8)=’1’ else dbg_group10a;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 8 of 16)

Debug Group Signal List

logical partition identifier

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 789 of 864

11 --group11 (erat reload bus, rpn) --------> can multiplex tlb_datain(84:167) rpn for tlbwe/ptereload operations
dbg_group11a(0) <= tlb_cmp_dbg_tag5_iorderat_rel_val;
dbg_group11a(1 to 2) <= tlb_cmp_dbg_tag5_thdid(0 to 1);
dbg_group11a(3 to 5) <= tlb_cmp_dbg_tag5_type(0 to 2);
dbg_group11a(6 to 7) <= tlb_cmp_dbg_tag5_class(0 to 1); -- what kind of derat is it?
dbg_group11a(8 to 11) <= tlb_cmp_dbg_tag5_wayhit(0 to tlb_ways-1);
dbg_group11a(12 to 21) <= tlb_cmp_dbg_tag5_erat_rel_val(0 to 9);
dbg_group11a(22 to 87) <= tlb_cmp_dbg_tag5_erat_rel_data(eratpos_rpnrsvd to eratpos_tid+7);

-- tlb_high_data
-- [84] - [0] X-bit
-- [85:87] - [1:3] Reserved (3b)
-- [88:117] - [4:33] RPN (30b)
-- [118:119] - [34:35] R,C
-- [120:121] - [36:37] WLC (2b)
-- [122] - [38] ResvAttr
-- [123] - [39] VF
-- [124] - [40] IND
-- [125:128] - [41:44] U0-U3
-- [129:133] - [45:49] WIMGE
-- [134:135] - [50:51] UX,SX
-- [136:137] - [52:53] UW,SW
-- [138:139] - [54:55] UR,SR
-- [140] - [56] GS
-- [141] - [57] TS
-- [142:143] - [58:59] Reserved (2b)
-- [144:149] - [60:65] 6b TID msbs
-- [150:157] - [66:73] 8b TID lsbs
-- [158:167] - [74:83] Parity 10bits
dbg_group11b(0 to 83) <= tlb_cmp_dbg_tag5_tlb_datain_q(84 to 167); -- tlb_datain rpn
dbg_group11b(84) <= Eq(tlb_cmp_dbg_tag5_type(0 to 2),"110") and

or_reduce(tlb_ctl_dbg_tag5_tlb_write_q); -- tlbwe
dbg_group11b(85) <= Eq(tlb_cmp_dbg_tag5_type(0 to 2),"111") and

or_reduce(tlb_ctl_dbg_tag5_tlb_write_q); -- ptereload
dbg_group11b(86) <= (tlb_ctl_dbg_tag5_tlb_write_q(2) or tlb_ctl_dbg_tag5_tlb_write_q(3));
dbg_group11b(87) <= (tlb_ctl_dbg_tag5_tlb_write_q(1) or tlb_ctl_dbg_tag5_tlb_write_q(3));

dbg_group11 <= dbg_group11b when mmucr2(8)=’1’ else dbg_group11a;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 9 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 790 of 864
Version 1.3

October 23, 2012

12 --group12 (reservations)
dbg_group12a(0) <= tlb_ctl_dbg_tag1_valid;
dbg_group12a(1 to 2) <= tlb_ctl_dbg_tag1_thdid(0 to 1);
dbg_group12a(3 to 5) <= tlb_ctl_dbg_tag1_type(0 to 2);
dbg_group12a(6 to 7) <= tlb_ctl_dbg_tag1_wq(0 to 1);

dbg_group12a(8 to 11) <= tlb_ctl_dbg_resv_valid(0 to 3);
dbg_group12a(12 to 15) <= tlb_ctl_dbg_set_resv(0 to 3);
dbg_group12a(16 to 19) <= tlb_ctl_dbg_resv_match_vec_q(0 to 3); -- tag4

debug_d(group12_offset+20) <= tlb_ctl_dbg_resv0_tag0_lpid_match;
debug_d(group12_offset+21) <= tlb_ctl_dbg_resv0_tag0_pid_match;
debug_d(group12_offset+22) <= tlb_ctl_dbg_resv0_tag0_as_snoop_match;
debug_d(group12_offset+23) <= tlb_ctl_dbg_resv0_tag0_gs_snoop_match;
debug_d(group12_offset+24) <= tlb_ctl_dbg_resv0_tag0_as_tlbwe_match;
debug_d(group12_offset+25) <= tlb_ctl_dbg_resv0_tag0_gs_tlbwe_match;
debug_d(group12_offset+26) <= tlb_ctl_dbg_resv0_tag0_ind_match;
debug_d(group12_offset+27) <= tlb_ctl_dbg_resv0_tag0_epn_loc_match;
debug_d(group12_offset+28) <= tlb_ctl_dbg_resv0_tag0_epn_glob_match;
debug_d(group12_offset+29) <= tlb_ctl_dbg_resv0_tag0_class_match;
debug_d(group12_offset+30) <= tlb_ctl_dbg_resv1_tag0_lpid_match;
debug_d(group12_offset+31) <= tlb_ctl_dbg_resv1_tag0_pid_match;
debug_d(group12_offset+32) <= tlb_ctl_dbg_resv1_tag0_as_snoop_match;
debug_d(group12_offset+33) <= tlb_ctl_dbg_resv1_tag0_gs_snoop_match;
debug_d(group12_offset+34) <= tlb_ctl_dbg_resv1_tag0_as_tlbwe_match;
debug_d(group12_offset+35) <= tlb_ctl_dbg_resv1_tag0_gs_tlbwe_match;
debug_d(group12_offset+36) <= tlb_ctl_dbg_resv1_tag0_ind_match;
debug_d(group12_offset+37) <= tlb_ctl_dbg_resv1_tag0_epn_loc_match;
debug_d(group12_offset+38) <= tlb_ctl_dbg_resv1_tag0_epn_glob_match;
debug_d(group12_offset+39) <= tlb_ctl_dbg_resv1_tag0_class_match;
debug_d(group12_offset+40) <= tlb_ctl_dbg_resv2_tag0_lpid_match;
debug_d(group12_offset+41) <= tlb_ctl_dbg_resv2_tag0_pid_match;
debug_d(group12_offset+42) <= tlb_ctl_dbg_resv2_tag0_as_snoop_match;
debug_d(group12_offset+43) <= tlb_ctl_dbg_resv2_tag0_gs_snoop_match;
debug_d(group12_offset+44) <= tlb_ctl_dbg_resv2_tag0_as_tlbwe_match;
debug_d(group12_offset+45) <= tlb_ctl_dbg_resv2_tag0_gs_tlbwe_match;
debug_d(group12_offset+46) <= tlb_ctl_dbg_resv2_tag0_ind_match;
debug_d(group12_offset+47) <= tlb_ctl_dbg_resv2_tag0_epn_loc_match;
debug_d(group12_offset+48) <= tlb_ctl_dbg_resv2_tag0_epn_glob_match;
debug_d(group12_offset+49) <= tlb_ctl_dbg_resv2_tag0_class_match;
debug_d(group12_offset+50) <= tlb_ctl_dbg_resv3_tag0_lpid_match;
debug_d(group12_offset+51) <= tlb_ctl_dbg_resv3_tag0_pid_match;
debug_d(group12_offset+52) <= tlb_ctl_dbg_resv3_tag0_as_snoop_match;
debug_d(group12_offset+53) <= tlb_ctl_dbg_resv3_tag0_gs_snoop_match;
debug_d(group12_offset+54) <= tlb_ctl_dbg_resv3_tag0_as_tlbwe_match;
debug_d(group12_offset+55) <= tlb_ctl_dbg_resv3_tag0_gs_tlbwe_match;
debug_d(group12_offset+56) <= tlb_ctl_dbg_resv3_tag0_ind_match;
debug_d(group12_offset+57) <= tlb_ctl_dbg_resv3_tag0_epn_loc_match;
debug_d(group12_offset+58) <= tlb_ctl_dbg_resv3_tag0_epn_glob_match;
debug_d(group12_offset+59) <= tlb_ctl_dbg_resv3_tag0_class_match;

dbg_group12a(20 to 59) <= debug_q(group12_offset+20 to group12_offset+59); -- tag1

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 10 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 791 of 864

12
(continued)

dbg_group12a(60 to 63) <= tlb_ctl_dbg_clr_resv_q(0 to 3); -- tag5
dbg_group12a(64 to 67) <= tlb_ctl_dbg_clr_resv_terms(0 to 3); -- tag5, threadwise condensed into to tlbivax,

tlbilx, tlbwe, ptereload

dbg_group12a(68 to 71) <= htw_dbg_req_valid_q(0 to 3);
dbg_group12a(72 to 75) <= htw_dbg_resv_valid_vec(0 to 3);
dbg_group12a(76 to 79) <= htw_dbg_tag4_clr_resv_q(0 to 3);
dbg_group12a(80 to 83) <= htw_dbg_tag4_clr_resv_terms(0 to 3); -- tag4, threadwise condensed into to tlbivax,

tlbilx, tlbwe, ptereload
dbg_group12a(84 to 87) <= "0000";

-- tlb_low_data
-- [0:51] EPN
-- [52:55] SIZE (4b)
-- [56:59] ThdID
-- [60:61] Class
-- [62] ExtClass
-- [63] TID_NZ
-- [64:65] Reserved (2b)
-- [66:73] 8b for LPID
-- [74:83] Parity 10bits
dbg_group12b(0 to 83) <= tlb_cmp_dbg_tag5_way(0 to 83); -- tag5 way epn
dbg_group12b(84) <= (tlb_cmp_dbg_tag5_lru_dataout(0) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(1) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(2) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(3) and tlb_cmp_dbg_tag5_wayhit(3)); -- valid
dbg_group12b(85) <= (tlb_cmp_dbg_tag5_lru_dataout(8) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(9) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(10) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(11) and tlb_cmp_dbg_tag5_wayhit(3)); -- iprot
dbg_group12b(86) <= tlb_cmp_dbg_tag5_lru_dataout(4); -- encoded lru way msb
dbg_group12b(87) <= (not(tlb_cmp_dbg_tag5_lru_dataout(4)) and tlb_cmp_dbg_tag5_lru_dataout(5)) or
 (tlb_cmp_dbg_tag5_lru_dataout(4) and tlb_cmp_dbg_tag5_lru_dataout(6)); -- encoded

lru way lsb

dbg_group12 <= dbg_group12b when mmucr2(9)=’1’ else dbg_group12a;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 11 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 792 of 864
Version 1.3

October 23, 2012

13 --group13 (lrat match logic)
dbg_group13a(0) <= lrat_dbg_tag1_addr_enable; -- tlb_addr_cap_q(1)
dbg_group13a(1) <= tlb_ctl_dbg_tag1_valid;
dbg_group13a(2 to 3) <= tlb_ctl_dbg_tag1_thdid(0 to 1);
dbg_group13a(4 to 5) <= (tlb_ctl_dbg_tag1_type(0) and tlb_ctl_dbg_tag1_type(1)) & (tlb_ctl_dbg_tag1_type(0)

and tlb_ctl_dbg_tag1_type(2)); -- tlbsx,tlbre,tlbwe,ptereload
dbg_group13a(6) <= tlb_ctl_dbg_tag1_gs;
dbg_group13a(7) <= tlb_ctl_dbg_tag1_pr;
dbg_group13a(8) <= tlb_ctl_dbg_tag1_atsel;
dbg_group13a(9 to 11) <= lrat_tag3_hit_entry(0 to 2);
dbg_group13a(12 to 15) <= lrat_tag3_hit_status(0 to 3); -- hit_status to val,hit,multihit,inval_pgsize

debug_d(group13_offset+16) <= lrat_dbg_entry0_addr_match; -- tag1
debug_d(group13_offset+17) <= lrat_dbg_entry0_lpid_match;
debug_d(group13_offset+18) <= lrat_dbg_entry0_entry_v;
debug_d(group13_offset+19) <= lrat_dbg_entry0_entry_x;
debug_d(group13_offset+20 to group13_offset+23) <= lrat_dbg_entry0_size(0 to 3);
debug_d(group13_offset+24) <= lrat_dbg_entry1_addr_match; -- tag1
debug_d(group13_offset+25) <= lrat_dbg_entry1_lpid_match;
debug_d(group13_offset+26) <= lrat_dbg_entry1_entry_v;
debug_d(group13_offset+27) <= lrat_dbg_entry1_entry_x;
debug_d(group13_offset+28 to group13_offset+31) <= lrat_dbg_entry1_size(0 to 3);
debug_d(group13_offset+32) <= lrat_dbg_entry2_addr_match; -- tag1
debug_d(group13_offset+33) <= lrat_dbg_entry2_lpid_match;
debug_d(group13_offset+34) <= lrat_dbg_entry2_entry_v;
debug_d(group13_offset+35) <= lrat_dbg_entry2_entry_x;
debug_d(group13_offset+36 to group13_offset+39) <= lrat_dbg_entry2_size(0 to 3);
debug_d(group13_offset+40) <= lrat_dbg_entry3_addr_match; -- tag1
debug_d(group13_offset+41) <= lrat_dbg_entry3_lpid_match;
debug_d(group13_offset+42) <= lrat_dbg_entry3_entry_v;
debug_d(group13_offset+43) <= lrat_dbg_entry3_entry_x;
debug_d(group13_offset+44 to group13_offset+47) <= lrat_dbg_entry3_size(0 to 3);
debug_d(group13_offset+48) <= lrat_dbg_entry4_addr_match; -- tag1
debug_d(group13_offset+49) <= lrat_dbg_entry4_lpid_match;
debug_d(group13_offset+50) <= lrat_dbg_entry4_entry_v;
debug_d(group13_offset+51) <= lrat_dbg_entry4_entry_x;
debug_d(group13_offset+52 to group13_offset+55) <= lrat_dbg_entry4_size(0 to 3);
debug_d(group13_offset+56) <= lrat_dbg_entry5_addr_match; -- tag1
debug_d(group13_offset+57) <= lrat_dbg_entry5_lpid_match;
debug_d(group13_offset+58) <= lrat_dbg_entry5_entry_v;
debug_d(group13_offset+59) <= lrat_dbg_entry5_entry_x;
debug_d(group13_offset+60 to group13_offset+63) <= lrat_dbg_entry5_size(0 to 3);
debug_d(group13_offset+64) <= lrat_dbg_entry6_addr_match; -- tag1
debug_d(group13_offset+65) <= lrat_dbg_entry6_lpid_match;
debug_d(group13_offset+66) <= lrat_dbg_entry6_entry_v;
debug_d(group13_offset+67) <= lrat_dbg_entry6_entry_x;
debug_d(group13_offset+68 to group13_offset+71) <= lrat_dbg_entry6_size(0 to 3);
debug_d(group13_offset+72) <= lrat_dbg_entry7_addr_match; -- tag1
debug_d(group13_offset+73) <= lrat_dbg_entry7_lpid_match;
debug_d(group13_offset+74) <= lrat_dbg_entry7_entry_v;
debug_d(group13_offset+75) <= lrat_dbg_entry7_entry_x;
debug_d(group13_offset+76 to group13_offset+79) <= lrat_dbg_entry7_size(0 to 3);

dbg_group13a(16 to 79) <= debug_q(group13_offset+16 to group13_offset+79); -- tag2
dbg_group13a(80 to 87) <= lrat_dbg_tag2_matchline_q(0 to 7);

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 12 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 793 of 864

13
(continued)

dbg_group13b(0 to 83) <= tlb_cmp_dbg_tag5_way(84 to 167); -- tag5 way rpn
dbg_group13b(84) <= (tlb_cmp_dbg_tag5_lru_dataout(0) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(1) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(2) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(3) and tlb_cmp_dbg_tag5_wayhit(3)); -- valid
dbg_group13b(85) <= (tlb_cmp_dbg_tag5_lru_dataout(8) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(9) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(10) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(11) and tlb_cmp_dbg_tag5_wayhit(3)); -- iprot
dbg_group13b(86) <= tlb_cmp_dbg_tag5_lru_dataout(4); -- encoded lru way msb
dbg_group13b(87) <= (not(tlb_cmp_dbg_tag5_lru_dataout(4)) and tlb_cmp_dbg_tag5_lru_dataout(5)) or
 (tlb_cmp_dbg_tag5_lru_dataout(4) and tlb_cmp_dbg_tag5_lru_dataout(6)); -- encoded

lru way lsb

dbg_group13 <= dbg_group13b when mmucr2(9)=’1’ else dbg_group13a;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 13 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 794 of 864
Version 1.3

October 23, 2012

14 --group14 (htw control)
dbg_group14a(0 to 1) <= htw_dbg_seq_q(0 to 1);
dbg_group14a(2 to 3) <= htw_dbg_inptr_q(0 to 1);
dbg_group14a(4) <= htw_dbg_ptereload_ptr_q;
dbg_group14a(5 to 6) <= htw_dbg_lsuptr_q(0 to 1);
dbg_group14a(7) <= htw_lsu_ttype(1);
dbg_group14a(8 to 9) <= htw_dbg_lsu_thdid(0 to 1); -- encoded
dbg_group14a(10 to 51) <= htw_lsu_addr(22 to 63);
dbg_group14a(52 to 54) <= htw_dbg_pte0_seq_q(0 to 2);
dbg_group14a(55 to 56) <= htw_dbg_pte0_score_ptr_q(0 to 1);
dbg_group14a(57 to 59) <= htw_dbg_pte0_score_cl_offset_q(58 to 60);
dbg_group14a(60 to 62) <= htw_dbg_pte0_score_error_q(0 to 2);
dbg_group14a(63 to 66) <= htw_dbg_pte0_score_qwbeat_q(0 to 3); -- 4 beats of data per cache line
dbg_group14a(67) <= htw_dbg_pte0_score_pending_q;
dbg_group14a(68) <= htw_dbg_pte0_score_ibit_q;
dbg_group14a(69) <= htw_dbg_pte0_score_dataval_q;
dbg_group14a(70 to 72) <= htw_dbg_pte1_seq_q(0 to 2);
dbg_group14a(73 to 74) <= htw_dbg_pte1_score_ptr_q(0 to 1);
dbg_group14a(75 to 77) <= htw_dbg_pte1_score_cl_offset_q(58 to 60);
dbg_group14a(78 to 80) <= htw_dbg_pte1_score_error_q(0 to 2);
dbg_group14a(81 to 84) <= htw_dbg_pte1_score_qwbeat_q(0 to 3); -- 4 beats of data per cache line
dbg_group14a(85) <= htw_dbg_pte1_score_pending_q;
dbg_group14a(86) <= htw_dbg_pte1_score_ibit_q;
dbg_group14a(87) <= htw_dbg_pte1_score_dataval_q;

dbg_group14b(0) <= (tlb_cmp_dbg_tag5_lru_dataout(0) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(1) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(2) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(3) and tlb_cmp_dbg_tag5_wayhit(3)); -- valid
dbg_group14b(1) <= (tlb_cmp_dbg_tag5_lru_dataout(8) and tlb_cmp_dbg_tag5_wayhit(0)) or
 (tlb_cmp_dbg_tag5_lru_dataout(9) and tlb_cmp_dbg_tag5_wayhit(1)) or
 (tlb_cmp_dbg_tag5_lru_dataout(10) and tlb_cmp_dbg_tag5_wayhit(2)) or
 (tlb_cmp_dbg_tag5_lru_dataout(11) and tlb_cmp_dbg_tag5_wayhit(3)); -- iprot

dbg_group14b(2) <= tlb_cmp_dbg_tag5_way(140); -- gs
dbg_group14b(3) <= tlb_cmp_dbg_tag5_way(141); -- ts
dbg_group14b(4 to 11) <= tlb_cmp_dbg_tag5_way(66 to 73); -- tlpid
dbg_group14b(12 to 25) <= tlb_cmp_dbg_tag5_way(144 to 157); -- tid, 14bits
dbg_group14b(26 to 45) <= tlb_cmp_dbg_tag5_way(32 to 51); -- epn truncated to lower 20b
dbg_group14b(46 to 49) <= tlb_cmp_dbg_tag5_way(52 to 55); -- size
dbg_group14b(50 to 53) <= tlb_cmp_dbg_tag5_way(56 to 59); -- thdid
dbg_group14b(54) <= tlb_cmp_dbg_tag5_way(84); -- xbit
dbg_group14b(55) <= tlb_cmp_dbg_tag5_way(40); -- ind
dbg_group14b(56 to 57) <= tlb_cmp_dbg_tag5_way(60 to 61); -- class
dbg_group14b(58 to 77) <= tlb_cmp_dbg_tag5_way(98 to 117); -- rpn truncated to lower 20b
dbg_group14b(78 to 81) <= tlb_cmp_dbg_tag5_way(130 to 133); -- imge
dbg_group14b(82 to 87) <= tlb_cmp_dbg_tag5_way(134 to 139); -- user/sup prot bits

dbg_group14 <= dbg_group14b when mmucr2(10)=’1’ else dbg_group14a;

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 14 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 795 of 864

15 --group15 (ptereload pte)
dbg_group15a(0 to 1) <= htw_dbg_seq_q(0 to 1);
dbg_group15a(2 to 4) <= htw_dbg_pte0_seq_q(0 to 2);
dbg_group15a(5 to 7) <= htw_dbg_pte1_seq_q(0 to 2);
dbg_group15a(8) <= htw_lsu_req_valid;
dbg_group15a(9 to 21) <= htw_lsu_addr(48 to 60);
dbg_group15a(22) <= htw_dbg_ptereload_ptr_q;
dbg_group15a(23) <= ptereload_req_taken;
dbg_group15a(24 to 87) <= ptereload_req_pte(0 to 63); -- pte entry

dbg_group15b(0 to 73) <= tlb_cmp_dbg_tag5_way(0 to 73); -- tag5 way epn
dbg_group15b(74 to 77) <= tlb_cmp_dbg_tag5_lru_dataout(0 to 3);
dbg_group15b(78 to 81) <= tlb_cmp_dbg_tag5_lru_dataout(8 to 11);
dbg_group15b(82) <= tlb_cmp_dbg_tag5_lru_dataout(4); -- encoded lsu way msb
dbg_group15b(83) <= (not(tlb_cmp_dbg_tag5_lru_dataout(4)) and tlb_cmp_dbg_tag5_lru_dataout(5)) or
 (tlb_cmp_dbg_tag5_lru_dataout(4) and tlb_cmp_dbg_tag5_lru_dataout(6)); -- encoded

lsu way lsb
dbg_group15b(84 to 87) <= tlb_cmp_dbg_tag5_wayhit(0 to 3);

dbg_group15 <= dbg_group15b when mmucr2(10)=’1’ else dbg_group15a;

Trigger Group Signal List

0 trg_group0(0) <= not(tlb_ctl_dbg_seq_idle);
trg_group0(1 to 2) <= tlb_ctl_dbg_tag0_thdid(0 to 1); -- encoded
trg_group0(3 to 5) <= tlb_ctl_dbg_tag0_type(0 to 2); -- encoded
trg_group0(6) <= not(inval_dbg_seq_idle);
trg_group0(7) <= inval_dbg_seq_snoop_inprogress; -- bus snoop
trg_group0(8) <= not(htw_dbg_seq_idle);
trg_group0(9) <= not(htw_dbg_pte0_seq_idle);
trg_group0(10) <= not(htw_dbg_pte1_seq_idle);
trg_group0(11) <= tlb_cmp_dbg_tag5_any_exception; -- big or gate

1 trg_group1(0 to 5) <= tlb_ctl_dbg_seq_q(0 to 5);
trg_group1(6 to 10) <= inval_dbg_seq_q(0 to 4);
trg_group1(11) <= tlb_ctl_dbg_seq_any_done_sig or tlb_ctl_dbg_seq_abort or

inval_dbg_seq_snoop_done or inval_dbg_seq_local_done or
inval_dbg_seq_tlb0fi_done or inval_dbg_seq_tlbwe_snoop_done;

2 trg_group2(0) <= tlb_req_dbg_ierat_iu5_valid_q;
trg_group2(1) <= tlb_req_dbg_derat_ex6_valid_q;
trg_group2(2) <= tlb_ctl_dbg_any_tlb_req_sig;
trg_group2(3) <= tlb_ctl_dbg_any_req_taken_sig;
trg_group2(4) <= tlb_ctl_dbg_seq_any_done_sig or tlb_ctl_dbg_seq_abort;
trg_group2(5) <= inval_dbg_ex6_valid; ----------------> need tlbivax/erativax indication?
trg_group2(6) <= mmucsr0_tlb0fi;
trg_group2(7) <= inval_dbg_snoop_forme;
trg_group2(8) <= tlbwe_back_inv_valid;
trg_group2(9) <= htw_lsu_req_valid;
trg_group2(10) <= inval_dbg_seq_snoop_done or inval_dbg_seq_local_done or

inval_dbg_seq_tlb0fi_done or inval_dbg_seq_tlbwe_snoop_done;
trg_group2(11) <= or_reduce(mm_xu_lsu_req);

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 15 of 16)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 796 of 864
Version 1.3

