
Raexplore: Enabling Rapid, Automated Architecture Exploration for Full
Applications

Yao Zhang, Prasanna Balaprakash, Jiayuan Meng, Vitali Morozov, Scott Parker, and Kalyan Kumaran
Argonne National Laboratory

{yaozhang, pbalapra, jmeng, morozov, sparker, kumaran}@anl.gov

Abstract
We present Raexplore, a performance modeling framework

for architecture exploration. Raexplore enables rapid, auto-
mated, and systematic search of architecture design space by
combining hardware counter-based performance characteri-
zation and analytical performance modeling. We demonstrate
Raexplore for two recent manycore processors IBM Blue-
Gene/Q compute chip and Intel Xeon Phi, targeting a set of
scientific applications. Our framework is able to capture com-
plex interactions between architectural components including
instruction pipeline, cache, and memory, and to achieve a
3–22% error for same-architecture and cross-architecture per-
formance predictions. Furthermore, we apply our framework
to assess the two processors, and discover and evaluate a list
of architectural scaling options for future processor designs.

1. Introduction
Over 20 years ago, supercomputer pioneer Seymour Cray fa-
mously made an analogy on computer design “If you were
plowing a field, which would you rather use: two strong oxen
or 1024 chickens?" Today, we see both types of computers in
the marketplace, and computer architects face an even wider
spectrum of design choices on core complexity, memory hier-
archies, parallelism, and special-purpose accelerators. Further-
more, the processor design landscape is becoming increasingly
more dynamic, as we see mainstream processors both trickling
up (e.g., ARM, DSP, GPU) and trickling down (e.g., Atom,
Xeon Phi) in their design space to meet the demands for a
range of emerging applications in scientific computing, data
analytics, gaming, wearable devices, computer vision, etc.

For a big-picture view of this background, Figure 1 sketches
today’s processor landscape and macro trends in terms of
single-thread performance and throughput performance. In
Figure 2, we select eight representative processors and posi-
tion them in a multi-dimensional design space in terms of their
architectural features. The main observation is that the design
space is vast in terms of both high dimensionality and large
dynamic range for each dimension. We list eight major archi-
tectural features (dimensions) ranging from core complexity
to memory hierarchies, not to mention other relatively minor
features such as branch prediction, prefetching, and memory
management. We use the ratio between the highest and lowest
value to measure the span of the dynamic range of each feature
(dimension). The observed span ranges from 4× up to 78×.

GT200% GF110%
GK110%

Xeon%Phi%(Knights%Corner)%

Cortex%A8%

PowerPC%450%(BG/P)%

PowerPC%A2%(BG/Q)%

Nehalem%

Sandy%Bridge%

Haswell%

XHGene%2%

XHGene%1%

Ivy%Bridge%

Cortex%A15%

Cortex%A9%

PowerPC%440%(BG/L)%

Atom%N450%

Atom%S1260%

POWER5%
PowerPC%A2(PowerEN)%

POWER6%

POWER7%%

PowerPC%75%(Wii%U)% Xeon%Phi(Knights%Ferry,SP)%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0% 200% 400% 600% 800% 1000% 1200% 1400%

Throughput%performance%(GFLOPS)%=%Freq%×%Vector%width%(DP)%×%Cores%%

S
c
a
le
%u
p
%→

%

SingleHthread%performance%(GigaInstruc_ons/s)%=%Freq%×%Issue%width%

Scale%out%→%

Where%POWER%is%going:%server,%data%analy_cs%

Where%highHend%x86%is%going:%desktop,%server,%data%analy_cs%

Where%lowHend%x86%is%going:%smartphone,%tablet%

Where%PowerPC%is%going:%network,%gaming,%HPC%

Where%manyHcore/GPU%is%going:%gaming,%HPC%

Where%highHend%ARM%is%going:%desktop,%server%

Figure 1: Processor landscape and trends. Processors in the
same family/catergory are color coded.

Fundamentally, architecture design is driven by applications.
Architectural evaluation and comparison for a diverse set of
current processors are challenging because they often require
significant human efforts to port applications to different archi-
tectures [8,31]. Studying the performance of future processors
is even more challenging, as the hardware is not yet available.
While commonly used simulation-based techniques could pro-
vide highly accurate results, they are prohibitively slow to
handle the combinatorial explosion of design choices in a
multi-dimensional space and thus often limited to studying
kernels and benchmarks rather than larger programs, mini-
apps, and even full applications [3, 39, 41, 42].

In this work, we aim to address this architecture design
challenge by developing Raexplore (Rapid architecture ex-
plore, pronounced as ray-xplore), a performance modeling
framework to reduce the needs for application porting in ar-
chitectural comparison, and to serve as a fast, first-order ar-
chitecture explorer to complement slower but more accurate
simulation-based techniques. In particular, we make the fol-
lowing contributions in this paper. First, we develop a method-
ology that combines experimental performance characteriza-
tion and analytical performance modeling to enable rapid and
systematic architecture exploration. Second, we develop ana-
lytical models for two recent manycore processors IBM Blue
Gene/Q compute chip and Intel Xeon Phi. We show that our
models could capture complex interactions between architec-
tural components including instruction pipeline, cache, and
memory, and achieve a 3–22% error for same-architecture

16#
1.6#

4#

16# 2#

2.7#0.7#

32# 64#

0.1#

19.2#61#

1.3# 2# 8#

0.5#

15#

3.6#

4#

4#

2#

64#

2.5# 5.8#

4#

1.9# 3#

3.2#

2.4#

24#

12#

5# 8#

2#
8#

32#

8#

8#

2#

1#

0.8#

8#

0#

0.2#

0.4#

0.6#

0.8#

1#

Cores# Freq#(GHz)# Issue#width# vector#width#
(DP#)#

Threads/core# L1/core######
(KB)#

LLC/core#
(MB)#

BW/core#
(GB/s)#

IBM#Blue#Gene/Q# NVIDIA#K40# Intel#Xeon#Phi#7120P# Intel#Xeon#E7T8895V2#

ARM#Cortex#A15# Intel#Atom#C2758# IBM#POWER8# Fujitsu#SPARC64#VIIIfx#

##(7.6×)###############(6.7×)##################(4×)##############(16×)################(64×)################(4×)################(78×)###############(7.2×)##

Figure 2: Mutli-dimensional processor design space. For each
architectural feature, the numbers are normalized be-
tween 0 and 1 based on the highest value. The num-
bers to the right of each marker are absolute values.
The numbers in parentheses below the horizontal axis
are the ratios between the highest and lowest value,
which measure the span of the dynamic range of each
feature (dimension) for the eight processors.

and cross-architecture performance predictions. Third, using
our framework, we analyze processor performance for a set
of scientific applications, and suggest and evaluate a list of
architectural design choices.

The rest of the paper is organized as follows. Section 2 and
Section 3 describe our performance modeling methodology
and the developed analytical models. Section 4 presents the
experiments to validate our performance models. Section 5
and Section 6 apply our framework to analyze processor per-
formance for a set of scientific applications and explore the
design space for future architectures. Section 7 and Section 8
respectively discuss related work and the software release sta-
tus of Raexplore. Section 9 concludes and describes future
research directions.

2. Methodology

We have three goals in mind in developing a performance
modeling methodology: (1) handle real-world large pro-
grams/applications, instead of kernels or benchmarks, as it
is not common in practice that a single kernel dominates the
application runtime; (2) explore architecture design space
rapidly; and (3) capture complex effects and interactions of
major architectural features and predict performance accu-
rately. To this end, we develop a methodology that combines
experimental hardware counter-based performance character-
ization and analytical performance modeling. The hardware
counter-based approach provides a fast way to characterize
performance for large applications on an existing baseline
architecture. To project performance for future or different ar-
chitectures, we develop analytical models that take in baseline
performance characteristics and produce performance predic-
tions. Analytical modeling reduces the process of architecture

Figure 3: Performance modeling framework.

exploration to a matter of merely evaluating a set of mathemat-
ical formulas, enabling fast search of the vast design space.

