Performance Analysis on

Blue Gene Q with HPCToolkit

John Mellor-Crummey
Department of Computer Science
Rice University

http://hpctoolkit.org

Miracon March 7, 2013

Acknowledgments

Funding

— DOE Office of Science SciDAC-2 (expired)
— Center for Scalable Application Development Software
Cooperative agreement number DE-FC02-07ER25800

— Performance Engineering Research Institute
Cooperative agreement number DE-FC02-06ER25762

— Sandia National Laboratory

Project team
— Research Staff
— Laksono Adhianto, Mike Fagan, Mark Krentel
— Students
— Xu Liu, Milind Chabbi, Karthik Murthy
— Collaborator
— Nathan Tallent (PNNL)
— Summer Interns
— Michael Franco (Rice), Reed Landrum (Stanford), Sinchan Banerjee (MIT)

— Alumni
— Gabriel Marin (ORNL), Robert Fowler (RENCI), Nathan Froyd (Mozilla)

Outline

e HPCToolkit overview

e New developments
— monitoring and attribution of L2Unit activity
— a new emerging approach for performance analysis of OpenMP

e Next steps
e Using HPCToolkit on Blue Gene/Q at ALCF

Rice University’s HPCToolkit

e Employs binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

 Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

 Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Supports top-down performance analysis

— identify costs of interest and drill down to causes
— up and down call chains
— over time 4

HPCToolkit Workflow

profile
execution
[hpcrun]

compile & link

optimized

call path

profile

binary

source I
code

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

e For statically-linked executables on Blue Gene/Q

— add monitoring by using hpclink as prefix to your link line
— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

* Measure execution unobtrusively

— launch optimized application binaries
— use environment variables to specify what to measure

— collect statistical call path profiles of events of interest

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

Call Path Profiling

Measure and attribute costs in context
sample timer or hardware counter overflows
gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

A

Overhead proportional to sampling frequency...
...not call frequency

@<

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

e Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

optimized
binary

binary
analysis
[hpcstruct]

program
structure

e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

e Correlate metrics to static & dynamic program structure

interpret profile
database —] correlate w/ source
[hpcprof/hpcprof-mpi]

presentation

[hpcviewer/

hpctraceviewer]

10

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

e Presentation

— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight
e.g. scalability losses, waste, CPIl, bandwidth

— graph thread-level metrics for contexts
— explore evolution of behavior over time

interpret profile
: database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

11

Code-centric Analysis with hpcviewer

hpeviewer: amrCodunov3d.Ling

" PatchGodunov.cpp "% PolytropicPhysics.cpp = LevelGodunov.H

// Advance the finer level ond take into account possible

// subcycling by allowing for a change in "stepsleft™.

)49 //[NOTE: the ifQ) test looks rcdundant with cbove, but it is nf
)59 /7 may change during a reortd().

1mestepla_ievei+l,stepsleft, timeBoundary);

/7 The first time the next finer level time oligns with the cu
// level time. After that this is not the case.

= PolytropicPhysicsF.f
r

Lo inlined procedures

1%.64.CC.ftn. OPTHICH . MPl.ex

= AMR.cpp 83 | | AMRH

- costs for

e loops
‘o function calls in full context

)57 //7[NOTE: this if() test _is_ redundant. <dbs>)

*3; Calling Context View 33 %%, Callers View | 1, Flat View _I Vlew ContrOI I —'l=
Scope WALLCLOCK (us)Sum (1) v WALLCLOCK (us):Mean () | WALLCLOC
Experiment Aggregate Metrics 1.92¢+11 100 % 1.80c+08
¥Ymain 1.92¢+11 100 & 1.80c+08
v B»282: amrGodunov() 1.87e+11 97.4% 1.75¢+08
1.77e+11 92.1% 1.66c+08
. . 1.77e+ +08
“run(double, Int) Inav|gat|0n panel 1. nul metnc pane[ws
¥inlin rom Cpp: 1.77e
] Cpp. B1> 1.77e+11 92.1% 1.66c+08
-ma%p: 622 | 1.77e+11 92.1% 1.660+08
¥ B»654: AMR::timeStep(int, int, bool) 1.77e+11 92.1% 1.66c+08
|;vm|med from AMR.cpp: 794] 1.77e+11 92.1% 1.660+08
¥ioop at .Cpp: 943 | 1.77e+11 92.0% 1.66c+08
¥ B»953: AMR::timeStep(int, int, bool) 1.77e+1l 92.0% 1.66c+08
Vinlined from AMR.cpp: 794 1.77e+11 92.0% 1.660+08
: 1.73e+11 90.3% 1.620+08
- :timeStep(int, int, 1.73e+11 50.3% 1.62¢+08
MM“ 1.73e+11 90.3% 1.620+08
> B0 LevelPolytropicGas:.advance 1.73e+11 90.3% 1.620+08
» B»919: BoxlLayout::size() const 5.37¢+06 0.0% 5.04¢+03
» B»911: AMRLevelPolytropicGas::.computeDt() 2.04¢+05 0.0% 1.91e+02
AMR.cpp: 795 2.400+04 0.0% 2.25¢+01
» B» 967 AMRLevelPolytropicGas::postTimeStep() 1.20e+04 0.0% 1.12¢+01
> 9801 std:.ostreamé& std osueam M msen<long>(long) 1.200+04 0.0% 1.12¢+01

