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USQCD is a collaboration including almost all of the US physicists working on lattice 
QCD and is composed of many smaller, generally long-standing, collaborations.

 USQCD received an ESP allocation on Mira at the ALCF.

This allocation has been used by members of the MILC collaboration, the FNAL lattice 
group, the RBC collaboration and the HotQCD collaboration.
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Theory of
interactions
of quarks

Interactions
mediated
by gluons
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•	 Decays of quarks via weak interactions 
predicted by Standard Model.

•	 Experiments measure decays of hadrons

QCD + ElectroweakKnown Elementary Particles
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Standard Model quark decays involve ele-
ments of a 3 by 3 unitary matrix, the CKM 

matrix, described by 4 parameters

11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).

They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y
d
ij Q

I
Li φ d

I
Rj − Y

u
ij Q

I
Li ε φ

∗
u

I
Rj + h.c., (11.1)

where Y
u,d

are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and

ε is the 2 × 2 antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R

are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate

basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y
u,d

by four unitary matrices, V
u,d
L,R, as M

f
diag = V

f
L Y

f
V

f†
R (v/

√
2), f = u, d. As a result,

the charged-current W
±

interactions couple to the physical uLj and dLk quarks with

couplings given by

−g√
2

(uL, cL, tL)γ
µ

W
+
µ VCKM




dL
sL
bL



 + h.c., VCKM ≡ V
u
L V

d
L
†

=




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It

can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of

the many possible conventions, a standard choice has become [3]

VCKM =




c12c13 s12c13 s13e

−iδ

−s12c23−c12s23s13e
iδ

c12c23−s12s23s13e
iδ

s23c13

s12s23−c12c23s13e
iδ −c12s23−s12c23s13e

iδ
c23c13



 , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating

phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in

the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 � s23 � s12 � 1, and it is convenient to exhibit

this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ

2
= λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ

= V
∗
ub = Aλ

3
(ρ + iη) =

Aλ
3
(ρ̄ + iη̄)

√
1 − A

2
λ

4
√

1 − λ
2[1 − A

2
λ

4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.

The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,

ρ̄ = ρ(1 − λ
2
/2 + . . .) and we can write VCKM to O(λ

4
) either in terms of ρ̄, η̄ or,

traditionally,

VCKM =




1 − λ

2
/2 λ Aλ

3
(ρ − iη)

−λ 1 − λ
2
/2 Aλ

2

Aλ
3
(1 − ρ − iη) −Aλ

2
1



 + O(λ
4
) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
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Experiments observe kaon decays to pions which 
violate charge conjugation and parity symmetry (CP).

KL is a mixture of K
0

and K̄
0

KL → ππ

+
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K
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KL = p K
0

+ q K̄
0

p ≈ q

CP ≈ −1

CP = 1

CP violating

Γi/Γ = (2.056 ± 0.033) × 10
−3
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ū

π0

K
0

s̄

d

u

ū
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Kaon Decays Via Exchange
CP Conserving

Kaon Decays Via "Penguin" Diagrams
Give Indirect CP violation

Parts of both the exchange and penguin mediated decays have recently been calculated by 
the RBC collaboration and improved calculations are running on Mira now
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Generic Process Examples Experiment LQCD calculates

Kl2
K+ → µ+νµ 
K+ → e+νe

fK ( )f falsoK r

Kl3 K+ → π0 l+ νl 
K0 → π− l+ νl

|Vusf
+(0)|2 f+(0)

Kl4 K → π π l ν̄l ??

K → ππ
(CP conserving)

K0 → π+ π− 
K+ → π+ π0

|A0| 
|A2|

|A0|  |A2| 
(SMcpc inputs)

∆mK 
(CP conserving)

K0 ↔ π π ↔ K
0
 (LD) 

K0 ↔ O∆S=2 ↔ K
0
 (SD)

∆mK
∆mK 

(SMcpc inputs)

K0 → π π 
(indirect CP violation)

KL → π π�
K0 ↔ K

0
�
→ π π

 
independent of π π isospin

� =
B̂KF 2

K SM

∆mK ,
Re
Im

B
A
A

K
0

0

^
^
h
h

K0 → π π 
(direct CP violation)

KL → π π 
depends on π π isospin

Re(��/�) 
= f(A0, A2, SM)

A0  A2 
(SMcpc inputs)

K ll"r K l lL
0" r + -

K l lS
0" r + - ??

SMcpc = Standard Model CP-conserving parameters
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Major Development:  Ensembles with Physical Quark Masses

however, the leading finite-volume corrections are exponen-
tially small in the box size and not polynomially and can
therefore be made sufficiently small in practice by increasing
the volume (Luscher, 1986a). These finite-volume effects are
discussed in Sec. IV.C.1. Resonant states, on the other hand,
are embedded into a continuum of scattering states at infinite
volume. In finite volume these levels become discrete and
carry a strong volume dependence. Consequently the leading
finite-volume effects on resonant states are of a different
origin and are discussed separately in Sec. IV.C.2.

Finally we mention that fixing the global topological
charge in QCD is a restriction that becomes irrelevant in
the infinite volume limit, too. For this reason lattice QCD
calculations in a fixed topological sector may be viewed as
introducing an additional third type of finite-volume correc-
tions (Brower et al., 2003; Aoki et al., 2007). Since currently
this technique has not been used in any work on light hadron
spectroscopy, we will not discuss it any further.

