

Automated Testing of Supercomputers

ANL/ALCF/TM-13/3

Argonne Leadership Computing Facility

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
	 	 Office	of	Scientific	and	Technical	Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 phone (865) 576-8401
 fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government	nor	any	agency	thereof,	nor	UChicago	Argonne,	LLC,	nor	any	of	their	employees	or	officers,	makes	any	warranty,	express	
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product,	or	process	disclosed,	or	represents	that	its	use	would	not	infringe	privately	owned	rights.	Reference	herein	to	any	specific	
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document	authors	expressed	herein	do	not	necessarily	state	or	reflect	those	of	the	United	States	Government	or	any	agency	thereof,	
Argonne National Laboratory, or UChicago Argonne, LLC.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

Automated Testing of Supercomputers

ANL/ALCF/TM-13/3

by
Eric Pershey
Argonne Leadership Computing Facility, Argonne National Laboratory

August 20, 2013

AUTOMATED TESTING OF SUPERCOMPUTERS

by

Eric Pershey

August 20, 2013

Automated Testing of Supercomputers Eric Pershey iii

CONTENTS

1 THE NEED FOR AUTOMATED TESTING ... 1

2 CREATING THE TEST HARNESS ... 2

 2.1 Harness Requirements .. 2

 2.2 Harness Components .. 4

 2.2.1 The Client .. 4

 2.2.2 The Server .. 5

 2.2.3 The State Machine ... 6

 2.2.4 The Tests .. 7

 2.2.5 Reporting ... 8

 2.2.6 Enhancements .. 9

 2.2.7 Additional Information .. 9

3 SUMMARY ... 11

APPENDIX ... 12

Automated Testing of Supercomputers Eric Pershey iv

Automated Testing of Supercomputers Eric Pershey 1

1 THE NEED FOR AUTOMATED TESTING

 In this new era of scientific supercomputing, supercomputers are becoming more

complex. To ensure that supercomputers are running with their comprehensive capabilities, at

their maximum performances, and that they are working properly, there is a need for automated

testing.

 Automated testing allows for more thorough testing than can be done manually (by any

individual). This is accomplished by tirelessly and programmatically pushing the

supercomputer's systems to their limits. If done correctly, this leads to a more stable and reliable

supercomputer that is running at its maximum performance.

 Argonne National Laboratory was set to receive the latest and most advanced

supercomputer, Mira, an IBM Blue Gene Q, at the Argonne Leadership Computing Facility

(ALCF) sometime in 2012. To enable the acceptance of the supercomputer from IBM, and to

ensure that it was running at its stated specifications, there was an abundant need for automated

testing. This need for automated testing was the inspiration for the creation of the test harness.

The test harness was designed to encompass the functional, performance, and stability testing of

the supercomputer Mira.

Automated Testing of Supercomputers Eric Pershey 2

2 CREATING THE TEST HARNESS

 While creating the test harness, ALCF staff determined that there were a few prevalent

items that had to be addressed, including:

1. Each test’s source, configuration, and output data must be isolated in a well-

defined structure on the machine.

2. All information is to be collected and stored.

3. The harness must be able to stop, start, and be fault tolerant.

4. Frequency of tests must be configurable.

5. System failures must not cause the harness to fail.

6. Utilization must be above 90%.

 The evolving needs of the user also must be taken into consideration. As time elapses, the

specifications of the test harness need to be refined and transformed to meet those needs. To

account for the refinements, I needed to construct the harness so that in the event of change, it

would be easily adapted to the testing requirements and capabilities.

 Using these guidelines, I examined a test harness from Oak Ridge National Laboratory

(ORNL), which was given to ALCF by Ricky Kendall and Arnold Tharrington. After much

analysis of the source code, I determined that the test harness would not meet our requirements.

Their harness did not collect all the necessary information, it was not fault tolerant, and it was

too serial; thus, it was not usable. Using this knowledge, the test harness that I planned to create

had to be capable of running many tests concurrently, and it had to record all of the data

produced by each of them. In addition to this, the test harness had to be fault tolerant, so if there

was a system failure or if the harness was to fail, then it could be restarted from where it left off.

