
Cray MPI for KNL

Peter Mendygral
pjm@cray.com

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Legal Disclaimer

2

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property

rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and

other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal

codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and

URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,

ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM, REVEAL. The following system family marks, and associated model number marks,

are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from

LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the

property of their respective owners.

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

XC Topology and Aries

CUG 2016 Copyright 2016 Cray Inc.
3

● I will not be covering details of the XC topology and

Aries interconnect

● Please refer to the following document or feel free to

talk with me at any time the rest of the workshop

http://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Agenda

● Brief Introduction to Cray MPICH

● Specific KNL optimizations including MCDRAM

● Optimizations for Hybrid (MPI/OpenMP) applications

● Application study of astrophysics code Wombat

● Q&A (feel free to ask questions along the way)

4

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Introduction to Cray MPICH

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Brief Introduction to Cray MPICH

● Cray MPI compliant with MPI 3.1
● Merge to ANL MPICH 3.2rc1 – in MPT 7.3.0 (Dec 2015)

● I/O, collectives, P2P, and one-sided all optimized for XC architecture
● SMP aware collectives

● High performance single-copy on-node communication via xpmem (not necessary to program
for shared memory)

● Highly tunable through environment variables
● Defaults should generally be best, but some cases benefit from fine tuning

● Integrated within the Cray Programming Environment
● Compiler drivers manage compile flags and linking automatically

● Profiling through Cray Perftools

6

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
7

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Cray MPI Resources

● Primary user resource for tuning and feature

documentation is the manpage

● man intro_mpi

OR

● man MPI

● Standard function documentation available as well

● E.g., man mpi_isend

8

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Key Environment Variables for XC
● MPICH_RANK_REORDER_METHOD

● Vary your rank placement to optimize communication

● Can be a quick, low-hassle way to improve performance

● Use Craypat to produce a specific MPICH_RANK_ORDER file to
maximize intra-node communication

● Or, use perf_tools grid_order command with your application's
grid dimensions to layout MPI ranks in alignment with data grid

● To use:
● name your custom rank order file: MPICH_RANK_ORDER
● export MPICH_RANK_REORDER_METHOD=3

9

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Key Environment Variables for XC

● Use HUGEPAGES

● While this is not an MPI env variable, linking and running with hugepages can

offer a significant performance improvement for many MPI communication
sequences, including MPI collectives and basic MPI_Send/MPI_Recv calls

● Most important for applications calling MPI_Alltoall[v] or performing point to point
operations with a similarly well connected pattern

● To use HUGEPAGES:

● module load craype-hugepages8M (many sizes supported)

● << compile your app >>

● module load craype-hugepages8M

● << run your app >>

 10

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Key Environment Variables for XC
● MPICH_USE_DMAPP_COLL / MPICH_RMA_OVER_DMAPP

● Most of MPI's optimizations are enabled by default, but not the DMAPP-optimized features, because…

● Using DMAPP may have some disadvantages

● May reduce resources MPICH has available (share with DMAPP)

● Requires more memory (DMAPP internals)

● DMAPP does not handle transient network errors

● These are highly-optimized algorithms which may result in significant performance gains, but user has to
request them

● Supported DMAPP-optimized functions:

● MPI_Allreduce (4-8 bytes)

● MPI_Bcast (4 or 8 bytes)

● MPI_Barrier

● MPI_Put / MPI_Get / MPI_Accumulate

● To use (link with libdmapp):

● Collective use: export MPICH_USE_DMAPP_COLL=1

● RMA one-sided use: export MPICH_RMA_OVER_DMAPP=1

11

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Key Environment Variables for XC
● MPICH GNI environment variables

● To optimize inter-node traffic using the Aries interconnect, the following are the most significant env
variables to play with (avoid significant deviations from the default if possible):

● MPICH_GNI_MAX_VSHORT_MSG_SIZE
● Controls max message size for E0 mailbox path (Default: varies)

● MPICH_GNI_MAX_EAGER_MSG_SIZE
● Controls max message size for E1 Eager Path (Default: 8K bytes)

● MPICH_GNI_NUM_BUFS
● Controls number of 32KB internal buffers for E1 path (Default: 64)

● MPICH_GNI_NDREG_MAXSIZE
● Controls max message size for R0 Rendezvous Path (Default: 4MB)

● MPICH_GNI_RDMA_THRESHOLD
● Controls threshold for switching to BTE from FMA (Default: 1K bytes)

● See the MPI man page for further details

12

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Key Environment Variables for XC

● Specific Collective Algorithm Tuning

● Different algorithms may be used for different message sizes in collectives (e.g.)