1. Finite-volume effects for stable particles

In an interacting field theory, the properties of a particle in
a finite box are affected by mirror charge effects. For hadron
spectroscopy this entails that all hadron masses in a finite box
deviate from their infinite volume value with a leading
contribution originating from the pion warping around one
spatial lattice dimension.15 A generic expectation for the
finite-volume correction to any hadron mass M in an L3 � T
box is therefore16

1� ML

M1
/ e�M�L: (153)

As Luscher (1986a) demonstrated, there is a relation be-
tween the Euclidean finite-volume mass correction of a had-
ron P and the forward �P scattering amplitude in Minkowski
space. Concentrating on the case where a single propagator
receives finite-volume corrections, he obtained an explicit
expression for the leading term in an expansion for asymptoti-
cally large L. Using an alternative approach, Gasser and
Leutwyler (1987a, 1987b, 1988) incorporated finite-volume
effects into chiral perturbation theory. They demonstrated
that the finite volume affects only the propagators and that
it can be accounted for by simply replacing the momentum
integration by a summation over the allowed discrete mo-
menta pi ¼ 2�ni=L.

Expanding the relation of Luscher (1986a) to include
subleading terms in asymptotic L and using �PT input for
the scattering amplitudes, Colangelo and Durr (2004) and
Colangelo, Durr, and Haefeli (2005) combined the two ap-
proaches mentioned above for the case of pseudoscalar me-
sons. A similar expansion for baryons was also pioneered
(Colangelo, Fuhrer, and Lanz, 2010).

From a practical point of view these results imply that there
is a safe asymptotic region of relatively large lattice volumes
where these finite size effects are exponentially small and in
addition can be systematically corrected for. As a rule of
thumb for lattice computations with pion masses above
�300 MeV, lattices withM�L > 4 are considered safe while
those with m�L< 3 are widely affected by finite-volume
corrections. For a more quantitative statement, Fig. 13 shows
a plot of box size L vs pion mass M� where regions are
identified that according to Colangelo, Durr, and Haefeli
(2005) imply the finite-volume effect on the pion mass to
be <1%, <0:3%, and <0:1%, respectively. On top of these
regions parameters of current or recent lattice computations
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FIG. 12 (color online). The landscape of recent dynamical fermion simulations projected to the M� vs a plane. The cross marks the

physical point while shaded areas with increasingly light shade indicate physically more desirable regions of parameter space. Data points are

taken from the following references: ETMC’09(2) (Blossier et al., 2009); ETMC’10ð2þ 1þ 1Þ (Baron et al., 2010a); MILC’10 (Bazavov

et al., 2010a); QCDSF’10(2) (Schierholz, 2010); QCDSF-UKQCD’10 (Bietenholz et al., 2010a); BMWc’08 (Durr et al., 2008); BMWc’10

(Durr et al., 2011c); PACS-CS’09 (Aoki et al., 2009, 2010); RBC-UKQCD’10 (Mawhinney, 2010; Aoki et al., 2011); JLQCD/TWQCD’09

(Noaki et al., 2009); HSC’10 (Lin et al., 2009); BGR’10(2) (Engel et al., 2010); and CLS’10(2) (Brandt et al., 2010). All ensembles are

from Nf ¼ 2þ 1 simulations except explicitly noted otherwise. For staggered, respectively, twisted mass ensembles, the Goldstone,

respectively, charged pion masses are plotted.

15Alternatively in the momentum space view these effects may be

considered as consequences of the discreteness of the momenta in a

finite box.
16For the case of smaller volumes, see also Fukugita et al. (1992).

They argue that the dominant (polynomial) finite size effect is due

to the truncation of a hadrons wave function.

476 Zoltan Fodor and Christian Hoelbling: Light hadron masses from lattice QCD

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012

Fodor and Hoelbling,
Rev. Mod. Phys.
84 (2012) 449

different lattice spacings, a � 0:06, 0.09, 0.12, and
0.15 fm, in order to control extrapolations to the continuum
limit. We include up, down, strange, and charm sea quarks.
For most ensembles, the masses of the strange and charm
quarks, ms and mc, respectively, are fixed at their physical
values. For these ensembles, the up and down quark masses
are taken to be degenerate with a common mass ml, which
has a negligible effect (< 1%) on isospin-averaged quan-
tities. We are generating configurations with three values of
the light quark mass: ml ¼ ms=5, ms=10, and the value
such that the Goldstone pion mass is as close as possible to
the physical pion mass, which is approximately ms=27.
Table I shows the current state of these ensembles. Prior to
the simulations, the lattice spacing and the physical values
of the quark masses can only be estimated. Their precise
values are outputs from the analysis described later in this
paper. Note that we have generated three ensembles with
a � 0:12 fm and ml ¼ ms=10 that differ only in their

spatial volumes. The purpose of using three different
volumes is to enable tests of finite-size effects. The factor
governing such effects, e�M�L, varies by a factor of 8 over
this range of spatial sizes, so we expect to have a sufficient
lever arm for these tests. In Table III, we compare the
values of the plaquette, the strange and light quark con-
densates, and r1=a on these three lattices. A comparison
of finite size effects for the pion and kaon masses and
leptonic decay constants on these configurations with the
predictions of chiral perturbation theory can be found
in Ref. [16].
With the HISQ action, as with less improved staggered

fermion actions, each lattice fermion species corresponds
to four ‘‘tastes’’ of fermions in the continuum limit. To
eliminate the three unwanted tastes from the quark sea, we
use the fourth-root procedure for each of the sea-quark
flavors, up, down, strange, and charm. For numerical and
theoretical arguments justifying this fourth-root procedure,
we refer the reader to Refs. [17,18].
We have also generated a limited number of ensembles

with the strange-quark mass lighter than its physical value,
because including such ensembles has proven very useful
in controlling chiral extrapolations of physical quantities.
In one of those ensembles, we also chose different values
for the two light-quark masses, up and down, to probe for
isospin-breaking effects. These ensembles are listed in
Table II.
We note that even though we are generating some

ensembles with the Goldstone pion mass at the physical
value and with the strange-quark mass near its physical
value, controlling the chiral expansion using a variety of
other ensembles with different quark masses is still very
useful for several reasons: (1) The lattice spacing and the