Therefore, I developed a harness to meet these criteria.

2.1 HARNESS REQUIREMENTS

 The requirements were not very strict nor hard to address. Below I will shed some light

on these issues.

1. To isolate the information for each test, a directory would be created for each

run of each test. This was quite simple but if you dig deeper you will realize

that some of these tests create quite a bit of output. Our final size of the

acceptance run was 327TB.

Automated Testing of Supercomputers Eric Pershey 3

2. All information must be collected and stored. I chose to store the source for

each test in SVN. This allowed for greater control of each test. The output was

stored on disk due to its size — 327TB — since the only other alternative for

storage would be on tape. Now the specifics of each run needed to be put

somewhere easy to get to, that would allow us to easily figure out how each

test went. After much thinking, I picked a database. Now this may hurt fault

tolerance because it adds another point of failure, but the way I addressed that

is via a client/server configuration. The harness client doesn’t talk directly to

the database; thus, it can keep running even if the database goes down. Yes,

it’s true it cannot get any more test information or even store it, but it can

buffer it.

3. To allow for great control of the harness, I used a client/server model. The

state of each test was stored directly in a database on the server side and the

client pushed and pulled all the information to the server. If the web server

had an issue, there were handlers in the client that allowed for retry and

notification. The tests, when submitted, were not directly tied to the harness

client so it could be shut down and restarted at almost any time. There was a

danger during a compile that if the compile script was not cleanly written, that

breaking in the middle of it could break the build. This ultimately would show

up anyway in the test interface and it could easily be handled. Later on, I will

also talk about the build controller that could be easily implemented. This

aside, the harness proved very fault tolerant and drove acceptance to

completion.

4. Setting the frequency of tests was somewhat manual. It was done through the

web interface. The problem with setting tests to run within a certain frequency

is that it can really hurt utilization so we opted for the harness to pack the

machine as best as it could. There were certain tests that were only run a few

times because of the nature of the tests. Personnel had to be standing by in

case of failure and to assist with diagnostics. This was all done through the

web interface.

5. System failures were not much of an issue but there were handlers in certain

places that allowed for recovery from such failures as the database, the web

server, and the file system. These all were recoverable.

6. Utilization is the amount of the available machine used at a given time. The

best way we found to make this work was to submit large jobs first and pepper

the machine with smaller jobs. We had about 100 tests and this allowed for a

large diversity of sizes that packed the machine well. The 100 tests were

cycled about once every 8 hours. Another thing that helped is that we ran

many full machine jobs for a long time. This would accomplish two things;

prove that it could withstand high usage and prove that the machine was

stable.

Automated Testing of Supercomputers Eric Pershey 4

2.2 HARNESS COMPONENTS

 Now that the requirements have been explained and some base information has been

given, we will dive into the specifics about the pieces of the harness that made this happen. Here

are the pieces that will be described in detail: the client, the server, the state machine, the tests,

reporting, enhancements, and additional information.

2.2.1 The Client

 The harness client is the interface between the web services and scheduler. This splits up

the system so that any back-end can be used and it can be much easier to change how it works.

Its job is to create a good file-system structure, check out, build, submit, and finally, complete

the tests. This is where the actual processing of the state machine works.

 The harness pulls all active tests through a web query and then starts processing each one.

For each test, it pulls its current state and attempts to progress to the next. There is much room

for improvement here for parallel processing tests, but for our needs, this worked. There is more

information about this in the enhancements section.

 The file-system structure that the harness maintains allows test owners to very easily find

and diagnose problems if one of their tests fails. The job of the harness is to make fresh

checkouts and builds for each run and the harness maintains separate directories for each test run

(status). This allows the owner to ship the entire directory to the responsible party to find a fix

for that specific test. There are three different directories under each test status; output, status and

src.

• output: this is the directory that the test is submitted from and where the

output will land.

• status: this is where specific scheduler information is replicated for

debugging.

• src: this is where the entire checkout of the test goes.