● Algorithm A might be used for Alltoall for messages < 1K.

● Algorithm B might be used for messages >= 1K.

● To optimize a collective, you can modify the cutoff points when different algorithms
are used. This may improve performance.

● MPICH_ALLTOALL_SHORT_MSG

● MPICH_ALLGATHER_VSHORT_MSG

● MPICH_ALLGATHERV_VSHORT_MSG

● MPICH_GATHERV_SHORT_MSG

● MPICH_SCATTERV_SHORT_MSG

● See the MPI man page for further details

13

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

KNL Optimizations

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Latency studies on KNL with Cray MPI

● MPI is typically all scalar code
● Lots of branches

● Lots of small functions and function calls using pointers

● With smaller Branch Target Buffer (BTB) KNL does not handle this type of
scalar code as well as the Xeon processor (even when adjusting to the
slower CPU frequency)

● Optimizing the “critical path”
● More inlining of small functions

● Using higher compiler optimization

● Hand-optimizations (avoid taking branches in critical path)

● Disable FMA sharing when not needed

● Provide a KNL-optimized memcpy

15

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

16

0

1

2

3

4

5

6

7

4 8 16 32 64 128 256 512 1024

M
ic

ro
s
e
c
o

n
d

s

MPI Message Size (bytes)

MPI Off-Node Latency
KNL (1.4 GHz) vs BDW (2.1 Ghz)

KNL MPT 733

KNL MPT 740 (Opt)

KNL uGNI

BDW MPT 733

BDW uGNI

MPI Off-node Latency on KNL

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

OS Noise Plays a Role – How Big?

● Studied performance with and without corespec (-r 1)

● MPI Latency: Collectives 1P / node

● Results show 5.5X slower when not using corespec

● MPI Latency: Collectives 2-68 P / node
● Results show 4.7X slower when not using corespec

17

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

With and Without Corespec

18

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ic

ro
s
e
c
o

n
d

s

Number of Nodes

8-byte MPI_Allreduce Performance
With and without Corespec

68p/node - KNL

Boost+Corespec

P-State+Corespec

Boost-No Corespec

Up to 4.7X slower if

Corespec is not used (-r 1)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Cray MPI support for MCDRAM on KNL
● Cray MPI will offer allocation + hugepage support for MCDRAM on KNL

● Must use: MPI_Alloc_mem() or MPI_Win_Allocate()

● Dependencies: memkind, NUMA libraries and dynamic linking.

 module load cray-memkind

● Preliminary release will expose feature via env variables

● Users select: Affinity, Policy and PageSize

● MPICH_ALLOC_MEM_AFFINITY = DDR or MCDRAM

● DDR = allocate memory on DDR (default)

● MCDRAM = allocate memory on MDCRAM

● MPICH_ALLOC_MEM_POLICY = M/ P/ I

● M = Mandatory: fatal error if allocation fails

● P = Preferred: fall back to using DDR memory (default)

● I = Interleaved: Set memory affinity to interleave across MCDRAM NUMA nodes (For SNC* cases)

● MPICH_ALLOC_MEM_PG_SZ

● 4K, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M (default 4K)

● Follow-on release will offer Info Key Support for MPI_Alloc_mem and MPI_Win_allocate
● Allows user to specify characteristics via Info keys for each call

19

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

● MPI_Alloc_mem: not restricted to be used only for communication buffers,

 or MPI’s internal buffers. Can also be used to allocate application’s data buffers

● Cray MPI does not register the memory returned by Alloc_mem

● Cray MPI also does not “touch” memory allocated via Alloc_mem()

 NUMA Affinity resolved when the memory pages are first touched by the process/threads.