Figure 3 shows our performance modeling framework. It
first takes in a set of targeted applications and characterizes
their performance on a baseline architecture. The perfor-
mance characteristics are a set of performance events mea-
sured by hardware counter-based tools such as PAPI [38],
Intel VTune [25], and IBM HPM [21]. The performance
characteristics are then calibrated for a target architecture con-
figuration using analytical performance models. The target
could be either a future design of the baseline architecture, or
a different current architecture (e.g., Blue Gene/Q as baseline
and a hypothetical next Blue/Gene processor as target, or Blue
Gene/Q as baseline and Xeon Phi as target). Finally, the ana-
lytical models produce performance analysis for the baseline
architecture and performance predictions for the future/target
architecture. Note that the analytical models include both the
models for performance analysis (e.g., to derive the time of in-
struction execution, memory access, and their overlap) and the
models for performance characteristics calibration to account
for differences in architecture features such as cache size and
instruction latency.

In order to project from a baseline to target architecture,
analytical models should be able to capture the architectural
changes in instruction pipeline and memory hierarchy. The
wider the architectural difference is, the more challenging
to model it. We list three types of baseline/target scenarios
in the order of increased challenge: (1) project within the
same processor line (e.g., from BGP to BGQ1, from NVIDA
Fermi to Kepler GPU), (2) project across similar architectures
(e.g., from BGQ to Xeon Phi), and (3) project across differ-
ent architectures (e.g., from BGQ to GPU, from BGQ to x86
multicores). For example, to project from BGQ to GPU, we
need to model the GPU’s hardware mechanism to coordinate
massively parallel threads and their collective memory access.
Projection across different architectures is further complicated
by ISA and compiler differences (Section 4.4). In this work,
we select two relatively similar architectures for our study:
BGQ and Xeon Phi. We model their major architecture fea-
tures, but currently leave out the software aspects such as
compiler differences and thread management overhead.

In comparison with a pure analytical modeling ap-
proach [40], which relies on static program analysis for model
inputs (e.g., operation count) and thus has difficulties in han-

1BGP and BGQ respectively stand for IBM Blue Gene/P and Blue Gene/Q
compute chip.

2

Table 1: Comparison of performance study methodologies.

Methodology Speed Accuracy Large applications Future architecture

Experimental 3 3 3 7
Simulation 7 3 7 3
Analytical 3 7 7 3

Experimental + analytical 3 3 3 3

dling large applications and capturing program-hardware in-
teractions (e.g., cache hit rate), our combined experimental
and analytical approach jump-starts our models with accurate
baseline performance characteristics, which have already ac-
counted for compiler optimizations and hardware architecture
effects. Complementary to simulation techniques [41], which
are more accurate but several orders of magnitude slower than
hardware execution, our approach could serve a fast, first-
order architecture explorer. Statistical techniques and machine
learning [26, 32] have been shown to be effective in handling
the complexity of design space. However, because these tech-
niques are driven by experimental/simulation data instead of
hardware inner working mechanism, they are less explicative
and insightful than our mechanism-driven analytical modeling
approach. Furthermore, these techniques cannot predict per-
formance for future processors with new features (e.g., a GPU
memory coalescing feature that the processor training set does
not cover), while the analytical approach could in principal
model and incorporate such new features. Table 1 compares
our methodology with existing approaches in terms of their
capabilities.

3. Analytical performance models
We develop performance models for BGQ and Xeon Phi. We
use a set of performance events (Table 2) monitored by hard-
ware counters to characterize application performance on a
baseline processor (Figure 3). To describe a baseline/target
architecture configuration, we choose a set of hardware pa-
rameters that reflect major architectural features and by gen-
eral practice have good performance impact (listed in Ta-
ble 3). The architecture parameters are according to the ref-
erences [19, 23, 24, 37]. Note that the bandwidth numbers are
not their theoretical design values, but measured peak values
using synthetic stream benchmarks [22, 37]. The inputs to
our analytical models are the number of performance events
measured by hardware counters and baseline/target architec-
ture configurations; the outputs are analyzed and predicted
runtime and its breakdown in terms of instruction execution
and memory access.

Accurate performance models should be able to capture the
effects and interactions between architectural components, and
are the key to the success of our methodology. There are two
major challenges. The first one is to deal with the complexity
of the studied architecture, which has multiple cores, multiple
pipelines, and multiple levels of memory hierarchy. We need
deep understanding and analysis of performance to develop
accurate models at the right level of abstraction. The second

Table 2: Events monitored by hardware counters.

Short names Definition

time execution time (cycles)
instInt integer instructions
instFP floating-point instructions

numAccess memory reads and writes
hitsL1 L1 hits

hitsLLC LLC hits
LD LLC cacheline loads
ST LLC cacheline stores

Table 3: Architecture parameters for BGQ and Xeon Phi 7120P.
All latency values are in CPU cycles. L1p is the prefetch
buffer on BGQ, which is between L1 and LLC.

Processor Short names Blue Gene/Q Xeon Phi

Frequency freq 1.6 1.24
Cores cores 16 61

Integer inst latency IntL 3 3
Floating-point inst latency FPL 5 4

Max threads per core max TPC 4 4
Inst streams per thread SPT 1 2
L1 size (KB), latency sizeL1, latL1 16, 3 32, 3
L1p size (KB), latency sizeL1p, latL1p 4, 16 NA

LLC/L2 size (MB), latency sizeLLC, latLLC 16, 42 30.5, 23
Mem BW (GB/s), latency BW, latDDR 28, 213 177, 750

challenge is to deal with uncertainties that arise when hardware
performance counters do not provide sufficient information
required by our models (e.g., instruction- and memory-level
parallelism, integer and FP instruction execution overlap). In
this case, we need to develop upper and lower bounds of
interested quantities. We approximate the unknown quantity
using the average of its lower and upper bound. To improve
the accuracy of such approximation, we divide the application
to code blocks (individual functions or loops); because if the
code blocks are fine-grained enough, the performance of each
code block tends to be dominated by a single performance
factor, which could be instruction execution, memory latency,
or memory bandwidth. All code blocks together cover the
whole application. In general, the finer granularity they are
specified at, the more accurate the performance prediction
is, at the cost of annotation effort (insert hardware counter
monitors) and monitoring overhead. We will present both
top time-consuming individual code blocks (together cover
more than 90% of application) and aggregated performance
breakdown of all code blocks (cover 100% of application) to
guarantee representativeness; users can optionally examine
the rest code blocks.

We now describe our performance models. As a ref-
erence, Table 4 lists the short names for performance
metrics used in our models. For a given applica-
tion, we divide it to code blocks and model the to-
tal application execution time as timeTotal =

n
∑

i=1
timeCodeBlocki.

3

Table 4: Short names for various performance metrics (in alpha-
betical order).

Short names Definition

accessPerInst memory accesses per instruction
activeCores number of active cores

aIL average instruction execution latency (cycles)
aML average memory access latency (cycles)

bwCC bandwidth per core per cycle
CPI cycles per instruction
ILP instruction level parallelism

instC effective number of instructions per core
instIntC integer instructions per core
instFPC floating-point instructions per core

IPC instructions per cycle
MLP memory level parallelism
MPC memory accesses per cycle

timeBW memory bandwidth time (cycles)
timeCodeBlock runtime for a code block (cycles)

timeInst instruction execution time (cycles)
timeInstInt integer instruction execution time (cycles)
timeInstFP floating-point instruction execution time (cycles)

timeLat memory latency time (cycles)
timeMem memory access time (cycles)

timeOverlap overlap time between timeInst and timeMem (cycles)
timeTotal total application runtime (cycles)

SPT instruction streams per thread
TPC threads per core

timeCodeBlock = timeInst + timeMem− timeOverlap, where timeInst
is the instruction execution time, timeMem is the memory
access time, and timeOverlap is the overlap time between
instruction execution and memory access. Ideally, we want
memory access time to be completely hidden (overlapped by
instruction execution) using hardware features such as caching
and simultaneous multithreading. However, this is often not
the case in reality due to cache misses and the lack of instruc-
tion parallelism.