Difference call
path profile
from two
executions

— different

number of
nodes

— different
number of
threads

Pinpoint and
quantify
scalability
bottlenecks
within and
across nodes

Scalability Analysis

O 0 O hpcviewer: FLASH/white dwarf: IBM BG/P, weak 256->8192
%‘ Driver_initFlash.F90 =0
206 1-----First pass only add lrefine = 1 blocks to tree(s)
207 1=mmmm Second pass add the rest of the blocks.
208 Do ipass = 1,2
209 .
210 lnblocks_old = lnblocks 21 0/0 Of Scallng
211 proc = mype

212 1===-- Loop through all processors

losses caused by

213 Do iproc = @, nprocs-1
ji If (iproc == @) Then paSSIng data around
517 Eree roc T cfalee a ring of processors

‘ "\ Calling Context View &3 ’ R, Callers View | f1, Flat View‘

|4 2|6 fa |5 A A

'Scope 1% scalability loss v
Experiment Aggregate Metrics 2.46e+01 100 %
¥flash 2.46e+01 100 %
b B driver_evolveflash 1.4le+01 57.5%

¥ B> driver_initflash 1.04e+01 42.5%

¥ B> grid_initdomain 8.58e+00 34.9%

¥ Bpgr_expanddomain 8.58e+00 34.9%

Vloop at gr_expandDomain.F90: 119 6.85e+00 27.9%

¥ B> amr_refine_derefine 5.56e+00 22.6%

¥ [Bpamr_morton_process 5.45e+00 22.2%

¥ B> find_surrblks 5.18e+00 21.1%

¥ Bplocal_tree_build 5.18e+00 21.1%

Vloop at local_tree_build.FS0: 211 5.18e+00 21.1%

Vloop at local_tree_build.F90: 216 5.18e+00 21.1%

P loop at local_tree_build.F90: 286 1.14e+00 4.6%

P By pmpi_sendrecv_replace 5.47e-01 2.2%

256 /WALLCLOCK (u
5.07e+08 :

U RN 0 @m0 w N W W wen s

.07e+08
.46e+08 ¢
.02e+07
.45e+07
.45e+07
.42e+07
.87e+06
.75e+05
.40e+05
.25e+05
.25e+05
.25e+05
.55e+05
.00e+04

13

Time-centric Analysis with hpctraceviewer

Load imbalance among threads appears as different
lengths of colored bands along the x axis

hpctracevies fl 3
88 1race view ARl @RS [OCHT =0 Haurn =o
Time Range: (72,4435 89.3275] Rank Range: [27.76] Cross Mair: (84,7975, 41) s .
ey
W driver_evolveflasn

W DCOMF: Collectives: Alveduce T

-anlhm nwm

Measurement & Attribution of L2 Activity

 L2Unit measurement capabilities
— e.g., counts load/store activity
— node-wide counting; not thread-centric
— global or per slice counting

— supports threshold-based sampling
— samples delivered late: about 800 cycles after threshold reached
— each sample delivered to ALL threads/cores

e HPCToolkit approach

— attribute a share of L2Unit activity to each thread context for
each sample

— e.g., when using a threshold of 1M loads and T threads,
attribute 1M/T events to the active context in each thread when each
sample event occurs

— best effort attribution
— strength: correlate L2Unit activity with regions of your code
— weakness: some threads may get blamed for activity of others

15

Emerging Analysis for OpenMP

* Challenges

— conventional profiling tools can only provide implementation-level
view of OpenMP threads

— master thread
— worker thread

— no context available for computation performed by worker threads
— hard to understand causes of idleness
— insufficient parallelism