 (Not ideal from a NUMA perspective to have the master thread alone touch the entire buffer right after

 allocation)

● MPI_Alloc_mem returns page-aligned memory for all page sizes

20

Cray MPI support for MCDRAM on KNL

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

● When the entire data set fits within MCDRAM, on a Quad/Flat system:

 aprun –Nx –ny numactl –membind=1 ./a.out
● Easiest way to utilize hugepages on MCDRAM

● craype-hugepage module is honored.

● Allocations (malloc, memalign) on MCDRAM will be backed by hugepages

● However, all memory allocated on MCDRAM (including MPI’s internal memory)

● Memory available per node limited to % of MCDRAM configured as FLAT memory

● Alternate solutions needed to utilize hugepage memory on MCDRAM,

when the data set per node exceeds 16G
● Necessary to identify performance critical buffers

● Replace memory allocation calls with MPI_Alloc_mem() or MPI_Win_allocate()

● Use Cray MPI env. vars to control page size, memory policy and memory affinity for allocations

21

Cray MPI support for MCDRAM on KNL
Typical use cases

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Cray MPI support for MCDRAM on KNL:
Typical Use cases (Dataset size > 16GB)

● Quad/Flat mode, without numactl options:
● malloc(), memalign() will use DDR first

● Can access MCDRAM via hbw_* or compiler directives.

● craype-hugepages module honored only on DDR

● hbw_malloc will return memory backed by basepages

● Memkind can be used to get 2M hugepages on MCDRAM (but not larger)

● Users need to identify critical buffers and use MPI_Alloc_mem() to allocate
hugepages with larger page sizes, and set affinity to MCDRAM

● Use following env. vars:

 MPICH_ALLOC_MEM_AFFINITY=M (or MCDRAM)

 MPICH_ALLOC_MEM_PG_SZ = 16M (16M hugepages)

 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

22

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Cray MPI support for MCDRAM on KNL:
Typical Use cases (Datset size > 16GB)

● Quad/Flat mode, with numactl --membind=1

● Malloc(),memalign() will use MCDRAM

● Hugepage allocations via the craype-hugepages module now possible on MCDRAM

● But, MCDRAM space is limited. Scaling issues

● Users can identify buffers not critical to application performance and use

MPI_Alloc_mem() to set affinity to DDR

● Use following env. vars:

 MPICH_ALLOC_MEM_AFFINITY=D (or DDR)

 MPICH_ALLOC_MEM_PG_SZ = <as needed, defaults to 4KB base pages>

 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

23

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
24

Using MPI_Alloc_mem/MPI_Free_mem with a
3DFFT Kernel (Fortran)

..

lenr = nx * ny * mynz

lenc = MAX((nxd2p1 * ny * mynz),

 (nxd2p1 * nz * myny))

lenm = MAX((nxd2p1 * ny * mynz),

 (nxd2p1 * nz * myny))

rc_grid = FFTW_ALLOC_REAL(lenr * nvars)

cc_grid = FFTW_ALLOC_COMPLEX(lenc * nvars)

mc_grid = FFTW_ALLOC_COMPLEX(lenm)

CALL C_F_POINTER(rc_grid, rgrid,

 (/nx, ny, mynz, nvars/))

CALL C_F_POINTER(cc_grid, cgrid,

 (/lenc, INT(nvars, C_SIZE_T)/))

CALL C_F_POINTER(mc_grid, mgrid, (/lenm/))

..

lenr = nx * ny * mynz

lenc = MAX((nxd2p1 * ny * mynz),

 (nxd2p1 * nz * myny))

lenm = MAX((nxd2p1 * ny * mynz),

 (nxd2p1 * nz * myny))

info = MPI_INFO_NULL

CALL MPI_ALLOC_MEM(lenr * nvars * 8_8, info,

 rc_grid, ierr)

CALL MPI_ALLOC_MEM(lenc * nvars * 16_8, info,

 cc_grid, ierr)

CALL MPI_ALLOC_MEM(lenm * 16_8, info,

 mc_grid, ierr)

CALL C_F_POINTER(rc_grid, rgrid,

 (/nx, ny, mynz, nvars/))

CALL C_F_POINTER(cc_grid, cgrid,

 (/lenc, INT(nvars, C_SIZE_T)/))

CALL C_F_POINTER(mc_grid, mgrid, (/lenm/))

..

