
TAU Performance Tools

Mira Conference at Argonne National Laboratory,
ALCF, Bldg. 240,# 1416, 10am, May 21, 2014, Argonne, IL

Sameer Shende, ParaTools, Inc. and U. Oregon
sameer@paratools.com

http://tau.uoregon.edu/tau_mbc14.ppt

Slides: /soft/perftools/tau/ppt/tau_mbc14.ppt (.pdf)

Acknowledgements: U. Oregon, ParaTools, Inc.

•  Dr. Allen D. Malony, Professor, CIS Dept, and Director, NeuroInformatics
Center, and CEO, ParaTools, Inc.

•  Dr. Kevin Huck, Research Associate, U. Oregon

•  Dr. John Linford, Computer Scientist, ParaTools, Inc.

•  Dr. Tyler Simon, Computer Scientist, ParaTools, Inc.

•  Wyatt Spear, Software engineer, UO, ParaTools, Inc.

•  Daniel Ellsworth, Ph.D. student, UO

•  Nick Chaimov, Ph.D. student, UO

•  Ender Dai, Ph.D. student, UO

•  David Ozog, Ph.D. student, UO

•  David Poliakoff, Ph.D. student, UO

•  Dr. Robert Yelle, Research faculty, UO

What is TAU?

•  TAU is a performance evaluation tool
•  It supports parallel profiling and tracing toolkit

•  Profiling shows you how much (total) time was spent in each routine

•  Tracing shows you when the events take place in each process along a
timeline

•  Profiling and tracing can measure time as well as hardware performance
counters from your CPU

•  TAU can automatically instrument your source code (routines, loops, I/O,
memory, phases, etc.)

•  It supports C++, C, UPC, Fortran, Python, and Java

•  TAU runs on all HPC platforms and it is free (BSD style license)

•  TAU has instrumentation, measurement and analysis tools

•  To use TAU, you need to set a couple of environment variables and
substitute the name of the compiler with a TAU shell script

TAU Performance System®

•  Integrated toolkit for performance problem
solving
–  Instrumentation, measurement,

analysis, visualization
–  Portable performance profiling and

tracing facility
–  Performance data management and

data mining

•  Supports both direct as well as indirect
(sampling) performance measurement
approach

•  Open source

•  Available on all HPC platforms

•  http://tau.uoregon.edu

TAU Architecture	

Performance Evaluation

•  Profiling
–  Presents summary statistics of performance metrics

–  number of times a routine was invoked
–  exclusive, inclusive time/hpm counts spent executing it
–  number of instrumented child routines invoked, etc.
–  structure of invocations (calltrees/callgraphs)
–  memory, message communication sizes also tracked

•  Tracing
–  Presents when and where events took place along a

 global timeline
–  timestamped log of events
–  message communication events (sends/receives) are tracked

–  shows when and where messages were sent
–  large volume of performance data generated leads to more

perturbation in the program

TAU Performance Profiling

•  Performance with respect to nested event regions
–  Program execution event stack (begin/end events)

•  Profiling measures inclusive
and exclusive data

•  Exclusive measurements for
region only performance

•  Inclusive measurements
includes nested “child” regions

•  Support multiple profiling types
–  Flat, callpath, and phase profiling

TAU Performance System Architecture

TAU Performance System Architecture

Program Database Toolkit (PDT)

Application	

/ Library	

C / C++	

parser	

Fortran parser	

F77/90/95	

C / C++	

IL analyzer	

Fortran	

IL analyzer	

Program	

Database	

Files	

IL	

 IL	

DUCTAPE	

PDBhtml	

SILOON	

CHASM	

tau_instrumentor	

Program	

documentation	

Application	

component glue	

C++ / F90/95	

interoperability	

Automatic source	

instrumentation	

Automatic Source-Level Instrumentation in TAU

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source

11	

Using TAU: A brief Introduction

•  TAU supports several measurement options (profiling, tracing, profiling with
hardware counters, etc.)

•  Each measurement configuration of TAU corresponds to a unique stub makefile
that is generated when you configure it

•  To instrument source code using PDT
–  Choose an appropriate TAU stub makefile in <arch>/lib:
% soft add +tau-latest (on BG/Q)
% export TAU_MAKEFILE=/soft/perftools/tau/tau_latest/bgq/lib/Makefile.tau-bgqtimers-mpi-pdt
% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh -help)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpixlf90_r foo.f90
changes to
% tau_f90.sh foo.f90
% qsub –A <aueue> –q R.bc –n 256 –t 10 ./a.out

•  Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

12	

TAU Measurement Configuration on BG/Q

Parallel Profile Visualization: ParaProf

% soft add +tau-latest!
% paraprof (Windows -> 3D Visualization)!