October 23, 2012

3 trg_group3a(0) <= spr_dbg_slowspr_val_int;
trg_group3a(1) <= spr_dbg_slowspr_rw_int;
trg_group3a(2 to 3) <= spr_dbg_slowspr_etid_int;
trg_group3a(4) <= spr_dbg_match_64b;
trg_group3a(5) <= spr_dbg_match_any_mmu; -- int phase
trg_group3a(6) <= spr_dbg_match_any_mas;
trg_group3a(7) <= spr_dbg_match_mmucr0 or spr_dbg_match_mmucr1 or spr_dbg_match_mmucr2 or

spr_dbg_match_mmucr3;
trg_group3a(8) <= spr_dbg_match_pid or spr_dbg_match_lpidr;
trg_group3a(9) <= spr_dbg_match_lper or spr_dbg_match_lperu;
trg_group3a(10) <= spr_dbg_slowspr_val_out;
trg_group3a(11) <= spr_dbg_slowspr_done_out;

trg_group3b(0) <= tlb_htw_req_valid;
trg_group3b(1 to 2) <= htw_dbg_seq_q(0 to 1);
trg_group3b(3 to 5) <= htw_dbg_pte0_seq_q(0 to 2);
trg_group3b(6 to 8) <= htw_dbg_pte1_seq_q(0 to 2);
trg_group3b(9) <= htw_dbg_pte0_reld_for_me_tm1 or htw_dbg_pte1_reld_for_me_tm1;
trg_group3b(10) <= or_reduce(htw_dbg_pte0_score_error_q or htw_dbg_pte1_score_error_q);
trg_group3b(11) <= tlb_cmp_dbg_tag5_any_exception;

trg_group3 <= trg_group3b when mmucr2(11)=’1’ else trg_group3a;

Table C-8. PC Debug Multiplexer Debug and Trigger Groups (Sheet 1 of 2)

Debug Group Signal List

0 dbg_group0 (0:1) <= iu_pc_err_icache_parity & iu_pc_err_icachedir_parity
dbg_group0 (2:3) <= xu_pc_err_dcache_parity & xu_pc_err_dcachedir_parity
dbg_group0 (4:7) <= xu_pc_err_sprg_ecc(0 to 3)
dbg_group0 (8:8) <= xu_pc_err_fir_nia_miscmpr & xu_pc_err_l2intrf_ue
dbg_group0 (10:11) <= or_reduce(xu_pc_err_sprg_ue(0 to 3)) & xu_pc_err_invld_reld
dbg_group0 (12:13) <= or_reduce(xu_pc_err_regf_ue(0 to 3)) & or_reduce(fu_pc_err_regf_ue(0 to 3))
dbg_group0 (14:15) <= Reserved
dbg_group0 (16:17) <= xu_pc_err_l2credit_overrun & or_reduce(iu_pc_err_ucode_illegal(0 to 3))
dbg_group0 (18: 81) <= pcq_regs.scom_wdata(0 to 63)
dbg_group0 (82:87) <= 0s

1 dbg_group1 (0:2) <= pcq_regs.scom_act & pcq_regs.sc_req_q & pcq_regs.sc_wr_q
dbg_group1 (3:5) <= pcq_regs.scaddr_nvld_q & pcq_regs.sc_wr_nvld_q & pcq_regs.sc_rd_nvld_q
dbg_group1 (6:8) <= pcq_regs.scaddr_fir & pcq_regs.sc_wparity & pcq_regs.sc_par_errinj_q
dbg_group1 (9:10) <= pcq_regs.fir_regs.block_xstop_in_ram_mode & pcq_regs.ram_mode
dbg_group1 (11:13) <= pcq_regs.ramc_out(45 to 47) [ram_thread(0:1) & ram_execute]
dbg_group1 (14:16) <= pcq_regs.ramc_out(61 to 63) [ram_interrupt & ram_error & ram_done]
dbg_group1 (17:18) <= xu_pc_ram_done & fu_pc_ram_done
dbg_group1 (19:82) <= pcq_regs.scom_rdata(0 to 63)
dbg_group1 (83:87) <= 0s

2 dbg_group2 (0:7) <= fu_pc_err_regf_parity(0 to 3) & xu_pc_err_regf_parity(0 to 3)
dbg_group2 (8:13) <= pcq_ctrl.init_active_q & pcq_ctrl.resetsm_q(0 to 4)
dbg_group2 (14:18) <= pcq_ctrl.initerat_q & pcq_ctrl.reset_complete_q(0 to 3)
dbg_group2 (19:82) <= pcq_regs.scaddr_v_q(0 to 63)
dbg_group2 (83:87) <= 0s

Table C-7. MMU Debug Multiplexer Debug and Trigger Groups (Sheet 16 of 16)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 797 of 864

3 dbg_group3 (0:3) <= xu_pc_err_mcsr_summary(0 to 3)
dbg_group3 (4:5) <= xu_pc_err_ierat_parity & xu_pc_err_derat_parity
dbg_group3 (6:7) <= xu_pc_err_tlb_parity & xu_pc_err_tlb_lru_parity
dbg_group3 (8:23) <= pcq_regs.fir_regs.sc_reg_par_err_out_q(0 to 15)
dbg_group3 (24:25) <= pcq_regs.fir_regs.sc_reg_par_err_out_q(0 to 1)
dbg_group3 (26:33) <= xu_pc_running(0 to 3) & pc_xu_stop(0 to 3)
dbg_group3 (34:41) <= pc_xu_step(0 to 3) & xu_pc_err_attention_instr(0 to 3)
dbg_group3 (42:46) <= scom_reg_parity_error & scom_ack_error & ac_an_recover_err(0 to 2)
dbg_group3 (47:53) <= ac_an_checkstop(0 to 2) & pcq_regs.fir_regs.xstop_err_per_thread(0 to 3)
dbg_group3 (54:87) <= 0s

4 dbg_group4 (0:1) <= xu_pc_err_ierat_multihit & xu_pc_err_derat_multihit
dbg_group4 (2:3) <= xu_pc_err_tlb_multihit & xu_pc_err_external_mchk
dbg_group4 (4:5) <= Reserved. This bit is set to 0 at reset and must not be set to 1. When read, this bit

might be 1 or 0.
dbg_group4 (6:9) <= pcq_ctrl.pmstop_q(0 to 3)
dbg_group4 (10:15) <= pcq_ctrl.pmstate_q(0 to 3) & xu_pc_spr_ccr0_pme(0 to 1)
dbg_group4 (16:21) <= xu_pc_spr_ccr0_we(0 to 3) & pcq_ctrl.rvwinkled_q & an_ac_ccenable_dc
dbg_group4 (22:31) <= an_ac_scan_type_dc(0 to 7) & an_ac_gsd_test_enable_dc &

an_ac_gsd_test_acmode_dc
dbg_group4 (32:34) <= an_ac_lbist_en_dc & an_ac_lbist_ip_dc & rg_ck_fast_xstop
dbg_group4 (35:42) <= pcq_ctrl.pmclkctrl_dly_q(0 to 7)
dbg_group4 (43:45) <= pcq_ctrl.pc_ccflush_disable_int & rg_ct_dis_pwr_savings &

pcq_ctrl.pm_raise_tholds_int
dbg_group4 (46:87) <= 0s

5 dbg_group5 (0:1) <= iu_pc_err_icachedir_multihit & xu_pc_err_dcachedir_multihit
dbg_group5 (2:3) <= Reserved
dbg_group5 (4:5) <= xu_pc_err_l2intrf_ecc & pcq_regs.fir_regs.fir0_recov_err_pulse
dbg_group5 (6:7) <= pcq_regs.fir_regs.fir1_recov_err_pulse & pcq_regs.fir_regs.fir2_recov_err_pulse
dbg_group5 (8) <= pcq_regs.fir_regs.fir1_errors_q(0) [max_recov_cntr_value]
dbg_group5 (9:87) <= 0s

6 dbg_group6 (0:7) <= xu_pc_err_llbust_attempt(0 to 3) & xu_pc_err_llbust_failed(0 to 3)
dbg_group6 (8:87) <= 0s

7 dbg_group7 (0:7) <= xu_pc_err_wdt_reset(0 to 3) & xu_pc_err_debug_event(0 to 3)
dbg_group7 (8:9) <= pcq_spr.slowspr_val_l2 & pcq_spr.slowspr_rw_l2
dbg_group7 (10:12) <= pcq_spr.pc_done_l2 & pcq_spr.slowspr_etid_l2(0 to 1)
dbg_group7 (13:22) <= pcq_spr.slowspr_addr_l2(0 to 9)
dbg_group7 (23:54) <= pcq_spr.slowspr_data_l2(32 to 63)
dbg_group7 (55:87) <= 0s

Trigger Group Signal List

0 trg_group0 (0:2) <= pcq_regs.scom_act & pcq_regs.sc_req_q & pcq_regs.sc_wr_q
trg_group0 (3:5) <= pcq_regs.scaddr_nvld_q & pcq_regs.sc_wr_nvld_q & pcq_regs.sc_rd_nvld_q
trg_group0 (6:11) <= pcq_regs.scaddr_fir & pc_xu_stop(0 to 3) & pcq_ctrl.initerat_q

1 trg_group1 (0:1) <= pcq_regs.ram_mode & pcq_regs.ramc_out(47) [ram_execute]
trg_group1 (2:4) <= pcq_regs.ramc_out(61 to 63) [ram_interrupt & ram_error & ram_done]
trg_group1 (5:11) <= pcq_ctrl.pmstop_q(0 to 3) & xu_pc_spr_ccr0_pme(0 to 1) &

pcq_ctrl.pm_ccflush_disable_int

2 trg_group2 (0:5) <= ac_an_checkstop(0 to 2) & ac_an_recover_err(0 to 2)
trg_group2 (6:11) <= xu_pc_err_mcsr_summary(0 to 3) & xu_pc_err_ext_mchk & xu_pc_err_l2intrf_ecc

3 trg_group3 (0:7) <= xu_pc_err_wdt_reset(0 to 3) & xu_pc_err_llbust_attempt(0 to 3)
trg_group3 (8:11) <= xu_pc_running(0 to 3)

Table C-8. PC Debug Multiplexer Debug and Trigger Groups (Sheet 2 of 2)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 798 of 864
Version 1.3

October 23, 2012

C.7 XU Debug Select Register1 and Debug Group Tables
Table C-9. XU Debug Select Register1 (XDSR1)

Register Short Name: XDSR1 Access: RW

Register Address: x‘3E’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

XU Debug Mux1 Controls (16:1 Debug Multiplexer)

32:35 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
0000 Debug group 0.
0001 Debug group 1.
0010 Debug group 2.
 | |
1111 Debug group 15.

36 Reserved 0

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger Group 0.
01 Trigger Group 1.
10 Trigger Group 2.
11 Trigger Group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group data [0:11] - No Rotate.
1 Trigger Group data [6:11 and 0:5].

execution unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 799 of 864

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5]
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

XU Debug Mux2 Controls (32:1 Debug Multiplexer)

48:52 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00000 Debug group 0.
00001 Debug group 1.
00010 Debug group 2.
 | |
11111 Debug group 31.

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

Bits Function Initial
Value Description

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 800 of 864
Version 1.3

October 23, 2012

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 1 of 7)

Debug Group Signal List

0 0:63 ex3_rt_q
64:67 dec_ex2_tid
68:68 ex1_is_mfocrf_q(0)
69:69 ex1_log_sel_q
70:70 ex2_rt_sel_q(0)
71:71 ex3_div_done_q(0)
72:72 ex4_spr_sel_q(0)
73:73 ex5_dtlb_sel_q(0)
74:74 ex5_itlb_sel_q(0)
75:75 ex5_is_mfxer_q(0)
76:76 ex5_is_mfcr_q(0)
77:77 ex5_mul_done_q(0)
78:78 ex5_slowspr_sel_q(0)
79:79 ex5_dcr_sel_q(0)
80:80 ex5_ones_sel_q(0)
81:81 ex6_lsu_wren_q(0)
82:82 ex5_dcr_ack_q
83:83 ex5_slowspr_val_q
84:87 ex5_slowop_done

1 0:63 ex5_rt_q
64:67 dec_ex2_tid_int
68:68 ex1_is_mfocrf_q(0)
69:69 ex1_log_sel_q
70:70 ex2_rt_sel_q(0)
71:71 ex3_div_done_q(0)
72:72 ex4_spr_sel_q(0)
73:73 ex5_dtlb_sel_q(0)
74:74 ex5_itlb_sel_q(0)
75:75 ex5_is_mfxer_q(0)
76:76 ex5_is_mfcr_q(0)
77:77 ex5_mul_done_q(0)
78:78 ex5_slowspr_sel_q(0)
79:79 ex5_dcr_sel_q(0)
80:80 ex5_ones_sel_q(0)
81:81 ex6_lsu_wren_q(0)
82:82 ex5_dcr_ack_q
83:83 ex5_slowspr_val_q
84:87 ex5_slowop_done

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 801 of 864

2 0:63 ex7_rt_q
64:67 dec_ex2_tid
68:68 ex1_is_mfocrf_q(0)
69:69 ex1_log_sel_q
70:70 ex2_rt_sel_q(0)
71:71 ex3_div_done_q(0)
72:72 ex4_spr_sel_q(0)
73:73 ex5_dtlb_sel_q(0)
74:74 ex5_itlb_sel_q(0)
75:75 ex5_is_mfxer_q(0)
76:76 ex5_is_mfcr_q(0)
77:77 ex5_mul_done_q(0)
78:78 ex5_slowspr_sel_q(0)
79:79 ex5_dcr_sel_q(0)
80:80 ex5_ones_sel_q(0)
81:81 ex6_lsu_wren_q(0)
82:82 ex5_dcr_ack_q
83:83 ex5_slowspr_val_q
84:87 ex5_slowop_done

3 0:7 ex1_s1_q
8:13 ex1_ta_q(0 to 5)
14:14 ex1_gpr_we_q
15:22 ex1_rs0_sel_dbg_q
23:87 byp_rs0_debug

4 0:7 ex1_s2_q
8:13 ex1_ta_q(0 to 5)
14:22 ex1_rs1_sel_dbg_q
23:87 byp_rs1_debug

5 0:7 ex1_s3_q
8:13 ex1_ta_q(0 to 5)
14:14 ex1_gpr_we_q
15:22 ex1_rs2_sel_dbg_q
23:87 byp_rs2_debug

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 2 of 7)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 802 of 864
Version 1.3

October 23, 2012

6 0:3 ex6_val_dbg_q
4:7 ex5_fu_cr_val_q
8:11 ex5_fu_cr_noflush_q
12:13 ex1_cr_so_update_q(0 to 1)
14:14 ex1_is_mcrf_q
15:15 ex2_alu_cmp_q
16:16 ex3_div_done_q
17:17 ex5_watch_we_q
18:18 ex5_dp_instr_q
19:19 alu_byp_ex5_cr_mul(4)
20:20 ex5_any_mtcrf_q
21:21 ex5_is_eratsxr_q
22:25 stcx_complete_q(0 to 3)
26:29 mmu_cr0_eq_valid_q(0 to 3)
30:30 ex1_cr1_bit_q
31:31 an_ac_back_inv_q
32:32 an_ac_back_inv_target_bit3_q
33:34 an_ac_back_inv_addr_q(62 to 63)
35:37 ex5_fu_cr(0)(4 to 6)
38:40 ex5_fu_cr(1)(4 to 6)
41:43 ex5_fu_cr(2)(4 to 6)
44:46 ex5_fu_cr(3)(4 to 6)
47:49 ex5_cr_instr(4 to 6)
50:57 dec_cr_ex5_instr(12 to 19)
58:61 ex1_cr0_q(0 to 3)
62:65 ex1_cr1_q(0 to 3)
66:69 ex1_crt_q(0 to 3)
70:75 ex1_cr0_byp_pri_dbg_q(1 to 6)
76:81 ex1_cr1_byp_pri_dbg_q(1 to 6)
82:87 ex1_crt_byp_pri_dbg_q(1 to 6)

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 3 of 7)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 803 of 864

7 0:3 ex6_val_dbg_q
4:7 ex5_fu_cr_val_q
8:11 ex5_fu_cr_noflush_q
12:13 ex1_cr_so_update_q(0 to 1)
14:14 ex1_is_mcrf_q
15:15 ex2_alu_cmp_q
16:16 ex3_div_done_q
17:17 ex5_watch_we_q
18:18 ex5_dp_instr_q
19:19 alu_byp_ex5_cr_mul(4)
20:20 ex5_any_mtcrf_q
21:21 ex5_is_eratsxr_q
22:25 stcx_complete_q(0 to 3)
26:29 mmu_cr0_eq_valid_q(0 to 3)
30:30 ex1_cr1_bit_q
31:31 an_ac_back_inv_q
32:32 an_ac_back_inv_target_bit3_q
33:34 an_ac_back_inv_addr_q(62 to 63)
35:37 ex5_fu_cr(0)(4 to 6)
38:40 ex5_fu_cr(1)(4 to 6)
41:43 ex5_fu_cr(2)(4 to 6)
44:46 ex5_fu_cr(3)(4 to 6)
47:49 ex5_cr_instr(4 to 6)
50:57 dec_cr_ex5_instr(12 to 19)
58:61 ex1_cr0_q(0 to 3)
62:65 ex1_cr1_q(0 to 3)
66:69 ex1_crt_q(0 to 3)
70:71 ex1_cr0_byp_pri_dbg_q(1 to 2)
72:79 ex3_cr_q(0 to 7)
80:87 ex5_cr_q(0 to 7)

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 4 of 7)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 804 of 864
Version 1.3

October 23, 2012

8 0:21 (0:21=>'0')
22:25 ex5_val
26:26 dec_byp_rf1_ov_used
27:27 dec_byp_rf1_ca_used
28:32 rf1_byp_ov_pri(2 to 6)
33:37 rf1_byp_ca_pri(2 to 6)
38:41 ex2_xer(0 to 3)
42:45 ex3_xer(0 to 3)
46:49 ex4_xer(0 to 3)
50:53 ex5_xer(0 to 3)
54:54 ex3_div_done_q
55:55 ex5_mul_done_q
56:59 ex5_is_mtxer_q(0 to 3)
60:60 ex1_xer_ov_bypassed_q
61:61 ex2_xer_ov_bypassed_q
62:62 ex3_xer_ov_bypassed_q
63:63 ex4_xer_ov_bypassed_q
64:64 ex5_xer_ov_bypassed_q
65:65 ex1_ov_byp_from_reg_q
66:66 ex2_ov_byp_from_reg_q
67:67 ex3_ov_byp_from_reg_q
68:68 ex4_ov_byp_from_reg_q
69:69 ex5_ov_byp_from_reg_q
70:70 ex1_xer_ov_in_pipe_q
71:71 ex2_xer_ov_in_pipe_q
72:72 ex3_xer_ov_in_pipe_q
73:73 ex4_xer_ov_in_pipe_q
74:74 ex5_xer_ov_in_pipe_q
75:77 xer_out(7 to 9)
78:80 xer_out(17 to 19)
81:83 xer_out(27 to 29)
84:86 xer_out(37 to 39)
87:87 '0'

9 0:63 ex7_wd0(0:63)
64:64 ex7_we0
65:65 ex7_wa0(0)
66:66 ex7_we0
67:74 ex7_wa0
75:87 (9:21=>'0')

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 5 of 7)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 805 of 864

10 0:3 rf1_ucode_val_q
4:7 rf1_val_q
8:39 rf1_instr_q
40:40 rf1_cache_acc
41:41 rf1_axu_ld_or_st_q
42:42 rf1_is_any_load_axu
43:43 rf1_is_any_store_axu
44:44 rf1_derat_is_load
45:45 rf1_derat_is_store
46:46 rf1_derat_ra_eq_ea
47:47 rf1_axu_ldst_forcealign
48:48 rf1_axu_ldst_forceexcept
49:49 rf1_is_any_load_dac
50:50 rf1_is_any_store_dac
51:51 rf1_is_touch
52:60 rf1_target_gpr
61:61 rf1_targ_vld
62:69 rf1_targ_reg
70:70 rf1_src0_vld
71:78 rf1_src0_reg
79:79 rf1_src1_vld
80:87 rf1_src1_reg

11 0:3 rf1_ucode_val_q
4:7 rf1_val_q
8:39 rf1_instr_q
40:40 rf1_cache_acc
41:41 rf1_axu_ld_or_st_q
42:42 rf1_is_any_load_axu
43:43 rf1_is_any_store_axu
44:44 rf1_derat_is_load
45:45 rf1_derat_is_store
46:46 rf1_derat_ra_eq_ea
47:47 rf1_axu_ldst_forcealign
48:48 rf1_axu_ldst_forceexcept
49:49 rf1_is_any_load_dac
50:50 rf1_is_any_store_dac
51:51 rf1_back_inv_q
52:87 rf1_back_inv_addr_q

12 0:0 ex4_saxu_instr_q
1:1 ex4_sdp_instr_q
2:2 ex4_stgpr_instr_q
3:3 ex4_axu_op_val_q
4:4 ex4_algebraic_q
5:5 ex4_le_mode_q
6:10 ex4_ld_rot_sel
11:21 ex4_p_addr_q
22:22 ex7_load_hit_q
23:23 ex7_ld_par_err(1)
24:43 dat_dbg_ld_dat(0:19)
44:65 dat_dbg_ld_dat(20:41)
66:87 dat_dbg_ld_dat(42:63)

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 6 of 7)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 806 of 864
Version 1.3

October 23, 2012

13 0:0 dcarr_wren_q
1:1 rel_ci_dly_q
2:2 ex4_saxu_instr_q
3:3 ex4_stgpr_instr_q
4:4 ex3_fu_st_val_q
5:5 ex4_le_mode_q
6:10 ex3_st_rot_sel_q
11:21 ex4_p_addr_q
22:22 ex3_store_instr_q
23:23 rel_data_val_stg_dly_q
24:43 dat_dbg_st_dat_q(0:19)
44:65 dat_dbg_st_dat_q(20:41)
66:87 dat_dbg_st_dat_q(42:63)

14 0:2 dat_dbg_arr_q(0:2)
3:11 dat_dbg_arr_q(4:12)
12:21 dcarr_bw_dly(0:9)
22:43 dcarr_bw_dly(10:31)
44:44 dat_dbg_arr_q(3)
45:65 dat_dbg_st_dat_q(21:41)
66:87 dat_dbg_st_dat_q(42:63)

15 0

Trigger Group Signal List

0 None

1 None

2 None

3 None

Table C-10. XU Debug Mux1 Debug and Trigger Groups (Sheet 7 of 7)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 807 of 864

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 1 of 11)

Debug Group Signal List

0 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:73 ex4_cia_out(0)
74:74 ex2_br_flush(0)
75:75 iu_flush(0)
76:76 ex5_is_any_hint(0)
77:77 ex5_is_any_gint(0)
78:78 ex5_ucode_restart_q(0)
79:79 ex5_flush_2ucode_q(0)
80:80 ex5_mem_attr_le_q(0)
81:81 hold_state_0(0)
82:82 hold_state_1(0)
83:83 msr_de_q(0)
84:84 msr_cm_q(0)
85:85 msr_gs_q(0)
86:86 msr_me_q(0)
87:87 msr_pr_q(0)

1 Same as group0 only for thread 1

2 Same as group0 only for thread 2

3 Same as group0 only for thread 3

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 808 of 864
Version 1.3

October 23, 2012

4 0:0 ex5_xu_val_dbg_opc(0)
1:1 ex5_axu_val_dbg_opc(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_xu_val_dbg_opc(1)
6:6 ex5_axu_val_dbg_opc(1)
7:7 ex5_instr_cpl_dbg_q(1)
8:8 ex5_ucode_val_dbg_q(1)
9:9 ex5_ucode_end_dbg_q(1)
10:10 ex5_xu_val_dbg_opc(2)
11:11 ex5_axu_val_dbg_opc(2)
12:12 ex5_instr_cpl_dbg_q(2)
13:13 ex5_ucode_val_dbg_q(2)
14:14 ex5_ucode_end_dbg_q(2)
15:15 ex5_xu_val_dbg_opc(3)
16:16 ex5_axu_val_dbg_opc(3)
17:17 ex5_instr_cpl_dbg_q(3)
18:18 ex5_ucode_val_dbg_q(3)
19:19 ex5_ucode_end_dbg_q(3)
20:23 ex5_in_ucode_q(0:3)
24:30 ex1_instr(0:6)
31:41 ex1_instr(21:31)
42:55 ex1_instr(7:20)
56:63 ex4_cia_out(0)(54:61)
64:71 ex4_cia_out(1)(54:61)
72:79 ex4_cia_out(2)(54:61)
80:87 ex4_cia_out(3)(54:61)

5 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:75 dbg_flushcond_q(0)(0:63)
76:76 ex2_br_flush(0)
77:77 iu_flush(0)
78:78 ex5_is_any_hint(0)
79:79 ex5_is_any_gint(0)
80:80 ex5_ucode_restart_q(0)
81:81 ex5_flush_2ucode_q(0)
82:82 ex5_mem_attr_le_q(0)
83:83 msr_de_q(0)
84:84 msr_cm_q(0)
85:85 msr_gs_q(0)
86:86 msr_me_q(0)
87:87 msr_pr_q(0)

6 Same as group5 only for thread 1

7 Same as group5 only for thread 2

8 Same as group5 only for thread 3

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 2 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 809 of 864