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
25

Using MPI_Alloc_mem/MPI_Free_mem with a
3DFFT Kernel (Fortran)

CALL FFTW_FREE(rc_grid)

CALL FFTW_FREE(cc_grid)

CALL FFTW_FREE(mc_grid)

CALL MPI_FREE_MEM(rgrid, ierr)

CALL MPI_FREE_MEM(cgrid, ierr)

CALL MPI_FREE_MEM(mgrid, ierr)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

26

0

100

200

300

400

500

600

128 256 512 1024

G
F

lo
p

s

Number of MPI Processes (32 processes per KNL node)

Default 16HP_Module(DDR)

Alloc_mem_16HP_MCDRAM 16HP_Module_membind_1(MCDRAM)

MCDRAM Experiments with a 3DFFT Kernel

3DFFT Weak scaling (Data Grid: 1024, 1024, 1024)

MPI_Alloc_mem with hugepages offers same performance as using membind=1

Hugepages on MCDRAM performs better than DDR with the same hugepage size

Using MPI_Alloc_mem can help cases where the entire data set does not fit within MCDRAM

~10%

~10%

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Cray MPI support for MCDRAM on KNL:
On-going effort

● Info key support for MPI_Alloc_mem and MPI_Win_allocate()

● Env. vars affect the entire job, info keys can offer fine-grained controls

for each memory allocation

● Info keys can be used to allocate 64M Hugepages on MCDRAM for one

buffer, and 64M Hugepages on DDR for a different buffer in the same

job.

● Env. vars are still respected if info keys are not set

● Portable across MPI implementations. Possible to maintain info key

names and format consistent between Cray MPI and Intel’s MPI

implementations. A different MPI impl. could choose to silently ignore

the proposed info keys

27

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Multi-threaded MPI Support and
Optimizations

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

CORAL NRE MS13 Milestones

29 Copyright 2015 Cray Inc. - Confidential and Proprietary

Schedule Deliverables

December 2015 MS1: Design Document for the Thread-Scalable MPI

NRE.

Q3 2016 MS2: Demonstrate the benefits of an optimized

Cray MPICH implementation on the Theta System

with Intel KNL and Aries interconnect.

Q2 2017 MS3: Implement a thread-scalable prototype of Cray

MPICH with the CH4 interface and the uGNI-based

OFI provider layer. Demonstrate the functional

characteristics of this implementation.

Q4 2017 MS4: Implement a thread-scalable prototype of ANL

MPICH with the CH4 interface and the STL2-based

OFI provider layer. This prototype is intended for an

experimental system with Intel KNH and Intel STL2.

Q4 2018 MS5: Finalize and deliver the Thread-Scalable MPI

implementation and source for the Aurora System.

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Multi-Threaded MPI (State-Of-The-Art)

30

 Th 2

MPI/Openmp Hybrid App

MPI Rank i

MPI Communication Library

High Performance Network

 Th 0 Th 1 Th 2 Th n

Global Lock

MPI/Openmp Hybrid App

MPI Rank i

High Performance Network

 Th 0 Th 1 Th n

MPI Communication Library

 Global lock
Sched_yield(), lock contention

Per-Object Locks
(Alt. impl. in CrayMPI, “–craympich-mt” link time flag)

Global lock

(default in Cray MPI)

Obj-lock(1)
Obj-lock(2)

Obj-lock(3)

Sched_yield(), lock contention

 Th 2

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Optimized Multi-Threaded MPI (Design Choices)

31

 Th 2

MPI/Openmp Hybrid App

MPI Rank i

MPI Communication Library

High Performance Network

 Th 0 Th 1 Th 2 Th n

Pool of network resources

Minimal per-object locking

MPI/Openmp Hybrid App

MPI Rank i

High Performance Network

 Th 0 Th 1 Th n

MPI Communication Library

Single Global lock

Task-Queue

Helper Threads

Enqueue/Dequeue Design Proposed Thread-Hot Design

 Th 2

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Thread Hot Communication in Cray MPI