ParaProf: 3D Communication Matrix

% qsub –env TAU_COMM_MATRIX=1 …!
% paraprof (Windows -> 3D Communication Matrix)!

ParaProf: Scatter Plot

ParaProf: Topology View: MPI_Send on BG/P

Interval, Atomic and Context Events in TAU

Interval Event	

Atomic Event	

Context Event	

% pprof!

Jumpshot [ANL]: Trace Visualization

% qsub –env TAU_TRACE=1 …!
% tau_treemerge.pl!
% tau2slog2 tau.trc tau.edf –o app.slog2!
% jumpshot app.slog2!

Building Bridges to Other Tools

TAU Instrumentation Approach

•  Support for standard program events
–  Routines, classes and templates
–  Statement-level blocks
–  Begin/End events (Interval events)

•  Support for user-defined events
–  Begin/End events specified by user
–  Atomic events (e.g., size of memory allocated/freed)
–  Selection of event statistics

•  Support definition of “semantic” entities for mapping

•  Support for event groups (aggregation, selection)

•  Instrumentation optimization
–  Eliminate instrumentation in lightweight routines

Interval, Atomic and Context Events in TAU

Interval Event	

Atomic Event	

Context Event	

TAU Measurement Mechanisms

•  Parallel profiling
–  Function-level, block-level, statement-level
–  Direct instrumentation as well as event based sampling
–  Supports user-defined events and mapping events
–  Support for flat, callgraph/callpath, phase profiling
–  Support for memory profiling (headroom, malloc/leaks)
–  Support for tracking I/O (wrappers, read/write/print calls)
–  Parallel profiles written at end of execution
–  Parallel profile snapshots can be taken during execution

•  Tracing
–  All profile-level events + inter-process communication
–  Inclusion of multiple counter data in traced events

Types of Parallel Performance Profiling

•  Flat profiles
–  Metric (e.g., time) spent in an event (callgraph nodes)
–  Exclusive/inclusive, # of calls, child calls

•  Callpath profiles (Calldepth profiles)
–  Time spent along a calling path (edges in callgraph)
–  “main=> f1 => f2 => MPI_Send” (event name)
–  TAU_CALLPATH_DEPTH environment variable

•  Phase profiles
–  Flat profiles under a phase (nested phases are allowed)
–  Default “main” phase
–  Supports static or dynamic (e.g., per-iteration) phases

Performance Evaluation Alternatives

Flat profile	

Depthlimit	

profile	

Parameter	

profile	

Callpath/���
callgraph profile	

Phase	

profile	

Trace	

Volume of performance data	

Each alternative has:	

-  one metric/counter	

-  multiple counters	

25	

TAU: A Quick Reference

Runtime Environment Variables (tau.conf)
Environment	
 Variable	
 Default	
 Descrip5on	

TAU_TRACE	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 tracing	

TAU_CALLPATH	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 callpath	
 profiling	

TAU_TRACK_MEMORY_LEAKS	
 0	
 Se,ng	
 to	
 1	
 turns	
 on	
 leak	
 detecEon	

TAU_TRACK_HEAP	
 or	

TAU_TRACK_HEADROOM	

0	
 Se,ng	
 to	
 1	
 turns	
 on	
 tracking	
 heap	
 memory/headroom	
 at	
 rouEne	
 entry	
 &	
 exit	

using	
 context	
 events	
 (e.g.,	
 Heap	
 at	
 Entry:	
 main=>foo=>bar)	

TAU_CALLPATH_DEPTH	
 2	
 Specifies	
 depth	
 of	
 callpath.	
 Se,ng	
 to	
 0	
 generates	
 no	
 callpath	
 or	
 rouEne	

informaEon,	
 se,ng	
 to	
 1	
 generates	
 flat	
 profile	
 and	
 context	
 events	
 have	
 just	

parent	
 informaEon	
 (e.g.,	
 Heap	
 Entry:	
 foo)	

TAU_TRACK_SIGNALS	
 0	
 Se,ng	
 to	
 1	
 generate	
 debugging	
 callstack	
 info	
 when	
 a	
 program	
 crashes	

TAU_SAMPLING	
 0	
 Se,ng	
 to	
 1	
 generates	
 sample	
 based	
 profilles	

TAU_COMM_MATRIX	
 0	
 Se,ng	
 to	
 1	
 generates	
 communicaEon	
 matrix	
 display	
 using	
 context	
 events	