9 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:12 ex2_br_flush(0)
13:13 iu_flush(0)
14:14 ex5_is_any_hint(0)
15:15 ex5_is_any_gint(0)
16:16 ex5_ucode_restart_q(0)
17:17 ex5_flush_2ucode_q(0)
18:18 ex5_mem_attr_le_q(0)
19:19 hold_state_0(0)
20:20 hold_state_1(0)
21:52 ex1_instr(0:31)
53:53 mmu_hold_present_q(0)
54:54 derat_hold_present_q(0)
55:55 ierat_hold_present_q(0)
56:56 ici_hold_present
57:57 fu_rfpe_hold_present_q
58:58 xu_rfpe_hold_present_q
59:59 ssprwr_ip_q(0)
60:60 ex5_in_ucode_q(0)
61:61 ram_mode_q(0)
62:62 ex3_async_int_block_q(0)
63:63 ex4_icmp_async_block(0)
64:64 exx_hold0_mcflush(0)
65:65 exx_hold1_mcflush(0)
66:66 ex4_is_mchk_int(0)
67:67 ex4_is_crit_int(0)
68:68 ex5_is_any_hint(0)
69:69 ex5_is_any_gint(0)
70:70 ex5_is_any_rfi_q(0)
71:71 ex5_tlb_inelig_q(0)
72:72 ex5_dear_update_saved_q(0)
73:73 exx_cm_hold(0)
74:74 ex3_esr_bit_act(0)
75:75 rf1_msr_cm
76:76 rf1_ctr_low_zero
77:77 rf1_ctr_hi_zero
78:78 rf1_ctr_one
79:79 ex1_ctr_ok_q
80:80 ex1_taken
81:81 ex1_pred_taken_cnt_q
82:82 byp_cpl_ex1_cr_bit
83:86 ex2_br_flush_q
87:87 0

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 3 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 810 of 864
Version 1.3

October 23, 2012

10 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:12 ex2_br_flush(0)
13:13 iu_flush(0)
14:14 ex5_is_any_hint(0)
15:15 ex5_is_any_gint(0)
16:16 ex5_ucode_restart_q(0)
17:17 ex5_flush_2ucode_q(0)
18:18 ex5_mem_attr_le_q(0)
19:19 hold_state_0(0)
20:20 hold_state_1(0)
21:52 ex1_instr(0:31)
53:53 mmu_hold_present_q(1)
54:54 derat_hold_present_q(1)
55:55 ierat_hold_present_q(1)
56:56 ici_hold_present
57:57 fu_rfpe_hold_present_q
58:58 xu_rfpe_hold_present_q
59:59 ssprwr_ip_q(1)
60:60 ex5_in_ucode_q(1)
61:61 ram_mode_q(1)
62:62 ex3_async_int_block_q(1)
63:63 ex4_icmp_async_block(1)
64:64 exx_hold0_mcflush(1)
65:65 exx_hold1_mcflush(1)
66:66 ex4_is_mchk_int(1)
67:67 ex4_is_crit_int(1)
68:68 ex5_is_any_hint(1)
69:69 ex5_is_any_gint(1)
70:70 ex5_is_any_rfi_q(1)
71:71 ex5_tlb_inelig_q(1)
72:72 ex5_dear_update_saved_q(1)
73:73 exx_cm_hold(1)
74:74 ex3_esr_bit_act(1)
75:75 rf1_msr_cm
76:76 rf1_ctr_low_zero
77:77 rf1_ctr_hi_zero
78:78 rf1_ctr_one
79:79 ex1_ctr_ok_q
80:80 ex1_taken
81:81 ex1_pred_taken_cnt_q
82:82 byp_cpl_ex1_cr_bit
83:86 ex2_br_flush_q
87:87 0

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 4 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 811 of 864

11 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:12 ex2_br_flush(0)
13:13 iu_flush(0)
14:14 ex5_is_any_hint(0)
15:15 ex5_is_any_gint(0)
16:16 ex5_ucode_restart_q(0)
17:17 ex5_flush_2ucode_q(0)
18:18 ex5_mem_attr_le_q(0)
19:19 hold_state_0(0)
20:20 hold_state_1(0)
21:52 ex1_instr(0:31)
53:53 mmu_hold_present_q(2)
54:54 derat_hold_present_q(2)
55:55 ierat_hold_present_q(2)
56:56 ici_hold_present
57:57 fu_rfpe_hold_present_q
58:58 xu_rfpe_hold_present_q
59:59 ssprwr_ip_q(2)
60:60 ex5_in_ucode_q(2)
61:61 ram_mode_q(2)
62:62 ex3_async_int_block_q(2)
63:63 ex4_icmp_async_block(2)
64:64 exx_hold0_mcflush(2)
65:65 exx_hold1_mcflush(2)
66:66 ex4_is_mchk_int(2)
67:67 ex4_is_crit_int(2)
68:68 ex5_is_any_hint(2)
69:69 ex5_is_any_gint(2)
70:70 ex5_is_any_rfi_q(2)
71:71 ex5_tlb_inelig_q(2)
72:72 ex5_dear_update_saved_q(2)
73:73 exx_cm_hold(2)
74:74 ex3_esr_bit_act(2)
75:75 rf1_msr_cm
76:76 rf1_ctr_low_zero
77:77 rf1_ctr_hi_zero
78:78 rf1_ctr_one
79:79 ex1_ctr_ok_q
80:80 ex1_taken
81:81 ex1_pred_taken_cnt_q
82:82 byp_cpl_ex1_cr_bit
83:86 ex2_br_flush_q
87:87 0

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 5 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 812 of 864
Version 1.3

October 23, 2012

12 0:0 ex5_xu_val_q(0)
1:1 ex5_axu_val_dbg_q(0)
2:2 ex5_instr_cpl_dbg_q(0)
3:3 ex5_ucode_val_dbg_q(0)
4:4 ex5_ucode_end_dbg_q(0)
5:5 ex5_in_ucode_q(0)
6:11 ex5_flush_pri_enc_dbg(0)
12:12 ex2_br_flush(0)
13:13 iu_flush(0)
14:14 ex5_is_any_hint(0)
15:15 ex5_is_any_gint(0)
16:16 ex5_ucode_restart_q(0)
17:17 ex5_flush_2ucode_q(0)
18:18 ex5_mem_attr_le_q(0)
19:19 hold_state_0(0)
20:20 hold_state_1(0)
21:52 ex1_instr(0:31)
53:53 mmu_hold_present_q(3)
54:54 derat_hold_present_q(3)
55:55 ierat_hold_present_q(3)
56:56 ici_hold_present
57:57 fu_rfpe_hold_present_q
58:58 xu_rfpe_hold_present_q
59:59 ssprwr_ip_q(3)
60:60 ex5_in_ucode_q(3)
61:61 ram_mode_q(3)
62:62 ex3_async_int_block_q(3)
63:63 ex4_icmp_async_block(3)
64:64 exx_hold0_mcflush(3)
65:65 exx_hold1_mcflush(3)
66:66 ex4_is_mchk_int(3)
67:67 ex4_is_crit_int(3)
68:68 ex5_is_any_hint(3)
69:69 ex5_is_any_gint(3)
70:70 ex5_is_any_rfi_q(3)
71:71 ex5_tlb_inelig_q(3)
72:72 ex5_dear_update_saved_q(3)
73:73 exx_cm_hold(3)
74:74 ex3_esr_bit_act(3)
75:75 rf1_msr_cm
76:76 rf1_ctr_low_zero
77:77 rf1_ctr_hi_zero
78:78 rf1_ctr_one
79:79 ex1_ctr_ok_q
80:80 ex1_taken
81:81 ex1_pred_taken_cnt_q
82:82 byp_cpl_ex1_cr_bit
83:86 ex2_br_flush_q
87:87 0

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 6 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 813 of 864

13 0:61 ex5_siar_q
62:62 ex5_siar_gs_q
63:63 ex5_siar_pr_q
64:67 siar_cm
68:68 ex5_siar_issued_q
69:69 ex5_siar_cpl_q
70:71 ex5_siar_tid_q
72:75 ex4_xu_issued_q
76:79 ex4_axu_issued_q
80:83 ex5_instr_cpl_q
84:87 ex5_ucode_val_dbg_q

14 0,31 ex2_instr_dbg_q
32,55 x0ABCDE
56,56 1
57,58 ex2_instr_trace_type_q
59,63 (59:63 => '0')
64,64 1
65,66 ex2_instr_trace_type_q
67,67 1
68,87 (68:87 => '0')

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 7 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 814 of 864
Version 1.3

October 23, 2012

15 0:31 ex1_instr(0:31)
32:32 ex5_xu_val_q(0)
33:33 ex5_axu_val_dbg_q(0)
34:34 ex5_instr_cpl_dbg_q(0)
35:35 ex5_ucode_val_dbg_q(0)
36:36 ex5_ucode_end_dbg_q(0)
37:37 ex5_in_ucode_q(0)
38:43 ex5_flush_pri_enc_dbg(0)
44:44 iu_flush(0)
45:45 ex5_ucode_restart_q(0)
46:46 ex5_xu_val_q(1)
47:47 ex5_axu_val_dbg_q(1)
48:48 ex5_instr_cpl_dbg_q(1)
49:49 ex5_ucode_val_dbg_q(1)
50:50 ex5_ucode_end_dbg_q(1)
51:51 ex5_in_ucode_q(1)
52:57 ex5_flush_pri_enc_dbg(1)
58:58 iu_flush(1)
59:59 ex5_ucode_restart_q(1)
60:60 ex5_xu_val_q(2)
61:61 ex5_axu_val_dbg_q(2)
62:62 ex5_instr_cpl_dbg_q(2)
63:63 ex5_ucode_val_dbg_q(2)
64:64 ex5_ucode_end_dbg_q(2)
65:65 ex5_in_ucode_q(2)
66:71 ex5_flush_pri_enc_dbg(2)
72:72 iu_flush(2)
73:73 ex5_ucode_restart_q(2)
74:74 ex5_xu_val_q(3)
75:75 ex5_axu_val_dbg_q(3)
76:76 ex5_instr_cpl_dbg_q(3)
77:77 ex5_ucode_val_dbg_q(3)
78:78 ex5_ucode_end_dbg_q(3)
79:79 ex5_in_ucode_q(3)
80:85 ex5_flush_pri_enc_dbg(3)
86:86 iu_flush(3)
87:87 ex5_ucode_restart_q(3)

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 8 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 815 of 864

28 0:3 rf0_val_q
4:9 rf0_instr_q(0:5)
10:19 rf0_instr_q(21:30)
20:25 hold_instr_q(0:5)
26:35 hold_instr_q(21:30)
36:36 rf0_ta_vld_q
37:37 rf0_s1_vld_q
38:38 rf0_s2_vld_q
39:39 rf0_s3_vld_q
40:43 xu_rf0_flush
44:44 hold_ta_vld_q
45:45 ex1_recirc_ctr_flush_q
46:46 rf0_recirc_ctr_start
47:47 rf0_recirc_ctr_done
48:55 rf1_recirc_ctr_q
56:59 hold_tid_q
60:60 rf0_divide
61:61 rf0_multiply
62:62 rf1_barrier_done_q
63:66 ex6_set_barr_q
67:70 coll_tid_q
71:74 div_coll_barr_done_q
75:78 div_barr_done_q
79:79 rf1_muldiv_coll_q
80:80 rf1_div_coll_q
81:81 ex1_div_coll_q
82:85 cpl_fxa_ex5_set_barr
86:86 ex5_div_barr_val
87:87 back_inv_val_q

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 9 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 816 of 864
Version 1.3

October 23, 2012

29 0:3 rf0_val_q
4:35 rf0_instr_q
36:41 rf0_ta_q
42:44 rf0_error_q
45:45 rf0_match_q
46:46 rf0_is_ucode_q
47:47 rf0_s1_vld_q
48:48 rf0_s2_vld_q
49:49 rf0_s3_vld_q
50:50 rf0_axu_ld_or_st_q
51:51 rf0_axu_store_q
52:52 rf0_axu_mftgpr_q
53:53 rf0_axu_mffgpr_q
54:54 rf0_axu_movedp_q
55:55 rf0_pred_update_q
56:59 rf0_gshare_q
60:62 rf0_axu_instr_type_q
63:63 rf0_axu_ldst_forcealign_q
64:64 rf0_axu_ldst_forceexcept_q
65:65 rf0_axu_ldst_indexed_q
66:74 rf0_axu_ldst_tag_q
75:80 rf0_axu_ldst_size_q
81:81 rf0_axu_ldst_update_q
82:83 rf0_pred_taken_cnt_q
84:84 rf0_recirc_ctr_done
85:85 rf0_recirc_ctr_start
86:86 rf1_muldiv_coll_q
87:87 back_inv_val_q

30 0:54 gpr_rel_data(9:63)
55:55 dec_gpr_rel_wren
56:56 dec_gpr_rel_ta_gpr(0)
57:57 dec_gpr_rel_wren
58:65 dec_gpr_rel_ta_gpr
66:69 perr_sm_q(0:3)
70:71 perr_direction_q
72:79 perr_addr_q(0:7)
80:80 wthru_r0_w_e_q
81:81 wthru_r0_w_l_q
82:82 wthru_r1_w_e_q
83:83 wthru_r1_w_l_q
84:84 wthru_r2_w_e_q
85:85 wthru_r2_w_l_q
86:86 wthru_r3_w_e_q
87:87 wthru_r3_w_l_q;

31 0:63 gpr_rel_data(0:63)
64:64 dec_gpr_rel_wren
65:65 dec_gpr_rel_ta_gpr(0)
66:66 dec_gpr_rel_wren
67:74 dec_gpr_rel_ta_gpr
75:87 ex5_xu_ifar_q(49:61)

Trigger Group Signal List

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 10 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 817 of 864

C.8 XU Debug Select Register2 and Debug Group Tables
Table C-12. XU Debug Select Register2 (XDSR2)

0 0 ex5_xu_val_q(0)
1 ex5_axu_val_dbg_q(0)
2 ex5_instr_cpl_dbg_q(0)
3 ex5_ucode_val_dbg_q(0)
4 ex5_ucode_end_dbg_q(0)
5 ex2_br_flush(0)
6 iu_flush(0)
7 ex5_is_any_hint(0)
8 ex5_is_any_gint(0)
9 DBSR[IVC] Event
10 DBSR[IACn] Event
11 DBSR[DACRn,DACWn] Event

1 Same as trigger0 only for thread 1

2 Same as trigger0 only for thread 2

3 Same as trigger0 only for thread 3

Register Short Name: XDSR2 Access: RW

Register Address: x‘3F’ RW Scan Ring: dcfg

Initial Value: 0x0000000000000000

Bits Function Initial
Value Description

0:31 Reserved 0

XU Debug Mux3 Controls (32:1 Debug Multiplexer)

32:36 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00000 Debug group 0.
00001 Debug group 1.
00010 Debug group 2.
 | |
11111 Debug group 31.

37:38 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

39 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

40 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

Table C-11. XU Debug Mux2 Debug and Trigger Groups (Sheet 11 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 818 of 864
Version 1.3

October 23, 2012

41 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

42 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

43:44 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

45 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

46 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

47 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

XU Debug Mux4 Controls (4:1 Debug Multiplexer)

48:49 Debug Group Multiplexer Select 0 Selects which debug group is driven to the debug multiplexer output:
00 Debug group 0.
01 Debug group 1.
10 Debug group 2.
11 Debug group 3.

50:52 Reserved 0

53:54 Debug Group Rotate Select 0 Selects how the 22-bit rotate function shifts the debug multiplexer out-
put data:
00 Debug Group Data [0:87] - No rotate.
01 Debug Group Data [66:87 and 0:65].
10 Debug Group Data [44:87 and 0:43].
11 Debug Group Data [22:87 and 0:21].

55 Debug Group Output Select [0:21] 0 Determines which signal group is put on Trace Data Out [0:21].
0 Trace Data In [0:21] is routed onto the trace bus.
1 Debug Group Rotate Output [0:21] is placed onto the trace

bus.

56 Debug Group Output Select [22:43] 0 Determines which signal group is put on Trace Data Out [22:43].
0 Trace Data In [22:43] is routed onto the trace bus.
1 Debug Group Rotate Output [22:43] is placed onto the trace

bus.

57 Debug Group Output Select [44:65] 0 Determines which signal group is put on Trace Data Out [44:65].
0 Trace Data In [44:65] is routed onto the trace bus.
1 Debug Group Rotate Output [44:65] is placed onto the trace

bus.

Bits Function Initial
Value Description

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 819 of 864

58 Debug Group Output Select [66:87] 0 Determines which signal group is put on Trace Data Out [66:87].
0 Trace Data In [66:87] is routed onto the trace bus.
1 Debug Group Rotate Output [66:87] is placed onto the trace

bus.

59:60 Trigger Group Multiplexer Select 0 Selects which trigger group is driven to the multiplexer output:
00 Trigger group 0.
01 Trigger group 1.
10 Trigger group 2.
11 Trigger group 3.

61 Trigger Group Rotate Select 0 Selects how the 6-bit rotate function shifts the trigger multiplexer out-
put data:
0 Trigger Group Data [0:11] - No rotate.
1 Trigger Group Data [6:11 and 0:5].

62 Trigger Group Output Select [0:5] 0 Determines which signal group is put on Trigger Data Out [0:5].
0 Trigger Data In [0:5] is routed onto the trigger bus.
1 Trigger Group Rotate Output [0:5] is placed onto the trigger

bus.

63 Trigger Group Output Select [6:11] 0 Determines which signal group is put on Trigger Data Out [6:11].
0 Trigger Data In [6:11] is routed onto the trigger bus.
1 Trigger Group Rotate Output [6:11] is placed onto the trigger

bus.

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 1 of 11)

Debug Group Signal List

0 0:7 ex4_way_hit_q
8:12 ex4_congr_cl_q
13:13 binv4_ex4_xuop_upd_q
14:17 ex4_dir_access_op
18:18 ex1_ldst_falign_q
19:19 ex2_ldst_fexcpt_q
20:20 ex5_cache_inh_q
21:21 ex3_data_swap_int
22:25 rel_lost_watch_upd_q
26:29 stm_watchlost_state_q
30:38 ex5_axu_ta_gpr_q
39:39 ex5_xu_wren_q
40:40 ex5_axu_wren_q
41:41 ex4_dir_err_val_q
42:42 ex4_dir_multihit_val_q
43:43 ex7_ld_par_err
44:44 ex2_is_mem_bar_op
45:45 ex3_l2_op_q
46:53 ld_rel_val_l2
54:54 st_entry0_val_l2
55:55 load_cmd_count_l2(0)
56:56 store_cmd_count_l2(0)
57:65 ex4_p_addr
66:87 ex4_p_addr

Bits Function Initial
Value Description

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 820 of 864
Version 1.3

October 23, 2012

1 0:7 ex4_way_hit_q
8:12 ex4_congr_cl_q ex4_p_addr_q(53:57)
13:13 binv4_ex4_xuop_upd_q
14:17 ex4_dir_access_op
18:21 ex4_p_addr(58:61)
22:22 ldq_rel_back_invalidated
23:23 ldq_rel_ci
24:31 ld_rel_val_l2
32:32 st_entry0_val_l2
33:43 ex4_p_addr(22:32)
44:63 ex4_p_addr(33:52)
64:64 load_cmd_count_l2(0)
65:65 store_cmd_count_l2(0)
66:66 ex2_is_mem_bar_op
67:67 ex3_l2_op_q
68:68 ex4_n_flush_rq_q
69:69 ldq_rel1_val
70:70 ldq_rel_mid_val
71:71 ldq_rel3_val
72:72 ldq_rel_retry_val
73:73 ldq_recirc_rel_val
74:76 ldq_rel_tag
77:77 ldq_rel_set_val
78:79 ldq_rel_ta_gpr(7:8)
80:80 ldq_rel_lock_en
81:82 ldq_rel_classid
83:87 rel_congr_cl_q

2 0:0 ex4_wayA_byp_ctrl_fxpipe
1:1 ex4_wayA_byp_ctrl_relpipe
2:7 ex4_wayA_val
8:12 ex4_congr_cl_q
13:21 ex4_p_addr
22:43 ex4_p_addr
44:44 ex4_way_hit_q(w)
45:45 binv4_ex4_xuop_upd_q
46:49 ex4_dir_access_op
50:50 binv_wayA_upd2_q
51:56 flush_wayA_data_q
57:57 ldq_rel1_val
58:58 ldq_rel_mid_val
59:59 ldq_rel3_val
60:60 ldq_rel_retry_val
61:61 ldq_recirc_rel_val
62:62 ldq_rel_set_val
63:63 rel_way_dwen(w)
64:64 rel_wayA_byp_ctrl_fxpipe
65:65 rel_wayA_byp_ctrl_relpipe
66:66 ldq_rel_back_invalidated
67:69 ldq_rel_tag
70:75 rel_wayA_val
76:80 rel_congr_cl_q
81:81 reload_wayA_upd2_q
82:87 reload_wayA_data_q

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 2 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 821 of 864

3 Same as group2 except for way B, w=1

4 Same as group2 except for way C, w=2

5 Same as group2 except for way D, w=3

6 Same as group2 except for way E, w=4

7 Same as group2 except for way F, w=5

8 Same as group2 except for way G, w=6

9 Same as group2 except for way H, w=7

10 0:0 ldq_rel1_val
1:1 ldq_rel_mid_val
2:2 ldq_rel3_val
3:3 ldq_rel_retry_val
4:4 ldq_recirc_rel_val
5:7 ldq_rel_tag
8:8 ldq_rel_set_val
9:9 ldq_rel_ci
10:10 ldq_rel_back_invalidated
11:11 ldq_rel_upd_gpr
12:12 rel_data_val
13:21 ldq_rel_ta_gpr(0:8)
22:22 ldq_rel_lock_en
23:23 ldq_rel_watch_en
24:24 ldq_rel_axu_val
25:26 ldq_rel_classid
27:27 spr_xucr0_dcdis_q
28:35 rel24_way_dwen_stg_q
36:36 rel_val_wen_q
37:43 rel_lru_val_q
44:51 rel_m_q_way_q
52:65 ldq_rel_addr
66:87 ldq_rel_addr

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 3 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 822 of 864
Version 1.3

October 23, 2012

11 0:0 ldq_rel1_val
1:1 ldq_rel_mid_val
2:2 ldq_rel3_val
3:3 ldq_rel_retry_val
4:4 ldq_recirc_rel_val
5:7 ldq_rel_tag
8:8 ldq_rel_set_val
9:9 ldq_rel_ci
10:10 ldq_rel_back_invalidated
11:12 ldq_rel_ta_gpr(7:8)
13:13 ldq_rel_lock_en
14:15 ldq_rel_classid
16:16 spr_xucr0_dcdis_q
17:17 xucr0_clo_q
18:21 reld_q_val(0:3)
22:25 reld_q_val(4:7)
26:26 rel_m_q_upd
27:27 reld_q_early_byp
28:35 rel_m_q_way_q
36:43 rel2_wlock_q
44:51 rel_way_dwen
52:65 ldq_rel_addr
66:87 ldq_rel_addr

12 0:0 ldq_rel1_val
1:3 ldq_rel_tag
4:5 ldq_rel_classid
6:6 rel_fxubyp_val
7:7 rel_relbyp_val
8:12 rel_congr_cl_q
13:20 rel2_wlock_q
21:21 rel_val_wen_q
22:29 way_not_empty
30:36 rel_op_lru
37:43 rel_lru_val_q
44:51 rel_way_dwen
52:52 xucr0_clo_q
53:57 ex4_congr_cl_q
58:64 xu_op_lru
65:65 ex6_c_acc_val_q
66:72 ex6_lru_upd_q
73:80 ex4_way_hit_q
81:81 ex4_c_acc_q
82:82 spr_xucr0_dcdis_q
83:83 ex4_fxubyp_val
84:84 ex4_relbyp_val

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 4 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 823 of 864

13 0:0 ex9_ld_par_err_q
1:1 rel_in_progress
2:3 dcpar_err_ind_sel
4:5 dcpar_err_cntr_q
6:6 dcpar_err_push_queue
7:14 dcpar_err_way_q
15:15 dcpar_err_stg2_q
16:16 ldq_rel1_val
17:17 ldq_rel_mid_val
18:18 ldq_rel3_val
19:21 ldq_rel_tag
22:26 rel_congr_cl_q
27:27 pe_recov_begin
28:28 l2req_resend_l2
29:29 l2req_recycle_l2 &
30:30 ex6_ld_recov_val_l2 &
31:31 ex6_ld_recov_extra_l2(0) &
32:32 ex7_ld_recov_val_l2 &
33:33 ex7_ld_recov_extra_l2(0) &
34:34 stq_hit_ex6_recov_l2
35:35 pe_recov_state_l2
36:36 blk_ld_for_pe_recov_l2
37:42 ex7_ld_recov_l2(1 to 6)
43:43 ex7_ld_recov_l2(18)
44:46 ex7_ld_recov_l2(19 to 21)
47:64 ex7_ld_recov_l2(53 to 71)
65:86 ex7_ld_recov_l2(72 to 93)