32

MPI/Openmp Hybrid App

MPI Rank i

MPI Communication Library

High Performance Network

 Th 0 Th 1 Th 2 Th n

Thread Hot MPI-3 RMA

(Thread Hot) DMAPP

Pool of network resources

Optimized DMAPP-based RMA Impl. (Thread Hot)

Dynamic Thread/Resource Mapping

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Thread Hot Communication in Cray MPI
● Design Objectives

● Contention Free progress and completion

● High bandwidth and high message rate

● Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted progress

● Dynamic mapping between threads and network resources

● Locks needed only if the number of threads exceed the number of network resources

● MPI-3 RMA

● Epoch calls (Win_complete, Win_fence) are thread-safe, but not intended to be thread hot

● All other RMA calls (including request-based operations) are thread hot

● Multiple threads doing Passive Synchronization operations likely to perform best:

● MPI Pt2pt

● MPI_Send/MPI_Recv, MPI_Isend/MPI_Irecv, MPI_Wait/MPI_Waitall will be thread hot.

● Supports use cases where multiple threads issue Isend/Irecv ops, but master thread alone does Waitall

● MPI_Alltoall

● Multiple threads can issue, progress and complete Alltoall operations concurrently. Each thread has a

separate MPI_Comm handle.

● The Allgather exchange (mem address, hndls) is protected by the big lock (room for optimization)

33

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Multi-threading Optimizations in Cray MPI

● Easy way to hit the ground running on a KNL – MPI only mode

● Works quite well in our experience

● Scaling to more than 2-8 threads most likely requires a different application design approach

● “Bottom-Up” OpenMP development approach is very common

● Most likely will not offer best performance and scaling

● “Top-Down” SPMD model is more appealing for KNL

● Increases the scope of code executed by OpenMP, allows for better load balancing and overall compute

scaling on KNL

● Allows multiple threads to call MPI concurrently.

● In this model, performance is limited by the level of support offered by MPI for multi-

threaded communication

● MPI implementations must offer “Thread-Hot” communication capabilities to improve

communication performance for highly threaded use cases on KNL

34

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Experimental Setup

● Cray XC systems with Intel Haswell and Broadwell
● Modified OSU Micro Benchmarks (OMB) to study multi-

threaded MPI Communication performance
 - RMA: osu_put_latency.c, osu_get_latency.c
 osu_put_bw.c, osu_get_bw.c

● Enabling the RMA over DMAPP optimization:
 - Link against DMAPP:

 If the code uses static linking:

 -Wl,--whole-archive,-ldmapp,--no-whole-archive

 If the code uses dynamic linking:

 -ldmapp

 - Set MPICH_RMA_OVER_DMAPP env. variable to 1 (export MPICH_RMA_OVER_DMAPP=1)

35

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

MPI-3 RMA Communication Bandwidth

1 MPI process per node, 32 threads, Haswell, small messages

36

0

500

1000

1500

2000

8 16 32 64 128

MB/s

Message Length (bytes)

Thread Hot MPI_Get Thread Hot MPI_Put

MPT 7.2.0 - Get MPT 7.2.0 - Put

- Thread Hot Cray MPI significantly outperforms the default (global-lock) implementation with the multi-threaded

RMA benchmark for small payloads

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

MPI-3 RMA Communication Bandwidth

1 MPI process per node, 32 threads, Haswell, large messages

37

0

2000

4000

6000

8000

10000

12000

14000

MB/s

Message Length (Bytes)

Thread Hot MPI_Get Thread Hot MPI_Put

MPT 7.2.0 - Get MPT 7.2.0 - Put

- Thread Hot Cray MPI outperforms the default (global-lock) implementation with the multi-threaded RMA

benchmark by about 4X for small and medium sized payloads

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Wombat Project Hybrid Application Study

● Wombat is being developed through a collaboration
between Cray Programming Environments and the
University of Minnesota Institute for Astrophysics

