
Herding millions of chickens: Programming
models for Blue Gene/Q and beyond

Jeff Hammond

Leadership Computing Facility
Argonne National Laboratory

24 January 2011

Jeff Hammond Programming Models



If you were plowing a field, which

would you rather use: 2 strong oxen or

1024 chickens?
– Seymour Cray

Jeff Hammond Programming Models



If you were plowing a field, which

would you rather use: 12,160 bipolar

oxen1 or 786,432 chickens2?

– Not Seymour Cray

1 A bipolar oxen is one AMD Bulldozer and one NVIDIA Fermi.
2 A chicken is a Blue Gene/Q core.

Jeff Hammond Programming Models



Heterogeneous wagon-pulling?

Unless your wagon is designed to be pulled by two different animals,

pulling it with two different animals doesn’t make a lot of sense. . .

Jeff Hammond Programming Models



Millions of chickens

Mira

48 racks

1024 nodes/rack

16 cores/node (16 GB/node)

4 hardware threads per core

P = 48× 1024× 16× 4 = 3145728.

Unlike a CPU+GPU node, you can chop BGQ
nodes at nearly arbitrary granularity and evolve
between them painlessly.

Jeff Hammond Programming Models



Herding chickens

There are many ways to fill the machine:

mpiexec -n 49152 --env OMP NUM THREADS=64

mpiexec -n 98304 --env OMP NUM THREADS=32

mpiexec -n 196608 --env OMP NUM THREADS=16

mpiexec -n 393216 --env OMP NUM THREADS=8

mpiexec -n 786432 --env OMP NUM THREADS=4

mpiexec -n 1572864 --env OMP NUM THREADS=2

mpiexec -n 3145728 --env OMP NUM THREADS=1

This does not even scratch the surface in terms of parallel
modes. . .

Jeff Hammond Programming Models



Types of parallelism

Jeff Hammond Programming Models



Categorizing parallel models

MPI-1 Private address space, explicit communication,
independent execution.

MPI-RMA Private-ish address space, explicit communication,
independent execution.

OpenMP (loops) Shared address space, implicit
communication, collective execution.

OpenMP (sections) Shared address space, implicit
communication, semi-independent execution.

Pthreads Shared address space, independent execution.

PGAS Shared address space, implicit/explicit communication,
independent execution.

OpenMP is always implemented on top of Pthreads.
PGAS can use MPI and/or Pthreads.

Jeff Hammond Programming Models



Categorizing application needs

What does your data look like? Is it naturally private or
naturally shared? Big dense linear algebra is naturally
shared. Domain decomposition is naturally private.

What is your execution model? SPMD? Task parallel?

Are you synchronizing tasks or data? Are tasks working
on independent data or shared data? Can one map
trivially between independent (i.e. distributed) data
representation and shared representation?

Jeff Hammond Programming Models



Decision making process

MPI exists in a constructive cycle of ubiquity
and optimization.

OpenMP is reaching ubiquity; optimization is
debatable.

Pthreads is ubiquitous but invisible (system
programmers only).

PGAS portability, especially performance
portability, is still emerging.

Jeff Hammond Programming Models



The right answer for the right reason.

– Ernest Davidson

Science first, then algorithms, then
programming models.

– Some guy

Jeff Hammond Programming Models



Pthreads example

Function prototype:

int pthread create(pthread t *thread,

const pthread attr t *attr,

void *(*start routine) (void *),

void *arg);

Usage:

void* foo(void* dummy){ /* do something */ }
pthread create(&my thread, NULL, foo, NULL);

pthread join(my thread, NULL);

Pthreads: no compiler, no problem.

Jeff Hammond Programming Models



Back to reality

Jeff Hammond Programming Models



OpenMP: from 1 to N or N to 1?

Jeff Hammond Programming Models



OpenMP: from 1 to N or N to 1?

#pragma omp parallel

{ /* thread-safe */ }
#pragma omp single

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
#pragma omp sections

{ /* threaded work */ }

{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
{ /* thread-unsafe */ }
#pragma omp parallel for

{ /* threaded loops */ }
/* thread-unsafe work */

Jeff Hammond Programming Models



Final thoughts

MPI ranks on a node are parallel by default.
OpenMP threads on a node are serial by default.
Most MPI vs. OpenMP comparisons are bogus.

Amdahl’s law is not a myth and the future is hybrid.

Making your code thread-safe is never a bad thing.

Jeff Hammond Programming Models


