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What is TAU? 

•  TAU is a performance evaluation tool 
•  It supports parallel profiling and tracing toolkit 

•  Profiling shows you how much (total) time was spent in each routine  

•  Tracing shows you when the events take place in each process along a 
timeline 

•  Profiling and tracing can measure time as well as hardware performance 
counters from your CPU 

•  TAU can automatically instrument your source code (routines, loops, I/O, 
memory, phases, etc.) 

•  It supports C++, C, UPC, Fortran, Python, and Java 

•  TAU runs on all HPC platforms and it is free (BSD style license) 

•  TAU has instrumentation, measurement and analysis tools 

•  To use TAU, you need to set a couple of environment variables and 
substitute the name of the compiler with a TAU shell script 



TAU Performance System®  

•  Integrated toolkit for performance problem 
solving 
–  Instrumentation, measurement, 

analysis, visualization 
–  Portable performance profiling and 

tracing facility 
–  Performance data management and 

data mining 

•  Supports both direct as well as indirect 
(sampling) performance measurement 
approach 

•  Open source 

•  Available on all HPC platforms 

•  http://tau.uoregon.edu 

TAU Architecture	





Performance Evaluation 

•  Profiling 
–  Presents summary statistics of performance metrics 

–  number of times a routine was invoked 
–  exclusive, inclusive time/hpm counts spent executing it 
–  number of instrumented child routines invoked, etc.  
–  structure of invocations (calltrees/callgraphs) 
–  memory, message communication sizes also tracked 

•  Tracing 
–   Presents when and where events took place along a 

 global timeline 
–  timestamped log of events 
–  message communication events (sends/receives) are tracked 

–  shows when and where messages were sent 
–  large volume of performance data generated leads to more 

perturbation in the program 

 

 



TAU Performance Profiling 

•  Performance with respect to nested event regions 
–  Program execution event stack (begin/end events) 

•  Profiling measures inclusive 
and exclusive data 

•  Exclusive measurements for 
region only performance 

•  Inclusive measurements 
includes nested “child” regions 

•  Support multiple profiling types 
–  Flat, callpath, and phase profiling 



TAU Performance System Architecture 



TAU Performance System Architecture 



Program Database Toolkit (PDT) 
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Automatic Source-Level Instrumentation in TAU 

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source
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Using TAU: A brief Introduction 

•  TAU supports several measurement options (profiling, tracing, profiling with 
hardware counters, etc.) 

•  Each measurement configuration of TAU corresponds to a unique stub makefile 
that is generated when you configure it 

•  To instrument source code using PDT 
–  Choose an appropriate TAU stub makefile in <arch>/lib: 
% soft add +tau-latest (on BG/Q) 
% export TAU_MAKEFILE=/soft/perftools/tau/tau_latest/bgq/lib/Makefile.tau-bgqtimers-mpi-pdt 
% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh -help) 
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers: 
% mpixlf90_r foo.f90  
changes to  
% tau_f90.sh foo.f90 
% qsub –A <aueue> –q R.bc –n 256 –t 10 ./a.out    

•  Execute application and analyze performance data: 
% pprof   (for text based profile display) 
% paraprof  (for GUI) 
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TAU Measurement Configuration on BG/Q 



Parallel Profile Visualization: ParaProf 

% soft add +tau-latest!
% paraprof  (Windows -> 3D Visualization)!



ParaProf: 3D Communication Matrix 

% qsub –env TAU_COMM_MATRIX=1 …!
% paraprof (Windows -> 3D Communication Matrix)!



ParaProf: Scatter Plot 



ParaProf: Topology View: MPI_Send on BG/P 



Interval, Atomic and Context Events in TAU 

Interval Event	



Atomic Event	



Context Event	



% pprof!



Jumpshot [ANL]: Trace Visualization 

% qsub –env TAU_TRACE=1 …!
% tau_treemerge.pl!
% tau2slog2 tau.trc tau.edf –o app.slog2!
% jumpshot app.slog2!