TABLE I. HISQ gauge configuration ensembles with strange
and charm quark masses set at or very close to their physical
values. The first column gives the lattice spacing for which we
were aiming, which in all cases turned out to be a good
approximation to the actual lattice spacing that could only be
determined after the lattices were created. The second column
gives the ratio of the simulation mass of the light quark to the
physical mass of the strange quark, the third the lattice dimen-
sions, the fourth the product of the Goldstone pion mass and the
spatial extent of the lattice, and the fifth the Goldstone pion mass
in MeV. The pion masses were converted to physical units using
the fp4s scale setting described in Sec. III. The quoted errors

include only the statistical errors on the pion mass and fp4s in

lattice units in the individual ensemble; they do not include
systematic errors such as the errors on the physical values of fp4s
in Table VII. The sixth column gives the number of equilibrated
gauge configurations. Where the sixth column is the sum of two
numbers, these are the numbers of lattices generated with the
RHMC and RHMD algorithms, respectively, as discussed in
Sec. II. We plan to save approximately 1000 configurations in
each ensemble, so those for which Nlats � 1000 are considered
to be complete.

�a (fm) ml=ms N3
s � Nt M�L M� (MeV) Nlats

0.15 1=5 163 � 48 3.78 306.9(5) 1021

0.15 1=10 243 � 48 3.99 214.5(2) 1000

0.15 1=27 323 � 48 3.30 131.0(1) 1020

0.12 1=5 243 � 64 4.54 305.3(4) 1040

0.12 1=10 243 � 64 3.22 218.1(4) 1020

0.12 1=10 323 � 64 4.29 216.9(2) 1000

0.12 1=10 403 � 64 5.36 217.0(2) 1029

0.12 1=27 483 � 64 3.88 131.7(1) 1000

0.09 1=5 323 � 96 4.50 312.7(6) 1011

0.09 1=10 483 � 96 4.71 220.3(2) 1000

0.09 1=27 643 � 96 3.66 128.2(1) 235þ 467
0.06 1=5 483 � 144 4.51 319.3(5) 1000

0.06 1=10 643 � 144 4.25 229.2(4) 435þ 227
0.06 1=27 963 � 192 3.95 135.5(2) 240

TABLE II. HISQ gauge configuration ensembles with lighter-
than-physical strange quark masses. All ensembles have a lattice
spacing of a � 0:12 fm and charm-quark mass as close as
possible to its physical value. The first two columns give the
ratio of the light quark masses to the physical strange quark
mass. (We distinguish between the masses of the two light
quarks because in the ensemble in the last row they are differ-
ent.) The third column gives the ratio of the simulation strange-
quark mass to the physical strange-quark mass, and the fourth
column shows the lattice dimensions. The fifth shows the num-
ber of equilibrated configurations.

ml1=ms ml2=ms m0
s=ms N3

s � Nt Nlats

0.10 0.10 0.10 323 � 64 1020

0.10 0.10 0.25 323 � 64 1020

0.10 0.10 0.45 323 � 64 1020

0.10 0.10 0.60 323 � 64 1020

0.25 0.25 0.25 243 � 64 1020

0.20 0.20 0.60 243 � 64 1020

0.175 0.175 0.45 323 � 64 1020

0.10 0.25 0.45 323 � 64 1020

A. BAZAVOV et al. PHYSICAL REVIEW D 87, 054505 (2013)

054505-2
2+1+1 flavors, HISQ Staggered,
MILC Phys. Rev. D87 (2013) 054505

2+1 flavors, (M)DWF
RBC and UKQCD Collaborations

Large Vol. Ensembles with Physical Quark Masses
•	 BMW Hex-smeared clover fermions

•	 MILC/FNAL HISQ Staggered fermions

•	 RBC/UKQCD DWF fermions

MILC/FNAL and RBC/UKQCD have made 
extensive use of ESP time to generate large 
volume ensembles, with physical quark 
masses at a variety of lattice spacings.
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QCD Ensembles Generated by USQCD using ESP

RBC/UKQCD MILC/FNAL HotQCD

Domain Wall Fermions HISQ Fermions HISQ Fermions
2+1 flavors 2+1+1 flavors 2+1 flavors
Zero temperature Zero temperature Finite temperature

643 × 128 × 12 963 ×  192 643 × 16

Time per trajectory:
5700 seconds on 4 racks
2400 seconds on 8 racks
1350 seconds on 16 racks

1700 trajectories produced
170 M core-hours

Very good performance and uptime for Mira during ESP has allowed USQCD to use 
530 M BGQ core-hours during ESP.  We were allocated 150 M BGQ core-hours.
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Computers

Columbia/RBRC
QCDSP 1998-2005
0.050 GFlops/node

Columbia/RBRC/
UKQCD
QCDOC 2005-2011
0.8 GFlops/node

IBM BGL 2005-2013
2.8 GFlops/node

IBM BGP 2007-
13.6 GFlops/node

IBM BGQ 2012-
200 GFlops/node

RBC/UKQCD have production jobs on the Argonne ALCF BGQ that sustain 1 PFlops on 
32 racks = 32k nodes = 0.5 M cores.