While timeOverlap is not directly measurable, it
could be estimated on the baseline architecture as
timeOverlapbase = timeInstbase + timeMembase− timeCodeBlockbase,
where timeCodeBlockbase is the measured time, and
timeInstbase and timeMembase are modeled time on the
baseline architecture. For a target architecture, we assume
timeOverlap scales along with timeInst and timeMem:
timeOverlap = λ × timeOverlapbase, where the scaling factor
λ is estimated as the average of the time scaling ratio
of instruction execution time and memory access time
λ = avg(timeInst

timeInstbase
, timeMem

timeMembase
).

The following subsections describe the models of the in-
struction pipeline and memory subsystem that are respectively
used to estimate timeInst and timeMem.

3.1. Instruction pipeline

We model the instruction execution time, which includes the
pipeline stalls due to instruction dependencies and structural
hazards, but excludes the stalls due to dependencies on mem-
ory access (assuming zero memory latency). Section 3.2 will

separately model the memory access time.
Both BGQ and Xeon Phi feature simultaneous multithread-

ing (SMT), where multiple threads could be executed in an
interleaved fashion to increase the instruction-level parallelism
(ILP) and to hide memory latency. Both the BGQ and Xeon
Phi core have two instruction pipelines: one supports (vec-
tor) floating-point (FP) instructions, and the other does not.
We will refer to the two pipelines in loosely defined terms as
the integer pipeline and the FP pipeline; we will also refer to
all general-purpose instructions (including control flow and
load/store) as integer instructions. The integer pipeline on both
BGQ and Xeon Phi support vector loads/stores instructions.
The FP pipeline of Xeon Phi is actually versatile, as it can
execute all other general-purpose instructions as well.

In terms of utilizing the two pipelines, BGQ could simulta-
neously issue one integer instruction and one FP instruction to
the two pipelines, but these two instructions have to be from
two different threads. On Xeon Phi, a thread could issue two
instructions in one cycle to both the integer and FP pipelines
subject to certain instruction pairing rules, but a thread can-
not consecutively issue instructions in back-to-back cycles (in
the next cycle, a different thread has to take the turn to issue
instructions). Effectively, both BGQ and Xeon Phi require at
least two threads to fully utilize both pipelines. One advantage
of Xeon Phi is that, in the case of using a single thread per core,
Xeon Phi pipeline observes more ILP than BGQ, because each
Xeon Phi thread has two instruction streams per thread, while
a BGQ thread has only one instruction stream; however, we
have not observed this ILP advantage of Xeon Phi in the case
of multiple threads per core.

We model the instruction execution time as timeInst = instC
IPC ,

where IPC is instructions per cycle (assuming zero memory
latency as discussed earlier), and instC is the effective number
of instructions taking into account the overlap between the
execution of integer and FP instructions (effectively we treat
two pipelines as a single pipeline in our abstract processor
model). In an ideal situation of sufficient instruction-level
parallelism (ILP), instruction execution is fully pipelined and
IPC = 1. In reality, ILP is limited by instruction dependency
and contention for functional units.

The effective number of instructions instC depends on the
degree of execution overlap of integer and FP instructions. A
complete overlap means a better utilization both integer and
FP pipelines. However, this is not possible in reality due to
limited instruction and thread parallelism. As discussed earlier,
both BGQ and Xeon Phi require at least two threads to fully
utilize the two pipelines. If the baseline and target architecture
use the same number of threads per core, instC = α ∗ instCbase,
where α is the factor that takes into account ISA and compiler
differences; if the target architecture uses a different number of
threads per core (T PC), we estimate instC using the following
conditional function, which essentially assumes maximum
integer and FP instruction overlap if using more than two
threads per core, minimum overlap if using one thread per

4

core, and an average overlap if using two threads per core.

instC =

 instCmax if T PC = 1
avg(instCmax, instCmin) if T PC = 2

instCmin if T PC > 2
instCmax = sum(instIntC, instFPC)

instCmin = max(instIntC, instFPC)

instIntC and instFPC are respectively the number
of integer and FP instructions per core, calculated as
instIntC = β × instIntbase

activeCores and instFPC = γ× instFPbase
activeCores , where β and

γ are scaling factors to account for ISA and compiler differ-
ences.

We model instructions per cycle as IPC = min(1, ILP
aIL), where

aIL is average instruction latency. Note that the maximum
IPC is 1. This equation models the workings of the instruction
pipeline. In an ideal situation, IPC = 1, when there is sufficient
ILP, that is ILP ≥ aIL. In the worst case, IPC = 1

aIL , when
ILP = 1. aIL is calculated as a weighted average of integer
and FP instruction latencies aIL = IntL×instIntC+FPL×instFPC

instIntC+instFPC . ILP is
derived from ILPbase taking into account the differences in
threads per core (T PC) and instruction streams per thread
(SPT),

ILP =

{
ILPbase +SPT −SPTbase if T PC = 1

ILPbase +T PC−T PCbase if T PC > 1 , where
ILPbase = aILbase× IPCbase

aILbase =
IntLbase×instIntCbase+FPLbase×instFPCbase

instIntCbase+instFPCbase
.

We estimate IPCbase as the average of its lower and upper
bound. At the lower bound, there is no overlap of integer
and FP instruction execution; at the upper bound, there is a
complete overlap, except in the case of T PC = 1 when there
is no overlap. Also note that IPC cannot exceed 1.

IPCbase = avg(IPCbase(min),min(1, IPCbase(max)))

IPCbase(min) =
instCbase(min)
timeInstbase

, IPCbase(max) =
instCbase(max)
timeInstbase

instCbase(max) = sum(instIntCbase, instFPCbase)

instCbase(min) =

{
sum(instIntCbase, instFPCbase) if T PC = 1
max(instIntCbase, instFPCbase) if T PC > 1

We estimate timeInstbase as the average of its lower and
upper bound respectively using a maximum and minimum
ILPbase because ILPbase is not directly measurable by hard-
ware counters. Note that timeInstbase(max) cannot exceed
timeCodeBlockbase, the measured execution time for this code
block.

timeInstbase = avg(timeInstbase(min), timeInstbase(max))

timeInstbase(min) = instCbase(min)×CPIbase(min)

CPIbase(min) = max(aILbase
ILPbase(max)

,1) = 1, ILPbase(max) ≥ aILbase

timeInstbase(max) = min(instCbase(max)×CPIbase(max), timeCodeBlockbase)

CPIbase(max) = max(aILbase
ILPmin

,1), ILPbase(min) = T PCbase

Finally, instCbase = IPCbase× timeInstbase, which we use to calcu-
late instruction time on the target architecture timeInst = instC

IPC .
We can also estimate the integer and FP instruction over-
lap as timeInstOverlap = timeInstInt + timeInstFP− timeInst, where
timeInstInt = instIntC

IPC and timeInstFP = instFPC
IPC .