Building Bridges to Other Tools 



TAU Instrumentation Approach 

•  Support for standard program events 
–  Routines, classes and templates 
–  Statement-level blocks 
–  Begin/End events (Interval events) 

•  Support for user-defined events 
–  Begin/End events specified by user 
–  Atomic events (e.g., size of memory allocated/freed) 
–  Selection of event statistics 

•  Support definition of “semantic” entities for mapping 

•  Support for event groups (aggregation, selection) 

•  Instrumentation optimization 
–  Eliminate instrumentation in lightweight routines 



Interval, Atomic and Context Events in TAU 

Interval Event	



Atomic Event	



Context Event	





TAU Measurement Mechanisms 

•  Parallel profiling 
–  Function-level, block-level, statement-level 
–  Direct instrumentation as well as event based sampling 
–  Supports user-defined events and mapping events 
–  Support for flat, callgraph/callpath, phase profiling 
–  Support for memory profiling (headroom, malloc/leaks) 
–  Support for tracking I/O (wrappers, read/write/print calls) 
–  Parallel profiles written at end of execution 
–  Parallel profile snapshots can be taken during execution 

•  Tracing 
–  All profile-level events + inter-process communication 
–  Inclusion of multiple counter data in traced events 



Types of Parallel Performance Profiling 

•  Flat profiles 
–  Metric (e.g., time) spent in an event (callgraph nodes) 
–  Exclusive/inclusive, # of calls, child calls 

•  Callpath profiles (Calldepth profiles) 
–  Time spent along a calling path (edges in callgraph) 
–  “main=> f1 => f2 => MPI_Send” (event name) 
–  TAU_CALLPATH_DEPTH environment variable 

•  Phase profiles 
–  Flat profiles under a phase (nested phases are allowed) 
–  Default “main” phase 
–  Supports static or dynamic (e.g., per-iteration) phases 



Performance Evaluation Alternatives 

Flat profile	



Depthlimit	


profile	



Parameter	


profile	



Callpath/���
callgraph profile	



Phase	


profile	



Trace	



Volume of performance data	


Each alternative has:	


-  one metric/counter	


-  multiple counters	
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TAU: A Quick Reference 
 

 



Runtime Environment Variables (tau.conf) 
Environment	
  Variable	
   Default	
   Descrip5on	
  

TAU_TRACE	
   0	
   Se,ng	
  to	
  1	
  turns	
  on	
  tracing	
  

TAU_CALLPATH	
   0	
   Se,ng	
  to	
  1	
  turns	
  on	
  callpath	
  profiling	
  

TAU_TRACK_MEMORY_LEAKS	
   0	
   Se,ng	
  to	
  1	
  turns	
  on	
  leak	
  detecEon	
  

TAU_TRACK_HEAP	
  or	
  
TAU_TRACK_HEADROOM	
  

0	
   Se,ng	
  to	
  1	
  turns	
  on	
  tracking	
  heap	
  memory/headroom	
  at	
  rouEne	
  entry	
  &	
  exit	
  
using	
  context	
  events	
  (e.g.,	
  Heap	
  at	
  Entry:	
  main=>foo=>bar)	
  

TAU_CALLPATH_DEPTH	
   2	
   Specifies	
  depth	
  of	
  callpath.	
  Se,ng	
  to	
  0	
  generates	
  no	
  callpath	
  or	
  rouEne	
  
informaEon,	
  se,ng	
  to	
  1	
  generates	
  flat	
  profile	
  and	
  context	
  events	
  have	
  just	
  
parent	
  informaEon	
  (e.g.,	
  Heap	
  Entry:	
  foo)	
  

TAU_TRACK_SIGNALS	
   0	
   Se,ng	
  to	
  1	
  generate	
  debugging	
  callstack	
  info	
  when	
  a	
  program	
  crashes	
  

TAU_SAMPLING	
   0	
   Se,ng	
  to	
  1	
  generates	
  sample	
  based	
  profilles	
  

