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XC Topology and Aries 

CUG 2016 Copyright 2016 Cray Inc.  
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● I will not be covering details of the XC topology and 

Aries interconnect 

 

● Please refer to the following document or feel free to 

talk with me at any time the rest of the workshop 

 

http://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf 
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Agenda 

● Brief Introduction to Cray MPICH 

● Specific KNL optimizations including MCDRAM 

● Optimizations for Hybrid  (MPI/OpenMP) applications 

● Application study of astrophysics code Wombat 

● Q&A (feel free to ask questions along the way) 
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Introduction to Cray MPICH 
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Brief Introduction to Cray MPICH 

● Cray MPI compliant with MPI 3.1 
● Merge to ANL MPICH 3.2rc1 – in MPT 7.3.0 (Dec 2015) 

 

● I/O, collectives, P2P, and one-sided all optimized for XC architecture 
● SMP aware collectives 

● High performance single-copy on-node communication via xpmem (not necessary to program 
for shared  memory) 

 

● Highly tunable through environment variables 
● Defaults should generally be best, but some cases benefit from fine tuning 

 

● Integrated within the Cray Programming Environment 
● Compiler drivers manage compile flags and linking automatically 

● Profiling through Cray Perftools 
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Cray MPI Resources 

● Primary user resource for tuning and feature 

documentation is the manpage 

● man intro_mpi 

OR 

● man MPI 

 

● Standard function documentation available as well 

● E.g., man mpi_isend 

8 



ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 

Key Environment Variables for XC 
● MPICH_RANK_REORDER_METHOD 

 

● Vary your rank placement to optimize communication 
 

● Can be a quick, low-hassle way to improve performance 
 

● Use Craypat to produce a specific MPICH_RANK_ORDER file to 
maximize intra-node communication 
 

● Or, use perf_tools grid_order command with your application's 
grid dimensions to layout MPI ranks in alignment with data grid  

 
 

● To use:   
● name your custom rank order file:  MPICH_RANK_ORDER  
● export MPICH_RANK_REORDER_METHOD=3 
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Key Environment Variables for XC 
 

● Use HUGEPAGES 

 
● While this is not an MPI env variable, linking and running with hugepages can 

offer a significant performance improvement for many MPI communication 
sequences, including MPI collectives and basic MPI_Send/MPI_Recv calls 

 

● Most important for applications calling MPI_Alltoall[v] or performing point to point 
operations with a similarly well connected pattern 

 
● To use HUGEPAGES: 

● module load craype-hugepages8M (many sizes supported) 

● <<  compile your app  >> 

● module load craype-hugepages8M 

● <<  run your app  >> 
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Key Environment Variables for XC 
● MPICH_USE_DMAPP_COLL /  MPICH_RMA_OVER_DMAPP 

 

● Most of MPI's optimizations are enabled by default, but not the DMAPP-optimized features, because… 

● Using DMAPP may have some disadvantages 

● May reduce resources MPICH has available (share with DMAPP) 

● Requires more memory (DMAPP internals) 

● DMAPP does not handle transient network errors 
 

● These are highly-optimized algorithms which may result in significant performance gains, but user has to 
request them 
 

● Supported DMAPP-optimized functions: 

●  MPI_Allreduce (4-8 bytes) 

●  MPI_Bcast (4 or 8 bytes) 

●  MPI_Barrier 

●  MPI_Put / MPI_Get / MPI_Accumulate 
 

● To use (link with libdmapp): 

● Collective use:            export MPICH_USE_DMAPP_COLL=1 

● RMA one-sided use:   export MPICH_RMA_OVER_DMAPP=1 
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Key Environment Variables for XC 
● MPICH GNI environment variables 
 

● To optimize inter-node traffic using the Aries interconnect, the following are the most significant env 
variables to play with (avoid significant deviations from the default if possible): 

 

● MPICH_GNI_MAX_VSHORT_MSG_SIZE 
● Controls max message size for E0 mailbox path (Default: varies) 

 

● MPICH_GNI_MAX_EAGER_MSG_SIZE 
● Controls max message size for E1 Eager Path (Default: 8K bytes) 

 

● MPICH_GNI_NUM_BUFS 
● Controls number of 32KB internal buffers for E1 path (Default: 64) 

 

● MPICH_GNI_NDREG_MAXSIZE 
● Controls max message size for R0 Rendezvous Path (Default: 4MB) 

 

● MPICH_GNI_RDMA_THRESHOLD 
● Controls threshold for switching to BTE from FMA (Default: 1K bytes) 

 

● See the MPI man page for further details 
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Key Environment Variables for XC 
 

● Specific Collective Algorithm Tuning 
 

● Different algorithms may be used for different message sizes in collectives (e.g.) 

