
Debugging and Profiling your HPC Applications
Ryan Hulguin, Application and Support Analyst
rhulguin@allinea.com

About this talk

• Learn how to debug and profile your code
– Techniques to take home

• Tools we will use: Allinea Forge
– Debugging with Allinea DDT
– Profiling with Allinea MAP

– NB. Allinea MAP is not supported on BG/Q

• Where to find Allinea’s tools
– > 70% of Top 500 have at least one Allinea tool

Motivation

0

50

100

150

200

250

300

350

400

450

500

2011 2012 2013 2014

Number of 10,000 core systems

> 10,000 cores > 100,000 cores

• “Without capable
highly parallel
software, large
supercomputers
are less useful”
– Council on

Competitiveness

• “1% of HPC
application
codes can
exploit 10,000
cores”
– IDC, 2011

Use the right software tool to be faster

• What parts of the code would benefit most from being rewritten?
• How should I modify a code to make it better (or work at all)?

TIME
Isolate

bottlenecks

Tune
application

Resolve
problems

Validate
outcome

Application Development Workflow

Profiling

Optimization

ExecutionDebugging

Coding

Hello Allinea Forge!

Observe and debug your code step by step

Flick to Allinea DDT
Common interface and settings files

Increasing memory usage? Memory leak!
Workload imbalance? Possible partitioner bug!

Allinea MAP to find performance bottleneck

Linux

OS/X

Windows

Multiple hop SSH

RSA + Cryptocard

Uses server license

HPC means being productive on remote machines

Profiling for performance

• Code optimisation can be time-consuming…

– (image courtesy of xkcd.com)

Small data files

<5% slowdown

No instrumentation

No recompilation

MAP in a nutshell

Scaling issue – 512 processes

Simple fix… reduce periodicity of output

Some types of bug

Bohrbug Steady, dependable bug

Heisenbug Vanishes when you try to debug (observe)

Mandelbug Complexity and obscurity of the cause is so great
that it appears chaotic

Schroedinbug First occurs after someone reads the source file and
deduces that it never worked, after which the
program ceases to work

Debugging

• Transforming a broken program to a working one
• How? TRAFFIC!

– Track the problem
– Reproduce
– Automate - (and simplify) the test case
– Find origins – where could the “infection” be from?
– Focus – examine the origins
– Isolate – narrow down the origins
– Correct – fix and verify the testcase is successful

• Suggested Reading:
– Zeller A., “Why Programs Fail”, 2nd Edition, 2009
– Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig

Solving Software Defects

• Who had a rogue behavior ?
– Merges stacks from processes and threads

• Where did it happen?
– leaps to source

• How did it happen?
– Diagnostic messages
– Some faults evident instantly from source

• Why did it happen?
– Unique “Smart Highlighting”
– Sparklines comparing data across processes

Run
with Allinea tools

Identify
a problem

Gather info
Who, Where,
How, Why

Fix

HPC could be brain surgery

• Brain aneurysms
– 2-5% of population – most are undiagnosed
– 30,000 rupture in US each year – 40% fatal
– Early discovery and treatment increases

survival rates

• Neurosurgery as HPC
– MRI provides the blood vessel structure
– Intra-cranial blood flow and pressures is just

complex CFD
– Full brain 3D model is 2-10GB geometry

• Individualized HPC
– Patient’s MRI scan enables surgical decision:

whether to operate, how to operate, …
– Circle of Willis requires super-Petascale

machine software
– Need answer in minutes or hours

• … but it crashes at 49152 cores

• Run at problem size (49,152 processes)

… a debugger!

Ah… Integer
overflow!

Favorite Allinea DDT Features for Scale

Parallel stack view Automated data
comparison: sparklines Parallel array searching

Step, play, and
breakpoints Offline debugging

Today’s Status on Scalability

• Debugging and profiling
– Active users at 100,000+ cores debugging
– 50,000 cores is largest profiling tried to date (and was Very successful)
– … and active users with just 1 process too

• Deployed on
– ORNL’s Titan, NCSA Blue Waters, ANL Mira etc.
– Hundreds of much smaller systems – academic, research, oil and gas, genomics, etc.

• Tools help the full range of programmer ambition
– Very small slow down with either tool (< 5%)

Getting started on Mira/Cooley

• Install local client on your laptop
– www.allinea.com/products/forge/downloads

• Linux – installs full set of tools
• Windows, Mac – just a remote client to the remote system

– Run the installation and software
– “Connect to remote host”
– Hostname:

• username@cetus.alcf.anl.gov
• username@cooley.alcf.anl.gov

– Remote installation directory: /soft/debuggers/ddt
– Click Test

• Congratulations you are now ready to debug on Mira/Vesta/Cetus –
or debug and profile on Cooley.

Five great things to try with Allinea DDT

The scalable print
alternative Stop on variable change Static analysis warnings

on code errors

Detect read/write beyond
array bounds

Detect stale memory
allocations

Six Great Things to Try with Allinea MAP

Find the peak memory
use Fix an MPI imbalance Remove I/O

bottleneck

Make sure OpenMP
regions make sense

Improve memory
access

Restructure for
vectorization

Thank you!

Ryan Hulguin, Application and Support Analyst
rhulguin@allinea.com