This performance comes from very carefully tuned assembly code on BGQ, produced by 
Peter Boyle, using his BAGEL code generator

~ 4,000× speed-up per node in 15 years, for QCD
~ 700× speed-up in Flops/$ in 15 years (no inflation) 
~ 1,000x speed-up in Flops/(inflation adjusted $)
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Quantum Chromodynamics
•	 Like QED, but with SU(3) local gauge symmetry 

Z =

∫
[dA]

3∏

i=1

det

[
D(A, g0, m

i

0)
]

exp

{
−

i

4
(∂µAν − ∂νAµ + g0f

abc
A

b

µ
A

c

ν
)
2

}

D(A, g0, m
i

0) ≡ iγ
µ
(∂µ − igA

a

µ
t
a
/2) − m

i

0

•	 Good approximation:  Only include three (or four) light quarks in path integral

•	 Gluon self-interaction yields a very non-linear system.

•	 Chiral symmetry of system broken by vacuum state

•	 Quarks bound in hadrons

start trajectory 1
start

start trajectory 2

gluon 
phase 
space



13

Algorithms for Gauge Field Production
•	 Producing gauge fields:

*	 Use classical molecular dynamics to move through gauge field space

*	 Quark loops give back reaction on gauge fields by solving Dirac equation

*	 Hasenbusch mass preconditioning allows tuning back reaction  
 

      
det
det

det
det

det det
D m
D m

D m
D m

D m D m

,

n

m m
m m

1 2

1

For gives
small force but
expensive to calculate

and less
expensive to calculate

Control force size from1

1 2

# g=

c

^ ^
^

^
^ ^h h

h
h
h h6 6

6
6
6 6@ @

@
@
@ @

1 2 3444 444 1 2 3444 444
 

 
 

*	 RBC/UKQCD uses 7 levels of intermediate masses

*	 Integrate different d.o.f on different time scales (Sexton-Weingarten integrators)

*	 Use higher order integrators, currently RBC/UKQCD use force gradient, O(dt4)

•	 These are giving 10-100× speed-up over a decade ago.

*	 Hard to be completely quantitative here, since without these algorithmic 
speed-ups, we could not even try current simulations
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Algorithms for Measurements

118 CHAPTER 6. KL3 CALCULATION ON THE LATTICE

usually the vector ρ meson,

ZV =
〈Vµ(x) · q(0)γµq(0)〉
〈Vµ(x) · q(0)γµq(0)〉

. (6.34)

The signal to noise ratio of this quantity decays rapidly as the vector current moves away

from the ρ source, since ρ is heavy on the lattice.

A better but more expensive method to compute the vector current renormalization

factor involves using the zero momentum π −→ π matrix element

∑

x

〈π(tπ)Vµ(x, t)π(0)〉 =
|Zπ|2

2mπ

1

ZV

, 0 < t < tπ. (6.35)

Where both the initial and final pions are static on the lattice. We use wall source propagators

to generate both the initial and final pions. The setup is shown in the right panel of figure

6.1. The apparent advantage is that this matrix element maintains good signal to noise ratio

even when the 2 pions are separated far away. This is because a zero momentum pion is

the lightest particle on the lattice, consequently the signal to noise ratio does not degrade

when the separation between the 2 pions becomes larger. This correlation function is more

expensive to calculate, requiring light quark propagators computed at both t = 0 and t = tπ.

However, due to the vastly better signal to noise ratio, it is the preferred method we use

in the Kl3 calculation on the 483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV)

ensembles.

K π

pπ(twisted)s
γµ

π π

γµ

Figure 6.1: Left: Kl3 matrix element with twisted pion. Right: Computing the vector
current renormalization factor ZV using the π to π matrix element.
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Figure 7.4: Kl3 contraction 〈π−(T + τ) | s(t+ τ)γ3,0u(t+ τ) |K0(τ)〉. Averaged over 64
possible τ values. Top left: operator sγ3u with twisted pion. Top right: operator sγ3u
with twisted kaon. Bottom left: operator sγ0u with twisted pion. Bottom right: operator
sγ0u with twisted kaon.

T t tK= - r

•	 Time translated the n-point function, on a fixed background gauge field, are 
sufficiently decorrelated (independent enough) to make them worth calculating

•	 This means many solutions of the Dirac equation D[Uμ] Ψ = s for fixed Uμ

•	 Calculating eigenvectors of D[Uμ] with small eigenvalues (low-modes) speeds up 
subsequent solves.  Can be done with EigCG or Lanczos algorithms

•	 Alternatives for Wilson fermions are domain decomposition and multigrid, giving 
similar speed-up with smaller memory requirements.

•	 Further improvement from all-mode-averaging of Blum, Izubuchi and Shintani 

*	 Separates measurements into expensive parts, with small statistical errors after a 
few measurements, and inexpensive parts, where many measurements are needed.
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RBC/UKQCD 2+1 flavor MDWF ensembles
•	 Force gradient integrator and evolution code by Hantao Yin, solvers by Peter Boyle.  

BGQ:  30-50 Gflops/node (15-25% of peak) depending on local volume.

*	 483 ensemble:  1200 MD time units produced (100 M BGQ core hours) with 
RBRC/BNL BGQ, Mira and 2 rack BGQ at Edinburgh.

*	 643 ensemble:  1700 MD time units (180 M BGQ core hours) produced at Mira

•	 We are at the physical point to a few percent accuracy!