 The purpose of each of these folders is to separate output, source, and debugging

information for easier processing. This also forces the person who automates their tests to really

understand how their tests work and where data is going to and coming from. See the Appendix

for an annotated screen capture of the file system structure.

 The checkouts are simple SVN info and SVN checkouts of each test. The first thing it

does before the checkout is an SVN info of the location in the repository. This marks the last

modification time of the repository so that if it needs to be referenced, it can be. Then the

checkout is run and it puts the source into the source directory. Some debugging information

such as the SVN info is sent to the test’s log file so that you can use the web page to find out

Automated Testing of Supercomputers Eric Pershey 5

problems before you even get into the system. The stderr and stdout from the checkout is placed

in the output directory.

 The build is done inside the source directory and if it completes successfully, you can

move to the next step. If the build fails, you can check some of the output from the test's log in

the web page. The stderr and stdout from the build are placed in the output directory.

 The submit is done inside the output_directory as many tests dump output directly from

where they are submitted. This leads well into the way the directory structure is setup. Since each

run of each test gets its own folder, there will be no collisions. An auxiliary submit script is also

created so that if you need to, you can manually submit the test again. This script contains the

environment used during submission, which can be very useful for debugging.

 The complete state will be reached if it detects that the scheduler has completed the test.

This stage will then upload some of the test’s stderr and stdout to the web interface and into the

database. This data has proved to be invaluable in debugging tests. It generally can answer 99%

of all questions about the test. We currently grab 8K from the head and tail of each of the

outputs.

 The theme is to get as much information as possible to the person running the tests so that

they can stay in the web page. This allows for much more efficient debugging and testing. In the

end, the harness has most of the work, but it remains very stable due to its multicomponent build,

its state machine, and its isolation from the state of each test. You can shut down and bring up

the client at almost any time and there will be minor disruption. There are certain things you may

break — especially during a build — but if the build was done right, rerunning it should allow it

to continue without issue.

2.2.2 The Server

 The server is built using Django on top of a webserver, which allows quick database

design, easy client/server data exchange, and a great interface for easily processing data and

generating graphs. Most of the harness user-facing work will be done using the harness web

pages. The server provided a small set of interfaces to talk to the client. This, being loosely

coupled, allowed for easier testing and faster development. Test entry, lookup, and graphs can all

be generated from here as all of the data needed lies inside the database. There were also many

other web pages that were created to help assist in debugging the harness, such as: job lookup,

usage graphs, and availability graphs. They don't use their data from the harness, but from other

systems we have. The harness web page is just an easy place to join their data. Many of the web

pages can be seen in the Appendix.

 Many of those debugging tools have turned into their own projects. We had a

requirement to meet 90% usage on the machine. I needed a way to determine what usage was so

I created a system to load up the jobs into a database and then I can process that data to generate

graphs. These graphs are now part of our annual reporting.

Automated Testing of Supercomputers Eric Pershey 6

 A great advantage to using the client/server model is that this allowed the whole system

to be loosely coupled. I created decorators around key functions in the harness client that

accessed the website and allowed them to retry their connection in the case of the website going

down. These decorators could also directly email a distribution group to notify the responsible

party of an error condition. These were meant to recover so no action was needed unless the

machine the client was running on went down.

2.2.3 The State Machine

 Given the requirement for parallel execution, I needed to keep track of the state of each

test. I created a generic state machine that would allow for tracking the state. It was generically

created to allow for later change which saved much time. Once the state machine was in place, I

could walk through each test and progress each to the next state. The states are: waiting, checked

out, built, submitted, completed, and deleted. The transitions are: checked out, build, submit,

complete, reset, hard reset, and database insert. This diagram evolved into its current state as the

system was being built (see the states diagram in the Appendix). There were also triggers that

allowed control of the state machine. These could be used to pause, reset or auto-rerun a test. It

would be good to note that this state machine and diagram were designed before I created one

piece of code. This partial plan allowed for the isolation and direction of each task to be

completed.

 Here are the descriptions for each state.

• waiting: the test has been entered in the system and is waiting to proceed. It

will remain here until the trigger action “paused” is cleared.

• checked out: the test has been successfully checked out from our version

control system (SVN in our case) and is ready to build.