3.2. Memory subsystem

The memory performance could be either latency bound or
bandwidth bound. Therefore, we model memory access time

as timeMem = max(timeLat, timeBW), where timeLat is the sum of
memory access latency for all memory references and timeBW
is the time to transfer all memory traffic (including prefetch
traffic) over the memory bus.

timeBW = (LDCbase+STCbase)×lineSizeLLC
bwCC , where LDC, STC, and

bwCC are respectively loads per core, stores per core,
and bandwidth per core per cycle, LDCbase = LDbase/activeCores,
STCbase = STbase/activeCores, bwCC = BW

activeCores× f req .

timeLat = numAccessC
MPC , where numAccessC is the number of

memory accesses per core and MPC is memory accesses per
cycle. For the instruction pipeline, instruction level parallelism
(ILP) directly impacts pipeline stalls and thus instructions per
cycle (IPC). Similarly, memory access is also pipelined, and
memory-level parallelism (MLP) directly impacts memory
accesses per cycle (MPC), MPC = min(1, MLP

aML), where aML is
average memory access latency, calculated as a weighted av-
erage of access latency to all levels of memory hierarchy,

aML =
∑
i

latencyMemLeveli×numAccessMemLeveli

numAccessC . Note that MPC = 1, in an
ideal situation of sufficent MLP, that is MLP≥ aML. MLP is
calculated as

MLP = MLPbase +(ILP− ILPbase)×accessPerInstbase

accessPerInstbase =
numAccessCbase

instCbase

MLPbase = MPCbase×aMLbase, MPCbase =
numAccessCbase

timeLatbase

We estimate timeLatbase as the average of its lower
and upper bound (note that timeLatmax cannot exceed
timeCodeBockbase). At the lower bound of timeLatbase, we
use the minimum memory latency (MPC = 1); at the upper
bound, the maximum memory latency is bound by average
access latency to all memory hierarchies.

timeLatbase = avg(timeLatmin, timeLatmax)

timeLatmin =
numAccessCbase
MPCbase(max)

= numAccessC, MPCbase(max) = 1

timeLatmax = min(numAccessCbase
MPCbase(min)

, timeCodeBlockbase)

MPCbase(min) =
MLPbase(min)

aMLbase
= 1

aMLbase

aMLbase =
∑
i

latencyMemLevelbase(i)×numAccessMemLevelbase(i)

numAccessCbase

We use a well-known empirically observed power law
relation to estimate the effects of cache size on miss rate
missRate = missRatebase× (cacheSize

cacheSizebaseline
)−0.5. Hartstein et al. use a

statistical model to analytically explain why the power law
relation is obeyed [20]. To account for the effects of cache
contention among multiple threads, we allocate an evenly
divided portion of cache to each thread. Although our frame-
work allows more sophisticated cache and contention mod-
els [2, 9, 10, 18] to be incorporated, we observe power law
approximation and uniform allocation provide sufficiently ac-
curate results, as we will show in Section 4. Regarding model-
ing cache coherency, our baseline measurements do include
the effect of coherence traffic and we assume a linear scaling of
this effect in performance prediction; our framework is exten-
sible for advanced coherency models to predict the non-linear
effect and the impact of changed coherence protocols.

5

1 2 4 8 16
Number of threads

108

109

1010
T
im

e
 (

cy
cl

e
s)

0.2%

0.6%
9.2% 22.8%

Measured Predicted Linear

(a) Total time. Blue dashed line indicates linear time
scaling.

1 2 4 8 16
Number of threads

0
1
2
3
4
5
6
7

T
im

e
 (

cy
cl

e
s)

1e8

L1

L1p

LLC

DDR

(b) Predicted memory latency time. Blue line indi-
cates predicted memory bandwidth time.

Figure 4: Threads scaling performance prediction for add2s.

4. Model validation
We validate our models for (1) same-architecture performance
prediction for threads scaling, cache contention, and simul-
taneous multithreading on BGQ, and (2) cross-architecture
performance prediction from BGQ to Xeon Phi.

4.1. Threads scaling

We use our models to predict the runtime of executions on
BGQ that use up to 16 threads based on the performance char-
acterization for an execution that uses a single thread. We
select several code blocks from a fluid dynamics code Nek-
bone [14], that solves a Poisson equation using a conjugate
gradient method. The code blocks are representative of dif-
ferent scaling performance. Figures 4, 5, and 6, show the
measured and predicted runtime respectively for code blocks
named add2s, dp, and grad.

The prediction errors at 16 threads range from 3–22%. For
example, in Figure 4a, the predicted time follows well with the
measured time, and the performance stops scaling linearly at
4 threads. This is because the memory latency time becomes
smaller than the memory bandwidth time at 4 threads (Fig-
ure 4b), which changes the performance from latency-bound
to bandwidth-bound. Similarly, the linear performance scaling
stops at 8 threads for dp (Figure 5); and for grad, the perfor-
mance continues to scale linearly up to 16 threads because
memory latency has always been the bottleneck, and it scales
linearly with the number of threads (Figure 6).

4.2. Cache contention

We use our cache models based on power law approximation
and uniform allocation to predict cache hit rate for 2-threads-

1 2 4 8 16
Number of threads

108

109

1010

1011

T
im

e
 (

cy
cl

e
s)

0.8%
2.0%

3.8% 9.1%

Measured Predicted Linear

(a) Total time. Blue dashed line indicates linear time
scaling.

1 2 4 8 16
Number of threads

0
1
2
3
4
5
6
7
8

T
im

e
 (

cy
cl

e
s)

1e9

L1

L1p

LLC

DDR

(b) Predicted memory latency time. Blue line indi-
cates predicted memory bandwidth time.

Figure 5: Threads scaling performance prediction for dp.

1 2 4 8 16
Number of threads

109

1010

1011

T
im

e
 (

cy
cl

e
s) 0.2%

0.2%

1.8%

3.5%

Measured Predicted Linear

(a) Total time. Blue dashed line indicates linear time
scaling.

1 2 4 8 16
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

cy
cl

e
s)

1e10

L1

L1p

LLC

DDR

(b) Predicted memory latency time. Blue line indi-
cates predicted memory bandwidth time.

Figure 6: Threads scaling performance prediction for grad.

per-core and 4-threads-per-core cases based on the perfor-
mance characterization for the 1-thread-per-core case. Both
baseline and target processor are BGQ. Table 5 lists the pre-
diction results for four code blocks. Our simple cache model
works very well and achieves a cache hit rate prediction error
between 0.3% and 3.48%. For example, for the code block dp,
we accurately predict the cache hit drop due to the contention
of multiple threads.

6

Table 5: Predict L1 cache hit rate for contending threads.

Threads per core Hit rate grad add2s glsc dp

1 measured 0.9573 0.9973 0.9919 0.9515

measured 0.9229 0.9781 0.9794 0.9224
2 predicted 0.9396 0.9962 0.9885 0.9314

error 1.78% 1.82% 0.93% 0.97%

measured 0.9118 0.96 0.9789 0.9086
4 predicted 0.9146 0.9946 0.9838 0.903

error 0.31% 3.48% 0.50% 0.62%

4.3. Simultaneous multithreading (SMT)

We use our models to predict SMT performance for 2-threads-
per-core and 4-threads-per-core cases based on the perfor-
mance characterization for the 1-thread-per-core case. Both
baseline and target processor are BGQ. Figures 7, 8, and 9
show the measured and predicted runtime respectively for
code blocks grad, add2s, and dp. The prediction errors for 4
threads per core range from 13.2–19.2%.

Take code block grad for example (Figure 7a). As we use
more threads per core, both instruction execution time (red
column) and memory access time (yellow column) decrease.
The reduction of the instruction time is due to the increased
ILP and the overlap of integer and FP instructions. The reduc-
tion of the memory access time is due to the increased MLP,
despite the slight increase of average memory access latency
aML due to the cache contention of simultaneous threads (Fig-
ure 7b).

In contrast, the total runtime for code block add2s does
not reduce much at more threads per core (Figure 8a). This is
because the majority of runtime is taken by the memory access
time, which is bound by bandwidth and does not change with
the number of threads per core (Figure 8b). The runtime at
4 threads per core actually increases rather than decreases.
Further examination reveals that more dynamic instructions
are executed, most likely due to the extra OpenMP thread
management overhead. For dp (Figure 9a), from 2 to 4 threads
per core, the runtime does not decrease as much as for grad
because the memory access time becomes bandwidth-bound
from latency-bound at 2 threads per core (Figure 9b).