14 0:0 l2req_l2
1:5 l2req_ld_core_tag_l2
6:11 l2req_ttype_l2
12:15 l2req_wimg_l2
16:16 l2req_endian_l2
17:19 l2req_ld_xfr_len_l2
20:21 l2req_thread_l2(0:1)
22:22 l2req_thread_l2(2)
23:26 l2req_user_l2
27:27 anaclat_data_coming
28:28 anaclat_data_val
29:29 an_ac_reld_crit_qw
30:31 Reserved. This bit is set to 0 at reset, and must not be set to 1. When read, this bit might be 1 or 0.
31:31 anaclat_l1_dump
32:35 anaclat_tag
36:37 anaclat_qw
38:38 anaclat_ecc_err
39:39 anaclat_ecc_err_ue
40:40 anaclat_ld_pop
41:41 anaclat_st_gather
42:42 anaclat_st_pop
43:43 anaclat_st_pop_thrd(0)
44:45 anaclat_st_pop_thrd(1:2)
46:64 l2req_ra_l2(22:41)
65:86 l2req_ra_l2(42:63)

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 5 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 824 of 864
Version 1.3

October 23, 2012

15 0:0 l2req_l2
1:6 l2req_ttype_l2
7:7 l2req_wimg_l2(1)
8:8 l2req_wimg_l2(3)
9:9 l2req_endian_l2
10:13 l2req_st_byte_enbl_l2(0:3)
14:21 l2req_ra_l2(22:29)
22:43 l2req_ra_l2(30:51)
44:55 l2req_ra_l2(52:63)
56:65 ex6_st_data_l2(0:9)
66:87 ex6_st_data_l2(10:31)

16 0:0 l2req_l2
1:6 l2req_ttype_l2
7:7 l2req_wimg_l2(1)
8:8 l2req_wimg_l2(3)
9:9 l2req_endian_l2
10:13 l2req_st_byte_enbl_l2(4:7)
14:21 l2req_ra_l2(22:29)
22:43 l2req_ra_l2(30:51)
44:55 l2req_ra_l2(52:63)
56:65 ex6_st_data_l2(32:41)
66:87 ex6_st_data_l2(42:63)

17 0:0 l2req_l2
1:6 l2req_ttype_l2
7:7 l2req_wimg_l2(1)
8:8 l2req_wimg_l2(3)
9:9 l2req_endian_l2
10:13 l2req_st_byte_enbl_l2(8:11)
14:21 l2req_ra_l2(22:29)
22:43 l2req_ra_l2(30:51)
44:55 l2req_ra_l2(52:63)
56:65 ex6_st_data_l2(64:73)
66:87 ex6_st_data_l2(74:95)

18 0:0 l2req_l2
1:6 l2req_ttype_l2
7:7 l2req_wimg_l2(1)
8:8 l2req_wimg_l2(3)
9:9 l 2req_endian_l2
10:13 l2req_st_byte_enbl_l2(12:15)
14:21 l2req_ra_l2(22:29)
22:43 l2req_ra_l2(30:51)
44:55 l2req_ra_l2(52:63)
56:65 ex6_st_data_l2(96:105)
66:87 ex6_st_data_l2(106:127)

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 6 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 825 of 864

19 0:0 l2req_l2
1:4 l2req_ld_core_tag_l2(1:4)
5:10 l2req_ttype_l2
11:11 l2req_wimg_l2(1)
12:12 anaclat_data_coming
13:13 anaclat_data_val
14:14 an_ac_reld_crit_qw
15:15 Reserved. This bit is set to 0 at reset, and must not be set to 1. When read, this bit might be 1 or 0.
16:19 anaclat_tag
20:21 anaclat_qw
22:22 anaclat_ecc_err
23:23 anaclat_ecc_err_ue
24:43 anaclat_data(0:19)
44:65 anaclat_data(20:41)
66:87 anaclat_data(42:63)

20 0:0 l2req_l2
1:4 l2req_ld_core_tag_l2(1:4)
5:10 l2req_ttype_l2
11:11 l2req_wimg_l2(1)
12:12 anaclat_data_coming
13:13 anaclat_data_val
14:14 an_ac_reld_crit_qw
15:15 Reserved. This bit is set to 0 at reset, and must not be set to 1. When read, this bit might be 1 or 0.
16:19 anaclat_tag
20:21 anaclat_qw
22:22 anaclat_ecc_err
23:23 anaclat_ecc_err_ue
24:43 anaclat_data(0:19)
44:65 anaclat_data(20:41)
66:87 anaclat_data(42:63)

21 0:21 anaclat_back_inv_addr(22:43)
22:41 anaclat_back_inv_addr(44:63)
42:42 anaclat_back_inv_target_1
43:43 anaclat_back_inv_target_4
44:44 anaclat_back_inv
45:52 lmq_back_invalidated_l2
53:60 ex4_way_hit_q
61:65 ex4_congr_cl_q
66:66 binv4_ex4_xuop_upd_q
67:87 ex4_p_addr

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 7 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 826 of 864
Version 1.3

October 23, 2012

22 0:7 l_m_rel_hit_beat0_l2
8:15 l_m_rel_hit_beat1_l2
16:23 l_m_rel_hit_beat2_l2
24:31 l_m_rel_hit_beat3_l2
32:39 l_m_rel_val_c_i_dly
40:47 lmq_back_invalidated_l2(0:lmq_entries-1)
48:55 complete_qentry(0:lmq_entries-1)
56:63 ldq_retry_l2(0:lmq_entries-1)
64:71 retry_started_l2(0:lmq_entries-1)
72 dc_dir_dbg_data(3)
73:75 dc_dir_dbg_data(0:2)
76 dc_cntrl_dbg_data(0)
77 dc_dir_dbg_data(4)
78:85 gpr_ecc_err_l2(0:lmq_entries-1)
86:87 "00"

23 0:7 l_m_rel_hit_beat0_l2
8:15 l_m_rel_hit_beat1_l2
16:23 l_m_rel_hit_beat2_l2
24:31 l_m_rel_hit_beat3_l2
32:39 l_m_rel_val_c_i_dly
40:47 gpr_ecc_err_l2(0:lmq_entries-1)
48:55 data_ecc_err_l2(0:lmq_entries-1)
56:63 data_ecc_ue_l2(0:lmq_entries-1)
64:71 gpr_updated_prev_l2(0:lmq_entries-1)
72 dc_dir_dbg_data(3)
73:75 dc_dir_dbg_data(0:2)
76 dc_cntrl_dbg_data(0)
77 dc_dir_dbg_data(4)
78 anaclat_data_val
79 anaclat_reld_crit_qw
80:83 anaclat_tag(1:4)
84:85 anaclat_qw(58:59)
86 anaclat_ecc_err
87 anaclat_ecc_err_ue

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 8 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 827 of 864

24 0 I1_G1_flush
1 ld_queue_full
2 ex4_drop_ld_req
3 ex5_flush_l2
4 ex5_stg_flush
5:10 cmd_type_ld(0:5)
11:18 ex4_loadmiss_qentry(0:lmq_entries-1)
19:26 ld_entry_val_l2(0:lmq_entries-1)
27:34 ld_rel_val_l2(0:lmq_entries-1)
35:42 ex4_lmq_cpy_l2(0:lmq_entries-1)
43 send_if_req_l2
44 send_ld_req_l2
45 send_mm_req_l2
46:49 load_cmd_count_l2
50 load_sent
51 load_flushed
52 selected_entry_flushed
53 ex6_load_sent_l2
54 ex6_flush_l2
55:59 cmd_seq_l2
60:67 l_q_rd_en
68 rd_seq_num_skip
69 lq_rd_en_is_ex5
70 lq_rd_en_is_ex6
71:78 l_m_q_hit_st_l2(0:lmq_entries-1)
79:86 lmq_drop_rel_l2(0:lmq_entries-1)
87 '0'

25 0 sync_flush
1 flush_if_store
2 I1_G1_flush
3 l_m_fnd_stg
4 ex5_flush_l2
5 ex5_stg_flush
6 ex4_st_val_l2
7 st_entry0_val_l2
8:13 s_m_queue0(0:5)
14:49 s_m_queue0(58:(58+real_data_add-6-1))
50:55 store_cmd_count_l2
56 ex5_sel_st_req
57 store_sent
58 ex6_store_sent_l2
59 ex6_flush_l2
60 l2req_l2
61:63 l2req_thread_l2
64:69 l2req_ttype_l2
70 ob_req_val_l2
71 Reserved. This bit is set to 0 at reset, and must not be set to 1. When read, this bit might be 1 or 0.
72:87 ‘0000000000000000’

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 9 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 828 of 864
Version 1.3

October 23, 2012

26 0 ifetch_req_l2
1:38 ifetch_ra_l2
39:42 ifetch_thread_l2
43 i_f_q0_val_l2
44 i_f_q1_val_l2
45 i_f_q2_val_l2
46 i_f_q3_val_l2
47 send_if_req_l2
48 send_ld_req_l2
49 send_mm_req_l2
50 iu_sent_val
51 l2req_l2
52:54 l2req_thread_l2
55:60 l2req_ttype_l2

‘000000000000000000000000000’

27 0 mm_req_val_l2
1 mmu_q_val_l2
2:69 mmu_q_entry_l2
70 send_if_req_l2
71 send_ld_req_l2
72 send_mm_req_l2
73 mmu_sent
74 l2req_l2
75:77 l2req_thread_l2
78:83 l2req_ttype_l2

‘0000’

28 0 ex3_stg_flush
1 I1_G1_flush
2 sync_flush
3 flush_if_store
4 ld_queue_full
5 ex4_drop_ld_req
6 l_m_fnd_stg
7 ex4_stg_flush
8 my_ex4_flush_l2
9 ex5_stg_flush
10 ex2_lm_dep_hit_buf
11 ex3_load_instr
12:15 ex3_thrd_id(0:3)
16:21 cmd_type_st(0:5)
22:27 cmd_type_ld(0:5)
28:35 ex4_lmq_cpy_l2(0:lmq_entries-1)
36:43 lmq_collision_t0_l2(0:lmq_entries-1)
44:51 lmq_collision_t1_l2(0:lmq_entries-1)
52:59 lmq_collision_t2_l2(0:lmq_entries-1)
60:67 lmq_collision_t3_l2(0:lmq_entries-1)
68:71 ldq_barr_active_l2(0:3)
72:75 ldq_barr_done_l2(0:3)
76:79 sync_done_tid_l2(0:3)

‘00000000’

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 10 of 11)

Debug Group Signal List

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 829 of 864

29 0:3 dir_wr_enable_int
4:11 dir_wr_way_int
12:16 dir_arr_wr_addr_int
17:17 recirc_rel_val_q
18:21 dir_arr_wr_data_int(31:34)
22:22 ex1_dir_acc_val
23:23 ex1_l2_inv_val
24:24 binv1_ex1_stg_act
25:29 lwr_p_addr_q(53:57)
30:43 dir_arr_wr_data_int(0:13)
44:60 dir_arr_wr_data_int(14:30)
61:65 0
66:87 0

30 0:83 ex3_cam_cmp_data_q(0:83)
84 ex3_cam_hit_q
85 ex3_debug_q(0)
86 ex3_debug_q(1)
87 ex3_debug_q(9)

31 0:67 ex3_array_cmp_data_q(0:67)
68 ex3_cam_hit_q
69 ex3_debug_q(16)
70:74 ex3_debug_q(11:15)
75 ex3_debug_q(0)
76 ex3_debug_q(1)
77 ex3_debug_q(2)
78 ex3_debug_q(3)
79 ex3_debug_q(4)
80 ex3_debug_q(5)
81 ex3_debug_q(6)
82 ex3_debug_q(7)
83 ex3_debug_q(8)
84 ex3_debug_q(9)
85 ex3_debug_q(10)
86 ex3_ttype_q(8)
87 ex3_ttype_q(9)

Trigger Group Signal List

0 0:0 binv4_ex4_xuop_upd_q
1:2 ex4_enc_thdid
3:3 ex2_is_mem_bar_op
4:4 ex3_l2_op_q
5:5 ex4_n_flush_rq_q
6:6 ex4_miss
7:7 ex5_cache_inh_q
8:11 ex4_dir_access_op

1 0:0 l2req_l2
1:2 l2req_thread_l2(0:1)
3:8 l2req_ttype_l2
9:11 l2req_wimg_l2(1:3)

2 None

3 None

Table C-13. XU Debug Mux3 Debug and Trigger Groups (Sheet 11 of 11)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 830 of 864
Version 1.3

October 23, 2012

Table C-14. XU Debug Mux4 Debug and Trigger Groups (Sheet 1 of 2)

Debug Group Signal List

0 0:3 ex6_valid_q(0:3)
4:35 ex1_instr_q(0:31)
36:36 ex3_hypv_spr_q
37:37 ex3_illeg_spr_q
38:38 ex3_priv_spr_q
39:39 timer_update_q
40:40 ex6_int_q(0)
41:41 ex6_gint_q(0)
42:42 ex6_cint_q(0)
43:43 ex6_mcint_q(0)
44:44 ex6_esr_update_q(0)
45:45 ex6_dbsr_update_q(0)
46:46 ex6_dear_update_q(0)
47:47 ex6_dear_save_q(0)
48:48 ex6_dear_update_saved_q(0)
49:49 an_ac_crit_interrupt_q(0)
50:50 an_ac_perf_interrupt_q(0)
51:51 an_ac_ext_interrupt_q(0)
52:52 ex6_int_q(1)
53:53 ex6_gint_q(1)
54:54 ex6_cint_q(1)
55:55 ex6_mcint_q(1)
56:56 ex6_esr_update_q(1)
57:57 ex6_dbsr_update_q(1)
58:58 ex6_dear_update_q(1)
59:59 ex6_dear_save_q(1)
60:60 ex6_dear_update_saved_q(1)
61:61 an_ac_crit_interrupt_q(1)
62:62 an_ac_perf_interrupt_q(1)
63:63 an_ac_ext_interrupt_q(1)
64:64 ex6_int_q(2)
65:65 ex6_gint_q(2)
66:66 ex6_cint_q(2)
67:67 ex6_mcint_q(2)
68:68 ex6_esr_update_q(2)
69:69 ex6_dbsr_update_q(2)
70:70 ex6_dear_update_q(2)
71:71 ex6_dear_save_q(2)
72:72 ex6_dear_update_saved_q(2)
73:73 an_ac_crit_interrupt_q(2)
74:74 an_ac_perf_interrupt_q(2)
75:75 an_ac_ext_interrupt_q(2)
76:76 ex6_int_q(3)
77:77 ex6_gint_q(3)
78:78 ex6_cint_q(3)
79:79 ex6_mcint_q(3)
80:80 ex6_esr_update_q(3)
81:81 ex6_dbsr_update_q(3)
82:82 ex6_dear_update_q(3)
83:83 ex6_dear_save_q(3)
84:84 ex6_dear_update_saved_q(3)
85:85 an_ac_crit_interrupt_q(3)
86:86 an_ac_perf_interrupt_q(3)
87:87 an_ac_ext_interrupt_q(3)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Debug and Trigger Groups

Page 831 of 864

1 0:0 lsu_xu_dbell_val_q
1:5 lsu_xu_dbell_type_q
6:6 lsu_xu_dbell_lpid_match_q
7:7 lsu_xu_dbell_brdcast_q
8:21 lsu_xu_dbell_pirtag_q
22:25 spr_ccr0_we_rev
26:29 quiesced_q
30:33 iu_quiesce_q
34:37 lsu_quiesce_q
38:41 mm_quiesce_q
42:45 Reserved
46:49 cpl_quiesce_q
50:53 running
54:57 iu_run_thread_q
58:61 pm_wake_up
62:65 an_ac_reservation_vld_q
66:69 an_ac_sleep_en_q
70:73 waitimpl_val_q
74:77 waitrsv_val_q
78:81 llpri_q
82:85 tspr_cspr_lldet
86:87 00

2 0:31 entry_valid_q(0 to 31)
32:63 entry_match_q(0 to 31)
64:73 lru_update_event_q(0 to 9)
74:78 lru_debug_q(36 to 40)
79:83 watermark_q(0 to 4)
84 ex3_cam_hit_q
85 ex3_debug_q(0)
86 ex3_debug_q(1)
87 ex3_debug_q(9)

3 0 ex3_cam_hit_q
1 ex3_debug_q(0)
2 ex3_debug_q(1)
3 ex3_debug_q(9)
4:8 ex3_debug_q(11 to 15)
9 lru_update_event_q(9)
10:14 lru_debug_q(0 to 4)
15:19 watermark_q(0 to 4)
20 '0'
21:51 lru_q(1 to 31)
52:82 lru_debug_q(5 to 35)
83:87 lru_debug_q(36 to 40)

Trigger Group Signal List

0 None

1 None

2 None

3 None

Table C-14. XU Debug Mux4 Debug and Trigger Groups (Sheet 2 of 2)

Debug Group Signal List

User’s Manual

A2 Processor

Debug and Trigger Groups

Page 832 of 864
Version 1.3

October 23, 2012

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 833 of 864

Appendix D. Instruction Execution Performance and Code Optimizations

The instruction timing information and code optimization guidelines provided in this appendix can help
compiler developers and application programmers produce high-performance code and accurately analyze
instruction execution performance. While this appendix does not comprehensively identify every micro-archi-
tectural characteristic that could have a potential impact on instruction execution time within the A2 core, it
does provide a high-level overview of basic instruction operation and pipeline performance. The information
provided is sufficient to analyze the performance of code sequences to a high degree of accuracy.

D.1 A2 Pipeline Overview

As described in Overview on page 45, the A2 core is an in-order processor core capable of issuing two
instructions from different threads per cycle: a single instruction to the fixed-point pipeline and a separate
instruction to the floating-point pipeline. Figure D-1 provides an illustration of the pipeline stages of the A2
core.

Figure D-1. A2 Pipeline Structure

iu0 iu1 iu2 iu3

iu5

iu5

iu5

iu5

iu6

iu6

iu6

iu6

rf0

rf1 ex1 ex2 ex3 ex4 ex5 ex6 rf1

CR

rf1 ex1 ex2 ex3 ex4 ex5

Intstruction Unit (IU)

Floating Point (FU)

Branch, Fixed Point, Load/Store (XU)

rf1
GPRs

FPRs

D$

ex6

To L2

D$dirERAT Completion

IssueIBuffer Dependency

iu4

iu4

iu4

iu4

4 threads

IIdir

ucode

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 834 of 864
Version 1.3

October 23, 2012

As illustrated in Figure D-1, the front end of the pipeline consists of seven stages, IU0 through IU6. The
front end is responsible for fetching instructions, predicting branches, checking for register dependencies,
and arbitrating between threads for instruction issue. The back end of the pipeline consists of eight stages,
RF0 - 1 and EX1 - 6. The back end is responsible for executing instructions and interfacing to the L2.

The IU4, IU5, and IU6 stages are replicated for each thread. All other stages are shared in a fine-grain
manner. Instructions from different threads are interleaved on a cycle-by-cycle basis.

In the IU0 - IU4 pipeline stages, the next one to four instructions from one thread are fetched from the I-cache
and decoded. Branches are predicted in the IU3 and IU4 stages (see Section 2.8.4.6 Wait Instruction on
page 98 for more details about branch instructions and prediction). Up to eight instructions per thread are
buffered in IU4 in the instruction buffer (IBUFF). Instructions are not fetched unless there is room for them in
the instruction buffer. Hence, there are no stalls before IU4.

The single oldest instruction is decoded and sent to the IU5 stage. Register dependency checking is
performed in IU5, and the instruction stalls here if input operands are not available. Instructions can stall in
IU5 for a variety of other typically infrequent reasons described in detail later. Because IU4 and IU5 are repli-
cated per thread, stalls at IU5 affect only that thread.

If the instruction is ready to issue, it is forwarded to the IU6 stage. The IU6 pipeline stage holds one ready
instruction from each thread. IU6 selects one of these for issue to the XU and the FU (if present) each cycle
whenever possible. Instructions can stall in IU6 for a variety of other typically infrequent reasons described in
detail later.

The last seven stages of the pipeline are unified for integer arithmetic and logic instructions, load and store
instructions, and branch instructions. Register file access and bypassing is performed in RF0 and RF1.
Branches and most simple ALU instruction produce their results in EX1. The data cache directory and the
D-ERAT are accessed in EX2. The data cache data array is accessed in EX4. Stores and loads that miss the
data cache are sent to the L2 in EX6.

The subsequent sections of this appendix provide additional details about the performance of various instruc-
tion sequences, including the latencies of various instruction pairs.

D.1.1 Arbitration Stages

Arbitration between threads occurs at three points in the pipeline: IU0, IU6, and EX6.

The IU0 stage is responsible for selecting from which of the four possible threads to fetch. Each cycle, one
thread is selected in a round-robin fashion. Threads that are not able to fetch instructions for any reason are
passed over in the round-robin sequence.

The IU6 stage selects which thread will issue an instruction each cycle to both the FXU and the FU (if
present). This is also done in a fair round-robin fashion, and threads that do not have any instruction available
for issue are passed over in the round-robin sequence.

The EX6 stage selects which command can be sent down to the L2 in each cycle. Commands can come from
stores, load data cache misses in the load miss queue, instruction cache misses, and TLB PTE loads (if the
TLB is present).

data effective to real address translation

fixed-point unit

floating-point unit

page table entry

translation lookaside buffer

execution unit

arithmetic logic unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 835 of 864

D.1.2 Stall Stages

The IU5 and IU6 stages are the major stall points in the pipeline. Instructions stall in IU5 primarily for register
dependencies. Instructions stall in IU6 primarily for thread arbitration. Loads that miss the data cache can
also stall in the load miss queue.

D.1.3 Flush Stages

Under certain circumstances, the pipeline might need to refetch and execute instructions. This is known as a
flush. During a flush, all instructions up to a particular instruction are removed from the pipeline, and the fetch
address register is reset to the correct instruction address. Instructions from all other threads are unaffected.
Depending on the condition, an instruction might trigger a flush of either itself or the next instruction following
itself.

A flush is triggered at one of five stages in the pipeline: IU2, IU5, RF0, EX1, or EX4.

See Table D-5 on page 858 for the complete list of flush conditions.

D.2 Fetch

The IU0 stage is responsible for initiating instruction fetches. Figure D-2 on page 836 illustrates the pipeline
stages of the instruction cache function.

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 836 of 864
Version 1.3

October 23, 2012

Each cycle, IU0 can begin fetching a fetch group for one thread. A fetch group consists of a 16-byte-aligned
group of 16 bytes containing four instructions. If the instruction address to fetch is not at the beginning of this
fetch group, instructions before the fetch address are discarded. If the group contains a predicted-taken
branch, instructions after the branch are discarded. The fetch engine in IU0 fetches sequentially by default,
following the not-taken path.

Figure D-2. Instruction Cache

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 837 of 864

D.2.1 Fetch Arbitration

Each cycle, any or all of the threads might or might not be available to perform a fetch. The IU0 stage selects
one thread for fetch in each cycle, from among those threads that are available. Common reasons why a
thread might not be available for fetch include instruction cache and I-ERAT misses and a full instruction
buffer.

The selection is done in a fair, round-robin manner with two priority levels. A thread has high-priority if its
instruction buffers are completely empty and no fetches are in-flight for that thread. Otherwise, the thread has
low priority. A high-priority thread is chosen if one is available.

D.2.2 Next Instruction Fetch Address Computation

Each cycle, the instruction fetch address for the next cycle is computed for all four threads. If the thread is
being flushed, the instruction fetch address is updated to the target address for the flush. This case includes
flushes due to branch mispredictions and taken branches. If the thread was selected for fetch, then the fetch
address is updated to the start of the next 16-byte-aligned fetch group; fetch follows the sequential not-taken
path until a taken branch is detected in IU5. If the thread was not selected, the fetch address is unchanged.

D.2.3 Instruction Cache Access and Alignment

The instruction cache is accessed in IU1. This includes the I-ERAT access to translate the effective instruc-
tion fetch address to a real address, the directory access to determine if the fetch hit in the instruction cache,
and the data array access to read the requested fetch group from the instruction cache.

All four ways of the instruction cache are pulled from the instruction cache. In IU2, the results of the four tag
comparisons are used to select one of the resulting ways. Furthermore, instructions before the fetch address
are discarded, and the fetch group is realigned so that the first fetched instruction is in the first slot.

D.2.4 Instruction Cache Misses

If the fetched line is not found in the instruction cache, the fetch address is reset back to the missing address,
and a request for the missing cache line is sent to the L2. That thread is not allowed to fetch until either the
line returns or a flush is detected. If a flush redirects the thread to begin fetching at a new address, the thread
is reenabled and can continue fetching while the prior instruction cache miss is outstanding, as long as the
thread hits in the instruction cache.

If a second instruction cache miss is detected, fetching is disabled until the first miss returns. Then, the
second miss is sent to the L2 cache. Only one instruction cache can be outstanding to the L2 per thread.

When an instruction cache miss returns data from the L2 cache, the line can be discarded rather than
inserted into the instruction cache. This occurs if the current fetch address is in a different 2 KB region than
the returned line. This can happen when a flush redirects fetch to a different region.

All threads are unable to fetch for four cycles when an instruction cache miss returns. This is because the
instruction cache data array has a single read-write port, and it is needed to write the new line into the instruc-
tion cache. If the returned data is discarded, the cache data array is available for instruction fetching. When a
back-invalidation from the L2 is received, all threads are unable to fetch instructions for one cycle.

kilobyte

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 838 of 864
Version 1.3

October 23, 2012

D.2.5 I-ERAT Misses

I-ERAT misses are similar to instruction cache misses. If no MMU is present, the miss proceeds like an
instruction through the pipeline and generate an instruction TLB miss exception at EX5. If the MMU is
present, the fetch address is reset back to the missing address, and the miss is sent to the MMU. When the
MMU responds with the translation, fetching is restarted. If the MMU is unable to provide a translation, an
instruction TLB miss exception is generated.