*	 483 ensemble 

  

1 Question 1

Are there other calculations, such as long distance contributions to kaon decays, that will
use these ensembles or the G-parity boundary condition ensembles proposed separately?

For the 483 ⇥ 96 ⇥ 24, 2+1 flavor DWF + Iwasaki gauge action (DWF+I) ensembles we are
currently producing, we have the following results (Table 1) from 26 configurations:

Quantity Physical Value Simulation Value Deviation (Sim. - Phys.)/Phys.
m⇡/mK 0.2723 0.2793(6) 2.5%
m⇡/m⌦

0.0807 0.0835(5) 3.3%
mK/m⌦

0.2964 0.2989(16) 0.8%

Table 1: Results from measurements on 26, 483 ⇥ 96 ⇥ 24 configurations, comparing the directly
measured values ofm⇡, mK andm

⌦

to physical ratio. The physical ratios usem⇡ = 135.0 MeV,mK =
495.7 MeV and m

⌦

= 1.6723 GeV, appropriate for isospin symmetric QCD without electromagnetic
e↵ects. There are no chiral extrapolations in the simulation results, rather these mass values come
directly from the measured two-point functions.

The proposed 643 ⇥ 128 ⇥ 12 ensembles have an almost identical volume (5.5 fm)3 and should
be equally close to physical light and strange quark masses. As such, these two ensembles are ideal
targets for any set of measurements where the chiral extrapolation is an important source of error,
and/or where one wants the full continuum symmetries of QCD at finite lattice spacing. Clearly a
very small chiral extrapolation, possibly with dynamical light and strange quark reweighting, is all
that is needed to correct for the few percent di↵erence between the simulated masses and the physical
ones.

On our 483 ensembles, we have measured ZA = 0.71184(13) (from the ratio of local to conserved
axial currents) and ZV = 0.7123(13) from the matrix element of the local vector current in pion
states. We see that ZA = ZV to better than our 0.2% statistical error, so chiral symmetry on these
lattices is very good.

These ensembles will be used for many measurements within RBC/UKQCD and, quite likely,
USQCD. They will certainly be used for our evolving study of isospin breaking and electromagnetic
e↵ects and could be very important for nucleon physics, if the (5.5 fm)3 is determined to be large
enough for these measurements. Many nucleon matrix elements requiring renormalization could be
calculated on these lattices, since the good chiral symmetry reduces operator mixing. RBC/UKQCD
are pursuing heavy quark physics on these lattices, since here as well the very small chiral extrapo-
lation is an advantage. Many of our kaon measurements, such as long distance e↵ects and rare kaon
decays, are planned to move to these ensembles as the techniques are improved and the computer
resources increase.

In short, these lattices should support a wide variety of measurements. The good chiral symmetry,
almost physical quark masses and continuum-like renormalization properties of these lattices make
them ideal for virtually any QCD measurement.

The G-parity lattices may be useful for long-distance e↵ects in kaon physics, since the intermediate
pion state would not appear. We plan to calculate other, basic hadronic observables on the G-parity

2

*	 643 ensemble (3 measurements now, most recent finished yesterday) 
 
        mπ/mK = 0.275              mπ = 137 MeV            mK = 499 MeV

*	 We are very close to the physical point!

•	 Two different lattice spacings will allow us to take the continuum limit.
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Measurement Times
•	 RBC/UKQCD has measurements of , , , , , ( ),f f B m m f K0K ud s K I 2" rrr rJ

+
=^ h  all in a single 

executable, using EigCG deflation and all mode averaging,

•	 In production on ensemble 10, using RBRC/BNL and Edinburgh BGQ's. 
In production on ensemble 11 on Mira at the ALCF

•	 Ensemble 10 runs on 1 rack, ensemble 11 on 32 racks. 
Number of EigCG low modes is 600 for ensemble 10, 1500 for ensemble 11  
 

Ensemble 10 Ensemble 11

EigCG setup time 29.5 66
Exact light quark time 18.7 13
Sloppy light quark time 64 55
Exact strange quark time 8 17
Contraction time 3 16
Total time 123 167

Total time on partition 5.2 days 5.3 hrs

•	 With more deflation, the ensemble 11 calculation is only 1.3× ensemble 10
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Very Recent Results
•	 Results from previous calculations by RBC and UKQCD 
Figure 1: A plot of m⇡ versus 1/a2 for most of the ensembles given in Table 1. The physical quark
mass ensembles all have spatial extent ≥ 5.5 fm.

Quantity Value Stat Chiral Finite V Pert Match Units

f⇡ = 127.1 ± 2.7 ± 0.9 ± 2.5 MeV
fK = 152.4 ± 3.0 ± 0.7 ± 1.5 MeV

fK/f⇡ = 1.199 ± 0.012 ± 0.007 ± 0.012
m̂RGI

ud = 8.78 ± 0.24 ± 0.17 ± 0.03 ± 0.07 MeV
m̂RGI

s = 240.1 ± 4.8 ± 2.4 ± 1.2 ± 2.0 MeV

B̂RGI

K = 0.758 ± 0.011 ± 0.010 ± 0.004 ± 0.016
Re A

2

= (1.436 ± 0.062 ± 0.258
syst

)⇥ 10�8 GeV
Im A

2

= -(6.83 ± 0.51 ± 1.30
syst

)⇥ 10�13 GeV
f
+

(0) = 0.962 ± 0.002 (Preliminary)

Table 2: Some of the results for pion and kaon physics from from ensembles 1-9.