• built: the test has been successfully built and it is ready to be submitted.

• submitted: the test has been successfully submitted to the scheduler.

• complete: the test has completed. A state machine trigger was added later that

upon entry of this state, it would check if it should rerun the machine, and if it

was supposed to do that, it would enter waiting automatically and the state

machine could clear all actions.

 Here are the descriptions for each transition.

• checked out: this function checks out the source code.

• build: this function builds the source code.

Automated Testing of Supercomputers Eric Pershey 7

• submit: this function submits the binary to the scheduler.

• complete: this function cleans up, collects information on the test and closes

out the test (status).

• reset: resets the state machine of the test back to waiting.

• hard reset: resets the state machine of the test back to waiting, it short circuits

some checks. If the scheduler did something unexpected with a test job and

didn't return correctly, this was needed to fix the test.

• database insert: this is how the test gets put in the system. Our way was

through a web interface.

 Each transition was given a function to run — to move from state to state. For each test,

progress was run that would invoke the correct function to attempt to progress to the next state.

The output of each function was in a lookup table so the entire flow of the state machine could

be easily identified. Since each transition is isolated, they can easily be tested individually. This

made it much easier when it came time to write each transition. This also made it much easier to

change each transition. Later in the enhancements section, you can see why.

2.2.4 The Tests

 The tests would consist of a set of predefined tests that were identified at the conception

of the machine. Now given that, we just need to get a return true script working. This keeps our

number of variables to test down. One of the main themes you will notice is that each new

addition was isolated and then added. This allowed for easy testing and turnaround. Now to get

the system fault tolerant, a data store of some kind must be used to store the state of each test.

Using a web framework called Django, I was able to mock up the database that was to keep state

of the tests. This would change over time but the structure would remain the same throughout its

development. There are three tiers of a test.

• Test Group: This would contain data pertaining to all tests that would be

grouped together. If you had a test called MPI PI, this would contain all MPI

PI tests of various sizes or iterations.

• Test: This would contain specific information about a single test that could be

submitted. It would have very specific build information including, size, wall

time, and submitting information.

• Test Status: This would be specific information about a single run of a test.

This is also where state is held.

Automated Testing of Supercomputers Eric Pershey 8

 Later I found that keeping a join table instead of test status→test→test group, where → is

a foreign key to the next, was much more efficient for queries. You can check this out in the

Appendix. The functional harness shows this.

 The definition of each test is done directly through a web page. This adds and updates

information in the database that maintains state. Once the data is in and correct, the test is ready

to go. Getting these tests in here correctly can be very difficult because of the inherent difficulty

in automating these processes. We spent much time getting each test to build automatically,

breaking apart the dependency of each test, and then finally getting each test to check for

performance and correctness. The harness uses the exit code of each scheduler job to determine

if the test passed or failed. The harness also provided a number of environment variables to help

the test owner run his test according to the harness.

 Once the tests are in, you can just release the trigger on a test and allow the harness to

process each test. The harness client will start pulling each of the tests to run and processing each

of their state machines.

 Once the tests are finished running, you will need to find out all the jobs that succeeded

and failed. The harness website has all of the information you need to find all the tests. If you

look up the jobs in the harness you can see the output and possibly debug the problem without

going to the system. In the case of real correctness, performance, or stability problems, you can

easily get information on where the test is on the system and get the information to the right

person extremely fast. You must not forget to check tests that succeed. It is very possible that

one of your scripts may not be correct and return the wrong code; thus, making you think that a

test passed when actually it failed.

2.2.5 Reporting

 Reporting was not very well defined except for a few key numbers, but this is where

much time was spent. The reports were split in two ways: debugging and graphs. Almost all the

information needed to debug jobs was in the database. It was easy to develop views that exposed

this information to be looked at. This greatly helped for both types of reports. Some of the

information in the database was the actual test/job output. The problem with putting job output in

a database is that it can be in the gigabytes. I tackled this by sending the first and last 8k of the

job output into the database. With this extra bit of information, it helped solve almost 90% of all

problems with jobs, which saved time because the test owner didn’t have to login anywhere,

traverse a file system, and open up files. More debugging information was needed on the test/job,

so I pulled in the job information and then correlated it with the harness data. This allowed for

greater debugging capability and in the long run, it allowed us to build usage graphs because we

had all the job information. Basically, in the end, having a central server that could talk to

databases allowed us to create other connections to other databases without creating a single

complex tightly-coupled piece of code, allowing for the easy generation of graphs.