TAU_THROTTLE	
 1	
 Se,ng	
 to	
 0	
 turns	
 off	
 thro_ling.	
 Enabled	
 by	
 default	
 to	
 remove	
 instrumentaEon	

in	
 lightweight	
 rouEnes	
 that	
 are	
 called	
 frequently	

TAU_THROTTLE_NUMCALLS	
 100000	
 Specifies	
 the	
 number	
 of	
 calls	
 before	
 tesEng	
 for	
 thro_ling	

TAU_THROTTLE_PERCALL	
 10	
 Specifies	
 value	
 in	
 microseconds.	
 Thro_le	
 a	
 rouEne	
 if	
 it	
 is	
 called	
 over	
 100000	

Emes	
 and	
 takes	
 less	
 than	
 10	
 usec	
 of	
 inclusive	
 Eme	
 per	
 call	

TAU_COMPENSATE	
 0	
 Se,ng	
 to	
 1	
 enables	
 runEme	
 compensaEon	
 of	
 instrumentaEon	
 overhead	

TAU_PROFILE_FORMAT	
 Profile	
 Se,ng	
 to	
 “merged”	
 generates	
 a	
 single	
 file	
 -­‐	
 tauprofile.xml.	
 “snapshot”	

generates	
 xml	
 format	

TAU_METRICS	
 TIME	
 Se,ng	
 to	
 a	
 comma	
 separted	
 list	
 generates	
 other	
 metrics.	
 (e.g.,	
 -­‐-­‐env	

TIME:BGQ_TIMERS:PAPI_FP_INS:PAPI_NATIVE_<event>)	

27	

EBS: Setting TAU_SAMPLING=1

% export PATH=/soft/perftools/tau/tau_latest/bgq/bin/compilers:$PATH
No need to set any other TAU variables! Use tau.conf for settings.

28	

TAU’s Manual Instrumentation API

29	

Automatic Source-Level Instrumentation in TAU
using Program Database Toolkit (PDT)

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source

30	

Automatic Instrumentation

31	

TAU_COMPILER Commandline Options

Compile-Time Environment Variables

•  Optional parameters for TAU_OPTIONS: [tau_compiler.sh –help]
-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optNoCompInst Do not revert to compiler instrumentation if source

 instrumentation fails.
-optLinkOnly Do not instrument the source code. Simply link in the TAU libraries
-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations

 (Requires TAU to be configured with –iowrapper)
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optTauWrapFile="" Specify link_options.tau generated by tau_gen_wrapper
-optLinking="" Options passed to the linker. Typically

 $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts="" Options for C parser in PDT (cparse). Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...

33	

Compiling Fortran Codes with TAU

•  If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’

•  To use the compiler based instrumentation instead of PDT (source-based):
% export TAU_OPTIONS=‘-optCompInst -optVerbose’

•  If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

•  To use an instrumentation specification file:
% export TAU_OPTIONS=‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’
% cat mycmd.tau
BEGIN_INSTRUMENT_SECTION
memory file=“foo.f90” routine=“#”
instruments all allocate/deallocate statements in all routines in foo.f90
loops file=“*” routine=“#”
io file=“abc.f90” routine=“FOO”
END_INSTRUMENT_SECTION

34	

Steps of Performance Evaluation

•  Collect basic routine-level timing profile to determine
where most time is being spent

•  Collect routine-level hardware counter data to determine
types of performance problems

•  Collect callpath profiles to determine sequence of events
causing performance problems

•  Conduct finer-grained profiling and/or tracing to pinpoint
performance bottlenecks
–  Loop-level profiling with hardware counters
–  Tracing of communication operations

35	

Usage Scenarios: Routine Level Profile

•  Goal: What routines account for the most time? How much?

•  Flat profile with wallclock time:

36	

Solution: Generating a flat profile with MPI

37	

Usage Scenarios: Loop Level Instrumentation

•  Goal: What loops account for the most time? How much?

•  Flat profile with wallclock time with loop instrumentation:

38	

Solution: Generating a loop level profile

39	

Usage Scenarios: Compiler-based Instrumentation

•  Goal: Easily generate routine level performance data using the compiler
instead of PDT for parsing the source code

40	

Use Compiler-Based Instrumentation

41	

Usage Scenarios: Generating Callpath Profile
•  Goal: Who calls my MPI_Barrier()? Where?