● Algorithm A might be used for Alltoall for messages < 1K. 

● Algorithm B might be used for messages >= 1K. 
 

● To optimize a collective, you can modify the cutoff points when different algorithms 
are used.  This may improve performance. 

 

● MPICH_ALLTOALL_SHORT_MSG 
 

● MPICH_ALLGATHER_VSHORT_MSG 
 

● MPICH_ALLGATHERV_VSHORT_MSG 
 

● MPICH_GATHERV_SHORT_MSG 
 

● MPICH_SCATTERV_SHORT_MSG 
 

● See the MPI man page for further details 
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KNL Optimizations 
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Latency studies on KNL with Cray MPI 

● MPI is typically all scalar code 
● Lots of branches 

● Lots of small functions and function calls using pointers 

● With smaller Branch Target Buffer (BTB) KNL does not handle this type of 
scalar code as well as the Xeon processor (even when adjusting to the 
slower CPU frequency) 

● Optimizing the “critical path” 
● More inlining of small functions 

● Using higher compiler optimization 

● Hand-optimizations (avoid taking branches in critical path) 

● Disable FMA sharing when not needed 

● Provide a KNL-optimized memcpy 
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OS Noise Plays a Role – How Big? 

● Studied performance with and without corespec (-r 1) 

 

● MPI Latency: Collectives 1P / node 

● Results show 5.5X slower when not using corespec 

 

● MPI Latency: Collectives 2-68 P / node 
● Results show 4.7X slower when not using corespec 
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With and Without Corespec 
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Cray MPI support for MCDRAM on KNL 
● Cray MPI will offer allocation + hugepage support for MCDRAM on KNL 

 

● Must use:  MPI_Alloc_mem() or MPI_Win_Allocate() 
 

● Dependencies:  memkind, NUMA libraries and dynamic linking.  

        module load cray-memkind 
 

 

● Preliminary release will expose feature via env variables 
 

● Users select:  Affinity, Policy and PageSize 
 

● MPICH_ALLOC_MEM_AFFINITY =  DDR or MCDRAM 

● DDR = allocate memory on DDR (default) 

● MCDRAM = allocate memory on MDCRAM 
 

● MPICH_ALLOC_MEM_POLICY  =  M/ P/ I 

● M = Mandatory: fatal error if allocation fails 

● P = Preferred: fall back to using DDR memory  (default) 

● I = Interleaved: Set memory affinity to interleave across MCDRAM NUMA nodes (For SNC* cases) 
 

● MPICH_ALLOC_MEM_PG_SZ 

● 4K, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M  (default 4K) 

 

● Follow-on release will offer Info Key Support  for  MPI_Alloc_mem  and MPI_Win_allocate 
● Allows user to specify characteristics via Info keys for each call 
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● MPI_Alloc_mem: not restricted to be used only for communication buffers,  

      or MPI’s internal buffers. Can also be used to allocate application’s data buffers 

 

● Cray MPI does not register the memory returned by Alloc_mem 

 

● Cray MPI also does not “touch” memory allocated via Alloc_mem() 

      NUMA Affinity resolved when the memory pages are first touched by the process/threads.  

      (Not ideal from a NUMA perspective to have the master thread alone touch the entire buffer right after 

       allocation) 

 

● MPI_Alloc_mem returns page-aligned memory for all page sizes  

20 

Cray MPI support for MCDRAM on KNL 
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● When the entire data set fits within MCDRAM, on a Quad/Flat system: 

       aprun –Nx –ny numactl –membind=1 ./a.out 
● Easiest way to utilize hugepages  on MCDRAM 

● craype-hugepage module is honored.   