Automated Testing of Supercomputers Eric Pershey 9

2.2.6 Enhancements

 There are a few enhancements that I would implement if I were to refactor the source of

the harness. Many of them are not that far off.

• Implement a better database structure using join tables. This would allow for

much faster queries.

• Worker queues with workers for state transitions. Some of this is already

complete and it would increase the speed of the harness by the number of

workers.

• Command line control of tests. This would have allowed control of the tests

without having to VPN into our system.

• Implement the harness as a service rather than as a standalone tool. This

would increase reliability.

• An interface directly to the harness client for checking status. This would

allow the harness administrator to check on the message queue, what it’s

doing, and allow for more than one person to watch its status.

2.2.7 Additional Information

 The first time testing on a live machine was interesting because it really gave us an idea

of how it was going to work. Basically, the harness not only tests the supercomputer itself, but

the scheduler, file system, and more. Many bugs in the scheduler were found using the harness

and the reliability was increased because of it. The shear volume at which it can run tests can

greatly outrun any human; and thus, it can find problems that a human may not easily hit.

 The first machine it was run on was our Blue Gene P 1024 node machine, Surveyor. I

was able to run simple MPI PI tests and ensure that everything was working correctly. After

using Surveyor we started to use it on the 40960 node Intrepid machine with great success. It was

so successful to test on that we started to use it to test Intrepid for various problems. In the end I

used the harness to test all of our Blue Gene P and Q machines successfully.

 It is important to note some of the other neat things that the harness exposes. The harness

tracks much information on each test, and because of its speed, it can run through all the tests

quickly — quick enough that many runs of each test can be done during a day. If you start

plotting trend-lines for each runtime, you can see when there are file system slowdowns and

basically find out how the machine is acting from day to day. There have been instances when a

test has passed and the runtime was far shorter, thus leading us to look at a problem with a test's

script that lead us to think it passed when it did not. Even trivial tests such as simple MPI PI or a

random matrix multiply have proved to be invaluable in testing just simple booting of partitions

Automated Testing of Supercomputers Eric Pershey 10

and job turnaround time. These tests may not be to test the compute power and reliability of each

node, but just to make sure that the machine is working as it is supposed to work.

Automated Testing of Supercomputers Eric Pershey 11

3 SUMMARY

 In the end, you are not just testing the compute ability and power of a supercomputer.

You are testing many, if not all of the components, that bring the system together. You must not

test once, you must test many times. The environment of a new machine is very dynamic and

you must be ready to act.

 By using an automated framework to test your machine you can save much time and find

many more problems much faster than if the testing is done manually. If you do it right, this

testing framework can also be used at every maintenance cycle or during some scheduled period

to test for regression and other problems with the click of a button. This harness has saved a

great amount of time, lowered stress, and reduced the overall problem of testing the machine.

Automated Testing of Supercomputers Eric Pershey 12

APPENDIX

State Machine

Automated Testing of Supercomputers Eric Pershey 13

File System

Automated Testing of Supercomputers Eric Pershey 14

Stability Harness Diagram

Automated Testing of Supercomputers Eric Pershey 15

Functional Harness Diagram

Automated Testing of Supercomputers Eric Pershey 16

Test Group

Automated Testing of Supercomputers Eric Pershey 17

Test View

Automated Testing of Supercomputers Eric Pershey 18

Test View (Continued)

Automated Testing of Supercomputers Eric Pershey 19

Test Status View

Automated Testing of Supercomputers Eric Pershey 20

Test Status View (Continued)

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

ENERGY
U.S. DEPARTMENT OF

Argonne Leadership Computing Facility
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439-4847

www.anl.gov