Like instruction cache misses, fetching can be resumed if a flush redirects fetch to a new address. Only one
I-ERAT miss can be outstanding per thread, so a second I-ERAT miss halts further progress until the first
I-ERAT miss comes back. Translations returned from the MMU are never discarded. They are always placed
in the I-ERAT.

D.2.6 Instruction Buffer Operation

There is one instruction buffer per thread situated in IU4. The instruction buffer holds eight instructions.
Instructions are not fetched unless there is guaranteed to be room for those instructions in the instruction
buffers. At IU0, a thread is not allowed to fetch more instructions if there are more than four instructions in the
instruction buffers, and there are never more than eight instructions for any one thread in stages IU1 to IU4.

Furthermore, each fetch is conservatively assumed to contain four instructions until it reaches the instruction
buffers. Hence, there are no more than two instruction fetches for any one thread in IU0 to IU4.

If the instruction buffers are empty, the first instruction bypasses the instruction buffer, proceeds directly to
decode, and is latched in IU5. Furthermore, there is a step-aside latch just before the IU5 latch that captures
one instruction when the IU5 latch is full. In addition, IU5 and IU6 can each contain one instruction per thread.
Hence, IU0 through IU6 can contain up to 11 instructions per thread.

To reduce the physical size of the instruction buffer, instructions use a truncated instruction address within
the instruction buffer. Instruction buffer entries only hold the low 22 bits of their address, and a single copy of
the upper bits is kept for all instructions in the buffer. If a fetch group from a different 16 MB region (that is,
different upper bits) reaches IU4, and the instruction buffers are not empty, then the fetch group is flushed
and refetched. This occurs until the instruction buffer empties, at which point the single copy of the upper bits
is changed to the new value. Hence, code sequences that cross 16 MB regions frequently should be avoided.
This is generally rare, and is therefore not a significant performance concern.

D.2.7 Branches and Branch Prediction

Branches are predicted and handled specially by the front end. Branch prediction consists of predicting the
direction (taken or not-taken) of the branch (taken or not-taken), and predicting the target address of the
branch (if taken). Figure D-3 illustrates the pipeline stages of the branch prediction function.

megabyte

memory management unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 839 of 864

Figure D-3. Branch Prediction

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 840 of 864
Version 1.3

October 23, 2012

D.2.7.1 Branch Direction Prediction and the Branch History Table (BHT)

Conditional branches are predicted using a gshare-like dynamic branch prediction mechanism that remem-
bers prior branch directions in the BHT. Unconditional branches neither use nor update the BHT, because
they are known to be taken. Conditional branches with a direction hint set also do not use the BHT. They are
predicted via their hint, and do not update the BHT.

The BHT consists of 1024 2-bit counters. For taken branches, the counter is incremented, saturating at three.
For not-taken branches, the counter is decremented, saturating at zero. During branch prediction, the appro-
priate counter is consulted. If it is two or three, the branch is predicted taken; otherwise, it is predicted not
taken.

The BHT is accessed in IU1, and the direction prediction occurs in IU3. The counter used to predict the
branch is remembered. The same entry is updated when the branch instruction reaches EX3, after the
outcome of the branch is known.

To index the BHT, the lower address bits of the instruction are XORed with a per-thread Global Branch
History Register (GBHR). The Global History Register indicates whether or not there were any taken
branches in the last n fetch groups that contained branches. The amount of global branch history to use is
configurable from zero to eight bits. Using zero to two bits is generally recommended.

The BHT can either be accessed as a unified 1024-entry table, shared by all threads, or as four 256-entry
tables, one per thread. Although configuring the BHT as four independent tables prevents interthread interfer-
ence, in many cases the unified mode provides better performance.

Changing either the amount of global branch history or the BHT sharing option changes the way the BHT is
indexed. This effectively scrambles the branch history in the BHT; poor branch prediction can be expected
until the instruction stream is relearned. Hence, BHT indexing options should not be changed frequently.

D.2.7.2 Taken-Branch Redirection

During the IU3 stage, all four potentially valid instructions in the fetch group are predicted. The fetch group
can contain more than one branch, but the first predicted-taken branch invalidates all following instructions in
the fetch group.

Because the IU0 stage speculatively follows the not-taken path, the taken-branch also flushes any following
fetches, and redirects the thread to the predicted taken fetch address. This taken-branch redirection requires
five cycles from the fetch of the branch to fetch of the predicted target.

D.2.7.3 Branch Target Prediction

Branch target prediction occurs in one of three ways, depending on the type of the branch. Immediate targets,
in which the target address is directly encoded in the instruction, are calculated non-speculatively. Function-
call return instructions (branch-to-link-register instructions) are predicted using a link stack (also known as a
return address stack). For every function call (branch-and-link instruction), the address of the next instruction
is pushed onto the link stack. Every return instruction pops the top of the stack and uses this address as the
predicted target. This mechanism is designed to mimic the nested call structure of most programs, and
system software should endeavor to use the correct branch forms for calls and returns, as defined in the
Power ISA Book I architecture manual.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 841 of 864

No mechanism exists to predict the target of branch-to-CTR instructions. To prevent interthread interference
from instructions that are unlikely to be correct, the taken-branch redirect for a branch-to-CTR instruction
holds the thread, preventing it from fetching more instructions. All branch-to-CTR instructions are treated as
mispredicted, and the thread is released upon the next flush. This is the flush caused by the “mispredicted”
branch-to-CTR instruction, unless some older instruction causes a flush for some other reason.

D.2.7.4 Branch Resolution and Mispredictions

The target and direction of branches is computed in EX1. In most cases, mispredicted branches are detected,
and a mispredicted branch flush is generated, in EX2. For a mispredicted branch, there are a minimum of 13
cycles from when the branch is fetched (or issued) until the correct target is fetched (or issued). In the case of
a mispredicted return instruction, the mispredicted branch is not detected until the next mis-speculated
instruction reaches EX5.

D.3 Instruction Issue Operation

Each of the four threads can present one instruction for issue in the IU6 stage. The A2 processor can issue
up to two instructions in any given cycle from the IU6 stage of the execution pipelines, provided the
commands meet the following conditions:

• Commands must be from separate threads.

• One of the commands must be an XU issue, and the other must be an AXU issue.

Note that AXU loads and stores issue to the XU pipeline only, and are considered XU instructions for the
purposes of issue.

The round-robin algorithm selects the next instruction for issue in a fair and starvation-free manner. AXU and
XU selection runs separately and independently.

The A2 supports three priority modes for each thread. These priority modes are enforced via the thread
selection logic in IU6. Low-priority instructions are not allowed to issue at all, until a programmable time-out
counter promotes the instruction to high-priority. Medium priority instructions only issue when no high-priority
instruction is available. The same time-out counter eventually promotes the medium-priority instruction to
high-priority to prevent starvation.

D.4 Instruction Pair Execution Performance Rules

This section describes the latencies and penalties associated with specific instructions and sequences.

D.4.1 Defining Latency, Penalty, and Execution Time

The concepts of latency, penalty, and execution time are used throughout this section, and merit explicit defi-
nition.

The latency of an instruction refers to the number of cycles required for the instruction to produce its result.
When a later instruction uses an input that the register produced by an earlier instruction, a read-after-write
register dependency exists between the two instructions. After the earlier instruction issues, the later instruc-
tion must wait at least the latency of the earlier instruction before it can issue.

auxiliary execution unit

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 842 of 864
Version 1.3

October 23, 2012

For instance, an integer load that hits in the data cache has a latency of five cycles. A dependent instruction
issues a minimum of five cycles after the load issues. Most simple ALU instructions have a latency of one
cycle, so dependent operations can be issued immediately following the instruction, without stalls. See
Table A-1 on page 738 for instruction latencies and throughput.

The term penalty refers to the minimum number of stall cycles experienced by a particular instruction
sequence. Hence, penalty is really only defined for a sequence of instructions, not for an individual instruc-
tion. For instance, a load that hits in the data cache, followed immediately by a dependent instruction, would
have a penalty of four cycles. If a simple ALU instruction is followed immediately by a dependent instruction,
it has no cycles of penalty.

The execution time of a sequence is the total minimum number of cycles required to execute the sequence. In
the A2 core, this equals the number of instructions in the sequence, plus the penalty of the sequence.

Typically, if an instruction is immediately followed by a dependent instruction, then the penalty of the
sequence is one less than the latency of the first instruction, and the execution time is one greater than the
latency.

The penalty of a sequence can be reduced or eliminated by inserting other, non-dependent instructions
between the pair. For example, inserting four independent instructions between the load and dependent
instruction in the previous example would eliminate all the penalty cycles. In addition, multi-threaded execu-
tion is generally very successful at filling in stall cycles with instructions from other threads, which are by defi-
nition independent. Hence, multi-threading naturally tends to reduce the effective penalty of register
dependencies.

Some of the execution performance rules described in the following subsections are related to XER depen-
dencies. All “o” form ALU instructions update XER[SO,OV], as does mtspr with the XER specified as the
source SPR. The following instructions use XER[SO] and/or XER[OV] as a source operand:

• mfspr with the XER specified as the source SPR

• mcrxr

• Compare instructions, which copy XER[SO] into the destination CR field

• All “record” form instructions, which copy XER[SO] into CR[CR0]3

D.4.2 Unified CR Dependency

All CR fields are treated as a single register for dependency purposes. The dependency logic does not distin-
guish between separate CR bits or CR fields. For example, a read-after-write dependency exists between a
record-form ALU operation that updates CR0 and a compare that uses CR1.

D.4.3 General CR Operand Dependency

Most integer instructions that produce a CR field have a latency of one cycle. This includes integer compare
and simple integer record forms. For instance, a dependent branch can issue the cycle after a compare with
no penalty. Some instructions do not calculate their CR results in the EX1 pipeline stage, and hence have
higher latency.

Special Purpose Register

arithmetic logic unit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 843 of 864

D.4.4 Move To Condition Register Fields (mtcrf) Instruction Dependency

Due to the nature of the mtcrf instruction, which can update any combination of the eight 4-bit CR fields at
once, subsequent instructions that use any bit or field of the CR as a source must wait for the preceding mtcrf
instruction to complete before dispatching from the IRACC stage. Therefore, the mtcrf instruction has a
latency of six cycles. Note that this penalty applies whether or not the mtcrf instruction is actually updating
any of the CR bits or fields being used as source operands by the subsequent instruction.

D.4.5 Move From Condition Register (mfcr) Instruction Dependency

The A2 core implements CR bypassing; therefore, any 2-instruction sequence involving a CR-updating
instruction followed immediately by an mfcr instruction takes one cycle to execute, or a penalty of zero
cycles.

Note: For the mtcrf instruction, the actual penalty for the sequence of mtcrf followed immediately by mfcr is
five cycles not zero, as described in Move To Condition Register Fields (mtcrf) Instruction Dependency on
page 843.

D.4.6 Move From and Move To Special Purpose Register (mfspr) Dependency

There are four categories of SPRs. The stage in which results are available varies depending on the cate-
gory:

D.4.7 Move From Machine State Register (mfmsr) Dependency

The mfmsr instruction provides its result in the EX2 pipeline stage. Therefore, the rule described in Move
From and Move To Special Purpose Register (mfspr) Dependency on page 843 for mfspr also applies to the
mfmsr instruction.

D.4.8 Multiply Dependency

The mullw[o][.] or mulhw[u][.] instructions have results ready in the EX5 pipeline stage (including the GPR
result, the CR result for “record” forms of multiply that update the CR, and the XER result for “o” forms of
multiply that update XER[SO,OV]). Therefore, instruction sequences consisting of a multiply followed immedi-
ately by an instruction that uses the multiply result (either the GPR, CR, or XER result) as an input operand
take four cycles to complete, which corresponds to a 5-cycle latency, or five cycles more than the penalty for
the general GPR dependency.

Bypassed SPRs XER, CR (Results available in EX1.)

Non-bypassed, separately
decoded SPRs

LR, CTR (Results available in EX6. Does not collide with other SPR
accesses.)

All other SPRs Not decoded separately. Hits dependency on any other SPR access. For
example, IUCR1 collides with XUCR0. Results are available in EX6.

Slow SPRs Blocking instructions that stall any instructions following them until results
are available.

general purpose register

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 844 of 864
Version 1.3

October 23, 2012

All other multiply instructions recirculate in the pipeline, and thus have a variable latency, block all other
instructions from the same thread, and block multiplies and divides from other threads while the multiplier is in
use. Multiplies or divides from other threads that collide with a multiply in progress are flushed.

Because multiply instructions occupy the multiply/divide pipeline stage for multiple cycles, they impose an
additional penalty on any immediately following multiply or divide instruction from any thread, regardless of
any dependency that might exist. See Table D-1 for specific latencies.

D.4.9 Divide Dependency

Divide instructions iteratively calculate their results (including the GPR result, the CR result for “record” forms
of divide that update the CR, and the XER result for “o” forms of divide that update XER[SO,OV]) for a vari-
able number of cycles. These results are ready in the EX3 pipeline stage after the iteration period.

Divides block all other instructions from the same thread, and block multiplies and divides from other threads
while the divider is in use. Multiplies or divides from other threads that collide with a divide in progress are
flushed and stalled until the divide is complete.

Because divide instructions occupy the multiply/divide pipeline stage for multiple cycles, they impose an addi-
tional penalty on any immediately following multiply or divide instruction from any thread, regardless of any
dependency that might exist.See Table D-2 for specific latencies.

D.4.10 Store Word Conditional Indexed (stwcx.) Instruction Dependency

Due to the nature of the stwcx. instruction, which conditionally performs a storage access, all subsequent
instructions for the same thread must wait for the preceding stwcx. instruction to complete before dispatching
from the IU6 stage. Therefore, the total execution time for a stwcx. instruction followed by any other instruc-
tion is variable based on the stwcx. complete indication from the L2 interface.

The same restriction applies to the Store Doubleword Conditional Indexed (stdcx.) instruction.

Table D-1. Multiply Instructions and Their Associated Latency

Instruction Recirculation Delay Latency Bubbles

mullw[o][.],
mulhw[u][.]

0 5 4

mulli 1 6 5

mulld[.] 2 7 6

mulldo[.] 3 8 7

mulhd[u][.] 3 8 7

Table D-2. Divide Instructions and Their Associated Latency

Instruction Recirculation Delay Latency Bubbles

divw[u][o][.] 33 39 38

divwe[u][o][.] 65 71 70

divd[u][o][.] 65 71 70

divde[u][o][.] 129 135 134

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 845 of 864

D.4.11 TLB Management Instruction Dependencies

In addition to the potential slow SPR dependency between an mtspr that targets the MMUCR0 or MMUCR1
and a subsequent mfspr instruction, for which the penalty is described in Appendix D.4.6 Move From and
Move To Special Purpose Register (mfspr) Dependency, there are other special case dependencies involving
TLB management instructions that lead to execution penalties.

TLB instructions to the ERAT arrays are fully pipelined. Therefore, sequences of like operations such as
several back-to-back tlbwe operations within a thread are generally free-flowing without penalty. However,
the tlbwe instructions do not perform the write of the targeted ERAT or TLB entry until the EX5 stage. This
leads to certain collision penalties with subsequent TLB management instructions as described next.

First, any tlbre instruction immediately following a tlbwe instruction (from the same thread or from a different
thread) that targets the same hardware facility (that is, same ERAT or TLB) and the same entry as the tlbwe
instruction, and that occurs within two execution cycles of the tlbwe instruction, experiences a flush penalty.
This penalty is due to conflicting usage of the ERAT or TLB array between the two instructions. This state-
ment assumes that the tlbwe operation was not followed by a context synchronizing instruction, such as an
isync, in which case there is no extra execution penalty incurred for subsequent tlbre instructions originating
from the same thread.

Second, any tlbsx instruction immediately following a tlbwe instruction (from the same thread or from a
different thread) that targets the same hardware facility as the tlbwe instruction, and that occurs within three
execution cycles of the tlbwe instruction, experiences a flush penalty. This penalty is due to conflicting usage
of the ERAT or TLB array between the two instructions. This statement assumes that the tlbwe operation
was not followed by a context synchronizing instruction, such as an isync, in which case there is no extra
execution penalty incurred for subsequent tlbsx instructions originating from the same thread.

Third, any local tlbivax instruction (that is, not globally broadcast to other processors) immediately following a
tlbwe instruction (from the same thread or from a different thread) that occurs within three execution cycles of
the tlbwe instruction experiences a flush penalty. This penalty is due to conflicting usage of the ERAT or TLB
array between the two instructions. This statement assumes that the tlbwe operation was not followed by a
context synchronizing instruction, such as an isync, in which case there is no extra execution penalty
incurred for subsequent local tlbivax instructions originating from the same thread.

Fourth, instruction sequences involving a tlbsx or local tlbivax instruction followed immediately by a load,
store, cache management, cache debug, or storage synchronization instruction that requires translation, and
originated by the same thread or from a different thread; can experience a flush penalty with regard to the
second instruction. These penalties are all due to the potential for conflicting usage of the ERAT and/or TLB
array compare port between the two instructions.

Fifth, because of the way the TLB array is probed multiple times for the supported page sizes during ERAT
miss servicing in MMU mode, TLB management instructions, entering the execution pipeline from any thread,
which target the TLB array after ERAT miss lookup sequencing has begun, experience a flush penalty. This
penalty is due to conflicting usage of the TLB array between the consecutive page size lookups, being done
by the hardware, and the read, write, or search operation, being requested by a management instruction.

D.4.12 Processor Control Instruction Operation

Various processor control instructions require special handling within the A2 core due to the context synchro-
nization requirements of the Power ISA. These instructions include:

• sc
• mtmsr

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 846 of 864
Version 1.3

October 23, 2012

• wrtee
• wrteei
• isync
• rfi
• rfci
• rfmci

Each of these instructions requires that the instruction stream be flushed and refetched immediately after the
instruction’s execution, either at the next sequential address (for mtmsr, wrtee, wrteei, and isync), or at the
system call interrupt vector location (for sc), or at the interrupt return address (for rfi, rfci, and rfmci). Due to
the instruction refetching requirement and other instruction processing requirements, the minimum execution
time for a 2-instruction sequence involving one of these instructions as the first instruction is as follows:

• Fifteen cycles (for sc, wrteei, rfi, rfci, mtmsr, wrtee, and isync, and rfmci)

D.4.13 Load Instruction Dependency

Load instructions that obtain their data from the data cache provide their result in the EX6 pipeline stage.
Therefore, instruction sequences consisting of a load instruction followed immediately by an instruction that
uses the target GPR of the load instruction as an input operand generally take six cycles to complete, which
corresponds to a 4-cycle penalty.

Note that there are many other factors that affect the performance of load and other storage access instruc-
tions (such as whether or not their target location is in the data cache).These factors are described in more
detail in Loads, Stores, and Data Cache Organization on page 847.

D.4.14 String/Multiple Operations

All load string multiples are handled in microcode.

D.4.15 Load-and-Reserve and Store-Conditional Instructions

The store-conditional instructions (stwcx. and stdcx.) conditionally write memory based on the reservation.
Both the reservation and the write are performed outside of the A2 core, typically in the L2 cache. As a result,
after issuing a store-conditional instruction, all subsequent instructions for the same thread must wait for the
for the store-conditional instruction to complete before issuing from IU6. Therefore, the total execution time
for a stwcx. instruction followed by any other instruction is variable based on the stwcx. complete indication
from the L2 interface.

Similarly, a load-and-reserve instruction (lwarx and ldarx) must atomically perform a read and set the reser-
vation, again typically in the L2 cache. After issuing a load-and-reserve instruction, all subsequent instruc-
tions for the same thread must wait for the load-and-reserve instruction to complete before dispatching from
IU5. Therefore, the total execution time for an lwarx instruction followed by any other instruction is variable
based on the lwarx data return from the L2 interface.

Because load-and-reserve and store-conditional both operate directly on the L2 outside of the core, these
instructions must flush the line from the L1 data cache, in the case of a data cache hit. Load-and-reserve
instructions reload the line, however.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 847 of 864

D.4.16 Storage Synchronization Operations

A sync instruction travels down the pipe and waits in EX4 for all load resources for that thread to become
empty before confirming. The sync can then be committed as soon as the next cycle, after which it leaves
EX4. Thus, any instruction that immediately follows a sync incurs a total penalty of six plus the number of
cycles it takes for all load resources for that thread to become empty. Note that in the A2 implementation,
mbar is treated exactly like a sync instruction, except that it does not wait for the sync done indication from
the L2 interface.

D.5 Loads, Stores, and Data Cache Organization

The A2 data cache is a 16 K 8-way set-associative non-blocking cache with 64-byte lines. Stores are handled
using a write-through, write-no-allocate policy. The replacement policy is a tree-based pseudo-LRU algo-
rithm. The data cache data array has a single read-write port, which must be shared by loads, stores, reloads,
and other accesses. The data cache directory contains real-address tags for every line in the data cache. The
cache set is selected by low-order address bits unaffected by address translation, bits 53 to 57 specifically.
Lines are tagged by the real address.

Memory access instructions can generally flow through the pipe with an overall throughput of one instruction
per cycle. Table D-3 outlines all memory/cache management instructions that access the data cache. The
stages mentioned in the table are discussed in detail in subsequent sections.

D.5.1 Overview

All memory access instructions produce their effective address in EX1, either by adding two registers or a
register and an immediate value. In the EX2 stage, the effective address is translated to a real address by
accessing the data effective-to-real translation (D-ERAT) table. In EX2, the data cache directory is also
accessed, and the real address is used to determine if the line is present in the cache.

In the case of cache hits, the line index is sent to the data array for SRAM access in EX3, and the data array
access occurs in EX4. Instruction formatting and bypass occur in EX5. Load misses are queued in the load
miss queue (LMQ) in EX5. Resulting commands, such as stores and load misses, are sent to the L2 in EX6.

Table D-3. SRAM Operations

Operation SRAM Operation

load Read directory in EX2; if hit, read data in EX4.

store Read directory in EX2; if hit, write data in EX4 to store data.

dcbi Read directory in EX2; if hit, invalidate line in directory in EX4.

dcbt/tst Read directory in EX2.

dcbf Read directory in EX2; if hit, invalidate line in directory in EX4.

dcbst No data cache access; sent to L2 interface only.

dcbz Read directory in EX2; if hit, invalidate line in directory in EX4.

dci Directory flash invalidate in EX4 after all outstanding loads complete.

reload Directory invalidate in EX2; write directory and data in EX4. Two 32-byte data writes are required.

back invalidate Directory invalidate in EX2.

least recently used

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 848 of 864
Version 1.3

October 23, 2012

D.5.2 Loads

Load instructions proceed through EX1 to EX3 as described. If the load hits in the data cache, the data array
is accessed in EX4. The load result is produced and bypassed in EX5. If the load misses the data cache, the
load is placed in the load miss queue in EX5. When the load reaches the head of the LMQ, it arbitrates for the
L2 command port, and is sent to the L2. This can occur as soon as the next cycle.

For each load miss, the L2 responds with a reload, the data for the request cache line. The 64-byte cache line
reload is written into the data array in two 32-byte writes in two separate cycles. Because there is only one
shared port for the data array, other instructions that must access the data array in the same cycle as a reload
write are flushed when the L2 returns reload data quadwords back-to-back. For instance, a load hit in EX4
might collide with the write for a reload coming back from the L2. In this case, the reload wins access to the
data array, and the load is flushed. When the L2 returns reload data quadwords with gaps, a bubble is
requested in the pipe to avoid this structural hazard.

If there is a prior load miss to the same real line address already present in the LMQ, the load is flushed in
EX5. If the LMQ is full, the load is also flushed and flush is held.

For loads, if there is a prior store (integer or AXU) to the same address in the pipeline ahead of the load, no
penalties occur. Store data is properly aligned and forwarded to following load without penalty in all cases,
including partially overlapping cases.

Instructions that are dependent on a load are released from IU5 speculatively, assuming that the load hits in
the data cache. Hence, if the dependent instruction passes IU5 within seven cycles of a load miss, it is
flushed. After this window, IU5 is made aware of the load miss and stalls dependent instruction until the miss
is complete. Hence, when such a flushed instruction returns to IU5, it will then stall and not flush repeatedly.

A similar situation applies to write-after-write hazards on load misses. While a load miss is outstanding, the
thread cannot complete further writes to the same GPR. If an instruction, which writes the same register as a
prior load that misses, passes IU5 within 7 cycles of a load miss, it is flushed. After this window, IU5 is made
aware of the load miss and stalls dependent instructions until the miss is complete. Hence, when such a
flushed instruction returns to IU5, it will then stall and not flush repeatedly.

D.5.3 Stores

Store instructions proceed through EX1 to EX3 as described. In the case of a store hit, the store updates the
data array in EX4. The data cache is a write-through, no-write-allocate design. All stores, even hits, are sent
to the L2. All data cache lines are effectively clean, and cache lines are never castout to the L2. Store misses
do not read a line into the data cache from the L2. All stores are committed once presented to the L2, and no
acknowledgments are required.

There are no store buffers in the A2 core. The L2 is expected to contain sufficient store buffering. A credit-
based flow-control mechanism is used to indicate when the L2 runs out of buffering. If the A2 does not have
credits available to present a store to the L2 interface, the store is flushed.