● Allocations (malloc, memalign) on MCDRAM will be backed by hugepages 

● However, all memory allocated on MCDRAM (including MPI’s internal memory) 

● Memory available per node limited to % of MCDRAM configured as FLAT memory  

         

● Alternate solutions needed to utilize hugepage memory on MCDRAM, 

when the data set per node exceeds 16G 
● Necessary to identify performance critical buffers 

● Replace memory allocation calls with MPI_Alloc_mem() or MPI_Win_allocate()  

● Use Cray MPI env. vars to control page size, memory policy and memory affinity for allocations 
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Cray MPI support for MCDRAM on KNL 
Typical use cases 
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Cray MPI support for MCDRAM on KNL: 
Typical Use cases (Dataset size > 16GB) 

● Quad/Flat mode, without numactl options: 
● malloc(), memalign() will use DDR first 

● Can access MCDRAM via hbw_* or compiler directives. 

● craype-hugepages module  honored only on DDR 

● hbw_malloc will  return  memory  backed by basepages 

● Memkind can be used to get 2M hugepages on MCDRAM (but not larger) 

 

● Users need to identify critical buffers and use MPI_Alloc_mem() to allocate 
hugepages with larger page sizes, and set affinity  to MCDRAM 

 

● Use following env. vars: 

      MPICH_ALLOC_MEM_AFFINITY=M (or MCDRAM) 

      MPICH_ALLOC_MEM_PG_SZ = 16M (16M hugepages)  

      MPICH_ALLOC_MEM_POLICY = P (or Preferred) 

22 
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Cray MPI support for MCDRAM on KNL: 
Typical Use cases (Datset size > 16GB) 

● Quad/Flat mode, with numactl --membind=1 

● Malloc(),memalign() will use MCDRAM 

● Hugepage allocations via the craype-hugepages module now possible on MCDRAM 

● But, MCDRAM space is limited. Scaling issues 

 

● Users can identify buffers not critical to application  performance and use 

MPI_Alloc_mem() to set affinity to DDR 

 

● Use following env. vars: 

      MPICH_ALLOC_MEM_AFFINITY=D (or DDR) 

      MPICH_ALLOC_MEM_PG_SZ = <as needed, defaults to 4KB base pages> 

      MPICH_ALLOC_MEM_POLICY = P (or Preferred) 

23 
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Using MPI_Alloc_mem/MPI_Free_mem with a  
3DFFT Kernel (Fortran) 

 

.. 

lenr    = nx * ny * mynz 

lenc    = MAX((nxd2p1 * ny * mynz),  

                       (nxd2p1 * nz * myny)) 

lenm    = MAX((nxd2p1 * ny * mynz),  

                        (nxd2p1 * nz * myny)) 

rc_grid = FFTW_ALLOC_REAL(lenr * nvars) 

cc_grid = FFTW_ALLOC_COMPLEX(lenc * nvars) 

mc_grid = FFTW_ALLOC_COMPLEX(lenm) 

 

CALL C_F_POINTER(rc_grid, rgrid,  

                                   (/nx, ny, mynz, nvars/)) 

CALL C_F_POINTER(cc_grid, cgrid,  

                                   (/lenc, INT(nvars, C_SIZE_T)/)) 

CALL C_F_POINTER(mc_grid, mgrid, (/lenm/)) 

 

.. 

lenr    = nx * ny * mynz 

lenc    = MAX((nxd2p1 * ny * mynz),  

                        (nxd2p1 * nz * myny)) 

lenm    = MAX((nxd2p1 * ny * mynz),  

                        (nxd2p1 * nz * myny)) 

info    = MPI_INFO_NULL 

CALL MPI_ALLOC_MEM(lenr * nvars * 8_8, info,        

   rc_grid, ierr) 

CALL MPI_ALLOC_MEM(lenc * nvars * 16_8, info,                         

   cc_grid, ierr) 

CALL MPI_ALLOC_MEM(lenm * 16_8, info,  

                         mc_grid, ierr) 

 

CALL C_F_POINTER(rc_grid, rgrid,  

                                    (/nx, ny, mynz, nvars/)) 

CALL C_F_POINTER(cc_grid, cgrid,  

                                    (/lenc, INT(nvars, C_SIZE_T)/)) 

CALL C_F_POINTER(mc_grid, mgrid, (/lenm/)) 

.. 
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Using MPI_Alloc_mem/MPI_Free_mem with a  
3DFFT Kernel (Fortran) 

 

CALL FFTW_FREE(rc_grid) 

CALL FFTW_FREE(cc_grid) 

CALL FFTW_FREE(mc_grid) 
 

 

CALL MPI_FREE_MEM(rgrid, ierr) 

CALL MPI_FREE_MEM(cgrid, ierr) 

CALL MPI_FREE_MEM(mgrid, ierr) 
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Cray MPI support for MCDRAM on KNL: 
On-going effort 

● Info key support for MPI_Alloc_mem and MPI_Win_allocate() 

● Env. vars affect the entire job, info keys can offer fine-grained controls 

for each memory allocation 

● Info keys can be used to allocate 64M Hugepages on MCDRAM for one 

buffer, and 64M Hugepages on DDR for a different buffer in the same 

job.  