•  Callpath profile for a given callpath depth:

42	

Callpath Profile

•  Generates program callgraph

43	

Generate a Callpath Profile

44	

Usage Scenarios: Instrument a Python program

•  Goal: Generate a flat profile for a Python program

45	

Usage Scenarios: Instrument a Python program

Original
code:

Create a wrapper:

46	

Generate a Python Profile

47	

Usage Scenarios: Mixed Python+F90+C+pyMPI

•  Goal: Generate multi-level instrumentation for Python+MPI+C+F90+C++ ...

48	

Generate a Multi-Language Profile w/ Python

49	

Usage Scenarios: Generating a Trace File

•  Goal: Identify the temporal aspect of performance. What happens in my code at a given
time? When?

•  Event trace visualized in Vampir/Jumpshot

50	

VNG Process Timeline with PAPI Counters

51	

Vampir Counter Timeline Showing I/O BW

52	

Generate a Trace File

53	

Usage Scenarios: Evaluate Scalability

•  Goal: How does my application scale? What bottlenecks occur at what core counts?

•  Load profiles in PerfDMF database and examine with PerfExplorer

54	

Usage Scenarios: Evaluate Scalability

55	

Performance Regression Testing

56	

Evaluate Scalability using PerfExplorer Charts

57	

Communication Matrix Display

•  Goal: What is the volume of inter-process communication? Along which calling path?

58	

Evaluate Scalability using PerfExplorer Charts

59	

Communication Matrix Display

•  Goal: What is the volume of inter-process communication? Along which calling path?

60	

Interval Events, Atomic Events in TAU

Interval event	

e.g., routines	

(start/stop)	

Atomic events	

(trigger with 	

value)	

% setenv TAU_CALLPATH_DEPTH 	

0	

% setenv TAU_TRACK_HEAP 	

 	

1	

61	

Context Events (default)

% setenv TAU_CALLPATH_DEPTH 	

2	

% setenv TAU_TRACK_HEAP 	

 	

1	

Context event���
= atomic event	

+ executing ���
context	

Binary Rewriting: DyninstAPI [U.Wisc] and TAU

63	

Using PAPI and TAU

Hardware Counters

64	

Hardware	
 performance	
 counters	
 available	
 on	
 most	
 modern	
 	

microprocessors	
 can	
 provide	
 insight	
 into:	
 	

1. Whole	
 program	
 Eming	

2. Cache	
 behaviors	

3. Branch	
 behaviors	

4. Memory	
 and	
 resource	
 access	
 pa_erns	

5. Pipeline	
 stalls	

6. FloaEng	
 point	
 efficiency	

7. InstrucEons	
 per	
 cycle	

Hardware	
 counter	
 informaEon	
 can	
 be	
 obtained	
 with:	

1. SubrouEne	
 or	
 basic	
 block	
 resoluEon	

2. Process	
 or	
 thread	
 a_ribuEon	

What’s PAPI?

•  Open Source software from U. Tennessee, Knoxville
•  http://icl.cs.utk.edu/papi
•  Middleware to provide a consistent programming interface for the

performance counter hardware found in most major micro-
processors.

•  Countable events are defined in two ways:
–  Platform-neutral preset events
–  Platform-dependent native events

•  Presets can be derived from multiple native events
•  All events are referenced by name and collected in EventSets

65	

PAPI Utilities: papi_avail

PAPI Utilities: papi_avail

PAPI Utilities: papi_avail

PAPI Utilities: papi_native_avail

PAPI Utilities: papi_event_chooser

PAPI Utilities: papi_event_chooser

PAPI Utilities: papi_event_chooser

75	

Usage Scenarios: Calculate mflops in Loops

•  Goal: What MFlops am I getting in all loops?

•  Flat profile with PAPI_FP_INS/OPS and time with loop instrumentation:

ParaProf: Mflops Sorted by Exclusive Time

low mflops?	

77	

Generate a PAPI profile with 2 or more counters

78	

Derived Metrics in ParaProf

ParaProf’s Source Browser: Loop Level
Instrumentation

80	

Estimation of tool intrusiveness

PAPI Utilities: papi_cost

PAPI Utilities: papi_cost

PAPI Utilities: papi_cost

84	

Profile Measurement – Three Flavors

•  Flat profiles
–  Time (or counts) spent in each routine (nodes in callgraph).
–  Exclusive/inclusive time, no. of calls, child calls
–  E.g,: MPI_Send, foo, …

•  Callpath Profiles
–  Flat profiles, plus
–  Sequence of actions that led to poor performance
–  Time spent along a calling path (edges in callgraph)
–  E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when

called by f2, when f2 is called by f1, when it is called by main. Depth of this
callpath = 4 (TAU_CALLPATH_DEPTH environment variable)

•  Phase based profiles
–  Flat profiles, plus
–  Flat profiles under a phase (nested phases are allowed)
–  Default “main” phase has all phases and routines invoked outside phases
–  Supports static or dynamic (per-iteration) phases
–  E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

85	

Phase Profiling (NAS BT, Flat Profile)

How is MPI_Wait()
distributed relative to
solver direction?