2.1 ⇡ −K Measurement Package on Ensemble 10

Our current ⇡−K measurement package builds on many of our earlier techniques. In particular,
we have long used Coulomb gauge fixed wall sources for the pions and kaons. On these large

4

•	 Results from 26 ensemble 10 configurations (statistical errors only) 10 483 ∗ 96, β = 2.13 DWF+I lattice

mπ mK fπ fK fK/fπ ZA mΩ

AMA 0.08056(17) 0.28845(25) 0.07594(16) 0.09047(12) 1.1914(21) 0.71184(13) -
Exact 0.08064(21) 0.28889(38) 0.07622(28) 0.09052(42) 1.1876(57) 0.71278(63) 0.9649(50)

Table 5: mπ, mK , fK , fπ and ZA measurement from 26 configurations. mΩ measurement from 18 configu-
rations. Data points 10 slices away from the sources are used. For mΩ data points 13 slices away from the
sources are used.

K − π sep AMA? f+
Kπ(0) f−

Kπ(0) ZV

20:24 AMA 0.9672(45) -0.1327(123) 0.7123(13)
20:28 AMA 0.9602(52) -0.1254(97) 0.7089(17)
20:32 AMA 0.9639(49) -0.1318(96) 0.7093(16)
24:28 AMA 0.9598(59) -0.1230(112) 0.7087(18)
24:32 AMA 0.9646(52) -0.1322(106) 0.7092(17)
20:24 exact 1.0018(253) -0.1206(320) 0.7315(150)
20:28 exact 0.9552(227) -0.0850(205) 0.7016(157)
20:32 exact 0.9537(246) -0.1004(215) 0.6971(162)

mres 0.0006148(59)

Table 6: Fitting Results from 26 configurations. The results are obtained from simultaneous fit of K −→ π
and π −→ K contractions. Data points that are at least 10 slices away from the sources are used.

K −K sep AMA? BK

20:4:24 AMA 0.5836(11)
20:4:28 AMA 0.5844(12)
20:4:32 AMA 0.5839(12)
20:4:24 exact 0.5712(109)
20:4:28 exact 0.5870(110)
20:4:32 exact 0.5845(116)

Table 7: BK fitting results from 25 (AMA)/ 26 (exact) configurations. Data points that are at least 10 slices
away from the sources are used. Meson sector also includes the wall source point sink (WP) contractions.

The BK values listed in the table are obtained from the following fitting functions

〈
A0(t)

∣∣K0(0)
〉
= C

(
−e−mKt + e−mK(T−t)

)
, (30)

〈
K0(t1)

∣∣∣OV V+AA(t)
∣∣∣K

0
(t2)

〉
= −8Blat

K C2

3V
e−mK |t2−t1|. (31)

10.1 π, K and Ω correlators

11

•	 Recent MILC result (arXiv:1301.5855): / . ( )( )f f 1 1970 26 37K =r+ +

•	 Recent HPQCD result (arXiv:1303.1670): / . ( )f f 1 1916 21K =r+ + .  (MILC HISQ lattices)

•	 Largest volume, physical quark mass DWF and MILC lattices used in fK/fπ generated 
at ALCF on Mira

s̄

K+

u

leptons
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Improvement from All Mode Averaging
•	 For ( )f 0Kr

+  RBC/UKQCD statistical errors are 5× smaller with AMA than exact only. 
With 26 configurations, have 0.5% statistical error for ( )f 0Kr

+  

10 483 ∗ 96, β = 2.13 DWF+I lattice

mπ mK fπ fK fK/fπ ZA mΩ

AMA 0.08056(17) 0.28845(25) 0.07594(16) 0.09047(12) 1.1914(21) 0.71184(13) -
Exact 0.08064(21) 0.28889(38) 0.07622(28) 0.09052(42) 1.1876(57) 0.71278(63) 0.9649(50)

Table 5: mπ, mK , fK , fπ and ZA measurement from 26 configurations. mΩ measurement from 18 configu-
rations. Data points 10 slices away from the sources are used. For mΩ data points 13 slices away from the
sources are used.

K − π sep AMA? f+
Kπ(0) f−

Kπ(0) ZV

20:24 AMA 0.9672(45) -0.1327(123) 0.7123(13)
20:28 AMA 0.9602(52) -0.1254(97) 0.7089(17)
20:32 AMA 0.9639(49) -0.1318(96) 0.7093(16)
24:28 AMA 0.9598(59) -0.1230(112) 0.7087(18)
24:32 AMA 0.9646(52) -0.1322(106) 0.7092(17)
20:24 exact 1.0018(253) -0.1206(320) 0.7315(150)
20:28 exact 0.9552(227) -0.0850(205) 0.7016(157)
20:32 exact 0.9537(246) -0.1004(215) 0.6971(162)

mres 0.0006148(59)

Table 6: Fitting Results from 26 configurations. The results are obtained from simultaneous fit of K −→ π
and π −→ K contractions. Data points that are at least 10 slices away from the sources are used.

K −K sep AMA? BK

20:4:24 AMA 0.5836(11)
20:4:28 AMA 0.5844(12)
20:4:32 AMA 0.5839(12)
20:4:24 exact 0.5712(109)
20:4:28 exact 0.5870(110)
20:4:32 exact 0.5845(116)

Table 7: BK fitting results from 25 (AMA)/ 26 (exact) configurations. Data points that are at least 10 slices
away from the sources are used. Meson sector also includes the wall source point sink (WP) contractions.