● Peter Mendygral (Cray) is lead developer

● Tom Jones (UofM) supervises graduate students contributing to the
code and drives scientific goals

● Other contributors/users: Dongsu Ryu (UNIST), Julius Donnert (INAF)

● Scientific goal is to study turbulence in astrophysical fluids
over cosmological scales
● MHD + dark matter

● Application goal is to develop a code capable of achieving
the science goals on the latest HPC architectures

38

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Primary Development Concerns

● Two main issues drove the design of Wombat and explain why other codes have
not been sufficient for the science

● Scaling to extreme core count required to get to resolutions needed for MHD turbulence

● Load balancing for SMR/AMR and dark matter particles

● The approach to these problems in Wombat was

● Make communication matter as little as possible

● Wide OpenMP on a node to soften impacts of load imbalances (and hardware imbalances) as much
as possible before communicating work between ranks

● Data structures that reduce AMR/SMR complexity and avoid significant global communication for
refined patch tracking

● Do it all in Fortran as that’s what works best for me

● Wombat uses object oriented features from Fortran 2003 and 2008

39

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Domain Decomposition

● Domain decomposition is
represented in the data
classes and structures

● “Domain” is an array of
“Patches” managed by a
MPI rank

● “Patch” is a self-
contained, self-describing
piece of the world grid at
some fixed logical
location

40

N6 N2 N5

N0 N1

N4 N3 N7

P0 P1 P2 P3 P4

P5 P6 P7 P8 P9

P10 P11 P12 P13 P14

P15 P16 P17 P18 P19

P20 P21 P22 P23 P24

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Domains and Patch

● Domains manage bookkeeping for an array of Patches
● Track a Patch’s neighbors

● Manage allocating/deallocating a Patch’s internal grid arrays as needed

● Multiple Domains are used on a rank for accepting Patches from neighbors

● Patches are
● Of some uniform fixed size (for a given Domain refinement level)

● Fixed in a location that is known for all times by all ranks

● Patches provide
● An atomic unit of work

● Units to thread across

● Unit to transfer for load balancing

● A level of cache blocking

41

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

High-level OpenMP

42

Option B – “SPMD”

! Move OpenMP near the top of the call stack

!#OMP PARALLEL

DO WHILE (t .LT. tend)

 !#OMP DO

 DO patch = 1, npatches

 CALL update_patch()

 …CALL MPI…

 END DO

END DO

Option A – “bottom up”

! Keep OpenMP within a “compute” loop

DO WHILE (t .LT. tend)

 DO patch = 1, npatches

 CALL update_patch()

 …CALL MPI…

 END DO

END DO

SUBROUTINE update_patch()

 !$OMP PARALLEL DO

 DO i = 1, nx

 …do work…

 END DO

END SUBROUTINE

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

High-level OpenMP
● Benefits of high-level SPMD OpenMP

● Application more closely mimics completely independent processes

● Less likely to be in the same portion of code at the same time

● Bandwidth competition may decrease

● Amdahl's law

● Threads are less coupled => infrequent thread synchronization

● Much less likely to have issues with memory conflicts between threads

● Simpler to implement when done right

● Large reduction in the amount of OpenMP directives

● Very little variable scoping needed as most everything is shared => reduced memory footprint

● Easier to make use of all cores on node (e.g., 68) that can be hard to use for domain decomposition reasons

● Effective way to manage natural hardware induced imbalance and algorithmic load imbalance

43

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

High-level OpenMP

● Challenges for high-level SPMD OpenMP

● Requires full understanding of data dependencies and potential for race conditions

● For best performance requires revisiting approach to MPI
● Goal should be to remove any thread synchronization you can

● Serializing MPI will limit the benefit and scalability of SPMD

● In my experience, it is easier to implement SPMD in a data centric model
● Present work as independent units

● Let threads work on that set in any order with a non-static schedule

● MPI work should be treated the same as data if possible
● Independent units of communication to be worked on in any order with non-static schedule

44

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Wombat Driver and Parallel Region