Application routine names
reflect phase semantics

86	

NAS BT – Phase Profile (Main and X, Y, Z)
Main phase shows nested phases and immediate events

87	

TAU Timers and Phases

•  Static timer
–  Shows time spent in all invocations of a routine (foo)
–  E.g., “foo()” 100 secs, 100 calls

•  Dynamic timer
–  Shows time spent in each invocation of a routine
–  E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)

•  Static phase
–  Shows time spent in all routines called (directly/indirectly) by a given routine

(foo)
–  E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs

were spent in MPI_Send() when it was called by foo.

•  Dynamic phase
–  Shows time spent in all routines called by a given invocation of a routine.
–  E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in

MPI_Send when it was called by the 4th invocation of foo.

88	

Performance Dynamics: Phase-Based Profiling

•  Profile phases capture
performance with respect
to application-defined
‘phases’ of execution
–  Separate full profile produce

for each phase

•  GTC particle-in-cell
simulation of fusion
turbulence

•  Phases assigned to iterations

•  Data change affects cache

increasing phase
execution time

decreasing
flops rate

declining cache
performance

89	

Memory and I/O evaluation

Library interposition/wrapping: tau_exec, tau_wrap

•  TAU provides a wealth of options to measure the performance of an
application

•  Need to simplify TAU usage to easily evaluate performance properties,
including I/O, memory, and communication

•  Designed a new tool (tau_exec) that leverages runtime instrumentation
by pre-loading measurement libraries

•  Works on dynamic executables (default under Linux, not on IBM Blue
Gene where we must compile with -dynamic)

•  Substitutes I/O, MPI, and memory allocation/deallocation routines with
instrumented calls
–  Interval events (e.g., time spent in write())
–  Atomic events (e.g., how much memory was allocated)

•  Measure I/O and memory usage

TAU Execution Command (tau_exec)

•  Uninstrumented execution (compiled with –Wl,–Bdynamic on BG/P)
–  % qsub –n 256 –t 10 ./a.out

•  Track MPI performance (-T <options>)
–  % tau_exec –qsub -T bgqtimers,mpi,pdt -- qsub –n 256 –t 10 ./a.out

•  Track I/O and MPI performance (MPI by default, use –T serial for serial)
–  % tau_exec –io qsub -T bgqtimers,mpi,pdt -- qsub –n 256 –t 10 ./a.out

•  Track memory operations
–  % tau_exec –memory –env TAU_TRACK_MEMORY_LEAKS=1 qsub -T

bgqtimers,mpi,pdt -- qsub –n 256 –t 10 ./a.out

91	

Library wrapping: tau_gen_wrapper

•  How to instrument an external library without source?
–  Source may not be available
–  Library may be too cumbersome to build (with instrumentation)

•  Build a library wrapper tools
–  Used PDT to parse header files
–  Generate new header files with instrumentation files
–  Three methods to instrument: runtime preloading, linking, redirecting

headers to re-define functions

•  Application is instrumented

•  Add the –optTauWrapFile=<wrapperdir>/link_options.tau file to
TAU_OPTIONS env var while compiling with tau_cc.sh, etc.

•  Wrapped library
–  Redirects references at routine callsite to a wrapper call
–  Wrapper internally calls the original
–  Wrapper has TAU measurement code