The BK values listed in the table are obtained from the following fitting functions

〈
A0(t)

∣∣K0(0)
〉
= C

(
−e−mKt + e−mK(T−t)

)
, (30)

〈
K0(t1)

∣∣∣OV V+AA(t)
∣∣∣K

0
(t2)

〉
= −8Blat

K C2

3V
e−mK |t2−t1|. (31)

10.1 π, K and Ω correlators
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•	 FNAL/MILC (arXiv:1212.4993) has ( ) . . .f 0 0 9667 0 0023 0 0033K stat sys! !=r
+

•	 BK has 0.2% statistical errors as well, 10× smaller than without AMA 

10 483 ∗ 96, β = 2.13 DWF+I lattice

mπ mK fπ fK fK/fπ ZA mΩ

AMA 0.08056(17) 0.28845(25) 0.07594(16) 0.09047(12) 1.1914(21) 0.71184(13) -
Exact 0.08064(21) 0.28889(38) 0.07622(28) 0.09052(42) 1.1876(57) 0.71278(63) 0.9649(50)

Table 5: mπ, mK , fK , fπ and ZA measurement from 26 configurations. mΩ measurement from 18 configu-
rations. Data points 10 slices away from the sources are used. For mΩ data points 13 slices away from the
sources are used.

K − π sep AMA? f+
Kπ(0) f−

Kπ(0) ZV

20:24 AMA 0.9672(45) -0.1327(123) 0.7123(13)
20:28 AMA 0.9602(52) -0.1254(97) 0.7089(17)
20:32 AMA 0.9639(49) -0.1318(96) 0.7093(16)
24:28 AMA 0.9598(59) -0.1230(112) 0.7087(18)
24:32 AMA 0.9646(52) -0.1322(106) 0.7092(17)
20:24 exact 1.0018(253) -0.1206(320) 0.7315(150)
20:28 exact 0.9552(227) -0.0850(205) 0.7016(157)
20:32 exact 0.9537(246) -0.1004(215) 0.6971(162)

mres 0.0006148(59)

Table 6: Fitting Results from 26 configurations. The results are obtained from simultaneous fit of K −→ π
and π −→ K contractions. Data points that are at least 10 slices away from the sources are used.

K −K sep AMA? BK

20:4:24 AMA 0.5836(11)
20:4:28 AMA 0.5844(12)
20:4:32 AMA 0.5839(12)
20:4:24 exact 0.5712(109)
20:4:28 exact 0.5870(110)
20:4:32 exact 0.5845(116)

Table 7: BK fitting results from 25 (AMA)/ 26 (exact) configurations. Data points that are at least 10 slices
away from the sources are used. Meson sector also includes the wall source point sink (WP) contractions.

The BK values listed in the table are obtained from the following fitting functions

〈
A0(t)

∣∣K0(0)
〉
= C

(
−e−mKt + e−mK(T−t)

)
, (30)

〈
K0(t1)

∣∣∣OV V+AA(t)
∣∣∣K

0
(t2)

〉
= −8Blat

K C2

3V
e−mK |t2−t1|. (31)

10.1 π, K and Ω correlators
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•	 More work can reduce perturbative matching errors
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RBC/UKQCD K -> ππ, I = 2 on Ensemble 10
•	 Measurements on 22 configurations yield (statistical error only) 

2 Physical amplitudes

Next, by using the NPR matrix and Wilson coefficients from Qi’s thesis (Table 4 and Table 9), I
calculated the physical amplitude at 2.15 Gev. The results are obtained by setting the pion-kaon
separation at 20.

i Re(A
2

)(Gev) Im(A
2

)(Gev)
1 -4.95(25)e-09 0
2 1.899(94)e-08 0
7 2.212(57)e-11 3.717(95)e-14
8 -1.622(49)e-10 -7.91(24)e-13
9 -2.26(11)e-15 1.477(73)e-13
10 1.739(86)e-12 -4.12(20)e-14

Total 1.390(69)e-08 -6.47(21)e-13

Table 3: ∆I = 3/2, K ! ⇡⇡ transition amplitude, 7 configurations (Coulomb Gauge fixed new
run)

i Re(A
2

)(Gev) Im(A
2

)(Gev)
1 -5.09(14)e-09 0
2 1.952(52)e-08 0
7 2.258(46)e-11 3.794(77)e-14
8 -1.651(34)e-10 -8.05(17)e-13
9 -2.319(62)e-15 1.519(41)e-13
10 1.788(48)e-12 -4.24(11)e-14

Total 1.429(39)e-08 -6.57(15)e-13

Table 4: ∆I = 3/2, K ! ⇡⇡ transition amplitude, 14 configurations (Coulomb Gauge fixed new
run)

i Re(A
2

)(Gev) Im(A
2

)(Gev)
1 -4.98(10)e-09 0
2 1.913(38)e-08 0
7 2.238(36)e-11 3.761(61)e-14
8 -1.640(29)e-10 -7.99(14)e-13
9 -2.273(46)e-15 1.488(30)e-13
10 1.752(35)e-12 -4.156(84)e-14

Total 1.401(28)e-08 -6.54(13)e-13

Table 5: ∆I = 3/2, K ! ⇡⇡ transition amplitude, 22 configurations (Coulomb Gauge fixed new
run)

4

•	 Previous published result: 
 

Figure 1: A plot of m⇡ versus 1/a2 for most of the ensembles given in Table 1. The physical quark
mass ensembles all have spatial extent ≥ 5.5 fm.