4.4. Cross-architecture performance prediction

We use the performance characterization on the baseline pro-
cessor BGQ to predict the performance on a target processor
Xeon Phi. Figure 10 shows measured and predicted perfor-
mance for three code blocks. We compare the prediction
results for three models: “naive", “model”, and “with inst
diff”. The “naive” model simply scales the runtime according
to the difference in dynamic instruction count caused by the
compiler and ISA differences. Both “model” and “with inst
diff” use our performance models; “model” does not take into
account dynamic instruction count difference, while “with
inst diff” does. We examined the sources of the instruction

1 2 4
Threads per core

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 (

cy
cl

e
s)

1e9

6.1%

15.8%

Instruction

Overlap

Memory

(a) Total time. Blue
columns are measured
time. At 1 thread per
core, measured time
= predicted time. The
percentage number
above a column is
prediction error.

1 2 4
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 (

cy
cl

e
s)

1e9

(1.6,4.0)

(2.1,4.4)

(3.4,4.9)

L1

L1p

LLC

DDR

(b) Predicted mem lat time.
Blue line indicates
predicted mem BW
time. The two numbers
above a column are
(MLP,aML).

Figure 7: Predict SMT performance for grad.

1 2 4
Threads per core

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

cy
cl

e
s)

1e8

0.3%
13.2%

Instruction

Overlap

Memory

(a) Total time. Blue
columns are measured
time. At 1 thread per
core, measured time
= predicted time. The
percentage number
above a column is
prediction error.

1 2 4
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 (

cy
cl

e
s)

1e8

(1.8,7.7) (2.3,9.6)
(3.5,12.2)

L1

L1p

LLC

DDR

(b) Predicted mem lat time.
Blue line indicates
predicted mem BW
time. The two numbers
above a column are
(MLP,aML).

Figure 8: Predict SMT performance for add2s.

1 2 4
Threads per core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 (

cy
cl

e
s)

1e9

9.2%

19.2%

Instruction

Overlap

Memory

(a) Total time. Blue
columns represent
measured time. At 1
thread per core, mea-
sured time = predicted
time. The percentage
number above a column
is prediction error.

1 2 4
Number of threads

0

1

2

3

4

5

T
im

e
 (

cy
cl

e
s)

1e8

(1.6,4.1)

(2.1,4.5)

(3.4,5.0)

L1

L1p

LLC

DDR

(b) Predicted mem lat time.
Blue line indicates
predicted mem BW
time. The two numbers
above a column are
(MLP,aML).

Figure 9: Predict SMT performance for dp.

7

1 2 4 8 16
Number of threads

107

108

109

1010
T
im

e
 (

cy
cl

e
s)

Measured

Predicted from BGQ (naive) - error: 72.3%

Predicted from BGQ (model) - error: 36.0%

Predicted from BGQ (with inst diff) - error: 13.1%

(a) add2s

1 2 4 8 16
Number of threads

108

109

1010

T
im

e
 (

cy
cl

e
s)

Measured

Predicted from BGQ (naive) - error: 38.2%

Predicted from BGQ (model) - error: 28.6%

Predicted from BGQ (with inst diff) - error: 16.0%

(b) glsc

1 2 4 8 16
Number of threads

109

1010

1011

T
im

e
 (

cy
cl

e
s)

Measured

Predicted from BGQ (naive) - error: 22.5%

Predicted from BGQ (model) - error: 25.7%

Predicted from BGQ (with inst diff) - error: 5.2%

(c) grad

Figure 10: Performance prediction from BGQ to Xeon Phi. In
the legend, we show the average error for the predic-
tions.

count difference and discovered they are mostly from compiler-
generated instructions for prefetching and vector load/store
pack/unpacking. For different code blocks, the observed in-
struction count for Xeon Phi could be up to 20% less and up
to 40% more than that for BGQ. Overall, “model” produces
significantly more accurate predictions than “naive”; “with
inst diff” further reduces the errors to 5–16%.

One difficulty in cross-architecture performance prediction
lies in a different dynamic instruction count resulted from ISA
and compiler differences. We currently measure the dynamic
instruction count on Xeon Phi to gauge the impact of this factor.
Nevertheless, we do not require users to measure instruction
count on target platforms; this is just an optional extra step
to improve accuracy, especially for projections across very
different architectures. Without it, we can still achieve reason-
able accuracy and provide performance insights. Future work
could use compiler techniques to estimate the instruction count
change. Furthermore, we expect much smaller ISA and com-
piler differences in projecting performance within a processor
line (e.g., BGP to BGQ, Xeon Phi to its next generation).

4.5. Summary

We have showed our models are able to capture complex ef-
fects and interactions of architectural components and perfor-
mance factors including instruction pipeline, cache, memory
bandwidth, and number of threads. Our models achieve good
accuracy across a variety of validation experiments including
threads scaling (3–22% error), cache contention (0.3–3.48% er-
ror), SMT performance (13–19% error), and cross-architecture
prediction (5–16% error).

5. Performance Analysis
We demonstrate our models in analyzing processor perfor-
mance for a set of applications. In our analysis, we provide
instruction and memory time breakdown. For instruction time,
we further break it down to integer and FP instruction time;
for memory time, we further break it down to latency and
bandwidth time (the latency time could be further divided to
time to different levels of memory hierarchy). This type of
analysis is different from performance characterization using
raw hardware counter data [16] in that it processes the raw
hardware counter-based performance characteristics with our
models and provides important information on performance
bottlenecks of the studied processor.

5.1. Application performance analysis

For our study, we select five scientific codes from the CORAL
benchmarks [1]: Nekbone, Qbox, LULESH, AMG, and UMT.
The CORAL benchmarks are formed according to the mission
needs of the U.S. Department of Energy and currently used by
three national labs (Oak Ridge, Argonne, and Livermore) to
evaluate and design future architectures. All application codes
have been parallelized using both MPI and OpenMP. In our
experiments, we always select a combination of MPI tasks and
OpenMP threads to fully utilize all cores of a processor and to
minimize the time to solution. Note that this is a node-level
study on processor and memory architecture, and we run MPI
tasks on cores within a processor (all MPI communication
traffic are included in the memory traffic).

Figure 11 shows the performance analysis for major code
blocks in Nekbone and Qbox on BGQ. Two major observa-
tions are: (1) there is no single code block that takes more
than 50% of the total application time, and (2) different code
blocks observe different performance bottlenecks in integer/FP
pipeline, memory latency, and memory bandwidth. Note that
the memory performance for a code block could be either
latency-bound or bandwidth-bound, so the memory time is
completely taken by either latency time or bandwidth time.

Figure 12 shows the performance analysis for all five ap-
plications on BGQ. For each application, we aggregate the
instruction and memory timings of all code blocks to derive
the application-level performance analysis. The major ob-
servations are: (1) with the exception of Nekbone, most ap-
plications are bound more by memory latency time than by

8

glsc grad add2s dp gsop
Code blocks

0.0

0.5

1.0

1.5

2.0
T
im

e
 (

cy
cl

e
s)

1e9

Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

(a) Nekbone

wf gram charge energy vhxc
Code blocks

0

1

2

3

4

5

6

7

8

T
im

e
 (

cy
cl

e
s)

1e9

Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

(b) Qbox

Figure 11: Performance analysis on BGQ for code blocks in Nek-
bone and Qbox. For each code block, we show three
columns. The middle column shows instruction exe-
cution and memory access time breakdown; the left
column show the integer and FP instruction execu-
tion time breakdown; the right column shows the
memory latency and bandwidth time breakdown.

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 12: Performance analysis on BGQ for five applications.
For detailed explanations on clustered columns, refer
to the caption of Figure 11.

memory bandwidth time, which suggests cache improvements
will benefit the performance; (2) most applications spend the
majority of instruction execution time in processing integer
instructions, which suggests adding more integer pipelines in
a core would benefit the performance.

