
Reveal
Heidi Poxon

Purpose

Help users find and create additional levels of parallelism
within an application

●  Reduce effort associated with adding OpenMP to MPI programs

●  Produce performance portable code

●  Get insight into optimizations performed by the Cray compiler

●  Use as a first step to parallelize loops that will target GPUs

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
2

When to Move to a Hybrid Programming Model

● When code is network bound
●  Increased MPI collective and point-to-point wait times

● When MPI starts leveling off
●  Too much memory used, even if on-node shared communication

is available

●  As the number of MPI ranks increases, more off-node
communication can result, creating a network injection issue

● When contention of shared resources increases

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
3

Approach to Adding Parallelism

1.  Identify key high-level loops
●  Determine where to add additional levels of parallelism

2.  Perform parallel analysis and scoping

●  Split loop work among threads

3.  Add OpenMP layer of parallelism
●  Insert OpenMP directives

4.  Analyze performance for further optimization, specifically
vectorization of innermost loops
●  We want a performance-portable application at the end

 ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
4

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

subroutine sweepz
…
do j = 1, js
 do i = 1, isz
 radius = zxc(i+mypez*isz)
 theta = zyc(j+mypey*js)
 do m = 1, npez
 do k = 1, ks
 n = k + ks*(m-1) + 6
 r(n) = recv3(1,j,k,i,m)
 p(n) = recv3(2,j,k,i,m)
 u(n) = recv3(5,j,k,i,m)
 v(n) = recv3(3,j,k,i,m)
 w(n) = recv3(4,j,k,i,m)
 f(n) = recv3(6,j,k,i,m)
 enddo
 enddo
 …
 call ppmlr
 do k = 1, kmax
 n = k + 6
 xa (n) = zza(k)
 dx (n) = zdz(k)
 xa0(n) = zza(k)
 dx0(n) = zdz(k)
 e (n) = p(n)/(r(n)*gamm)+0.5 &
 *(u(n)**2+v(n)**2+w(n)**2)
 enddo
 call ppmlr
…
 enddo
enddo

The Problem – How Do I Parallelize This Loop?
●  How do I know this is a good loop to parallelize?
●  What prevents me from parallelizing this loop?
●  Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
 rlft,prgh,urgh,rrgh)
call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
 plft,ulft,rlft pmid umid)
call evolve(umid, pmid) ! contains more calls

call remap ! contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ! contains more calls

return
end

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
5

Loop Work Estimates

Gather loop statistics using the Cray performance tools and
CCE to determine which loops have the most work

●  Helps identify high-level serial loops to parallelize

●  Based on runtime analysis, approximates how much work exists
within a loop

●  Provides the following statistics
●  Min, max and average trip counts
●  Inclusive time spent in loops
●  Number of times a loop was executed

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

6

Reveal Usage Recipe

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 7

● Access Cray compiler
●  $ module load PrgEnv-cray

● Set up perftools loop work estimates experiment
●  $ module load perftools-base, perftools-lite-loops

● Build program (make)

● Run program to get loop work estimates in file
with .ap2 suffix

Example Loop Work Estimates

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016

Table 2: Loop Stats by Function (from -hprofile_generate)

 Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
 Incl | Hit | Trips | Trips | Trips | PE=HIDE
 Time | | Avg | Min | Max |
 Total | | | | |
|--
| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33
| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34
| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49
| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50
| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29
| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30
| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29
| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30
| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63
| 1.541299 | 20062500 | 12 | 0 | 12 |riemann_.LOOP.3.li.64
| 0.863656 | 1687500 | 104 | 0 | 108 |parabola_.LOOP.6.li.67

8

Reveal Usage Recipe (2)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016 9

●  Disable loop work estimates program instrumentation so we can
get fully optimized program now
●  $ module unload perftools-lite-loops

●  Create program library with CCE:

●  Add –h pl=/full_path/my_program.pl to program’s Makefile

●  Rebuild application with full optimization
●  $ make clean
●  $ make

●  Launch Reveal
●  $ reveal /full_path/my_program.pl loop_work_estimates.ap2

View Source and Optimization Information

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
10

Access Cray Compiler Message Information

Integrated
message

‘explain support’

Double click on
optimization message

for more detailed
information

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
11

Scope Selected Loop(s)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
12

Review Scoping Results

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
13

Parallelization
inhibitor messages

are provided to
assist user with

analysis

Loops with scoping
information are

flagged. Red needs
user assistance

Review Scoping Results (3)

Reveal identifies
shared reductions

down the call chain

Reveal identifies
calls that prevent

parallelization

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
14

Review Scoping Results (2)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
15

Generate OpenMP Directives

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
16

! Directive inserted by Cray Reveal. May be incomplete.
!$OMP parallel do default(none) &
!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &
!$OMP& xa,xa0) &
!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &
!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP& ekin) &
!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP& recv1,send2,zdy,zxc,zya)
do k = 1, ks
 do i = 1, isy
 radius = zxc(i+mypey*isy)

 ! Put state variables into 1D arrays, padding with 6 ghost zones
 do m = 1, npey
 do j = 1, js
 n = j + js*(m-1) + 6
 r(n) = recv1(1,k,j,i,m)
 p(n) = recv1(2,k,j,i,m)
 u(n) = recv1(4,k,j,i,m)
 v(n) = recv1(5,k,j,i,m)
 w(n) = recv1(3,k,j,i,m)
 f(n) = recv1(6,k,j,i,m)
 enddo
 enddo

 do j = 1, jmax
 n = j + 6

Reveal generates OpenMP
directive with illegal clause
marking variables that need

addressing

Validate User Inserted Directives

User inserted
directive with mis-
scoped variable ‘n’

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
17

Look For Vectorization Opportunities

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
18

Summary

●  Reveal can be used to simplify the task of adding OpenMP to MPI
programs

●  Reveal can be used to validate existing user-inserted OpenMP
directives

●  The result is performance portable code: OpenMP directives
(programs can be built with any compiler that supports OpenMP)

ALCF Theta ESP Workshop Cray Inc. Proprietary © 2016
19

Q&A

Heidi Poxon
heidi@cray.com

Cray Inc. Proprietary © 2016
20

ALCF Theta ESP Workshop

Legal Disclaimer

Cray Inc. Proprietary © 2016 21

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights
is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other
third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA,
and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their
respective owners.

Copyright 2016 Cray Inc.

ALCF Theta ESP Workshop