A store hit might collide in EX4 with a reload coming back from the L2. In this case, the reload wins access to
the data array, and the stores are flushed.

For store misses, if there is a prior load miss to the same real line address present in the LMQ, then the store
is flushed in EX5.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 849 of 864

D.5.4 Load Miss Queue

The load miss queue (LMQ) is an 8-entry in-order queue of load misses and noncacheable loads. This queue
holds load misses while they are outstanding to the L2, and allows other instructions from the same thread to
continue executing and retiring. A load miss does not cause the thread to stop until the register produced by
the load is read or written.

The LMQ is shared by all threads. Loads are sent to the L2 in the same order they are placed in the queue.
However, because the L2 can respond to load requests out-of-order, LMQ entries are released out-of-order
shortly after the reload data is returned.

D.5.5 L2 Command Arbitration

The A2 can send one of the following commands to the L2 in each cycle.

• Store type command

• Load type command

• Instruction fetches

• MMU page table walk command

Because the A2 has no buffering for store instructions, a store in EX6 always wins arbitration. Arbitration
among the other three sources occurs in a fair round-robin fashion.

D.5.6 D-ERAT Misses

If the D-ERAT does not contain the translation for an instruction, this is detected in EX2; the instruction is
flushed in EX5. If the MMU is not present, the flush results in a data TLB miss exception. If the MMU is
present, the thread is stalled at fetch until the MMU responds and places the translation into the D-ERAT. If
the MMU is unable to provide the translation, a data TLB miss exception is generated.

D.5.7 Back Invalidations

L2 invalidates have the highest priority to the data directory SRAM, and always win arbitration when they are
“ready”. L2 invalidates request an issue bubble to remove any data cache directory hazards with instructions.

D.5.8 Address Alignment

Loads and stores that cross certain alignment boundaries suffer additional performance penalties. Stores that
cross a 32-byte boundary when XUCR0[L2SIW] = 1 or that cross the 16-byte boundary when
XUCR0[L2SIW] = 0 are flushed and re-executed as a microcode sequence that performs the store 1 byte at a
time. Loads that cross a 32-byte boundary or loads that cross a 16-byte boundary and are translated to
caching inhibited are similarly flushed to microcode. If loads and stores cross a page boundary and the
WIMGE or USER page attributes differ between the pages, an alignment interrupt is taken and emulated in
software.

Note that load and store strings are executed one byte at a time in microcode. Load and store multiples are
executed 4 bytes at a time in microcode. Hence, these alignment restrictions do not apply to load and store
string and multiple instructions.

write-through, caching-inhibited, memory coherency required, guarded, and endianness attributes

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 850 of 864
Version 1.3

October 23, 2012

D.6 Interrupt Effects

In the A2 design, the process of “taking an interrupt” spans two cycles called irptCycleA and irptCycleB. This
is necessitated by the need to allow any outstanding, committed SPR updates to actually update the SPR
before any subsequent interrupt vector is taken. Due to timing constraints, a committed mtspr does not actu-
ally update the target SPR until the cycle after it is committed, such that the SPR has the new value in the
second cycle after the mtspr is committed.

During the first interrupt cycle (irpt cycleA), the interrupt logic is performing a flush operation (global flush is
signaled to all pipeline stages and pseudo-stages), and the program counter is steered into (C)SRR0 if appro-
priate. Note that refetch operations (either due to a committed C-sync operation or due to a stop request) are
similarly handled in two cycles, with the PFTH request occurring in cycleB. The fact that mtmsr is handled as
a C-sync operation that requires a refetch dictates that the refetch take two cycles for the same reasons that
interrupts take two cycles, because the actual refetch must be delayed until after the new MSR value is set,
such that the new context is used. Because interrupts span two cycles, all new interrupt requests are blocked
during irptCycleB. That is, during irptCycleB, the processor is doing what was decided during the previous
irptCycleA, and new interrupt requests (such as an async) are ignored during interrupts in irptCycleB. One
cycle later, the irptCycleA/B sequence is repeated if another interrupt request exists and it was not disabled
by the updating of the MSR during the first irptCycleB. This same type of blocking (during cycle B) occurs for
refetch/stop as well.

Ultimately, only instructions that have not been committed incur penalty cycles due to an interrupt. When
global flush is signaled, all uncommitted resources are flushed from the pipe and pay penalty cycles equal to
the number of cycles it takes for a given instruction to be refetched and then get back into the resource from
which it was flushed.

D.7 Floating-Point Instruction Handling

The floating-point unit on the A2 core is referred to as the FU. The FU is a 6-stage pipeline with a load/target
FPR bypass. The FU dataflow is shown in Figure D-4 on page 851.

floating-point register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 851 of 864

Figure D-4. FU Dataflow

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 852 of 864
Version 1.3

October 23, 2012

D.7.1 General FPR Operand Dependency

The general FPR operand dependency applies to floating-point math instructions that are not microcoded and
do not have CR or FPSCR dependencies. All such floating-point math instructions have latency of six cycles.

Therefore, instruction sequences consisting of a floating-point math instruction followed immediately by an
instruction that uses the target FPR of the floating-point math instruction as an input operand (that is, with an
FPR read-after-write [RAW] hazard) take at least seven cycles to execute, which corresponds to a 5-cycle
penalty.

D.7.2 Denormalized Results

All denormalized results are handled by the pipeline at full speed. There is no performance penalty for
instructions that produce denormalized numbers.

D.7.3 Denormalized Operands

Denormalized numbers for instructions using the A and C operands are handled by the pipeline at full speed.
There is no performance penalty for instructions that consume denormalized numbers on the A and C oper-
ands.

Denormalized numbers on the B operand incur a penalty in the following cases:

1. B is a double-precision denorm AND NOT (move{fabs/fnabs/fneg} OR fsel OR fcfid OR mv_to_fpscr).

2. B is a single-precision denorm AND NOT (move{fabs/fnabs/fneg} OR fsel)

If either of these cases is true, the operation has an additional latency of 20 cycles.

D.7.4 Not a Number (NaN) Cases

All Not a Number cases are handled by the pipeline at full speed. There is no performance penalty for instruc-
tions that produce or consume denormalized numbers.

D.7.5 Floating-Point Load Dependency

Floating-point load instructions that hit in the data cache provide their result in the EX7 pipeline stage and
have a 7-cycle latency.

Therefore, instruction sequences consisting of a floating-point load instruction, followed immediately by an
instruction that uses the target FPR of the floating-point load instruction as an input operand, take at least
eight cycles to execute, which corresponds to a 6-cycle penalty.

Many other factors affect the performance of floating-point load and other storage access instructions. These
factors are described in more detail in Loads, Stores, and Data Cache Organization on page 847.

D.7.6 Floating-Point Store Data Dependency

When a floating-point result is used by a floating-point store instruction, one extra cycle of latency is incurred.

For instance, instruction sequences consisting of a floating-point math or load instruction followed immedi-
ately by a floating-point store instruction that stores the result of the first instruction will take at least eight
cycles to execute, which corresponds to a 6-cycle penalty.

Floating-Point Status and Control Register

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 853 of 864

The additional two cycles of latency applies to floating-point store instructions in all other cases as well, such
as stores dependent on floating-point record forms or floating-point divide and square root instruction.

D.7.7 General CR Operand Dependency

The floating-point unit updates the CR register in the EX4 stage. Floating-point instructions that produce only
a CR value, such as floating-point compares, have a 5-cycle latency.

Therefore, instruction sequences consisting of a floating-point compare followed immediately by a branch (or
other instruction) that uses the CR take at least six cycles to execute, which corresponds to a 4-cycle penalty.
Branches that are mispredicted further delay execution of instructions subsequent to the branch, as
described in Section 2.8.4.6 Wait Instruction on page 98.

Also, like FPR dependencies, there are special cases involving instructions that do not calculate their CR
results in the EX4 stage, and hence that introduce additional cycles of penalty when the subsequent instruc-
tion is dependent on those CR results.

D.7.8 Floating-Point Divide Dependency

Floating-point divide instructions iteratively calculate their results (including the FPR result, and the CR result
for record forms) using a microcode sequence with special pipeline support. This microcode sequence for
fdiv is 15 micro-operations long and takes a minimum of 72 cycles to execute. The microcode sequence for
fdivs is 10 micro-operations long and takes a minimum of 59 cycles to execute.

Instructions from the same thread following the floating-point divide cannot be executed until the floating-point
divide has completed. On the other hand, instructions from other threads (including floating-point divides) can
be executed and completed while the floating-point divide sequence is in progress.

D.7.9 Floating-Point Square Root Dependency

Floating-point square root instructions iteratively calculate their results (including the FPR result, and the CR
result for record forms of floating-point square root that update the CR) using a microcode sequence with
special pipeline support. The microcode sequence for fsqrt is 14 micro-operations long and takes a minimum
of 69 cycles to execute. This microcode sequence for fsqrts is 11 micro-operations long and takes a
minimum of 65 cycles to execute.

Instructions from the same thread following the floating-point square root cannot be executed until the
floating-point square root has completed. On the other hand, instructions from other threads (including
floating-point square roots) can be executed and completed while the floating-point square root sequence is
in progress.

D.7.10 Move to Condition Register from Floating-Point Status and Control Register Dependency

The floating-point move to CR from FPSCR (mcrfs) instruction has a latency of eight cycles, three cycles
longer than the general CR operand dependency.

Therefore, instruction sequences consisting of a mcrfs instruction followed immediately by a branch (or other
instruction) that uses the CR take at least nine cycles to execute, which corresponds to a 7-cycle penalty.

Also, all threads are blocked from issuing any floating-point instructions for three cycles immediately following
the issue of an mcrfs in pipeline stage IU6.

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 854 of 864
Version 1.3

October 23, 2012

D.7.11 Move to FPSCR Fields and FPSCR Dependencies

It is important that an operation that is dependent on the FPSCR not flush if it immediately following an oper-
ation that changes the FPSCR control bits (the 8 LSb of the FPSCR).

In general this is the case. There is one exception; mtfsf is the only instruction that modifies the control bits,
and also sources the Floating-Point Register file.

There are two cases to consider:

1. lfd, mtfsf, fmadd // There could be other instructions between lfd and mtfsf.

This case never causes a flush delay.

2. lfs, mtfsf, fmadd // There could be other instructions between lfs and mtfsf.

This case has a potential performance problem. If the lfs includes a SP denorm, the register file format
needs adjusting (prenormalization) before the mtfsf can complete, which delays the start of the fmadd.

Case 1 is recommended for better performance.

D.7.12 Floating-Point Record Forms

A floating-point record form (or mcrfs) followed by a CR reader has a latency of eight cycles, three cycles
longer than the general CR operand dependency. Therefore, instruction sequences consisting of a floating-
point record form (or mcrfs) followed immediately by an instruction that reads the CR take at least nine cycles
to execute, which corresponds to a 7-cycle penalty.

A floating-point record form (or mcrfs) followed by a CR writer has a latency of four cycles. Therefore, instruc-
tion sequences consisting of a floating-point record form (or mcrfs) followed immediately by an instruction
that writes the CR takes at least five cycles to execute, which corresponds to a 3-cycle penalty.

All threads are blocked from issuing any floating-point instructions for three cycles immediately following the
issue of a floating-point record-form instruction in pipeline stage IU6, with the exception of floating-point
loads/stores. This 3-cycle penalty is also incurred by non-floating-point instructions that read or write the CR.

D.8 Interrupt Conditions

Table D-4 lists all the interrupt conditions for the A2 core.

Table D-4. Interrupt Conditions (Sheet 1 of 5)

Interrupt Condition Precision Stage
Flushed Type1 NIA

Critical Input Critical input is high Async EX4 N 0x020

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent.
3. Precise mode can be achieved by enabling single instruction mode.
4. Data value compare events for loads are imprecise.

least significant bit

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 855 of 864

Machine Check TLB parity error Precise EX4 N 0x000

D-ERAT parity error Precise

I-ERAT parity error Precise

TLB multi-hit error Precise

TLB LRU parity error Precise

D-ERAT multi-hit error Precise

I-ERAT multi-hit error Precise

External machine check Async

I-cache detected L2 ECC error Async

D-cache detected L2 ECC error Async

Data cache directory parity error Precise

Data cache parity error Imprecise

Data Storage D-ERAT miss hardware table walk attempted to install an invalid
entry in the TLB

Precise EX4 N 0x060

D-ERAT miss page table entry reload when all ways are pro-
tected

Unavailable Coprocessor Type

W = 1 or I = 1 larx or stwcx

D-cache page protection violation

I-cache lock instruction and MSR[UCLE] = 0 and MSR[PR] = 1

D-cache lock instruction and MSR[UCLE] = 0 and MSR[PR] = 2

I = 1 or W = 1 larx or stcx

Any load, store, or cache management operation executed with
the VF bit set

Instr Storage I-ERAT miss hardware table walk attempted to install an invalid
entry in the TLB

Precise EX4 N 0x080

I-ERAT miss page table entry reload when all ways are protected

Instruction cache page protection violation

External Input External input is high Async EX4 NP1 0x0A0

Table D-4. Interrupt Conditions (Sheet 2 of 5)

Interrupt Condition Precision Stage
Flushed Type1 NIA

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent.
3. Precise mode can be achieved by enabling single instruction mode.
4. Data value compare events for loads are imprecise.

error-correcting code

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 856 of 864
Version 1.3

October 23, 2012

Alignment Any XU unaligned load or store with XUCR0[FLSTA] = 1 Precise EX4 N 0x0C0

Any AXU unaligned load or store with (XUCR0[AFLSTA] = 1 or
iu_xu_is2_axu_ldst_forceexcept = 1)

Precise2

Any unaligned larwx, stcwx, icswx, icswepx, ldawx, lmw, or
stmw

Precise

I = 1 or W = 1 dcbz Precise

Any > 32-byte unaligned load or store that crosses a page bound-
ary

Precise

Program Illegal instruction Precise EX4 N 0x0E0

Illegal SPR

attn and CCR2[EN_ATTN] = 0

icswx or icswepx and CCR2[EN_ICSWX] = 0

msgsnd or msgclr and CCR2[EN_PC] = 0

store with update and RA = 0

load with update or lswx and (RA = 0 | RA = RT)

lmw or lswi and RA is in the range of registers to be loaded

lswx and RA or RB is in the range of registers to be loaded

sc when LEV > 1

eratwe or eratre with WS > 3

eratwe or eratre with WS = 2 in 64-bit mode

TLB management instruction with CCR2[NOTLB] = 1

erativax and CCR2[NOTLB] = 0

eratwe, eratre, eratsx and (MMUCR0[TLBSEL] > 3 or
MMUCR0[TLBSEL] < 2)

TLB operation executed with an invalid MAS configuration

Privileged instruction

Privileged SPR

Trap instruction

Executing uCode instruction when CCR2[UCODE_DIS] = 1

AP enabled: fu_xu_ex3_ap_int_req = 1 Precise2

FPSCR[FEX] = 1 and (MSR[FE0] | MSR[FE1]) != 0 Precise2,3

FP Unavailable FP-type instruction executed with MSR[FP] = 0 Precise EX4 N 0x100

System Call sc instruction LEV = 0 Precise EX4 NP1 0x120

AP Unavailable AP-type instruction executed with CCR2[AP] = 0 Precise EX4 N 0x140

Table D-4. Interrupt Conditions (Sheet 3 of 5)

Interrupt Condition Precision Stage
Flushed Type1 NIA

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent.
3. Precise mode can be achieved by enabling single instruction mode.
4. Data value compare events for loads are imprecise.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 857 of 864

Decrementer Decrementer Async EX4 NP1 0x160

FIT Fixed interval timer tick Async EX4 NP1 0x180

WDOG Watchdog timeout Async EX4 N 0x1A0

DTLB D-ERAT miss and CCR2[NOTLB] = 1 Precise EX4 N 0x1C0

Data TLB miss and CCR2[NOTLB] = 0

ITLB I-ERAT miss and CCR2[NOTLB] = 1 Precise
Precise

EX4 N 0x1E0

Instruction TLB miss and CCR2[NOTLB] = 0

Debug Instruction complete Precise EX4 NP1 0x0F0

Trap instruction Precise N

Instruction address compare Precise

Data address compare Precise4

Branch taken Precise

rfi instruction Precise

Interrupt taken Async

Instruction value compare Precise

Unconditional debug event Async

Imprecise event Imprecise

Vector Unavailable Vector type instruction executed with MSR[SPV] = 0 Precise EX4 N 0x200

Doorbell DBELL message received Async EX4 NP1 0x2C0

Doorbell Critical DBELL_CRIT message received Async EX4 N 0x2A0

Guest Doorbell G_DBELL message received Async EX4 NP1 0x2C0

Guest Doorbell
Critical

G_DBELL_CRIT message received Async EX4 N 0x2E0

Guest Doorbell
Machine Check

G_DBELL_MC message received Async EX4 N 0x2E0

Hypv Priv Hypervisor privilege Instruction when (MSR[PR] = 0 and
MSR[GS] = 1)

Precise EX4 N 0x320

Hypervisor privilege SPR when (MSR[PR] = 0 and MSR[GS] = 1)

TLB management instruction executed with invalid MAS configu-
ration

ehpriv executed

Instr LRAT Instruction page table entry reload missed in the LRAT Precise EX4 N 0x340

Data LRAT Data page table entry reload missed in the LRAT Precise EX4 N 0x340

Table D-4. Interrupt Conditions (Sheet 4 of 5)

Interrupt Condition Precision Stage
Flushed Type1 NIA

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent.
3. Precise mode can be achieved by enabling single instruction mode.
4. Data value compare events for loads are imprecise.

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 858 of 864
Version 1.3

October 23, 2012

D.9 Flush Conditions

Table D-5 lists all the flush conditions for the A2 core.

Hypv System Call sc instruction LEV = 1 Precise EX4 NP1 0x300

User Decrementer User decrementer Async EX4 NP1 0x800

Perf Monitor Performance monitor Async EX4 NP1 0x820

Table D-5. Flush Conditions (Sheet 1 of 3)

Condition Precision Stage Type1 NIA MT5

bclr target address miscompare Precise EX4 N CIA No

Dependant operation following load miss Precise EX4 N CIA No

rfi Precise EX4 NP1 SRR0 No

rfci Precise EX4 NP1 CSRR0 No

rfgi Precise EX4 NP1 GSRR0 No

rfmci Precise EX4 NP1 MCSRR0 No

D-ERAT miss and CCR2[NOTLB] = 0 Precise EX4 N CIA No

EX3 cache operation hit outstanding load miss Precise EX4 N CIA No

Load queue full Precise EX4 N CIA No

bcctr {taken} Precise EX2 NP1 CTR No

branch conditional mispredict Precise EX2 NP1 IMM No

mtmsr Precise EX4 NP1 NIA No

isync Precise EX4 NP1 NIA No

tlbivax Precise EX4 NP1 NIA Yes

erativax Precise EX4 NP1 NIA Yes

attn Precise EX4 NP1 NIA No

dci Precise EX4 NP1 NIA Yes

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent. See See Section 11.4.1 FU Performance Events Table on page 458, Section 11.5.1 FU Event
Select Register (AESR) on page 466, and Section 11.6.4.1 FU Trace Records on page 479.

3. Next 16-byte aligned instruction address.
4. Actual NIA is left unchanged until the uCode sequence completes.
5. MT = Yes means that this flush condition flushes instructions for all other threads; MT = No means it only flushes the thread that

detected the condition.

Table D-4. Interrupt Conditions (Sheet 5 of 5)

Interrupt Condition Precision Stage
Flushed Type1 NIA

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent.
3. Precise mode can be achieved by enabling single instruction mode.
4. Data value compare events for loads are imprecise.

current instruction address

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Instruction Execution Performance and Code Optimizations

Page 859 of 864

ici Precise EX4 NP1 NIA Yes

AXU np1-flush Precise2 EX4 NP1 NIA No

mtiar Precise EX4 NP1 RS No

wait 0 Precise EX4 NP1 NIA No

wait 1 and reservation exists Precise EX4 NP1 NIA No

wait 2 and implementation-specific condition exists Precise EX4 NP1 NIA No

mtccr0 WEt transitions 0 1 Precise EX4 NP1 NIA No

mttens TENt transitions 1  0 Precise EX4 NP1 NIA No

Hardware debugger step Precise EX4 NP1 NIA No

uCode sequence end Precise EX4 NP1 NIA No

Initial reset Precise EX4 NP1 NIA Yes

Ram initiated flush, RAMC[FLUSH_THREAD] = 1 Precise EX4 N CIA NA

Local tlbilx Precise EX4 N CIA Yes

Local eratilx Precise EX4 N CIA Yes

Incoming tlbi snoop Async EX5 N CIA Yes

ici executed on another thread Async EX4 N CIA Yes

dci executed on another thread Async EX4 N CIA Yes

TLB structural hazard Precise EX4 N CIA No

Hardware debugger event Precise EX4 N CIA No

Hardware debugger event from another thread Async EX4 N CIA Yes

Hardware debugger stop Async EX4 N CIA No

tlb hit reload collision Precise EX4 N CIA No

Invalidate snoop collision Precise EX4 N CIA No

eratwe followed by eratre, to same ERAT, within three cycles Precise EX4 N CIA No

eratwe followed by eratsx, to same ERAT, within four cycles Precise EX4 N CIA No

Load/store LRU update followed by eratre ws = 3, from D-ERAT, within
three cycles

Precise EX4 N CIA No

eratwe collision with any data cache operation Precise EX4 N CIA No

AXU Regfile ECC error Precise2 EX4 N CIA Yes

XU Regfile ECC error Precise EX4 N CIA Yes

SPRG ECC error Precise EX4 N CIA Yes

Table D-5. Flush Conditions (Sheet 2 of 3)

Condition Precision Stage Type1 NIA MT5

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent. See See Section 11.4.1 FU Performance Events Table on page 458, Section 11.5.1 FU Event
Select Register (AESR) on page 466, and Section 11.6.4.1 FU Trace Records on page 479.

3. Next 16-byte aligned instruction address.
4. Actual NIA is left unchanged until the uCode sequence completes.
5. MT = Yes means that this flush condition flushes instructions for all other threads; MT = No means it only flushes the thread that

detected the condition.

User’s Manual

A2 Processor

Instruction Execution Performance and Code Optimizations

Page 860 of 864
Version 1.3

October 23, 2012

Cache inhibited AXU reload and AXU load in EX2 Precise EX4 N CIA No

Load in EX2 with no store credits and XUCR0[FLH2L2] = 1 Precise EX4 N CIA No

Reload targeting AXU collides with EX3 AXU load Precise EX4 N CIA No

No store credits and store queue full Precise EX4 N CIA No

sync to same thread as outstanding load miss Precise EX4 N CIA No

More than one outstanding I = 1 G = 1 data cache load Precise EX4 N CIA No

Load, store, or cache management operation preceded by a cache man-
agement operation from another thread within three cycles

Precise EX4 N CIA No

Load, store, or cache management operation proceeded by a store with
watch bit set from another thread within three cycles

Precise EX4 N CIA No

Multiply collision Precise EX1 N CIA Yes

D-cache parity error with XUCR0[MDCP] = 0b Imprecise EX4 N CIA Yes

AXU n-flush Precise2 EX4 N CIA Yes

Unaligned load or store crossing a 32-byte boundary and
XUCR0[{A}FLSTA] = 0

Precise EX4 N CIA No

I = 0 store that crosses a boundary defined by XUCR0[L2SIW] Precise EX4 N CIA No

I = 1 store that crosses a boundary defined by XUCR0[L2SIW] Precise EX4 N CIA No

I = 1 load that crosses a 16-byte boundary Precise EX4 N CIA No

AXU n-flush to uCode Precise2 EX4 N CIA No

Reload L2 ECC error Precise IU1 N CIA No

I-ERAT hold request due to miss with CCR2[NOTLB] = 0 Precise IU2 N CIA Yes

eratwe collision with instruction fetch Precise IU2 N CIA Yes

Invalidation snoop collision with instruction fetch Precise IU2 N CIA Yes

TLB hit reload collision with instruction fetch Precise IU2 N CIA Yes

IU I-cache Miss - I = 0 Precise IU2 NP1-4 NIA3 No

IU I-cache Miss - I = 1 Precise IU2 NP1-4 NIA3 No

IU3 parity error Precise IU3 N CIA No

Branch predition - branch predicted Precise IU5 N CIA No

Instruction buffer address miscompare Precise IU5 N CIA No

uCode sequence start Precise RF0 NP1 uCode
Address4

No

Table D-5. Flush Conditions (Sheet 3 of 3)

Condition Precision Stage Type1 NIA MT5

1. N indicates that the instruction causing the condition is flushed. NP1 indicates that the instruction following the one causing the
condition is flushed.

2. AXU implementation dependent. See See Section 11.4.1 FU Performance Events Table on page 458, Section 11.5.1 FU Event
Select Register (AESR) on page 466, and Section 11.6.4.1 FU Trace Records on page 479.

3. Next 16-byte aligned instruction address.
4. Actual NIA is left unchanged until the uCode sequence completes.
5. MT = Yes means that this flush condition flushes instructions for all other threads; MT = No means it only flushes the thread that

detected the condition.