5.2. Architecture comparison

To compare the architecture features between BGQ and Xeon
Phi, we analyze the performance of two code blocks that
are respectively representative for two scenarios: (1) instruc-
tion execution (and memory latency) bound, and (2) memory
bandwidth bound. Figure 13 shows the performance analysis
results. To compare on a per-core basis, we have scaled the
timings according to the core count difference between BGQ
and Xeon Phi.

For code block grad, BGQ and Xeon Phi have comparable
performance (Figure 13a). The performance of grad is mostly

BGQ Xeon Phi
0

1

2

3

4

5

6

T
im

e
 (

cy
cl

e
s)

1e8

Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

(a) Total time breakdown
for grad.

BGQ Xeon Phi
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

cy
cl

e
s)

1e7

Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

(b) Total time breakdown
for add2s.

BGQ Xeon Phi
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
e
rc

e
n
ta

g
e

L1

L1p

LLC

DDR

(c) Memory hit distribution
for grad.

BGQ Xeon Phi
0

1

2

3

4

T
im

e
 (

cy
cl

e
s)

1e8

L1

L1p

LLC

DDR

(d) Memory latenty time
breakdown for grad.

Figure 13: Performance comparison between BGQ and Xeon
Phi for code blocks grad and add2s.

instruction execution bound and memory latency bound, and
most of the memory latency is hidden (overlapped with in-
struction execution). The slightly longer instruction time on
Xeon Phi is mostly due to the increased dynamic instruction
count as a result of compiler-inserted memory prefetch instruc-
tions. The memory latency time on Xeon Phi is slightly higher,
mostly due to its longer DDR access latency (Figure 13d and
Table 3). Xeon Phi has a larger L1 cache (32 KB) than BGQ
(16 KB), which results in a higher L1 cache hit rate (Fig-
ure 13c) and more time spent in accessing L1 and less time in
LLC (Figure 13d).

For code block add2s, Xeon Phi performs about 2× better
than BGQ (Figure 13b). This is mainly because add2s is
mostly memory bandwidth bound, and Xeon Phi has 1.7×
more per-core bandwidth than BGQ (Table 3).

In summary, BGQ and Xeon Phi have comparable instruc-
tion pipeline and cache performance. Although Xeon Phi has
a larger L1 cache, this advantage is offset by its longer DDR la-
tency. Xeon Phi has 1.7× more bandwidth per core than BGQ,
which translates to almost the same ratio of real performance
benefit for bandwidth-bound program.

6. Architecture Exploration

We demonstrate Raexplore in exploring architecture scaling
options for BGQ. The studied architectural features include
core count, L1 and LLC size, and memory bandwidth. By
scaling these features in both directions (up and down), this
type of study has a two-fold purpose: (1) evaluate the design
balance of a current/baseline processor, and (2) explore scaling
opportunities for its potential future design.

9

amg lulesh nekbone qbox umt
Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-88%
-99%

-80% -84% -92%

-0% 0% -0% -0% 0%

27%
50%

32% 30%
45%40%

74%

43% 41%
57%

46%

87%

48% 46%
63%

Inst Inst-mem-overlap Mem

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 14: Core scaling. For each application, the 6 columns rep-
resent the total execution time for (baseline, 0.5, 1, 2,
4, 8), where the numbers in the brackets represent
the scaling factor. The number above a column is the
runtime difference from the baseline. Blue line indi-
cates measured time for the baseline processor.

6.1. Core scaling

We scale the BGQ core count (16) to see its performance im-
pact. As shown in Figure 14, if we reduce the number of the
cores to half, the runtimes of all applications are almost dou-
bled. If we double the number of cores, the runtime reduction
is between 27% (AMG) to 50% (LULESH). A further in-
crease of core count will have diminishing performance return
because the performance becomes more and more memory
bound (by either memory latency or bandwidth) as shown in
Figure 14. This means the memory resources including cache
and bandwidth need to keep up to accommodate more cores.

Overall, the core count is in a good balance with the rest
of the architecture and leans towards the underdesign side.
However, since the design is also constrained by chip area
and power, increasing core count may not be possible. Note
that an overdesign would mean changing (either increase or
decrease) the core count does not affect performance much,
and an underdesign would mean changing it would affect
performance near linearly.

6.2. L1 cache scaling

We scale the baseline L1 cache size (16 KB) to see its perfor-
mance impacts. As shown in Figure 15b, the memory latency
time is very sensitive to the L1 size; the larger the cache, the
more L1 hits and L1’s contribution to the total latency time,
but the less LLC’s contribution. We see diminished returns of
increasing the L1 size, as LLC’s contribution becomes less and
less. The improved latency time translates to a overall runtime
reduction of up to 12% for LULESH and 6% on average for
all applications if we increase the L1 size by 4× (Figure 15a).
AMG shows a minimum performance improvement with in-
creased L1 size. Our investigation reveals that if we double
the L1 size, the memory time of AMG becomes primarily
bandwidth bound (Figure 16) and thus no longer affected by
the L1 size. Overall, the designed L1 size is in a good balance
with the rest of the architecture, and increasing it will also give
considerable performance benefit.

6.3. Last level cache (LLC) scaling

Figure 17 shows how scaling BGQ’s LLC (L2) size (1
MB/core) will impact the performance. For our applications,
the LLC size seems overdesigned. Reducing the LLC size by

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-12%
-24%

-13% -12% -14%
-5% -10% -5% -5% -6%

1%
7% 3% 3% 4%1%

12%
5% 5% 7%

1%

16%
7% 6% 9%

Inst Inst-mem-overlap Mem

Ti
m

e
(n

or
m

al
iz

ed
)

(a) total runtime.

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-28%

-51%
-39%

-26% -29%

-11%
-21% -16% -11% -12%

8%
15% 11% 8% 8%14%

26%
19%

13% 14%18%

33%
25%

17% 19%

L1 latency L1p latency LLC latency DDR latency

Ti
m

e
(n

or
m

al
iz

ed
)

(b) Memory latency time breakdown.

Figure 15: L1 cache scaling. For each application, the 6 columns
represent the total execution time for scaling factor
set (baseline, 0.25, 0.5, 2, 4, 8).

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 16: Time breakdown for increasing L1 by 2×.

half only gives a small performance penalty of up to 7% for
Qbox and 3.8% on average for all applications; doubling it
only gives a slight performance increase between 1-5%.

6.4. Bandwidth scaling

Figure 18 shows how memory bandwidth scaling will impact
BGQ’s performance. If we decrease the bandwidth by half, the

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-11%
-2% -4%

-17%
-11%

-5% -1% -1%
-7% -5%

1% 1% 1% 5% 3%1% 1% 1% 6% 6%1% 1% 2% 6% 7%

Inst Inst-mem-overlap Mem

Ti
m

e
(n

or
m

al
iz

ed
)

(a) total runtime.

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

-27%

-4%
-12%

-35%
-22%

-11%
-2% -5%

-15% -9%

8%
1% 4%

10% 6%
13%

2% 6%
18%

11%
17%

3% 8%

23%
14%

L1 latency L1p latency LLC latency DDR latency

Ti
m

e
(n

or
m

al
iz

ed
)

(b) Memory latency time breakdown.

Figure 17: LLC size scaling. For each application, the 6 columns
represent the total execution time for scaling factor
set (baseline, 0.25, 0.5, 2, 4, 8).

10

amg lulesh nekbone qbox umt
Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-142%

0%

-129% -137%

-73%

-46%

0%

-37% -40%

-11%
2% 0% 8% 2% 1%2% 0% 10% 2% 1%

Inst Inst-mem-overlap Mem

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 18: Bandwidth scaling. For each application, the 5
columns represent the total execution time for scal-
ing factor set (baseline, 0.25, 0.5, 2, 4).

