
ALCF SDL workshop, October 4th 2018

The Intel MKL-DNN team
Presenter: Mourad Gouicem

Intel Processors

Deep Learning Software Stack for Intel processors

Intel MKL is a proprietary performance library for wide range of math and
science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda,
pip)

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (Tensorflow*, MXNet*, CNTK*, PaddlePaddle*)
• Intel deep learning products (Neon™ framework , BigDL, OpenVINO™

toolkit)
• In-house user applications

Intel MKL and Intel MKL-DNN optimize deep learning applications for Intel
processors :
• through the collaboration with framework maintainers to upstream

changes (Tensorflow*, MXNet*, PaddlePaddle*, CNTK*)
• through Intel optimized forks (Caffe*, Torch*, Theano*)
• by partnering to enable proprietary solutions

Intel MKL-DNN is an open source performance library for deep learning
applications (available at https://github.com/intel/mkl-dnn)

• Fast open source implementations for wide range of DNN functions

• Early access to new and experimental functionality

• Open for community contributionsIntel MKL-DNNIntel MKL

2
*Other names and brands may be claimed as the property of others

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://github.com/intel/mkl-dnn

3

Examples of speedups on Intel® Xeon® Scalable Processors

Source: TENSORFLOW OPTIMIZED FOR INTEL® XEON™

*Other names and brands may be claimed as the property of others

http://aidc.gallery.video/detail/videos/day-2:-sessions/video/5790624640001/tensorflow-optimized-for-intel®-xeon™

TensorFlow with Intel MKL/MKL-DNN

Use Intel Distribution for Python*

 Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE=1

 Available via Conda, or YUM and APT package managers

Use pre-built Tensorflow* wheels or build TensorFlow* with `bazel build --
config=mkl`

 Building from source required for integration with Intel Vtune™ Amplifier

 Follow the CPU optimization advices including setting affinity and # of intra- and inter- ops threads

 More Intel MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow*
master if possible

*Other names and brands may be claimed as the property of others
4

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-yum-repo
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu

Intel distribution of Caffe

A fork of BVLC Caffe* maintained by Intel

The best-performing CPU framework for CNNs

Supports low-precision inference on Intel Xeon Scalable Processors (formerly
known as Skylake)

*Other names and brands may be claimed as the property of others
5

https://github.com/intel/caffe
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training

Intel MKL-DNN overview

Features:

 Training (float32) and inference (float32, int8)

 CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

 Optimized for Intel processors

Portability:

 Compilers: Intel C++ compiler/Clang/GCC/MSVC*

 OSes: Linux*, Windows*, Mac*

 Threading: OpenMP*, TBB

Frameworks that use Intel MKL-DNN:

IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*

CNTK*, OpenVino, DeepBench*

Primitives Class

• (De-)Convolution
• Inner Product
• Vanilla RNN, LSTM, GRU

Compute
intensive
operations

• Pooling AVG/MAX
• Batch Normalization
• Local Response

Normalization
• Activations

(ReLU, Tanh, Softmax, ...)
• Sum

Memory
bandwidth
limited
operations

• Reorder
• Concatenation

Data
movement

6
*Other names and brands may be claimed as the property of others

Memory layouts

Most popular memory layouts for image
recognition are nhwc and nchw

 Challenging for Intel processors either for vectorization or for
memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

 Example: nhwc with channels blocked by 16 – nChw16c

 Convolutions define which layouts are to be used by other
primitives

 Optimized frameworks track memory layouts and perform
reorders only when necessary

nchw

nChw16c

R
e

o
rd

e
rs

8

On Intel processors a high % of time is
typically spent in BW-limited ops

 ~40% of ResNet-50, even higher for
inference

The solution is to fuse BW-limited ops
with convolutions or one with another
to reduce the # of memory accesses

 Conv+ReLU+Sum, BatchNorm+ReLU, etc

 Done for inference, WIP for training

The FWKs are expected to be able to
detect fusion opportunities

 IntelCaffe already supports this

Major impact on implementation

 All the impls. must be made aware of the
fusion to get max performance

 Intel MKL-DNN team is looking for
scalable solutions to this problem

Fusing computations
Conv

Conv

Sum ReLU

Conv

Conv+Sum+ReLU

9

Low-precision inference

Proven only for certain CNNs
by IntelCaffe at the moment

A trained float32 model
quantized to int8

Some operations still run in
float32 to preserve accuracy

PrimitiveFP32 FP32

FP32 model F32 model

Quantize model

INT8 model

Scale

Primitive
FP32
INT8INT8

10

Intel MKL-DNN integration levels

Convolution ReLU Batch Norm

Original code

Convolution ReLU Batch NormReorderReorder

Naïve integration

Layout propagation

Convolution ReLU Batch Norm ReorderReorder

Layer fusion

Conv+ReLU ReorderReorder

Transform weights to
integrate BN (offline)

Intel MKL-DNN is designed for best
performance.