TAU_COMM_MATRIX	
   0	
   Se,ng	
  to	
  1	
  generates	
  communicaEon	
  matrix	
  display	
  using	
  context	
  events	
  

TAU_THROTTLE	
   1	
   Se,ng	
  to	
  0	
  turns	
  off	
  thro_ling.	
  Enabled	
  by	
  default	
  to	
  remove	
  instrumentaEon	
  
in	
  lightweight	
  rouEnes	
  that	
  are	
  called	
  frequently	
  

TAU_THROTTLE_NUMCALLS	
   100000	
   Specifies	
  the	
  number	
  of	
  calls	
  before	
  tesEng	
  for	
  thro_ling	
  

TAU_THROTTLE_PERCALL	
   10	
   Specifies	
  value	
  in	
  microseconds.	
  Thro_le	
  a	
  rouEne	
  if	
  it	
  is	
  called	
  over	
  100000	
  
Emes	
  and	
  takes	
  less	
  than	
  10	
  usec	
  of	
  inclusive	
  Eme	
  per	
  call	
  

TAU_COMPENSATE	
   0	
   Se,ng	
  to	
  1	
  enables	
  runEme	
  compensaEon	
  of	
  instrumentaEon	
  overhead	
  

TAU_PROFILE_FORMAT	
   Profile	
   Se,ng	
  to	
  “merged”	
  generates	
  a	
  single	
  file	
  -­‐	
  tauprofile.xml.	
  “snapshot”	
  
generates	
  xml	
  format	
  

TAU_METRICS	
   TIME	
   Se,ng	
  to	
  a	
  comma	
  separted	
  list	
  generates	
  other	
  metrics.	
  (e.g.,	
  -­‐-­‐env	
  
TIME:BGQ_TIMERS:PAPI_FP_INS:PAPI_NATIVE_<event>)	
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EBS: Setting    TAU_SAMPLING=1  
 

 

% export PATH=/soft/perftools/tau/tau_latest/bgq/bin/compilers:$PATH 
No need to set any other TAU variables! Use tau.conf for settings. 
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TAU’s Manual Instrumentation API 
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Automatic Source-Level Instrumentation in TAU 
using Program Database Toolkit (PDT) 

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
source

TAU source
analyzer

Application
source
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Automatic Instrumentation 



31	



TAU_COMPILER Commandline Options 



Compile-Time Environment Variables  

•  Optional parameters for TAU_OPTIONS: [tau_compiler.sh –help] 
-optVerbose   Turn on verbose debugging messages 
-optCompInst   Use compiler based instrumentation 
-optNoCompInst   Do not revert to compiler instrumentation if source  

   instrumentation fails. 
-optLinkOnly    Do not instrument the source code. Simply link in the TAU libraries 
-optTrackIO          Wrap POSIX I/O call and calculates vol/bw of I/O operations 

   (Requires TAU to be configured with –iowrapper) 
-optKeepFiles          Does not remove intermediate .pdb and .inst.* files 
-optPreProcess          Preprocess Fortran sources before instrumentation 
-optTauSelectFile=""  Specify selective instrumentation file for tau_instrumentor 
-optTauWrapFile=""  Specify link_options.tau generated by tau_gen_wrapper 
-optLinking=""         Options passed to the linker. Typically  

   $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS) 
-optCompile=""         Options passed to the compiler. Typically  

   $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) 
-optPdtF95Opts=""  Add options for Fortran parser in PDT (f95parse/gfparse) 
-optPdtF95Reset=""  Reset options for Fortran parser in PDT (f95parse/gfparse) 
-optPdtCOpts=""       Options for C parser in PDT (cparse). Typically  

   $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) 
-optPdtCxxOpts=""  Options for C++ parser in PDT (cxxparse). Typically 

   $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS) 
... 
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Compiling Fortran Codes with TAU  

•  If your Fortran code uses free format in .f files (fixed is default for .f), you may use: 
% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’ 
 