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Inst

Inst-mem-overlap

Mem

Mem lat

Mem bw

Integer

FP-int-overlap

FP

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 19: Time breakdown for decreasing bandwidth by half.

total runtime will increase significantly except LULESH, this
is because the memory time changes to bandwidth bound from
latency bound for all applications except LULESH as shown
in Figure 19. On the other hand, doubling the bandwidth will
not result in much performance benefit except with Nekbone,
because the memory time of all applications except Nekbone is
primarily bound by memory latency (Figure 12). The designed
bandwidth is just in the right balance with the rest of the
architecture.

6.5. Constraint-based exploration

We demonstrate our modeling framework in exploring archi-
tectural tradeoffs under chip area constraint. The hypothetical
scenario for our study is: to develop a future processor based
on BGQ with a 2× chip area (transistor) budget. How should
we optimally allocate the chip area to cores and LLC? While a
straightforward scaling option is to double both the cores and
LLC, we also include other options which all keep the total
chip area same (based on our measurement on the BGQ die
photo; one BGQ core roughly takes the same area as 1 MB
of LLC). For the future processor, we hypothetically increase
the L1 cache size by 4× to 64 KB, and increase the mem-
ory bandwidth by 3× (anticipating new technologies such as
stacked memory). We assume the higher L1 size and memory
bandwidth do not significantly affect the chip area.

Figure 20 shows the predicted time for the different core
count and LLC size options. The (56 cores, 8 MB LLC) option
turns out to be the sweet spot for most applications, which is
on average 14% better than the straightforward scaling option
(32 cores, 32 MB LLC). This suggests that having more cores
would benefit more than having more LLC. However, we
should note that power is the main design constraint in today’s
processors, and having too many cores may exceed the design
power envelope.

We have demonstrated our performance modeling frame-

amg lulesh nekbone qbox umt
Applications

0.0

0.2

0.4

0.6

0.8

1.0

1.2

14% 13%
20% 17%

13%

54% 56% 55% 54% 54%
64%

70%
66% 64% 66%66%

74%
69%

64% 68%65%
75%

69%
61%

66%

Inst Inst-mem-overlap Mem

Ti
m

e
(n

or
m

al
iz

ed
)

Figure 20: Core-LLC tradeoff exploration. For each applica-
tion, the 5 columns represent the total execution time
for (cores, LLC (MB)) set {(16, 16), (16, 48), (32, 32),
(48, 16), (56, 8), (60, 4)}.

work for evaluating the design balance and exploring future
scaling options for BGQ. In summary, the designed core count
and L1 cache size are in good balance with the rest of the archi-
tecture and lean towards the underdesign side. The LLC size
seems overdesigned. The bandwidth is balanced well with the
rest of the architecture. For a future processor based on BGQ,
more cores, together with correspondingly larger L1 cache
and higher bandwidth, will continue to scale the performance,
while the LLC size could be kept same or even shrink. Note
that these recommendations should be taken with two caveats
in mind: (1) they are specific to the selected applications of
our interests, and (2) they should be considered along with the
design constraints in chip area and power.

7. Related Work
In this work, we develop a performance modeling framework.
By combining hardware counter-based performance measure-
ments and analytical processor models, we reduce the process
of architecture exploration to a matter of evaluating a set of
mathematical formulas, which enables rapid and systematic
search of processor design space for large programs and even
full applications.

We see several works that are most similar in spirit to ours.
Luo et al. [5, 33] use hardware counter data combined with an-
alytical models to estimate the overlap of instruction execution
and memory access for out-of-order processors. However, the
focus of their work is to analyze the performance of existing
processors, rather than exploring architecture for future pro-
cessors. Saavedra and Smith [40] build machine and program
execution models to estimate execution time for arbitrary ma-
chine/program combinations. Their technique relies heavily
on static program analysis (assisted with runtime profiling)
and thus has difficulties in taking into account compiler opti-
mizations and dynamic program behaviors; in contrast, we use
hardware counter data as inputs to our models so that these
issues are easily and automatically handled. Carrington et
al. [7, 43] build a modeling framework to predict applica-
tion performance on future systems by combining simulation
traces and machine profiles (collected by micro-benchmarks).
In comparison, our approach relies on fast hardware counter-
based profiling instead of several orders of magnitude slower
program simulation. Because hardware counter data do not
provide complete performance information, it requires more
reasoning ability of our models to develop lower and upper

11

bounds of unknown factors. Krishna et al. [30] estimate upper
performance bounds of applications through static program
analysis. The advantages of their technique are the ease of
use and not requiring runtime profiling. However, it is at
the cost of not considering dynamic program behaviors; their
technique also uses relatively simple hardware models.

There have been studies on analytical models of specific
architecture features such as cache [2, 18, 45] and superscalar
pipeline [13,28]. Their focus is on the performance prediction
of exact architecture features, while ours is on a methodology
and an implemented framework to enable rapid, automated
architecture search, as well as a demonstration for a set of
applications on two recent processors.

Orthogonal and complementary to analytical modeling,
simulation-based techniques have seen a great deal of recent
developments. To speed up simulation (or reduce the num-
ber of simulations in architecture exploration), a variety of
methods have been proposed including efficient paralleliza-
tion [41], combined analytical modeling [6, 39], application
abstraction [17], statistical sampling [46], and machine learn-
ing [26, 27, 29].

Domain-specific languages for modeling program behaviors
are also developed [34, 35, 44]. Such languages require user-
written code annotations or skeletons and need to be combined
with hardware performance models to make a performance
prediction. Other related works include very high-level bound-
based Roofline performance modeling [47] and model-guided
compiler and program optimizations [11, 12, 15, 36]. These
studies require detailed, often manual analysis to model algo-
rithm/program behaviors; they also have an application focus
and use relatively simple processor models.

8. Software Release

Raexplore is implemented in Python (with plotting features
using matplotlib). We will release Raexplore as an open-
source tool. We have also developed a web application for
it with features for users to manage and share architecture
configurations and application profiles. Raexplore currently
accepts hardware counter data from Intel VTune and IBM
HPM, but is made modular and extensible for other profiling
tools (e.g., PAPI [38]) or architecture simulators (e.g., M5 [4]),
as well as integrating hardware models for other processors
(e.g., GPU, DSP, ARM, and x86 multicores).

9. Conclusion

We have developed a novel performance modeling methodol-
ogy that combines experimental and analytical approaches to
overcome their shortcomings and gain the merits of both: fast,
accurate, insightful. As a result, this hybrid approach is able to
model, predict, and analyze the cross-architecture performance
for full applications in little time. To our knowledge, such
capability cannot be achieved by current technologies that are
purely based on measurement, analytical modeling, or simula-

tion, yet this capability is highly desired in co-designing next-
generation manycore processors driven by a set of applications.
The paper describes our first step proposing this methodology
and focuses on trending power-efficient BGQ/Xeon Phi-style
architectures for a set of HPC applications.

The great promise of analytical modeling is that it expresses
the relation between performance and architectural compo-
nents in mathematical formulas and thus allows a formal basis
for computer architects to reason about and optimize archi-
tecture design. By combining with experimental evaluation,
we made this approach practical for large applications. We
envision our performance modeling framework could serve
as a platform for future researchers to build a model library
for a variety of both conventional and novel processors and
to analytically and systematically compare their strengths and
weaknesses targeting various applications. In addition to per-
formance models, it would also be highly desired to combine
them with chip area and power models and thus mathemati-
cally formulate the architecture design problem as a perfor-
mance optimization problem with resource constraints.

Acknowledgment

We thank John Owens, Rong Ge, Andrey Vladimirov, and
the anonymous reviewers for their comments and suggestions.
We also thank James Collins for his careful editing of the
manuscript. This work is supported by the U.S. Department of
Energy under contract DE-AC02-06CH11357 and the LDRD
X-PECT project 2013-213-NO. The research used resources
of the Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

References
[1] “The coral benchmarks,” https://asc.llnl.gov/CORAL-benchmarks/.
[2] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache

model,” ACM Trans. Comput. Syst., vol. 7, no. 2, pp. 184–215, May
1989.