— poor load balance
— waiting for critical sections or locks

* New approach

— leading development of OpenMP tools APl - OMPT
— provides sufficient hooks to address all three challenges

— prototype implementation of OMPT in IBM’s emerging LOMP
OpenMP runtime

— prototype implementation using LOMP in HPCToolkit
16

Blame Shifting from Symptoms to Causes

* Approach
— shift blame for idleness to code executing while other threads idle

— undirected blame
— directed blame

* Implementation of undirected blame shifting
— callback at thread transitions idle — working

— maintain two global counters
— thread created (or dedicated HW resources that are reserved)
— number of threads that are working
— idleness is the difference between the two counters

— at a sample event

— if the thread is actively working
attribute a sample of work to the present context
attribute partial blame for idleness to the present context

— else, ignore the sample event

17

Next Steps

e Finish OpenMP support
— finalize OpenMP tools interface with standards committee
— merge OpenMP support into trunk

 Scale I/O strategy
— one file per node rather than one file per thread

e Scale traceviewer

— split traceviewer into client server
— server runs as a parallel program on vis cluster
— client runs on your laptop

e Explore automated analysis of time-centric data
 Data-centric analysis

e Resource-centric performance analysis
— within and across nodes

18

HPCToolkit at ALCF

e ALCF systems
— Isoft/perftools/hpctoolkit/pkgs/hpctoolkit
e Man pages
— Isoft/perftools/hpctoolkit/pkgs/hpctoolkit/share/man

e ALCF guide to HPCToolkit
— http:/lIwww.alcf.anl.gov/resource-guides/vesta-hpctoolkit

19

Detailed HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— a guide for using hpctoolkit on BG/Q, BG/P, and Cray XT

— The hpcviewer and hpctraceviewer user interfaces

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting
— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

Installation guide

20

Using HPCToolkit

 Add hpctoolkit’s bin directory to your path
— see earlier slide for HPCToolkit’'s HOME directory on your system

e Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

e Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -1m ...

e See what sampling triggers are available on BG/Q
— use hpclink to link your executable

— launch executable with environment variable
HPCRUN_EVENT LIST=LIST
— you can launch this on 1 core of 1 node
— no need to provide arguments or input files for your program
they will be ignored

21

Collecting Performance Data on BG/Q

e Collecting traces on BG/Q
— set environment variable HPCRUN_TRACE=1

— use WALLCLOCK or PAPI_TOT_CYC as one of your sample
sources when collecting a trace

e Launching your job on BG/Q using hpctoolkit

— qsub -A ... -t 10 -n 1024 --mode c1 --proccount 16384 \
--cwd pwd’ \
--env OMP_NUM_THREADS=2:\
HPCRUN_EVENT LIST=WALLCLOCK@5000:\
HPCRUN_TRACE=1\
your_executable

22

Monitoring Large Executions

e Collecting performance data on every node is typically not
necessary

e Can improve scalability of data collection by recording data
for only a fraction of processes

— set environment variable HPCRUN_PROCESS_FRACTION

— e.g. collect data for 10% of your processes
— set environment variable HPCRUN_PROCESS_ FRACTION=0.10

23

Digesting your Performance Data

 Use hpcstruct to reconstruct program structure
— e.g. hpestruct your app

— creates your_app.hpcstruct

e Correlate measurements to source code with hpcprof and
hpcprof-mpi

— run hpcprof on the front-end to analyze data from small runs

— run hpcprof-mpi on the compute nodes to analyze data from lots
of nodes/threads in parallel

 Digesting performance data in parallel with hpcprof-mpi

— qsub -A... -t 20 -n 32 --mode c1 --proccount 32 --cwd pwd’ \

Isoft/perftools/hpctoolkit/pkgs/hpctoolkit/bin/hpcprof-mpi \
-S your_app.hpcstruct \

-l /path/to/your_app/src/+ \
hpctoolkit-your_app-measurements.jobid

24

Analysis and Visualization

 Use hpcviewer to open resulting database
— warning: first time you graph any data, it will pause to combine
info from all threads into one file
 Use hpctraceviewer to explore traces
— warning: first time you open a trace database, the viewer will
pause to combine info from all threads into one file
 Try our our user interfaces before collecting your own data

— example performance data:
http://hpctoolkit.org/examples.html

25

A Special Note About hpcstruct and x1f£

— IBM'’s xIf compiler emits machine code for Fortran that has an
unusual mapping back to source

e To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no

— without this option, many nested loops will be missing in
hpcstruct’s output and (as a result) hpcviewer

26