•  To use the compiler based instrumentation instead of PDT (source-based): 
% export TAU_OPTIONS=‘-optCompInst -optVerbose’ 

 

•  If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif): 
% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’ 
 

•  To use an instrumentation specification file: 
% export TAU_OPTIONS=‘-optTauSelectFile=mycmd.tau -optVerbose -optPreProcess’ 
% cat mycmd.tau 
BEGIN_INSTRUMENT_SECTION 
memory file=“foo.f90” routine=“#” 
# instruments all allocate/deallocate statements in all routines in foo.f90 
loops file=“*” routine=“#” 
io file=“abc.f90” routine=“FOO” 
END_INSTRUMENT_SECTION 
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Steps of Performance Evaluation 

•  Collect basic routine-level timing profile to determine 
where most time is being spent 

•  Collect routine-level hardware counter data to determine 
types of performance problems 

•  Collect callpath profiles to determine sequence of events 
causing performance problems 

•  Conduct finer-grained profiling and/or tracing to pinpoint 
performance bottlenecks 
–  Loop-level profiling with hardware counters 
–  Tracing of communication operations  
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Usage Scenarios: Routine Level Profile 

•  Goal: What routines account for the most time? How much? 

•  Flat profile with wallclock time: 
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Solution: Generating a flat profile with MPI 
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Usage Scenarios: Loop Level Instrumentation 

•  Goal: What loops account for the most time? How much? 

•  Flat profile with wallclock time with loop instrumentation: 
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Solution: Generating a loop level profile 
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Usage Scenarios: Compiler-based Instrumentation 

•  Goal: Easily generate routine level performance data using the compiler 
instead of PDT for parsing the source code 
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Use Compiler-Based Instrumentation 
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Usage Scenarios: Generating Callpath Profile 
•  Goal: Who calls my MPI_Barrier()? Where? 

•  Callpath profile for a given callpath depth: 
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Callpath Profile 

•  Generates program callgraph 
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Generate a Callpath Profile 
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Usage Scenarios: Instrument a Python program 

•  Goal: Generate a flat profile for a Python program 
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Usage Scenarios: Instrument a Python program 
 

 
Original 
code: 

Create a wrapper: 
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Generate a Python Profile 
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Usage Scenarios: Mixed Python+F90+C+pyMPI 

•  Goal: Generate multi-level instrumentation for Python+MPI+C+F90+C++ ... 
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Generate a Multi-Language Profile w/ Python 
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Usage Scenarios: Generating a Trace File 

•  Goal: Identify the temporal aspect of performance. What happens in my code at a given 
time? When? 

•  Event trace visualized in Vampir/Jumpshot 
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VNG Process Timeline with PAPI Counters 
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Vampir Counter Timeline Showing I/O BW 
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Generate a Trace File 
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Usage Scenarios: Evaluate Scalability 

•  Goal: How does my application scale? What bottlenecks occur at what core counts? 

•  Load profiles in PerfDMF database and examine with PerfExplorer 
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Usage Scenarios: Evaluate Scalability 
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Performance Regression Testing 
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Evaluate Scalability using PerfExplorer Charts 
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Communication Matrix Display 

•  Goal: What is the volume of inter-process communication? Along which calling path? 
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Evaluate Scalability using PerfExplorer Charts 
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Communication Matrix Display 

•  Goal: What is the volume of inter-process communication? Along which calling path? 
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Interval Events, Atomic Events in TAU 

Interval event	


e.g., routines	


(start/stop)	



Atomic events	


(trigger with 	


value)	



% setenv TAU_CALLPATH_DEPTH 	

0	


% setenv TAU_TRACK_HEAP 	

 	

1	
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Context Events (default) 

% setenv TAU_CALLPATH_DEPTH 	

2	


% setenv TAU_TRACK_HEAP 	

 	

1	



Context event���
= atomic event	


+ executing ���
context	





Binary Rewriting: DyninstAPI [U.Wisc] and TAU 
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Using PAPI and TAU 