92	

HDF5 Library Wrapping

93	

$ tau_gen_wrapper hdf5.h /usr/lib/libhdf5.a -f select.tau!
!
Usage : tau_gen_wrapper <header> <library> [-r|-d|-w (default)] [-g groupname] [-i
headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]!
•  instruments using runtime preloading (-r), or -Wl,-wrap linker (-w), redirection
of header file to redefine the wrapped routine (-d)!
•  instrumentation specification file (select.tau)!
•  -g group may be specified (hdf5)!
•  tau_exec loads libhdf5_wrap.so shared library using –loadlib=<libwrap_pkg.so>!
•  creates the wrapper/ directory with linkoptions.tau passed to the TAU_OPTIONS
environment variable using –optTauWrapFile=<file>!
!
NODE 0;CONTEXT 0;THREAD 0:!
---!
%Time Exclusive Inclusive #Call #Subrs Inclusive Name!
 msec total msec usec/call!
---!
100.0 0.057 1 1 13 1236 .TAU Application!
 70.8 0.875 0.875 1 0 875 hid_t H5Fcreate()!
 9.7 0.12 0.12 1 0 120 herr_t H5Fclose()!
 6.0 0.074 0.074 1 0 74 hid_t H5Dcreate()!
 3.1 0.038 0.038 1 0 38 herr_t H5Dwrite()!
 2.6 0.032 0.032 1 0 32 herr_t H5Dclose()!
 2.1 0.026 0.026 1 0 26 herr_t H5check_version()!
 0.6 0.008 0.008 1 0 8 hid_t H5Screate_simple()!
 0.2 0.002 0.002 1 0 2 herr_t H5Tset_order()!
 0.2 0.002 0.002 1 0 2 hid_t H5Tcopy()!
 0.1 0.001 0.001 1 0 1 herr_t H5Sclose()!
 !

94	

A New Approach: tau_exec

•  Runtime instrumentation by pre-loading the
measurement library

•  Works on dynamic executables (default under Linux)

•  Substitutes I/O, MPI and memory allocation/deallocation
routines with instrumented calls

•  Track interval events (e.g., time spent in write()) as well
as atomic events (e.g., how much memory was
allocated) in wrappers

•  Accurately measure I/O and memory usage

95	

Tracking I/O in static binaries (IBM Blue Gene)

•  The linker can substitute TAU’s I/O wrapper and
intercept POSIX I/O Calls

•  We can track parameters that flow through the
I/O calls

•  Configure TAU with –iowrappers

•  Use –optTrackIO in TAU_OPTIONS

96	

Tracking I/O in static binaries

97	

Issues

•  Heap memory usage reported by the mallinfo()
call is not 64-bit clean.
–  32 bit counters in Linux roll over when > 4GB memory is used
–  We keep track of heap memory usage in 64 bit counters inside

TAU

•  Compensation of perturbation introduced by tool
–  Only show what application uses
–  Create guards for TAU calls to not track I/O and memory

allocations/de-allocations performed inside TAU

•  Provide broad POSIX I/O and memory coverage

98	

I/O Calls Supported

99	

Tracking I/O in Each File

100	

Time Spent in POSIX I/O write()

101	

Volume of I/O by File, Memory

102	

Bytes Written

103	

Memory Leaks in MPI

104	

TAU Integration with IDEs

•  High performance software development environments
–  Tools may be complicated to use
–  Interfaces and mechanisms differ between platforms / OS

•  Integrated development environments
–  Consistent development environment
–  Numerous enhancements to development process
–  Standard in industrial software development

•  Integrated performance analysis
–  Tools limited to single platform or programming language
–  Rarely compatible with 3rd party analysis tools
–  Little or no support for parallel projects

105	

TAU and Eclipse

•  Provide an interface for configuring TAU’s automatic instrumentation within
Eclipse’s build system

•  Manage runtime configuration settings and environment variables for
execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU
Temporary copy

of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

106	

TAU and Eclipse

 PerfDMF

107	

Choosing PAPI Counters with TAU in Eclipse

108	

Labs!

109	

Lab Instructions

110	

Lab Instructions

111	

More Information

•  PAPI References:
–  PAPI documentation page available from the PAPI website:
 http://icl.cs.utk.edu/papi/

•  TAU References:
–  TAU Users Guide and papers available from the TAU website:

http://tau.uoregon.edu/

•  VAMPIR References
–  VAMPIR website
 http://www.vampir.eu/

•  Scalasca/KOJAK References
–  Scalasca documentation page
 http://www.scalasca.org/

•  Eclipse PTP References
–  Documentation available from the Eclipse PTP website:
 http://www.eclipse.org/ptp/

112	

Acknowledgements

•  Department of Energy
–  Office of Science
–  Argonne National Laboratory
–  ORNL
–  NNSA/ASC Trilabs (SNL, LLNL, LANL)

•  HPCMP DoD PETTT Program
•  National Science Foundation
•  University of Tennessee

•  University of Oregon
–  Allen D. Malony, K. Huck,
 W. Spear

•  TU Dresden
–  Holger Brunst, Andreas Knupfer
–  Wolfgang Nagel

•  Research Centre Juelich, Germany
–  Bernd Mohr
–  Felix Wolf