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Programming Examples

Page 861 of 864

Appendix E. Programming Examples

This appendix provides example code for floating-point conversions and floating-point selection, along with
programming notes.

E.1 Wait Instruction with Fast Wakeup for Power Savings

The Wait instruction provides another wake-up condition under software control. The condition is the cancel-
lation of a reservation. Software can use this as a more efficient way to be awakened by the I/O device or
accelerator. To use this instruction, software first sets a reservation. It then performs a Wait(EC = 1). Finally
software resumes when there is a write to the reservation location. If a valid reservation is not present when
executing a Wait(EC = 1), the Wait instruction has no effect and the thread does not go into the wait state.
Any interrupt that is not disabled also causes instruction execution to resume regardless of the EC. Execution
resumes at the next sequential instruction after the Wait if instruction execution resumed because the reser-
vation was lost. Execution resumes in some interrupt handler if instruction execution resumed because of an
interrupt. Also, the thread does not automatically return to wait state after the interrupt is serviced. Software
must set the reservation and Wait(EC = 1) to re-enter the wait state.

Using interrupts for frequent, short wait durations is less efficient.

An example follows of software using Wait for a coprocessor control status block (CSB). The following code
assumes that r3 contains the address of the first word in the CSB. Software has already made sure that this
word is 0; we are waiting for the coprocessor to make the word non-zero.

loop:
lwarx r4, 0, r3 # Load and reserve.
cmpwi r4, 0 # If it is already non-zero then exit.
bne- exit
wait 1 # Wait until the reservation is lost.
stwcx. r4, 0, r3 # Store old value if still reserved.
beq- loop # Loop if reservation exists.

exit: ...

Each thread can have a unique cache line for this reservation wake-up.

E.2 Floating-Point Conversions

This section illustrates how floating-point conversion instructions can be used to perform various conversions.

Programming Note: Some examples use the fsel instruction. Care must be taken in using fsel if IEEE 754
compatibility is required or if the values being tested can be NaNs or infinities; see Notes on page 863.

E.2.1 Conversion from Floating-Point Number to Signed Integer Word

The full Convert to Signed Integer Word function can be implemented using the following sequence,
assuming that the floating-point value to be converted is in FPR(1), the result is returned in GPR(3), and a
doubleword at displacement disp from the address in GPR(1) can be used as scratch space.

Institute of Electrical and Electronics Engineers

User’s Manual

A2 Processor

Programming Examples

Page 862 of 864
Version 1.3

October 23, 2012

E.2.2 Conversion from Floating-Point Number to Unsigned Integer Word

The full Convert to Unsigned Integer Word function can be implemented using the following sequence,
assuming that the floating-point value to be converted is in FPR(1), the result is returned in GPR(3), and a
doubleword at displacement disp from the address in GPR(1) can be used as scratch space.

E.3 Floating-Point Selection

This section provides examples of how the fsel instruction can be used to implement floating-point minimum
and maximum functions, and certain simple forms of if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming language, and the
corresponding program fragment using fsel and other Book III-E instructions. In the examples, a, b, x, y, and
z are floating-point variables, which are assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be
available for scratch space.

Programming Note: Care must be taken in using fsel if IEEE 754 compatibility is required, or if the values
being tested can be NaNs or infinities; see Notes on page 863.

fctiw[z] f2,f1 #convert to integer
stfd f2,disp(r1) #store float
lwa r3,disp+4(r1) #load word algebraic

#(use lwz on a 32-bit
#implementation)

fctiwu[z] f2,f1 #convert to unsigned integer
stfd f2,disp(r1) #store float
lwa r3,disp+4(r1) #load word algebraic

#(use lwz on a 32-bit
#implementation)

User’s Manual

 A2 Processor

Version 1.3
October 23, 2012

Programming Examples

Page 863 of 864

E.3.1 Comparison to Zero

E.3.2 Minimum and Maximum

E.3.3 Simple If-Then-Else Constructions

E.4 Notes

The following notes apply to the preceding examples and to the corresponding cases using the other three
arithmetic relations (<, , and ). They should also be considered when any other use of fsel is contemplated.

In these notes, the “optimized program” is the Book III-E program shown, and the “unoptimized program” (not
shown) is the corresponding Book III-E program that uses fcmpu and Branch Conditional instructions instead
of fsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore can cause the system
error handler to be invoked if the corresponding exception is enabled. The optimized program does not
affect this bit. This property of the optimized program is incompatible with the IEEE standard.

2. The optimized program gives the incorrect result if a is a NaN.

3. The optimized program gives the incorrect result if a and/or b is a NaN (except that it can give the correct
result in some cases for the minimum and maximum functions, depending on how those functions are
defined to operate on NaNs).

High-Level Language Book III-E Notes

if a  0.0 then x  y
 else x  z

fsel fx, fa, fy, fz 1

if a > 0.0 then x  y
 else x  z

fneg fs, fa
fsel fx, fs, fz, fy

1, 2

if a = 0.0 then x  y
 else x  z

fsel fx, fa, fy, fz
fneg fs, fa
fsel fx, fs, fx, fz

1

High-Level Language Book III-E Notes

x  min(a,b) fsub fs, fa, fb
fsel fx, fs, fb, fa

3, 4, 5

x  max(a,b) fsub fs, fa, fb
fsel fx, fs, fa, fb

3, 4, 5

High-Level Language Book III-E Notes

if a  b then x  y
 else x  z

fsub fs, fa, fb
fsel fx, fs, fy, fz

4, 5

if a > b then x  y
 else x  z

fsub fs, fb, fa
fsel fx, fs, fz, fy

3, 4, 5

if a = b then x  y
 else x  z

fsub fs, fa, fb
fsel fx, fs, fy, fz
fneg fs, fs
fsel fx, fs, fx, fz

4, 5

User’s Manual

A2 Processor

Programming Examples

Page 864 of 864
Version 1.3

October 23, 2012

4. The optimized program gives the incorrect result if a and b are infinities of the same sign. (Here it is
assumed that invalid operation exceptions are disabled, in which case the result of the subtraction is a
NaN. The analysis is more complicated if invalid operation exceptions are enabled, because in that case
the target register of the subtraction is unchanged.)

5. The optimized program affects the FPSCR[OX, UX, XX, VXISI], and therefore can cause the system error
handler to be invoked if the corresponding exceptions are enabled. The unoptimized program does not
affect these bits. This property of the optimized program is incompatible with IEEE 754.

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Revision Log
	About This Book
	Who Should Use This Book
	How to Use This Book
	Notation
	Related Publications

	List of Acronyms and Abbreviations
	1. Overview
	1.1 A2 Core Key Design Fundamentals
	1.2 A2 Core Features
	1.3 The A2 Core as a Power ISA Implementation
	1.3.1 Embedded Hypervisor

	1.4 A2 Core Organization
	1.4.1 Instruction Unit
	1.4.2 Execution Unit
	1.4.3 Instruction and Data Cache Controllers
	1.4.3.1 Instruction Cache Controller
	1.4.3.2 Data Cache Controller

	1.4.4 Memory Management Unit (MMU)
	1.4.5 Timers
	1.4.6 Debug Facilities
	1.4.6.1 Debug Modes
	1.4.6.2 Development Tool Support

	1.4.7 Floating-Point Unit Organization
	1.4.7.1 Arithmetic and Load/Store Pipelines

	1.4.8 IEEE 754 and Architectural Compliance
	1.4.8.1 IEEE 754 Compliance

	1.4.9 Floating-Point Unit Implementation
	1.4.9.1 Reciprocal Estimates
	1.4.9.2 Denormalized B Operands
	1.4.9.3 Non-IEEE mode

	1.4.10 Floating-Point Unit Interfaces
	1.4.10.1 A2 Processor Core Interface
	1.4.10.2 Clock and Power Management Interface

	1.5 Core Interfaces
	1.5.1 System Interface
	1.5.2 Auxiliary Execution Unit (AXU) Port
	1.5.3 JTAG Port

	2. CPU Programming Model
	2.1 Logical Partitioning
	2.1.1 Overview

	2.2 Storage Addressing
	2.2.1 Storage Operands
	2.2.2 Effective Address Calculation
	2.2.2.1 Data Storage Addressing Modes
	2.2.2.2 Instruction Storage Addressing Modes

	2.2.3 Byte Ordering
	2.2.3.1 Structure Mapping Examples
	2.2.3.2 Instruction Byte Ordering
	2.2.3.3 Data Byte Ordering
	2.2.3.4 Byte-Reverse Instructions

	2.3 Multithreading
	2.3.1 Thread Identification
	2.3.1.1 Thread Identification Register (TIR)
	2.3.1.2 Processor Identification Register (PIR)
	2.3.1.3 Guest Processor Identification Register (GPIR)

	2.3.2 Thread Run State
	2.3.2.1 Thread Stop I/O Pin
	2.3.2.2 Thread Control and Status Register (THRCTL)
	2.3.2.3 Core Configuration Register 0 (CCR0)
	2.3.2.4 Thread Enable Register (TENS, TENC)
	2.3.2.5 Thread Enable Status Register (TENSR)

	2.3.3 Wake On Interrupt
	2.3.3.1 Core Configuration Register 1 (CCR1)

	2.3.4 Thread Priority
	2.3.4.1 Program Priority Register (PPR32)
	2.3.4.2 Instruction Unit Configuration Register 1 (IUCR1)

	2.3.5 Resources Shared between Threads
	2.3.6 Shared Resources
	2.3.6.1 Accessing Shared Resources

	2.3.7 Duplicated Resources
	2.3.8 Pipeline Sharing
	2.3.8.1 Instruction Cache
	2.3.8.2 Instruction Buffer and Decode Dependency
	2.3.8.3 Instruction Issue
	2.3.8.4 Ram Unit
	2.3.8.5 Microcode Unit
	2.3.8.6 Integer Unit

	2.4 Registers
	2.4.1 Register Mapping
	2.4.2 Register Types
	2.4.2.1 General Purpose Registers
	2.4.2.2 Special Purpose Registers
	2.4.2.3 Condition Register
	2.4.2.4 Machine State Register

	2.5 32-Bit Mode
	2.5.1 64-Bit Specific Instructions
	2.5.2 32-Bit Instruction Selection

	2.6 Instruction Categories
	2.7 Instruction Classes
	2.7.1 Defined Instruction Class
	2.7.2 Illegal Instruction Class
	2.7.3 Reserved Instruction Class

	2.8 Implemented Instruction Set Summary
	2.8.1 Integer Instructions
	2.8.1.1 Integer Storage Access Instructions
	2.8.1.2 Integer Arithmetic Instructions
	2.8.1.3 Integer Logical Instructions
	2.8.1.4 Integer Compare Instructions
	2.8.1.5 Integer Trap Instructions
	2.8.1.6 Integer Rotate Instructions
	2.8.1.7 Integer Shift Instructions
	2.8.1.8 Integer Population Count Instructions
	2.8.1.9 Integer Select Instruction

	2.8.2 Branch Instructions
	2.8.3 Processor Control Instructions
	2.8.3.1 Condition Register Logical Instructions
	2.8.3.2 Register Management Instructions
	2.8.3.3 System Linkage Instructions
	2.8.3.4 Processor Control Instructions

	2.8.4 Storage Control Instructions
	2.8.4.1 Cache Management Instructions
	2.8.4.2 TLB Management Instructions
	2.8.4.3 Processor Synchronization Instruction
	2.8.4.4 Load and Reserve and Store Conditional Instructions
	2.8.4.5 Storage Synchronization Instructions
	2.8.4.6 Wait Instruction

	2.8.5 Initiate Coprocessor Instructions
	2.8.5.1 Cache Initialization Instructions

	2.9 Branch Processing
	2.9.1 Branch Addressing
	2.9.2 Branch Instruction BI Field
	2.9.3 Branch Instruction BO Field
	2.9.4 Branch Prediction
	2.9.4.1 Branch Decoder
	2.9.4.2 Branch Direction Prediction
	2.9.4.3 Branch Prioritization
	2.9.4.4 Branch Target Prediction
	2.9.4.5 Redirection

	2.9.5 Branch Control Registers
	2.9.5.1 Link Register (LR)
	2.9.5.2 Count Register (CTR)
	2.9.5.3 Condition Register (CR)

	2.10 Integer Processing
	2.10.1 General Purpose Registers (GPRs)
	2.10.2 Integer Exception Register (XER)
	2.10.2.1 Summary Overflow (SO) Field
	2.10.2.2 Overflow (OV) Field
	2.10.2.3 Carry (CA) Field
	2.10.2.4 Transfer Byte Count (TBC) Field

	2.11 Processor Control
	2.11.1 Special Purpose Registers General (SPRG0-SPRG8)
	2.11.2 External Process ID Load Context (EPLC) Register
	2.11.3 External Process ID Store Context (EPSC) Register

	2.12 Privileged Modes
	2.12.1 Privileged Instructions
	2.12.1.1 Cache Locking Instructions

	2.12.2 Privileged SPRs

	2.13 Speculative Accesses
	2.14 Synchronization
	2.14.1 Context Synchronization
	2.14.2 Execution Synchronization
	2.14.3 Storage Ordering and Synchronization

	2.15 Software Transactional Memory Acceleration
	2.15.1 Summary
	2.15.2 Implementation
	2.15.2.1 L1 D-Cache

	2.15.3 Watch Operation Ordering Requirements
	2.15.4 Impact on Existing Software

	3. FU Programming Model
	3.1 Storage Addressing
	3.1.1 Storage Operands
	3.1.2 Effective Address Calculation
	3.1.3 Data Storage Addressing Modes

	3.2 Floating-Point Exceptions
	3.3 Floating-Point Registers
	3.3.1 Register Types
	3.3.1.1 Floating-Point Registers (FPR0-FPR31)
	3.3.1.2 Floating-Point Status and Control Register (FPSCR)

	3.4 Floating-Point Data Formats
	3.4.1 Value Representation
	3.4.2 Binary Floating-Point Numbers
	3.4.2.1 Normalized Numbers
	3.4.2.2 Denormalized Numbers
	3.4.2.3 Zero Values

	3.4.3 Infinities
	3.4.3.1 Not a Numbers

	3.4.4 Sign of Result
	3.4.5 Normalization and Denormalization
	3.4.6 Data Handling and Precision
	3.4.7 Rounding

	3.5 Floating-Point Execution Models
	3.5.1 Execution Model for IEEE Operations
	3.5.2 Execution Model for Multiply-Add Type Instructions

	3.6 Floating-Point Instructions
	3.6.1 Instructions by Category
	3.6.2 Load and Store Instructions
	3.6.3 Floating-Point Store Instructions
	3.6.4 Floating-Point Move Instructions
	3.6.5 Floating-Point Arithmetic Instructions
	3.6.5.1 Floating-Point Multiply-Add Instructions

	3.6.6 Floating-Point Rounding and Conversion Instructions
	3.6.7 Floating-Point Compare Instructions
	3.6.8 Floating-Point Status and Control Register Instructions

	4. Initialization
	4.1 Core Reset
	4.2 A2 Core State After Reset
	4.3 Software Initiated Reset Requests
	4.3.1 Software Reset Requests
	4.3.1.1 From Debug
	4.3.1.2 From Watchdog Timer

	4.3.2 Reset Request Status
	4.3.2.1 Debug Facility Reset Status
	4.3.2.2 Timer Facility Reset Status

	4.4 Initialization Software Requirements

	5. Instruction and Data Caches
	5.1 Data Cache Array Organization and Operation
	5.2 Instruction Cache Array Organization and Operation
	5.3 Cache Line Replacement Policy
	5.4 Instruction Cache Controller
	5.4.1 ICC Operations
	5.4.2 Instruction Cache Coherency
	5.4.2.1 Self-Modifying Code
	5.4.2.2 Instruction Cache Synonyms

	5.4.3 Instruction Cache Control and Debug
	5.4.3.1 Instruction Cache Management and Debug Instruction Summary
	5.4.3.2 Instruction Cache Parity Operations
	5.4.3.3 Simulating Instruction Cache Parity Errors for Software Testing

	5.5 Data Cache Controller
	5.5.1 DCC Operations
	5.5.1.1 Load and Store Alignment
	5.5.1.2 Load Operations
	5.5.1.3 Store Operations
	5.5.1.4 Data Read and Instruction Fetch Interface Requests
	5.5.1.5 Data Write Interface Requests
	5.5.1.6 Storage Access Ordering

	5.5.2 Data Cache Coherency
	5.5.3 Data Cache Control
	5.5.3.1 Data Cache Management Instruction Summary
	5.5.3.2 dcbt and dcbtst Operation
	5.5.3.3 Cache Locking Mechanisms
	5.5.3.4 Data Cache Parity Operations
	5.5.3.5 Simulating Data Cache Parity Errors for Software Testing
	5.5.3.6 Data Cache Disable

	6. Memory Management
	6.1 MMU Overview
	6.1.1 Support for Power ISA MMU Architecture

	6.2 Page Identification
	6.2.1 Virtual Address Formation
	6.2.2 Address Space Identifier Convention
	6.2.3 Exclusion Range (X-bit) Operation
	6.2.4 TLB Match Process

	6.3 Address Translation
	6.4 Access Control
	6.4.1 Execute Access
	6.4.2 Write Access
	6.4.3 Read Access
	6.4.4 Access Control Applied to Cache Management Instructions

	6.5 Storage Attributes
	6.5.1 Write-Through (W)
	6.5.2 Caching Inhibited (I)
	6.5.3 Memory Coherence Required (M)
	6.5.4 Guarded (G)
	6.5.5 Endian (E)
	6.5.6 User-Definable (U0-U3)
	6.5.7 Supported Storage Attribute Combinations
	6.5.8 Aliasing

	6.6 Translation Lookaside Buffer
	6.7 Effective to Real Address Translation Arrays
	6.7.1 ERAT Context Synchronization
	6.7.2 ERAT Reset Behavior
	6.7.3 Atomic Update of ERAT Entries
	6.7.4 ERAT LRU Round-Robin Replacement Mode
	6.7.5 ERAT LRU Replacement Watermark
	6.7.6 ERAT (TLB Lookaside Information) Coherency and Back-Invalidation
	6.7.7 ERAT External PID (EPID) Context and Instruction Dependencies

	6.8 Logical to Real Address Translation Array (Category E.HV.LRAT)
	6.9 TLB Management Instructions (Architected)
	6.9.1 TLB Read and Write Instructions (tlbre and tlbwe)
	6.9.2 TLB Search Instruction (tlbsx[.])
	6.9.3 TLB Search and Reserve Instruction (tlbsrx.)
	6.9.4 TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax)
	6.9.5 TLB Invalidate Local (Indexed) Instruction (tlbilx)
	6.9.6 TLB Sync Instruction (tlbsync)

	6.10 ERAT Management Instructions (Non-Architected)
	6.10.1 ERAT Read and Write Instructions (eratre and eratwe)
	6.10.2 ERAT Search Instruction (eratsx[.])
	6.10.3 ERAT Invalidate Virtual Address (Indexed) Instruction (erativax)
	6.10.4 ERAT Invalidate Local (Indexed) Instruction (eratilx)

	6.11 32-Bit Mode Memory Management Behavior
	6.11.1 32-Bit Mode TLB Read and Write Instructions (tlbre and tlbwe)
	6.11.2 32-Bit Mode TLB Search Instruction (tlbsx[.])
	6.11.3 32-Bit Mode TLB Search and Reserve Instruction (tlbsrx.)
	6.11.4 32-Bit Mode TLB Invalidate Virtual Address (Indexed) Instruction (tlbivax)
	6.11.5 32-Bit Mode TLB Invalidate Local (Indexed) Instruction (tlbilx)
	6.11.6 32-Bit Mode TLB Sync Instruction (tlbsync)
	6.11.7 32-Bit Mode ERAT Read and Write Instructions (eratre and eratwe)
	6.11.8 32-Bit Mode ERAT Search Instruction (eratsx[.])
	6.11.9 32-Bit Mode ERAT Invalidate Virtual Address (Indexed) Instruction (erativax)
	6.11.10 32-Bit Mode ERAT Invalidate Local (Indexed) Instruction (eratilx)

	6.12 Page Reference and Change Status Management
	6.13 TLB and ERAT Parity Operations
	6.13.1 Parity Errors Generated from tlbre or eratre
	6.13.2 Simulating TLB and ERAT Parity Errors for Software Testing

	6.14 ERAT-Only Mode Operation
	6.15 TLB Reservations and TLB Write Conditional (Category E.TWC)
	6.16 Hardware Page Table Walking (Category E.PT)
	6.16.1 Searching the TLB for Direct and Indirect Entries
	6.16.2 Indirect TLB Entry Page and Sub-Page Sizes
	6.16.3 Hardware Page Table Entry Format
	6.16.4 Calculation of Hardware Page Table Entry Real Address
	6.16.5 Hardware Page Table Errors and Exceptions
	6.16.6 Hardware Page Table Storage Control Attributes
	6.16.7 TLB Update After Hardware Page Table Translation

	6.17 Storage Control Registers (Architected)
	6.17.1 Process ID Register (PID)
	6.17.2 Logical Partition ID Register (LPIDR)
	6.17.3 External PID Load Context (EPLC) Register
	6.17.4 External PID Store Context (EPSC) Register
	6.17.5 MMU Assist Register 0 (MAS0)
	6.17.6 MMU Assist Register 1 (MAS1)
	6.17.7 MMU Assist Register 2 (MAS2)
	6.17.8 MMU Assist Register 2 Upper (MAS2U)
	6.17.9 MMU Assist Register 3 (MAS3)
	6.17.10 MMU Assist Register 4 (MAS4)
	6.17.11 MMU Assist Register 5 (MAS5)
	6.17.12 MMU Assist Register 6 (MAS6)
	6.17.13 MMU Assist Register 7 (MAS7)
	6.17.14 MMU Assist Register 8 (MAS8)
	6.17.15 MAS0_MAS1 Register
	6.17.16 MAS5_MAS6 Register
	6.17.17 MAS7_MAS3 Register
	6.17.18 MAS8_MAS1 Register
	6.17.19 MMU Configuration Register (MMUCFG)
	6.17.20 MMU Control and Status Register 0 (MMUCSR0)
	6.17.21 TLB 0 Configuration Register (TLB0CFG)
	6.17.22 TLB 0 Page Size Register (TLB0PS)
	6.17.23 LRAT Configuration Register (LRATCFG)
	6.17.24 LRAT Page Size Register (LRATPS)
	6.17.25 Embedded Page Table Configuration Register (EPTCFG)
	6.17.26 Logical Page Exception Register (LPER)
	6.17.27 Logical Page Exception Register Upper (LPERU)
	6.17.28 MAS Register Update Summary

	6.18 Storage Control Registers (Non-Architected)
	6.18.1 Memory Management Unit Control Register 0 (MMUCR0)
	6.18.2 Memory Management Unit Control Register 1 (MMUCR1)
	6.18.3 Memory Management Unit Control Register 2 (MMUCR2)
	6.18.4 Memory Management Unit Control Register 3 (MMUCR3)

	7. CPU Interrupts and Exceptions
	7.1 Overview
	7.2 Directed Interrupts
	7.3 Interrupt Classes
	7.3.1 Asynchronous Interrupts
	7.3.2 Synchronous Interrupts
	7.3.2.1 Synchronous, Precise Interrupts
	7.3.2.2 Synchronous, Imprecise Interrupts

	7.3.3 Critical and Noncritical Interrupts
	7.3.4 Machine Check Interrupts

	7.4 Interrupt Processing
	7.4.1 Partially Executed Instructions

	7.5 Interrupt Processing Registers
	7.5.1 Register Mapping
	7.5.2 Machine State Register (MSR)
	7.5.3 Machine State Register Protect (MSRP)
	7.5.4 Embedded Processor Control Register (EPCR)
	7.5.5 Save/Restore Register 0 (SRR0)
	7.5.6 Save/Restore Register 1 (SRR1)
	7.5.7 Guest Save/Restore Register 0 (GSRR0)
	7.5.8 Guest Save/Restore Register 1 (GSRR1)
	7.5.9 Critical Save/Restore Register 0 (CSRR0)
	7.5.10 Critical Save/Restore Register 1 (CSRR1)
	7.5.11 Machine Check Save/Restore Register 0 (MCSRR0)
	7.5.12 Machine Check Save/Restore Register 1 (MCSRR1)
	7.5.13 Data Exception Address Register (DEAR)
	7.5.14 Guest Data Exception Address Register (GDEAR)
	7.5.15 Interrupt Vector Prefix Register (IVPR)
	7.5.16 Guest Interrupt Vector Prefix Register (GIVPR)
	7.5.17 Exception Syndrome Register (ESR)
	7.5.18 Guest Exception Syndrome Register (GESR)
	7.5.19 Machine Check Status Register (MCSR)

	7.6 Interrupt Definitions
	7.6.1 Critical Input Interrupt
	7.6.2 Machine Check Interrupt
	7.6.2.1 Machine Check Status Register (MCSR)