Hardware Counters 
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Hardware	
  performance	
  counters	
  available	
  on	
  most	
  modern	
  	
  
microprocessors	
  can	
  provide	
  insight	
  into:	
  	
  
1. Whole	
  program	
  Eming	
  
2. Cache	
  behaviors	
  
3. Branch	
  behaviors	
  
4. Memory	
  and	
  resource	
  access	
  pa_erns	
  
5. Pipeline	
  stalls	
  
6. FloaEng	
  point	
  efficiency	
  
7. InstrucEons	
  per	
  cycle	
  
Hardware	
  counter	
  informaEon	
  can	
  be	
  obtained	
  with:	
  
1. SubrouEne	
  or	
  basic	
  block	
  resoluEon	
  
2. Process	
  or	
  thread	
  a_ribuEon	
  



What’s PAPI? 

•  Open Source software from U. Tennessee, Knoxville 
•  http://icl.cs.utk.edu/papi 
•  Middleware to provide a consistent programming interface for the 

performance counter hardware found in most major micro-
processors. 

•  Countable events are defined in two ways: 
–  Platform-neutral preset events  
–  Platform-dependent native events 

•  Presets can be derived from multiple native events 
•  All events are referenced by name and collected in EventSets 
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PAPI Utilities: papi_avail 



PAPI Utilities: papi_avail 



PAPI Utilities: papi_avail 





PAPI Utilities: papi_native_avail 



PAPI Utilities: papi_event_chooser 



PAPI Utilities: papi_event_chooser 



PAPI Utilities: papi_event_chooser 
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Usage Scenarios: Calculate mflops in Loops 

•  Goal: What MFlops am I getting in all loops? 

•  Flat profile with PAPI_FP_INS/OPS and time with loop instrumentation: 

 



ParaProf: Mflops Sorted by Exclusive Time 

low mflops?	
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Generate a PAPI profile with 2 or more counters 
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Derived Metrics in ParaProf 



ParaProf’s Source Browser: Loop Level 
Instrumentation 
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Estimation of tool intrusiveness 



PAPI Utilities: papi_cost 



PAPI Utilities: papi_cost 



PAPI Utilities: papi_cost 
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Profile Measurement – Three Flavors 

•  Flat profiles 
–  Time (or counts) spent in each routine (nodes in callgraph). 
–  Exclusive/inclusive time, no. of calls, child calls 
–  E.g,: MPI_Send, foo, … 

•  Callpath Profiles 
–  Flat profiles, plus  
–  Sequence of actions that led to poor performance 
–  Time spent along a calling path (edges in callgraph) 
–  E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when 

called by f2, when f2 is called by f1, when it is called by main. Depth of this 
callpath = 4 (TAU_CALLPATH_DEPTH environment variable)  

•  Phase based profiles 
–  Flat profiles, plus 
–  Flat profiles under a phase (nested phases are allowed) 
–  Default “main” phase has all phases and routines invoked outside phases 
–  Supports static or dynamic (per-iteration) phases 
–  E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase 
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Phase Profiling (NAS BT, Flat Profile) 

How is MPI_Wait() 
distributed relative to 
solver direction? 

Application routine names 
reflect phase semantics 
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NAS BT – Phase Profile (Main and X, Y, Z) 
Main phase shows nested phases and immediate events 
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TAU Timers and Phases 

•  Static timer 
–  Shows time spent in all invocations of a routine (foo) 
–  E.g., “foo()”  100 secs, 100 calls 

•  Dynamic timer 
–  Shows time spent in each invocation of a routine 
–  E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively) 

•  Static phase 
–  Shows time spent in all routines called (directly/indirectly) by a given routine 

(foo) 
–  E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs 

were spent in MPI_Send() when it was called by foo.  