● Env. vars are still respected if info keys are not set 

● Portable across MPI implementations. Possible to maintain info key 

names and format consistent between Cray MPI and Intel’s MPI 

implementations.  A different MPI impl. could choose to silently ignore 

the proposed info keys 
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Multi-threaded MPI Support and 
Optimizations 
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CORAL NRE MS13 Milestones  

29 Copyright 2015 Cray Inc. - Confidential and Proprietary 

Schedule Deliverables 

December 2015 MS1: Design Document for the Thread-Scalable MPI 

NRE. 

Q3 2016 MS2: Demonstrate the benefits of an optimized 

Cray MPICH implementation on the Theta System 

with Intel KNL and Aries interconnect.  

Q2 2017 MS3: Implement a thread-scalable prototype of Cray 

MPICH with the CH4 interface and the uGNI-based 

OFI provider layer. Demonstrate the functional 

characteristics of this implementation. 

Q4 2017 MS4: Implement a thread-scalable prototype of ANL 

MPICH with the CH4 interface and the STL2-based 

OFI provider layer.  This prototype is intended for an 

experimental system with Intel KNH and Intel STL2.  

Q4 2018 MS5: Finalize and deliver the Thread-Scalable MPI 

implementation and source for the Aurora System. 
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Multi-Threaded MPI (State-Of-The-Art) 
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Optimized Multi-Threaded MPI (Design Choices) 
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Thread Hot Communication in Cray MPI 
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Thread Hot Communication in Cray MPI 
● Design Objectives 

● Contention Free  progress and completion 

● High bandwidth and high message rate  

● Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted progress 

● Dynamic mapping between threads and network resources 

● Locks needed only if the number of threads exceed the number of network resources 

● MPI-3 RMA  

● Epoch calls (Win_complete, Win_fence) are thread-safe, but not intended to be thread hot 

● All other RMA calls (including request-based operations) are thread hot 

● Multiple threads doing Passive Synchronization operations likely to perform best:      

● MPI Pt2pt 

● MPI_Send/MPI_Recv, MPI_Isend/MPI_Irecv, MPI_Wait/MPI_Waitall will be thread hot.  

● Supports use cases where multiple threads issue Isend/Irecv ops, but master thread alone does Waitall 

● MPI_Alltoall 

● Multiple threads can issue, progress and complete Alltoall operations concurrently. Each thread has a 

separate MPI_Comm handle.  

● The Allgather exchange (mem  address, hndls) is protected by the big lock (room for optimization) 
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Multi-threading Optimizations in Cray MPI 

● Easy way to hit the ground running on a KNL – MPI only mode 

● Works quite well in our experience 

● Scaling to more than 2-8 threads most likely requires a different application design approach 

 

● “Bottom-Up” OpenMP development approach is very common 

● Most likely will not offer best performance and scaling 

 

● “Top-Down” SPMD model is more appealing for KNL 

● Increases the scope of code executed by OpenMP, allows for better load balancing and overall compute 

scaling on KNL 

● Allows multiple threads to call MPI concurrently.  

● In this model,  performance is limited by the  level of support offered by MPI for multi-

threaded communication 

● MPI implementations must offer “Thread-Hot” communication capabilities to improve 

communication performance for highly threaded use cases on KNL 

34 
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Experimental Setup 

● Cray XC systems with Intel Haswell and Broadwell 
● Modified OSU Micro Benchmarks (OMB) to study multi-

threaded MPI Communication performance 
   -  RMA: osu_put_latency.c, osu_get_latency.c 
                 osu_put_bw.c, osu_get_bw.c 
 
● Enabling the RMA over DMAPP optimization: 
       -  Link against DMAPP: 

            If the code uses static linking: 

               -Wl,--whole-archive,-ldmapp,--no-whole-archive 

           If the code uses dynamic linking: 