Quantity Value Stat Chiral Finite V Pert Match Units

f⇡ = 127.1 ± 2.7 ± 0.9 ± 2.5 MeV
fK = 152.4 ± 3.0 ± 0.7 ± 1.5 MeV

fK/f⇡ = 1.199 ± 0.012 ± 0.007 ± 0.012
m̂RGI

ud = 8.78 ± 0.24 ± 0.17 ± 0.03 ± 0.07 MeV
m̂RGI

s = 240.1 ± 4.8 ± 2.4 ± 1.2 ± 2.0 MeV

B̂RGI

K = 0.758 ± 0.011 ± 0.010 ± 0.004 ± 0.016
Re A

2

= (1.436 ± 0.062 ± 0.258
syst

)⇥ 10�8 GeV
Im A

2

= -(6.83 ± 0.51 ± 1.30
syst

)⇥ 10�13 GeV
f
+

(0) = 0.962 ± 0.002 (Preliminary)

Table 2: Some of the results for pion and kaon physics from from ensembles 1-9.

2.1 ⇡ −K Measurement Package on Ensemble 10

Our current ⇡−K measurement package builds on many of our earlier techniques. In particular,
we have long used Coulomb gauge fixed wall sources for the pions and kaons. On these large

4

•	 Statistical error already 2× smaller than previous result

•	 Much of the systematic error in previous calculation is from only one lattice spacing.  
Will now have 2 lattice spacings with this action.
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Results from MILC/FNAL on fD and fDs

The red points (physical quark masses) at the smallest a2 were measured on HISQ 
ensembles generated at Mira using ESP time.
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USQCD Goals for CKM Physics 

•	 Recent white paper from our community detailing current and expected errors. 
 

TABLE I. History, status and future of selected LQCD calculations needed for the determi-

nation of CKM matrix elements. Forecasts from the 2007 white paper (where available) as-

sumed computational resources of 10–50 TF years. Most present lattice results are taken from

http://www.latticeaverages.org [28]. Other entries are discussed in the text. The quantity ⇠ is

f2

BBB/(f
2

Bs
BBs).

Quantity CKM Present 2007 forecast Present 2014 2018

element expt. error lattice error lattice error lattice error lattice error

fK/f⇡ |Vus| 0.2% 0.5% 0.5% 0.3% 0.15%

fK⇡
+

(0) |Vus| 0.2% – 0.5% 0.35% 0.2%

fD |Vcd| 4.3% 5% 2% 1% < 1%

fDs |Vcs| 2.1% 5% 2% 1% < 1%

D ! ⇡`⌫ |Vcd| 2.6% – 4.4% 3% 2%

D ! K`⌫ |Vcs| 1.1% – 2.5% 2% 1%

B ! D⇤`⌫ |Vcb| 1.3% – 1.8% 1.5% < 1%

B ! ⇡`⌫ |Vub| 4.1% – 8.7% 4% 2%

fB |Vub| 9% – 2.5% 1.5% < 1%

⇠ |Vts/Vtd| 0.4% 2-4% 4% 1.5% < 1%

�Ms |VtsVtb|2 0.24% 7–12% 11% 8% 5%

BK Im(V 2

td) 0.5% 3.5–6% 1.3% 1% < 1%

It is important to note that, of the quantities in Table I, only for fK/f⇡ was a result available
in 2007 with all errors controlled. All other calculations have matured from having several
errors uncontrolled to all errors controlled over the last five years. For B ! D(⇤) form factors
and fB, lattice errors are at, or below, the level of the corresponding experimental errors.
USQCD calculations have played the major role in these reductions, and have solidified
the error estimates by performing multiple calculations of several quantities using di↵erent
fermion discretizations. For example, the world average for BK is based on four di↵erent
calculations, three of which were carried out under the auspices of USQCD.

These improvements have been possible because of a combination of the roughly 10-fold
increase in computational resources, significant algorithmic improvements, and improved
methods of theoretical analysis of the numerical data. The net e↵ect has been that calcu-
lations have been possible with light-quark masses much closer to the physical values and
with several lattice spacings and volumes to control discretization and finite-volume errors.
Improved actions for domain-wall and staggered light quarks have reduced discretization er-
rors. Smaller lattice spacings have allowed the use of relativistic charm quarks (rather than
a heavy-quark action), increasing the precision in the charm sector, and enabling direct
simulation of the charm sea.

On the theoretical side, a major advance has been the introduction of so-called SMOM renor-
malization schemes for applying nonperturbative renormalization (NPR) to bilinears [32] and
four-fermion operators [33]. These schemes use non-exceptional momentum configurations,
which significantly reduces long distance contributions to correlation functions, and so leads
to smaller uncertainties in normalization factors for the operators. Similarly, the intro-
duction of nonperturbative running (“step-scaling”) of operator normalizations has allowed

9

•	 The ESP time we have used to generate DWF and HISQ ensembles has put us ahead 
of this schedule, perhaps by a year or more.
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Conclusions

•	 After 30 years of QCD simulations, large volume, physical pion/kaon ensembles 
are begin produced by a number of collaborations.

•	 Many technical improvements are being used:  twisted b.c. for particle states, NPR, 
RI-SMOM renormalization, EigCG, deflation, Lellouch-Luscher relation

•	 We can now do quite sophisticated field theory numerically

•	 4,000× improvement in computer power in 15 years.

•	 Evolution algorithms to produce gauge fields are 10-100× faster

•	 Measurement algorithms are > 10× faster

•	 Our most refined measurements have total errors in the 0.2 - 1 % range

•	 5 - 10% errors for much more complicated observables are now possible

•	 Enormous opportunity for precison comparisons of theory and experiment and,  
hopefully, new physics.

•	 ESP time has given USQCD a number of vital lattice QCD ensembles that will be 
used extensively for measurements for a number of years.