•  Dynamic phase 
–  Shows time spent in all routines called by a given invocation of a routine. 
–  E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in 

MPI_Send when it was called by the 4th invocation of foo. 
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Performance Dynamics: Phase-Based Profiling 

•  Profile phases capture 
performance with respect 
to application-defined 
‘phases’ of execution 
–  Separate full profile produce 

for each phase 

•  GTC particle-in-cell 
simulation of fusion 
turbulence 

•  Phases assigned to iterations 

•  Data change affects cache 

increasing phase 
execution time 

decreasing  
flops rate 

declining cache 
performance 
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Memory and I/O evaluation 



Library interposition/wrapping: tau_exec, tau_wrap 

•  TAU provides a wealth of options to measure the performance of an 
application 

•  Need to simplify TAU usage to easily evaluate performance properties, 
including I/O, memory, and communication 

•  Designed a new tool (tau_exec) that leverages runtime instrumentation 
by pre-loading measurement libraries 

•  Works on dynamic executables (default under Linux, not on IBM Blue 
Gene where we must compile with -dynamic) 

•  Substitutes I/O, MPI, and memory allocation/deallocation routines with 
instrumented calls 
–  Interval events (e.g., time spent in write()) 
–  Atomic events (e.g., how much memory was allocated) 

•  Measure I/O and memory usage 



TAU Execution Command (tau_exec) 

•  Uninstrumented execution (compiled with –Wl,–Bdynamic on BG/P) 
–  % qsub –n 256 –t 10 ./a.out 

•  Track MPI performance (-T <options>) 
–  % tau_exec –qsub  -T bgqtimers,mpi,pdt --  qsub –n 256 –t 10 ./a.out 

•  Track I/O and MPI performance (MPI by default, use –T serial for serial ) 
–  % tau_exec –io qsub  -T bgqtimers,mpi,pdt --  qsub –n 256 –t 10 ./a.out 

•  Track memory operations 
–  % tau_exec –memory –env TAU_TRACK_MEMORY_LEAKS=1  qsub  -T 

bgqtimers,mpi,pdt --  qsub –n 256 –t 10 ./a.out 
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Library wrapping: tau_gen_wrapper 

•  How to instrument an external library without source? 
–  Source may not be available 
–  Library may be too cumbersome to build (with instrumentation) 

•  Build a library wrapper tools 
–  Used PDT to parse header files 
–  Generate new header files with instrumentation files 
–  Three methods to instrument: runtime preloading, linking, redirecting 

headers to re-define functions  

•  Application is instrumented 

•  Add the –optTauWrapFile=<wrapperdir>/link_options.tau file to 
TAU_OPTIONS env var while compiling with tau_cc.sh, etc. 

•  Wrapped library 
–  Redirects references at routine callsite to a wrapper call 
–  Wrapper internally calls the original 
–  Wrapper has TAU measurement code 
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HDF5 Library Wrapping 
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$ tau_gen_wrapper hdf5.h /usr/lib/libhdf5.a -f select.tau!
!
Usage : tau_gen_wrapper <header> <library> [-r|-d|-w (default)] [-g groupname] [-i 
headerfile] [-c|-c++|-fortran] [-f <instr_req_file> ]!
•  instruments using runtime preloading (-r), or -Wl,-wrap linker (-w), redirection 
of header file to redefine the wrapped routine (-d)!
•  instrumentation specification file (select.tau)!
•  -g group may be specified (hdf5)!
•  tau_exec loads libhdf5_wrap.so shared library using –loadlib=<libwrap_pkg.so>!
•  creates the wrapper/ directory with linkoptions.tau passed to the TAU_OPTIONS 
environment variable using –optTauWrapFile=<file>!
!
NODE 0;CONTEXT 0;THREAD 0:!
---------------------------------------------------------------------------------------!
%Time    Exclusive    Inclusive       #Call      #Subrs  Inclusive Name!
              msec   total msec                          usec/call!
---------------------------------------------------------------------------------------!
100.0        0.057            1           1          13       1236 .TAU Application!
 70.8        0.875        0.875           1           0        875 hid_t H5Fcreate()!
  9.7         0.12         0.12           1           0        120 herr_t H5Fclose()!
  6.0        0.074        0.074           1           0         74 hid_t H5Dcreate()!
  3.1        0.038        0.038           1           0         38 herr_t H5Dwrite()!
  2.6        0.032        0.032           1           0         32 herr_t H5Dclose()!
  2.1        0.026        0.026           1           0         26 herr_t H5check_version()!
  0.6        0.008        0.008           1           0          8 hid_t H5Screate_simple()!
  0.2        0.002        0.002           1           0          2 herr_t H5Tset_order()!
  0.2        0.002        0.002           1           0          2 hid_t H5Tcopy()!
  0.1        0.001        0.001           1           0          1 herr_t H5Sclose()!
  !
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A New Approach: tau_exec 