	7.6.3 Data Storage Interrupt
	7.6.4 Instruction Storage Interrupt
	7.6.5 External Input Interrupt
	7.6.6 Alignment Interrupt
	7.6.7 Program Interrupt
	7.6.8 Floating-Point Unavailable Interrupt
	7.6.9 System Call Interrupt
	7.6.10 Auxiliary Processor Unavailable Interrupt
	7.6.11 Decrementer Interrupt
	7.6.12 Fixed-Interval Timer Interrupt
	7.6.13 Watchdog Timer Interrupt
	7.6.14 Data TLB Error Interrupt
	7.6.15 Instruction TLB Error Interrupt
	7.6.16 Vector Unavailable Interrupt
	7.6.17 Debug Interrupt
	7.6.18 Processor Doorbell Interrupt
	7.6.19 Processor Doorbell Critical Interrupt
	7.6.20 Guest Processor Doorbell Interrupt
	7.6.21 Guest Processor Doorbell Critical Interrupt
	7.6.22 Guest Processor Doorbell Machine Check Interrupt
	7.6.23 Embedded Hypervisor System Call Interrupt
	7.6.24 Embedded Hypervisor Privilege Interrupt
	7.6.25 LRAT Error Interrupt
	7.6.26 User Decrementer Interrupt
	7.6.27 Performance Monitor Interrupt

	7.7 Processor Messages
	7.7.1 Processor Message Handling and Filtering
	7.7.2 Doorbell Message Filtering
	7.7.3 Doorbell Critical Message Filtering
	7.7.4 Guest Doorbell Message Filtering
	7.7.5 Guest Doorbell Critical Message Filtering
	7.7.6 Guest Doorbell Machine Check Message Filtering

	7.8 Interrupt Ordering and Masking
	7.8.1 Interrupt Ordering Software Requirements
	7.8.2 Interrupt Order

	7.9 Exception Priorities
	7.9.1 Exception Priorities for Integer Load, Store, and Cache Management Instructions
	7.9.2 Exception Priorities for Floating-Point Load and Store Instructions
	7.9.3 Exception Priorities for Floating-Point Instructions (Other)
	7.9.4 Exception Priorities for Privileged Instructions
	7.9.5 Exception Priorities for Trap Instructions
	7.9.6 Exception Priorities for System Call Instruction
	7.9.7 Exception Priorities for Branch Instructions
	7.9.8 Exception Priorities for Return From Interrupt Instructions
	7.9.9 Exception Priorities for Reserved Instructions
	7.9.10 Exception Priorities for All Other Instructions

	8. FU Interrupts and Exceptions
	8.1 Floating-Point Exceptions
	8.2 Exceptions List
	8.3 Floating-Point Interrupts
	8.3.1 Floating-Point Unavailable Interrupt
	8.3.2 Floating-Point Assist Interrupt

	8.4 Floating-Point Exception Behavior
	8.4.1 Invalid Operation Exception
	8.4.1.1 Action

	8.4.2 Zero Divide Exception
	8.4.2.1 Action

	8.4.3 Overflow Exception
	8.4.3.1 Action

	8.4.4 Underflow Exception
	8.4.4.1 Action

	8.4.5 Inexact Exception
	8.4.5.1 Action

	8.5 Exception Priorities for Floating-Point Load and Store Instructions
	8.6 Exception Priorities for Other Floating-Point Instructions
	8.7 QNaN
	8.8 Updating FPRs on Exceptions
	8.9 Floating-Point Status and Control Register (FPSCR)
	8.10 Updating the Condition Register
	8.10.1 Condition Register (CR)
	8.10.2 Updating CR Fields
	8.10.3 Generation of QNaN Results

	9. Timer Facilities
	9.1 Time Base
	9.1.1 Reading the Time Base
	9.1.2 Writing the Time Base

	9.2 Decrementer (DEC)
	9.3 User Decrementer (UDEC)
	9.4 Fixed Interval Timer (FIT)
	9.5 Watchdog Timer
	9.6 Timer Control Register (TCR)
	9.7 Timer Status Register (TSR)
	9.8 Freezing the Timer Facilities
	9.9 Selection of the Timer Clock Source
	9.10 Synchronizing Timers Across Multiple Cores

	10. Debug Facilities
	10.1 Implications of Hypervisor on Debug Controls
	10.2 Support for Development Tools
	10.3 Debug Modes
	10.3.1 Internal Debug Mode
	10.3.2 External Debug Mode
	10.3.3 Trace Debug Mode

	10.4 Debug Events
	10.4.1 Instruction Address Compare (IAC) Debug Event
	10.4.1.1 IAC Debug Event Fields
	10.4.1.2 IAC Debug Event Processing

	10.4.2 Data Address Compare (DAC) Debug Event
	10.4.2.1 DAC Debug Event Fields
	10.4.2.2 DAC Debug Event Processing
	10.4.2.3 DAC Debug Events Applied to Instructions that Result in Multiple Storage Accesses
	10.4.2.4 DAC Debug Events Applied to Various Instruction Types

	10.4.3 Data Value Compare (DVC) Debug Event
	10.4.3.1 DVC Debug Event Fields
	10.4.3.2 DVC Debug Event Processing
	10.4.3.3 DVC Debug Events Applied to Instructions that Result in Multiple Storage Accesses
	10.4.3.4 DVC Debug Events Applied to Various Instruction Types
	10.4.3.5 DVC Debug Events Applied to Floating-Point Loads and Stores

	10.4.4 Instruction Complete (ICMP) Debug Event
	10.4.5 Branch Taken (BRT) Debug Event
	10.4.6 Trap (TRAP) Debug Event
	10.4.7 Return (RET) Debug Event
	10.4.8 Interrupt (IRPT) Debug Event
	10.4.9 Unconditional Debug Event (UDE)
	10.4.10 Instruction Value Compare (IVC) Debug Event
	10.4.11 Debug Event Summary

	10.5 Debug Reset
	10.6 Debug Timer Freeze
	10.7 Debug Registers
	10.7.1 Debug Control Register 0 (DBCR0)
	10.7.2 Debug Control Register 1 (DBCR1)
	10.7.3 Debug Control Register 2 (DBCR2)
	10.7.4 Debug Control Register 3 (DBCR3)
	10.7.5 Debug Status Register (DBSR)
	10.7.6 Debug Status Register Write Register (DBSRWR)
	10.7.7 Instruction Address Compare Registers (IAC1-IAC4)
	10.7.8 Data Address Compare Registers (DAC1-DAC2)
	10.7.9 Data Value Compare Registers (DVC1-DVC2)
	10.7.10 Instruction Address Register (IAR)
	10.7.11 Instruction Match Mask Registers (IMMR)
	10.7.12 Instruction Match Registers (IMR)

	10.8 Instruction Stuffing
	10.8.1 Ram Mode Overview
	10.8.2 Ram Register Descriptions
	10.8.3 Example Ram Mode Procedures
	10.8.3.1 SPR Read/Write Using GPR as Temporary Storage
	10.8.3.2 Using Microcode Scratch Registers as Temporary Storage

	10.8.4 Supported Ram Instructions

	10.9 Direct Access to I-Cache and D-Cache Directories
	10.9.1 General Read D-Cache Directory Sequence for L1 D-Cache
	10.9.2 Instruction Unit Debug Register 0 (IUDBG0)
	10.9.3 Instruction Unit Debug Register 1 (IUDBG1)
	10.9.4 Instruction Unit Debug Register 2 (IUDBG2)
	10.9.5 Execution Unit Debug Register 0 (XUDBG0)
	10.9.6 Execution Unit Debug Register 1 (XUDBG1)
	10.9.7 Execution Unit Debug Register 2 (XUDBG2)

	10.10 Thread Control and Status
	10.10.1 Using THRCTL Register to Stop Thread 0
	10.10.2 Using THRCTL Register to Start Thread 0
	10.10.3 Using THRCTL Register to Instruction Step Thread 0

	10.11 PC Configuration Register 0 (PCCR0)
	10.12 Trace and Trigger Bus
	10.12.1 Trace and Trigger Bus Overview
	10.12.2 Unit Level Trace and Trigger Bus Implementation
	10.12.3 Debug Select Registers

	11. Performance Events and Event Selection
	11.1 Event Bus Overview
	11.2 A2 Core Event Bus and PC Unit Controls
	11.2.1 Enabling Performance Event and Trace Bus Latches
	11.2.2 Performance Analysis Operating Modes
	11.2.3 Core Performance Event Selection to External Event Bus
	11.2.4 Core Event Select Register (CESR)

	11.3 Unit Level Performance Event Selection
	11.3.1 Unit Event Multiplexer Component
	11.3.2 Performance Monitor Event Tags and Count Modes
	11.3.3 Unit Performance Event Tables

	11.4 Unit Performance Event Tables
	11.4.1 FU Performance Events Table
	11.4.2 IU Performance Events Table
	11.4.3 XU Performance Events Table
	11.4.4 LSU Performance Events Table
	11.4.5 MMU Performance Events Table

	11.5 Unit Event Select Registers
	11.5.1 FU Event Select Register (AESR)
	11.5.2 IU Event Select Registers
	11.5.3 XU Event Select Registers
	11.5.4 LSU Event Select Registers
	11.5.5 MMU Event Select Registers

	11.6 A2 Support for Core Instruction Trace
	11.6.1 Instruction Trace Mode Setup
	11.6.2 Instruction Trace Record Data
	11.6.3 Instruction Trace Record Formats and Ordering
	11.6.4 Debug Bus Control When in Instruction Trace Mode
	11.6.4.1 FU Trace Records
	11.6.4.2 XU Debug Bus Control

	11.7 A2 Support for Instruction Sampling

	12. Implementation Dependent Instructions
	12.1 Miscellaneous
	12.1.1 Attention (attn)

	12.2 TLB Management Instructions
	12.2.1 TLB Read Entry (tlbre)
	12.2.2 TLB Write Entry (tlbwe)
	12.2.3 TLB Search Indexed (tlbsx[.])
	12.2.4 TLB Search and Reserve Indexed (tlbsrx.)
	12.2.5 TLB Invalidate Virtual Address Indexed (tlbivax)
	12.2.6 TLB Invalidate Local Indexed (tlbilx)

	12.3 ERAT Management Instructions
	12.3.1 ERAT Read Entry (eratre)
	12.3.2 ERAT Write Entry (eratwe)
	12.3.3 ERAT Search Indexed (eratsx[.])
	12.3.4 ERAT Invalidate Virtual Address Indexed (erativax)
	12.3.5 ERAT Invalidate Local Indexed (eratilx)

	12.4 Software Transactional Memory Instructions
	12.4.1 Load Doubleword and Watch Indexed X-Form (ldawx.)
	12.4.2 Watch Check All X-Form (wchkall)
	12.4.3 Watch Clear X-Form (wclr)

	12.5 Coprocessor Instructions
	12.5.1 Initiate Coprocessor Store Word Indexed (icswx[.])
	12.5.1.1 General Registers
	12.5.1.2 Initial Execution

	12.5.2 Initiate Coprocessor Store Word External Process ID Indexed (icswepx[.])
	12.5.3 Execution
	12.5.3.1 Condition Register 0

	12.5.4 Coprocessor-Request Block
	12.5.4.1 Available Coprocessor Register (ACOP)
	12.5.4.2 Hypervisor Available Coprocessor Register (HACOP)

	12.6 Data Cache Block Flush
	12.6.1 Data Cache Block Flush (dcbf)

	12.7 Data Cache Block Flush by External PID
	12.7.1 Data Cache Block Flush by External PID (dcbfep)

	13. Power Management Methods
	13.1 Chip Power Management Controls
	13.2 Power-Saving Instructions
	13.2.1 Power-Saving Instruction Sequence

	14. Register Summary
	14.1 Register Categories
	14.2 Reserved Fields
	14.3 Unimplemented SPRs
	14.4 Device Control Registers
	14.5 Alphabetical Register Listing
	14.5.1 ACOP - Available Coprocessor
	14.5.2 AESR - AXU Event Select Register
	14.5.3 CCR0 - Core Configuration Register 0
	14.5.4 CCR1 - Core Configuration Register 1
	14.5.5 CCR2 - Core Configuration Register 2
	14.5.6 CCR3 - Core Configuration Register 3
	14.5.7 CESR - Core Event Select Register
	14.5.8 CR - Condition Register
	14.5.9 CSRR0 - Critical Save/Restore Register 0
	14.5.10 CSRR1 - Critical Save/Restore Register 1
	14.5.11 CTR - Count Register
	14.5.12 DAC1 - Data Address Compare 1
	14.5.13 DAC2 - Data Address Compare 2
	14.5.14 DAC3 - Data Address Compare 3
	14.5.15 DAC4 - Data Address Compare 4
	14.5.16 DBCR0 - Debug Control Register 0
	14.5.17 DBCR1 - Debug Control Register 1
	14.5.18 DBCR2 - Debug Control Register 2
	14.5.19 DBCR3 - Debug Control Register 3
	14.5.20 DBSR - Debug Status Register
	14.5.21 DBSRWR - Debug Status Register Write Register
	14.5.22 DEAR - Data Exception Address Register
	14.5.23 DEC - Decrementer
	14.5.24 DECAR - Decrementer Auto-Reload
	14.5.25 DVC1 - Data Value Compare 1
	14.5.26 DVC2 - Data Value Compare 2
	14.5.27 EPCR - Embedded Processor Control Register
	14.5.28 EPLC - External Process ID Load Context
	14.5.29 EPSC - External Process ID Store Context
	14.5.30 EPTCFG - Embedded Page Table Configuration Register
	14.5.31 ESR - Exception Syndrome Register
	14.5.32 GDEAR - Guest Data Exception Address Register
	14.5.33 GESR - Guest Exception Syndrome Register
	14.5.34 GIVPR - Guest Interrupt Vector Prefix Register
	14.5.35 GPIR - Guest Processor ID Register
	14.5.36 GSPRG0 - Guest Software Special Purpose Register 0
	14.5.37 GSPRG1 - Guest Software Special Purpose Register 1
	14.5.38 GSPRG2 - Guest Software Special Purpose Register 2
	14.5.39 GSPRG3 - Guest Software Special Purpose Register 3
	14.5.40 GSRR0 - Guest Save/Restore Register 0
	14.5.41 GSRR1 - Guest Save/Restore Register 1
	14.5.42 HACOP - Hypvervisor Available Coprocessor
	14.5.43 IAC1 - Instruction Address Compare 1
	14.5.44 IAC2 - Instruction Address Compare 2
	14.5.45 IAC3 - Instruction Address Compare 3
	14.5.46 IAC4 - Instruction Address Compare 4
	14.5.47 IAR - Instruction Address Register
	14.5.48 IESR1 - IU Event Select Register 1
	14.5.49 IESR2 - IU Event Select Register 2
	14.5.50 IMMR - Instruction Match Mask Register
	14.5.51 IMPDEP0 - Implementation Dependent Region 0
	14.5.52 IMPDEP1 - Implementation Dependent Region 1
	14.5.53 IMR - Instruction Match Register
	14.5.54 IUCR0 - Instruction Unit Configuration Register 0
	14.5.55 IUCR1 - Instruction Unit Configuration Register 1
	14.5.56 IUCR2 - Instruction Unit Configuration Register 2
	14.5.57 IUDBG0 - Instruction Unit Debug Register 0
	14.5.58 IUDBG1 - Instruction Unit Debug Register 1
	14.5.59 IUDBG2 - Instruction Unit Debug Register 2
	14.5.60 IULFSR - Instruction Unit LFSR
	14.5.61 IULLCR - Instruction Unit Live Lock Control Register
	14.5.62 IVPR - Interrupt Vector Prefix Register
	14.5.63 LPER - Logical Page Exception Register
	14.5.64 LPERU - Logical Page Exception Register (Upper)
	14.5.65 LPIDR - Logical Partition ID Register
	14.5.66 LR - Link Register
	14.5.67 LRATCFG - LRAT Configuration Register
	14.5.68 LRATPS - LRAT Page Size Register
	14.5.69 MAS0 - MMU Assist Register 0
	14.5.70 MAS0_MAS1 - MMU Assist Registers 0 and 1
	14.5.71 MAS1 - MMU Assist Register 1
	14.5.72 MAS2 - MMU Assist Register 2
	14.5.73 MAS2U - MMU Assist Register 2 (Upper)
	14.5.74 MAS3 - MMU Assist Register 3
	14.5.75 MAS4 - MMU Assist Register 4
	14.5.76 MAS5 - MMU Assist Register 5
	14.5.77 MAS5_MAS6 - MMU Assist Registers 5 and 6
	14.5.78 MAS6 - MMU Assist Register 6
	14.5.79 MAS7 - MMU Assist Register 7
	14.5.80 MAS7_MAS3 - MMU Assist Registers 7 and 3
	14.5.81 MAS8 - MMU Assist Register 8
	14.5.82 MAS8_MAS1 - MMU Assist Registers 8 and 1
	14.5.83 MCSR - Machine Check Syndrome Register
	14.5.84 MCSRR0 - Machine Check Save/Restore Register 0
	14.5.85 MCSRR1 - Machine Check Save/Restore Register 1
	14.5.86 MESR1 - MMU Event Select Register 1
	14.5.87 MESR2 - MMU Event Select Register 2
	14.5.88 MMUCFG - MMU Configuration Register
	14.5.89 MMUCR0 - Memory Management Unit Control Register 0
	14.5.90 MMUCR1 - Memory Management Unit Control Register 1
	14.5.91 MMUCR2 - Memory Management Unit Control Register 2
	14.5.92 MMUCR3 - Memory Management Unit Control Register 3
	14.5.93 MMUCSR0 - MMU Control and Status Register 0
	14.5.94 MSR - Machine State Register
	14.5.95 MSRP - Machine State Register Protect
	14.5.96 PID - Process ID
	14.5.97 PIR - Processor ID Register
	14.5.98 PPR32 - Program Priority Register
	14.5.99 PVR - Processor Version Register
	14.5.100 SPRG0 - Software Special Purpose Register 0
	14.5.101 SPRG1 - Software Special Purpose Register 1
	14.5.102 SPRG2 - Software Special Purpose Register 2
	14.5.103 SPRG3 - Software Special Purpose Register 3
	14.5.104 SPRG4 - Software Special Purpose Register 4
	14.5.105 SPRG5 - Software Special Purpose Register 5
	14.5.106 SPRG6 - Software Special Purpose Register 6
	14.5.107 SPRG7 - Software Special Purpose Register 7
	14.5.108 SPRG8 - Software Special Purpose Register 8
	14.5.109 SRR0 - Save/Restore Register 0
	14.5.110 SRR1 - Save/Restore Register 1
	14.5.111 TB - Timebase
	14.5.112 TBL - Timebase Lower
	14.5.113 TBU - Timebase Upper
	14.5.114 TCR - Timer Control Register
	14.5.115 TENC - Thread Enable Clear Register
	14.5.116 TENS - Thread Enable Set Register
	14.5.117 TENSR - Thread Enable Status Register
	14.5.118 TIR - Thread Identification Register
	14.5.119 TLB0CFG - TLB 0 Configuration Register
	14.5.120 TLB0PS - TLB 0 Page Size Register
	14.5.121 TRACE - Hardware Trace Macro Control Register
	14.5.122 TSR - Timer Status Register
	14.5.123 UDEC - User Decrementer
	14.5.124 VRSAVE - Vector Register Save
	14.5.125 XER - Fixed Point Exception Register
	14.5.126 XESR1 - XU Event Select Register 1
	14.5.127 XESR2 - XU Event Select Register 2
	14.5.128 XESR3 - XU Event Select Register 3
	14.5.129 XESR4 - XU Event Select Register 4
	14.5.130 XUCR0 - Execution Unit Configuration Register 0
	14.5.131 XUCR1 - Execution Unit Configuration Register 1
	14.5.132 XUCR2 - Execution Unit Configuration Register 2
	14.5.133 XUCR3 - Execution Unit Configuration Register 3
	14.5.134 XUCR4 - Execution Unit Configuration Register 4
	14.5.135 XUDBG0 - Execution Unit Debug Register 0
	14.5.136 XUDBG1 - Execution Unit Debug Register 1
	14.5.137 XUDBG2 - Execution Unit Debug Register 2

	15. SCOM Accessible Registers
	15.1 Serial Communications (SCOM) Description
	15.2 SCOM Register Summary
	15.2.1 Read and Write Access Methods
	15.2.1.1 Reset with AND Mask
	15.2.1.2 Set with OR Mask

	15.2.2 SCOM Register Summary Table

	15.3 Alphabetical Register Listing
	15.3.1 AXU Debug Select Register (ABDSR)
	15.3.2 Error Injection Register (ERRINJ)
	15.3.3 Fault Isolation Register 0 and Associated Registers
	15.3.4 Fault Isolation Register 1 and Associated Registers
	15.3.5 Fault Isolation Register 2 and Associated Registers
	15.3.6 IU Debug Select Register (IDSR)
	15.3.7 MMU/PC Debug Select Register (MPDSR)
	15.3.8 PC Configuration Register 0 (PCCR0)
	15.3.9 Ram Data Registers (RAMD, RAMDH, RAMDL)
	15.3.10 Ram Instruction and Command Registers (RAMC, RAMI, RAMIC)
	15.3.11 Special Attention Register (SPATTN)
	15.3.12 Thread Control and Status Register (THRCTL)
	15.3.13 XU Debug Select Register1 (XDSR1)
	15.3.14 XU Debug Select Register2 (XDSR2)

	Appendix A. Processor Instruction Summary
	A.1 Instruction Formats
	A.2 Implemented Instructions Sorted by Mnemonic

	Appendix B. FU Instruction Summary
	B.1 FU Instructions Sorted by Opcode

	Appendix C. Debug and Trigger Groups
	C.1 Unit Debug Multiplexer Component
	C.2 Debug Multiplexer Component Ordering on the Ramp Bus
	C.3 Example Debug Multiplexer Configuration Settings
	C.3.1 Multiplexer Configuration for Trace/Trigger Signals from a Single Unit
	C.3.2 Multiplexer Configuration for Trace/Trigger Signals from Multiple Units

	C.4 AXU Debug Select Register and Debug Group Tables
	C.5 IU Debug Select Register and Debug Group Tables
	C.6 MMU and PC Debug Select Register and Debug Group Tables
	C.7 XU Debug Select Register1 and Debug Group Tables
	C.8 XU Debug Select Register2 and Debug Group Tables

	Appendix D. Instruction Execution Performance and Code Optimizations
	D.1 A2 Pipeline Overview
	D.1.1 Arbitration Stages
	D.1.2 Stall Stages
	D.1.3 Flush Stages

	D.2 Fetch
	D.2.1 Fetch Arbitration
	D.2.2 Next Instruction Fetch Address Computation
	D.2.3 Instruction Cache Access and Alignment
	D.2.4 Instruction Cache Misses
	D.2.5 I-ERAT Misses
	D.2.6 Instruction Buffer Operation
	D.2.7 Branches and Branch Prediction
	D.2.7.1 Branch Direction Prediction and the Branch History Table (BHT)
	D.2.7.2 Taken-Branch Redirection
	D.2.7.3 Branch Target Prediction
	D.2.7.4 Branch Resolution and Mispredictions

	D.3 Instruction Issue Operation
	D.4 Instruction Pair Execution Performance Rules
	D.4.1 Defining Latency, Penalty, and Execution Time
	D.4.2 Unified CR Dependency
	D.4.3 General CR Operand Dependency
	D.4.4 Move To Condition Register Fields (mtcrf) Instruction Dependency
	D.4.5 Move From Condition Register (mfcr) Instruction Dependency
	D.4.6 Move From and Move To Special Purpose Register (mfspr) Dependency
	D.4.7 Move From Machine State Register (mfmsr) Dependency
	D.4.8 Multiply Dependency
	D.4.9 Divide Dependency
	D.4.10 Store Word Conditional Indexed (stwcx.) Instruction Dependency
	D.4.11 TLB Management Instruction Dependencies
	D.4.12 Processor Control Instruction Operation
	D.4.13 Load Instruction Dependency
	D.4.14 String/Multiple Operations
	D.4.15 Load-and-Reserve and Store-Conditional Instructions
	D.4.16 Storage Synchronization Operations

	D.5 Loads, Stores, and Data Cache Organization
	D.5.1 Overview
	D.5.2 Loads
	D.5.3 Stores
	D.5.4 Load Miss Queue
	D.5.5 L2 Command Arbitration
	D.5.6 D-ERAT Misses
	D.5.7 Back Invalidations
	D.5.8 Address Alignment

	D.6 Interrupt Effects
	D.7 Floating-Point Instruction Handling
	D.7.1 General FPR Operand Dependency
	D.7.2 Denormalized Results
	D.7.3 Denormalized Operands
	D.7.4 Not a Number (NaN) Cases
	D.7.5 Floating-Point Load Dependency
	D.7.6 Floating-Point Store Data Dependency
	D.7.7 General CR Operand Dependency
	D.7.8 Floating-Point Divide Dependency
	D.7.9 Floating-Point Square Root Dependency
	D.7.10 Move to Condition Register from Floating-Point Status and Control Register Dependency
	D.7.11 Move to FPSCR Fields and FPSCR Dependencies
	D.7.12 Floating-Point Record Forms

	D.8 Interrupt Conditions
	D.9 Flush Conditions

	Appendix E. Programming Examples
	E.1 Wait Instruction with Fast Wakeup for Power Savings
	E.2 Floating-Point Conversions
	E.2.1 Conversion from Floating-Point Number to Signed Integer Word
	E.2.2 Conversion from Floating-Point Number to Unsigned Integer Word

	E.3 Floating-Point Selection
	E.3.1 Comparison to Zero
	E.3.2 Minimum and Maximum
	E.3.3 Simple If-Then-Else Constructions

	E.4 Notes