[3] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and
J. Sancho, “Using performance modeling to design large-scale systems,”
Computer, vol. 42, no. 11, pp. 42–49, Nov 2009.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul. 2006.

[5] K. W. Cameron, Y. Luo, and J. Scharzmeier, “Instruction-level micro-
processor modeling of scientific applications,” in High Performance
Computing. Springer, 1999, pp. 29–40.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011, pp.
52:1–52:12.

[7] L. Carrington, N. Wolter, A. Snavely, and C. B. Lee, “Applying an au-
tomated framework to produce accurate blind performance predictions
of full-scale HPC applications,” in In Proceedings of the Department
of Defense Users Group Conference, 2004.

[8] J. Carter, L. Oliker, and J. Shalf, “Performance evaluation of scientific
applications on modern parallel vector systems,” in Proceedings of
the 7th International Conference on High Performance Computing for
Computational Science, 2007, pp. 490–503.

12

https://asc.llnl.gov/CORAL-benchmarks/

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in Proceed-
ings of the 11th International Symposium on High-Performance Com-
puter Architecture, 2005, pp. 340–351.

[10] X. E. Chen and T. Aamodt, “Modeling cache contention and throughput
of multiprogrammed manycore processors,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 913–927, Jul. 2012.

[11] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning
of sparse matrix-vector multiply on gpus,” in Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2010, pp. 115–126.

[12] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Optimization and performance modeling of stencil computations on
modern microprocessors,” SIAM Rev., vol. 51, no. 1, pp. 129–159, Feb.
2009.

[13] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM
Trans. Comput. Syst., vol. 27, no. 2, pp. 3:1–3:37, May 2009.

[14] P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, and S. Kerkemeier,
“Nek5000–open source spectral element CFD solver,” 2008, https:
//nek5000.mcs.anl.gov/.

[15] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on hpc platforms,” in Proceedings of the International Conference on
Supercomputing, 2011, pp. 172–181.

[16] K. Ganesan, L. John, V. Salapura, and J. Sexton, “A performance
counter based workload characterization on Blue Gene/P,” in Proceed-
ings of the 37th International Conference on Parallel Processing, 2008,
pp. 330–337.

[17] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:
Raising the level of abstraction in architectural simulation,” in Pro-
ceedings of the 16th International Symposium onHigh Performance
Computer Architecture (HPCA), Jan 2010, pp. 1–12.

[18] F. Guo and Y. Solihin, “An analytical model for cache replacement
policy performance,” SIGMETRICS Perform. Eval. Rev., vol. 34, no. 1,
pp. 228–239, Jun. 2006.

[19] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-
vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara,
G. Chiu, P. Boyle, N. Chist, and C. Kim, “The IBM Blue Gene/Q com-
pute chip,” IEEE Micro, vol. 32, no. 2, pp. 48–60, Mar. 2012.

[20] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma, “On the nature
of cache miss behavior: Is it

√
2?” The Journal of Instruction-Level

Parallelism, vol. 10, pp. 1–22, 2008.
[21] IBM, “Hardware performance monitor (HPM) toolkit users guide,”

2014.
[22] Intel, “Stream on Intel Xeon Phi coprocessors,” 2013,

http://software.intel.com/sites/default/files/article/370379/
streamtriad-xeonphi-3.pdf.

[23] ——, “Intel Xeon Phi coprocessor system software developers guide,”
2014.

[24] ——, “Intel Xeon Phi core micro-architecture,” 2014, http://software.
intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture.

[25] ——, “VTune performance analyzer,” 2014.
[26] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach

to performance prediction for parallel applications,” in Proceedings of
the 11th International Euro-Par Conference on Parallel Processing,
2005, pp. 196–205.

[27] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. d. Supinski, and
M. Schulz, “Efficient architectural design space exploration via pre-
dictive modeling,” ACM Trans. Archit. Code Optim., vol. 4, no. 4, pp.
1:1–1:34, Jan. 2008.

[28] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” SIGARCH Comput. Archit. News, vol. 32, no. 2, pp. 338–, Mar.
2004.

[29] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using predictive
modeling for cross-program design space exploration in multicore
systems,” in Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, 2007, pp. 327–338.

[30] S. Krishna Narayanan, B. Norris, and P. D. Hovland, “Generating
performance bounds from source code,” in Proceedings of the 39th
International Conference on Parallel Processing Workshops (ICPPW).
IEEE, 2010, pp. 197–206.

[31] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams,
L. Oliker, and F.-J. Pfreund, “Hardware/Software co-design for energy-
efficient seismic modeling,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 73:1–73:12.

[32] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and
S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’07, 2007, pp. 249–258.

[33] Y. Luo, O. M. Lubeck, H. Wasserman, F. Bassetti, and K. W. Cameron,
“Development and validation of a hierarchical memory model incorpo-
rating CPU- and memory-operation overlap model,” in Proceedings of
the 1st International Workshop on Software and Performance, 1998,
pp. 152–163.

[34] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram,
“GROPHECY: GPU performance projection from CPU code skeletons,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 14:1–14:11.

[35] J. Meng, V. A. Morozov, V. Vishwanath, and K. Kumaran, “Dataflow-
driven GPU performance projection for multi-kernel transformations,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp. 82:1–82:11.

[36] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs,” in Proceedings
of the 23rd International Conference on Supercomputing (ICS ’09),
Jun. 2009, pp. 256–265.

[37] V. Morozov, K. Kumaran, V. Vishwanath, J. Meng, and M. Papka,
“Early experience on the Blue Gene/Q supercomputing system,” in
IEEE 27th International Symposium on Parallel Distributed Processing
(IPDPS), May 2013, pp. 1229–1240.

[38] PAPI team at the University of Tennessee Knoxville, “PAPI: Perfor-
mance application programming interface,” 2014, http://icl.cs.utk.edu/
papi.

[39] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero, “On the simulation of large-scale
architectures using multiple application abstraction levels,” ACM
Trans. Archit. Code Optim., vol. 8, no. 4, pp. 36:1–36:20, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2086696.2086715

[40] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” ACM Trans. Comput. Syst.,
vol. 14, no. 4, pp. 344–384, Nov. 1996.

[41] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, 2013, pp.
475–486.

[42] J. Shalf, D. Quinlan, and C. Janssen, “Rethinking hardware-software
codesign for exascale systems,” Computer, vol. 44, no. 11, pp. 22–30,
2011.

[43] A. Snavely, N. Wolter, and L. Carrington, “Modeling application per-
formance by convolving machine signatures with application profiles,”
in Proceedings of the IEEE International Workshop on the Workload
Characterization, 2001, pp. 149–156.

[44] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language
for performance modeling,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 84:1–84:11.

[45] G. Sun, C. J. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y.-K.
Chen, “Moguls: A model to explore the memory hierarchy for band-
width improvements,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture, 2011, pp. 377–388.

[46] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, Jul. 2006.

[47] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

13

https://nek5000.mcs.anl.gov/
https://nek5000.mcs.anl.gov/
http://software.intel.com/sites/default/files/article/370379/streamtriad-xeonphi-3.pdf
http://software.intel.com/sites/default/files/article/370379/streamtriad-xeonphi-3.pdf
http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
http://icl.cs.utk.edu/papi
http://icl.cs.utk.edu/papi
http://doi.acm.org/10.1145/2086696.2086715

	Introduction
	Methodology
	Analytical performance models
	Instruction pipeline
	Memory subsystem

	Model validation
	Threads scaling
	Cache contention
	Simultaneous multithreading (SMT)
	Cross-architecture performance prediction
	Summary

	Performance Analysis
	Application performance analysis
	Architecture comparison

	Architecture Exploration
	Core scaling
	L1 cache scaling
	Last level cache (LLC) scaling
	Bandwidth scaling
	Constraint-based exploration

	Related Work
	Software Release
	Conclusion