However, topology level performance
will depend on Intel MKL-DNN
integration.

• Naïve integration will have reorder
overheads.

• Better integration will propagate
layouts to reduce reorders.

• Best integration will fuse memory
bound layers with compute
intensive ones or with each other.

Example: inference flow

L
o

w
e

r p
e

rfo
rm

a
n

ce
 B

e
tte

r p
e

rfo
rm

a
n

ce
11

Intel MKL-DNN concepts

Descriptor: a structure describing memory and computation properties

Primitive: a handle to a particular compute operation

 Examples: Convolution, ReLU, Batch Normalization, etc.

 Three key operations on primitives: create, execute and destroy

 Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.)
across multiple calls to execute

Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device

13

1. Create memory descriptors

 These describe the shapes and memory layouts of the tensors the primitive will compute on

 Use the layout ‘any’ as much as possible for every input/output/weights if supported (e.g.
convolution or RNN). Otherwise, use the same layout as the previous layer output.

2. Create primitive descriptor and primitive

3. Create needed input reorders

 Query the primitive for the input/output/weight layout it expects

 Create the needed memory buffers and reorder primitives to accordingly reorder the data to the
appropriate layout

4. Enqueue primitives and reorders in the stream queue for execution

14

Layout propagation: the steps to create a primitive

Fusing layers through post-ops

1. Create a post_ops structure

2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)

3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)

1. Set the scaling factors and rounding mode in an attribute structure

2. Pass the attribute structure to the primitive descriptor creation

15

Primitive attributes

https://intel.github.io/mkl-dnn/ex_int8_simplenet.html

1. Application developers already benefit of Intel MKL-DNN through
integration in popular frameworks

2. Framework developers can get better performance on Intel processors by
integrating Intel MKL-DNN

3. There are different levels of integration, and depending on the level you will
get different performance

4. Profiling can help you identify performance gaps due to

 Integration not fully enabling Intel MKL-DNN potential (more on that in the hands-on session).

 Performance sensitive function not enabled with Intel MKL-DNN (make requests on Github*)

 Performance issue in Intel MKL-DNN (raise the issue on Github*)

17

Key Takeaways

https://github.com/intel/mkl-dnn/issues
https://github.com/intel/mkl-dnn/issues)

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, Atom, OpenVINO, neon, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

19

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Primitives and their implementations
Operation Implementations

Convolutions fp32
JIT Winograd

(AVX512
SKX/KNL only)

Separate implementations for
SSE4.2, AVX2 and AVX512F+

GEMM
(Intel MKL: all

ISA, JIT:
AVX512F+

only)

Reference

1x1 JIT
non-1x1
JIT FWD

non-1x1
JIT BWD_D

non-1x1
JIT BWD_W

Convolutions int8 JIT (AVX512BW)
Intel MKL

GEMM
(WIP)

Reference

InnerProduct fp32
JIT

(AVX512F+ only)
Intel MKL

GEMM
Reference

BatchNorm fp32 JIT (any ISA) Reference

LRN fp32 JIT (any ISA) Reference

Pooling fp32 / int8 JIT (any ISA)
JIT (nchw,
any ISA)

Reference

Elementwise JIT (any ISA)

Reorders JIT (AVX2 Reference

Multiple conv impls. to support diff.
features and have diff. perf.

 Conv 1x1 – special vectorization and
blocking

 Conv non-1x1 – better support for 3x3,
5x5, etc

 GEMM – support for dilation (hard to
implement in direct JIT)

 Winograd is only for 3x3; only the (special)
GEMM part is JIT-ed

21

Integration with Intel VTune Amplifier

Full application analysis

Report types:

 CPU utilization

 Parallelization efficiency

 Memory traffic

Profiling of run-time generated code
must be enabled at compile time

$ # building Intel MKL-DNN using cmake
$ cmake –DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install

$ # an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/lib64 -ljitprofiling" bazel build

23

Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

 Similar to Intel MKL verbose

 Enabled via environment variable or
function call

 Output is in CSV format

Output includes:

 The marker, state and primitive kind

 Implementation details (e.g. jit:avx2)

 Primitive parameters

 Creation or execution time (in ms)

Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805
passed

24

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

25

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not
enabled in Intel MKL-DNN

Integration gaps: your hotspot uses Intel MKL-DNN but runs much faster in a
standalone benchmark (more details in the hands-on session)

Intel MKL-DNN performance issue: your hotspot uses Intel MKL-DNN but is
very slow given its parameters

In any of these cases, feel free to contact the Intel MKL-DNN team through the
Github* page issues section.

*Other names and brands may be claimed as the property of others

https://github.com/intel/mkl-dnn/issues