               -ldmapp 

       -  Set MPICH_RMA_OVER_DMAPP env. variable to 1 (export MPICH_RMA_OVER_DMAPP=1) 

35 
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MPI-3 RMA Communication Bandwidth 
 
1 MPI process per node, 32 threads, Haswell, small  messages  
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MPI-3 RMA Communication Bandwidth 
 
1 MPI process per node, 32 threads, Haswell, large messages 
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Wombat Project Hybrid Application Study 

● Wombat is being developed through a collaboration 
between Cray Programming Environments and the 
University of Minnesota Institute for Astrophysics 

 
● Peter Mendygral (Cray) is lead developer 

● Tom Jones (UofM) supervises graduate students contributing to the 
code and drives scientific goals 

● Other contributors/users: Dongsu Ryu (UNIST), Julius Donnert (INAF) 

 

● Scientific goal is to study turbulence in astrophysical fluids 
over cosmological scales 
● MHD + dark matter 

 

● Application goal is to develop a code capable of achieving 
the science goals on the latest HPC architectures 

38 
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Primary Development Concerns 

● Two main issues drove the design of Wombat and explain why other codes have 
not been sufficient for the science 

 
● Scaling to extreme core count required to get to resolutions needed for MHD turbulence 

● Load balancing for SMR/AMR and dark matter particles 

 

● The approach to these problems in Wombat was 

 
● Make communication matter as little as possible 

● Wide OpenMP on a node to soften impacts of load imbalances (and hardware imbalances) as much 
as possible before communicating work between ranks 

● Data structures that reduce AMR/SMR complexity and avoid significant global communication for 
refined patch tracking 

● Do it all in Fortran as that’s what works best for me 

● Wombat uses object oriented features from Fortran 2003 and 2008 
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Domain Decomposition 

● Domain decomposition is 
represented in the data 
classes and structures 

 

● “Domain” is an array of 
“Patches” managed by a 
MPI rank 

 

● “Patch” is a self-
contained, self-describing 
piece of the world grid at 
some fixed logical 
location 
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Domains and Patch 

● Domains manage bookkeeping for an array of Patches 
● Track a Patch’s neighbors 

● Manage allocating/deallocating a Patch’s internal grid arrays as needed 

● Multiple Domains are used on a rank for accepting Patches from neighbors 

 

● Patches are 
● Of some uniform fixed size (for a given Domain refinement level) 

● Fixed in a location that is known for all times by all ranks 

 

● Patches provide 
● An atomic unit of work 

● Units to thread across 

● Unit to transfer for load balancing 

● A level of cache blocking 

41 
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High-level OpenMP 

42 

Option B – “SPMD” 
 
! Move OpenMP near the top of the call stack 

 

!#OMP PARALLEL 

DO WHILE (t .LT. tend) 

 

    !#OMP DO 

    DO patch = 1, npatches 

 

        CALL update_patch() 

 

        …CALL MPI… 

 

    END DO 

 

END DO 

Option A – “bottom up” 
 
! Keep OpenMP within a “compute” loop 

 

DO WHILE (t .LT. tend) 

 

    DO patch = 1, npatches 

 

        CALL update_patch() 

 

        …CALL MPI… 

 

    END DO 

 

END DO 

 

SUBROUTINE update_patch() 

 

    !$OMP PARALLEL DO 

    DO i = 1, nx 

    …do work… 

    END DO 

 

END SUBROUTINE 



ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 

High-level OpenMP 
● Benefits of high-level SPMD OpenMP 

● Application more closely mimics completely independent processes 

● Less likely to be in the same portion of code at the same time 

● Bandwidth competition may decrease 

● Amdahl's law 

 

● Threads are less coupled => infrequent thread synchronization 

 

● Much less likely to have issues with memory conflicts between threads 

 

● Simpler to implement when done right 

● Large reduction in the amount of OpenMP directives 

● Very little variable scoping needed as most everything is shared => reduced memory footprint 

 

● Easier to make use of all cores on node (e.g., 68) that can be hard to use for domain decomposition reasons 

 

● Effective way to manage natural hardware induced imbalance and algorithmic load imbalance 
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High-level OpenMP 

● Challenges for high-level SPMD OpenMP 
 
● Requires full understanding of data dependencies and potential for race conditions 

 

● For best performance requires revisiting approach to MPI 
● Goal should be to remove any thread synchronization you can 

● Serializing MPI will limit the benefit and scalability of SPMD 

 