45

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Communication Concerns

● If a rank is made much wider with threads, serialization around MPI
will limit thread scaling and overall performance
● Nearly all MPI libraries implement thread safety with a global lock

● Cray (and other vendors) is addressing this issue

● Wide OpenMP also means more communication to process per rank

● Every Patch now has its own smaller boundaries to communicate

● Starts tipping the behavior towards the message rate limit

● Slower serial performance of KNL => maybe look for the lightest
weight MPI layer available
● MPI-RMA over DMAPP on Cray systems is a thin software layer that achieves

similar performance to SHMEM

46

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Single RMA Window Buffer

N0 N1 N2 N3 N4 N5 N6 N7

B0 B1 B2 B3 B4 B5 B6 B7

s
ig

n
a

l

s
ig

n
a

l

h
e

a
d

e
r

payload

47

● Single buffer used for (almost) all communication
● Messages can be processed concurrently if MPI allows it
● Design is similar to mailboxes within MPI

● Can process an arbitrary amount of communication

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

RMA Boundary Communication Cycle

48

● Single passive RMA window used for the duration of the application
● No explicit synchronization between ranks
● RMA semantics make computation/communication overlap simpler to achieve

● All “solvers” in Wombat utilize a generalized class that implements the
communication/computation cycle below

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Thread Hot MPI-RMA
● Future release of Cray MPICH will include new performance feature that allows

for efficient message completion in a threaded region

● Can call completion routines (e.g., MPI_WIN_FLUSH) in a threaded region (not required)

● Threads collaboratively complete messages from all threads

● Removes the need for any additional thread barriers after MPI_PUT/MPI_GET/etc in threaded
region

49

!$OMP DO

DO n = 1, n_neighbors

CALL MPI_PUT(…)

END DO

!$OMP END DO

!$OMP MASTER

CALL MPI_WIN_FLUSH_ALL()

!$OMP BARRIER

!$OMP DO

DO n = 1, n_neighbors

CALL MPI_PUT(…)

END DO

!$OMP END DO NOWAIT

CALL MPI_WIN_FLUSH_ALL()

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Wombat Benchmarking Notes

● Only MHD was enabled on fixed grid

● In all cases 2 MB hugepages were used
● module load craype-hugepages2MB

● Loaded at link and run time

● Link with dmapp (statically)
-Wl,--whole-archive,-ldmapp,--no-whole-archive

● The following environment variables were set
● export MPICH_MAX_THREAD_SAFETY=multiple

● export MPICH_RMA_OVER_DMAPP=1

● CCE was always used
● Needed for vectorization in eigenvector/flux calculation

● KNL was configured with MCDRAM as cache

50

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
51

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
52

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
53

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

● Less than 5% difference between full ranks and full threads
● Ideal for application like Wombat for fixed grid is 0%

54

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

● Vector length very important
● Significant effort went into making solver loops (compute and copy)

vectorize

55

0

1

2

3

4

5

6

512 256 128

s
e

c
 /
 u

p
d

a
te

SIMD Vector Length

KNL Performance - SIMD Vector Length
14,688,000 zones - 68 threads

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Summary and Recommendations

● Optimizations in Cray MPI to improve pt2pt and collective latency on KNL

● Enhancements in Cray MPI to enable users best utilize the MCDRAM technology on KNL

● New solutions in Cray MPI to offer Thread-Hot capabilities on Intel Xeon and Intel KNL
architectures

● Design and development details of Wombat, a high performance astrophysics application that
relies on multi-threaded MPI-3 RMA implementation in Cray MPI

● MPI-only works quite well on KNL

● Threading can be helpful, but unless SPMD with “thread-hot” MPI is used scaling to more than
2-8 threads not recommended

● Necessary to use –r1 to reduce performance variability

● Using hugepages on MCDRAM can improve large message communication performance

● Multi-threaded MPI will be a key tool on KNL for hybrid applications

● Asynchronous communication can hide/overlap communication overheads on KNL

● Collectives implemented with user pt2pt is strongly discouraged
● Especially for alltoall, bcast, and gather

● Very unlikely pt2pt will perform better

● If they do, please file a bug with Cray

56

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Q&A

57