•  Runtime instrumentation by pre-loading the 
measurement library 

•  Works on dynamic executables (default under Linux) 

•  Substitutes I/O, MPI and memory allocation/deallocation 
routines with instrumented calls 

•  Track interval events (e.g., time spent in write()) as well 
as atomic events (e.g., how much memory was 
allocated) in wrappers 

•  Accurately measure I/O and memory usage 
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Tracking I/O in static binaries (IBM Blue Gene) 

•  The linker can substitute TAU’s I/O wrapper and 
intercept POSIX I/O Calls 

•  We can track parameters that flow through the  
I/O calls 

•  Configure TAU with –iowrappers 

•  Use –optTrackIO in TAU_OPTIONS 
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Tracking I/O in static binaries 
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Issues 

•  Heap memory usage reported by the mallinfo() 
call is not 64-bit clean.  
–  32 bit counters in Linux roll over when > 4GB memory is used 
–  We keep track of heap memory usage in 64 bit counters inside 

TAU 

•  Compensation of perturbation introduced by tool 
–  Only show what application uses 
–  Create guards for TAU calls to not track I/O and memory 

allocations/de-allocations performed inside TAU 

•  Provide broad POSIX I/O and memory coverage  
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I/O Calls Supported 
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Tracking I/O in Each File 
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Time Spent in POSIX I/O write() 
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Volume of I/O by File, Memory 
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Bytes Written 
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Memory Leaks in MPI 
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TAU Integration with IDEs 

•  High performance software development environments 
–  Tools may be complicated to use 
–  Interfaces and mechanisms differ between platforms / OS 

•  Integrated development environments 
–  Consistent development environment 
–  Numerous enhancements to development process 
–  Standard in industrial software development 

•  Integrated performance analysis 
–  Tools limited to single platform or programming language 
–  Rarely compatible with 3rd  party analysis tools 
–  Little or no support for parallel projects 
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TAU and Eclipse 

•  Provide an interface for configuring TAU’s automatic instrumentation within 
Eclipse’s build system 

•  Manage runtime configuration settings and environment variables for 
execution of TAU instrumented programs 

C/C++/Fortran 
Project in Eclipse 

Add or modify 
an Eclipse build 

configuration w/ TAU 
Temporary copy 

of instrumented code 

Compilation/linking 
with TAU libraries 

TAU instrumented 
libraries 

Program 
execution 

Performance 
data 

Program 
output 
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TAU and Eclipse 

 PerfDMF 
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Choosing PAPI Counters with TAU  in Eclipse  
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Labs! 
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Lab Instructions 
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Lab Instructions 
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More Information 

•  PAPI References: 
–  PAPI documentation page available from the PAPI website: 
     http://icl.cs.utk.edu/papi/ 

•  TAU References: 
–  TAU Users Guide and papers available from the TAU website: 

http://tau.uoregon.edu/ 

•  VAMPIR References 
–  VAMPIR website 
    http://www.vampir.eu/ 

•  Scalasca/KOJAK References 
–  Scalasca documentation page 
    http://www.scalasca.org/ 

•  Eclipse PTP References 
–  Documentation available from the Eclipse PTP website: 
    http://www.eclipse.org/ptp/ 
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