● In my experience, it is easier to implement SPMD in a data centric model 
● Present work as independent units 

● Let threads work on that set in any order with a non-static schedule 

 

● MPI work should be treated the same as data if possible 
● Independent units of communication to be worked on in any order with non-static schedule 
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Wombat Driver and Parallel Region 
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Communication Concerns 

● If a rank is made much wider with threads, serialization around MPI 
will limit thread scaling and overall performance 
● Nearly all MPI libraries implement thread safety with a global lock 

● Cray (and other vendors) is addressing this issue 

 
● Wide OpenMP also means more communication to process per rank 

● Every Patch now has its own smaller boundaries to communicate 

● Starts tipping the behavior towards the message rate limit 

 

● Slower serial performance of KNL => maybe look for the lightest 
weight MPI layer available 
● MPI-RMA over DMAPP on Cray systems is a thin software layer that achieves 

similar performance to SHMEM 
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Single RMA Window Buffer 
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● Single buffer used for (almost) all communication 
● Messages can be processed concurrently if MPI allows it 
● Design is similar to mailboxes within MPI 

● Can process an arbitrary amount of communication 
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RMA Boundary Communication Cycle 
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● Single passive RMA window used for the duration of the application 
● No explicit synchronization between ranks 
● RMA semantics make computation/communication overlap simpler to achieve 

 

● All “solvers” in Wombat utilize a generalized class that implements the 
communication/computation cycle below 
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Thread Hot MPI-RMA 
● Future release of Cray MPICH will include new performance feature that allows 

for efficient message completion in a threaded region 

 
● Can call completion routines (e.g., MPI_WIN_FLUSH) in a threaded region (not required) 

● Threads collaboratively complete messages from all threads 

● Removes the need for any additional thread barriers after MPI_PUT/MPI_GET/etc in threaded 
region 
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!$OMP DO 

DO n = 1, n_neighbors 

 

CALL MPI_PUT(…) 

 

END DO 

!$OMP END DO 

 

!$OMP MASTER 

CALL  MPI_WIN_FLUSH_ALL() 

!$OMP BARRIER 

!$OMP DO 

DO n = 1, n_neighbors 

 

CALL MPI_PUT(…) 

 

END DO 

!$OMP END DO NOWAIT 

 

CALL  MPI_WIN_FLUSH_ALL() 
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Wombat Benchmarking Notes 

● Only MHD was enabled on fixed grid 

 

● In all cases 2 MB hugepages were used 
● module load craype-hugepages2MB 

● Loaded at link and run time 

● Link with dmapp (statically) 
-Wl,--whole-archive,-ldmapp,--no-whole-archive 

 

● The following environment variables were set 
● export MPICH_MAX_THREAD_SAFETY=multiple 

● export MPICH_RMA_OVER_DMAPP=1 

 

● CCE was always used 
● Needed for vectorization in eigenvector/flux calculation 

 

● KNL was configured with MCDRAM as cache 
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● Less than 5% difference between full ranks and full threads 
● Ideal for application like Wombat for fixed grid is 0% 
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● Vector length very important 
● Significant effort went into making solver loops (compute and copy) 

vectorize 
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SIMD Vector Length 

KNL Performance - SIMD Vector Length 
14,688,000 zones - 68 threads 
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Summary and Recommendations  

● Optimizations in Cray MPI to improve pt2pt and collective latency on KNL 

● Enhancements in Cray MPI to enable users best utilize the MCDRAM technology on KNL 

● New solutions in Cray MPI to offer Thread-Hot capabilities on Intel Xeon and Intel KNL 
architectures 

● Design and development details of Wombat, a high performance astrophysics application that 
relies on multi-threaded MPI-3 RMA implementation in Cray MPI 

 

● MPI-only works quite well on KNL 

● Threading can be helpful, but unless SPMD with “thread-hot” MPI is used scaling to more than 
2-8 threads not recommended 

● Necessary to use –r1 to reduce performance variability 

● Using hugepages on MCDRAM can improve large message communication performance 

● Multi-threaded MPI will be a key tool on KNL for hybrid applications 

● Asynchronous communication can hide/overlap communication overheads on KNL 

● Collectives implemented with user pt2pt is strongly discouraged 
● Especially for alltoall, bcast, and gather 

● Very unlikely pt2pt will perform better 

● If they do, please file a bug with Cray 
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Q&A 
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