
1

Performance Insights on
Blue Gene/Q with HPCToolkit

John Mellor-Crummey
Department of Computer Science

Rice University
johnmc@rice.edu

http://hpctoolkit.org

ALCF BG/Q Early Science Workshop March 21, 2012

2

Acknowledgments
• Funding sources

— DOE Office of Science SciDAC-2 (no-cost extension for 2012)
– Center for Scalable Application Development Software

 Cooperative agreement number DE-FC02-07ER25800
– Performance Engineering Research Institute

 Cooperative agreement number DE-FC02-06ER25762
— Corporate: AMD, Western Geco

• Project team
— Research Staff

– Laksono Adhianto, Mike Fagan, Mark Krentel
— Students

– Xu Liu, Milind Chabbi
— Collaborator

– Nathan Tallent (PNNL)
— Alumni

– Gabriel Marin (ORNL), Robert Fowler (RENCI), Nathan Froyd (Mozilla)
— Summer Interns

– Michael Franco (Rice), Reed Landrum (Stanford), Sinchan Banerjee (MIT)

3

Rice University’s HPCToolkit
• Employs binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis
— identify costs of interest and drill down to causes

– up and down call chains
– over time

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

4

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

5

• For statically-linked executables on Blue Gene/Q
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch optimized application binaries

– environment variables tell what to measure
— collect statistical call path profiles & traces of events of interest

6

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

7

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

8

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, idleness, work
— graph thread-level metrics for contexts
— explore evolution of behavior over time

9

Rice’s Work to Date on Blue Gene/Q
• Developed specification for kernel functionality needed to support

sample-based profiling on BG/Q
— became part of Mira procurement

• Worked with IBM Rochester and UTK to bring up BGPM (Blue Gene
Performance Monitor) and PAPI on BG/Q
— provided feedback on evolving design
— designed tests, tested counter overflow support needed for sampling
— identified race conditions associated with threading

• Ported Rice University’s HPCToolkit to BG/Q

• Invented and prototyped new ideas for performance analysis of
MPI+OpenMP codes
— demo today!

• Coordinating with IBM to get them to add prototype support for our
profiling strategy in their production XL OpenMP runtime

• Working with OpenMP ARB tools group to develop a standard tools
interface for OpenMP

10

New!

11

What’s New for BG/Q?
• Problem: MPI everywhere is no longer enough

— must use threading to fully exploit the power of BG/Q’s A2
– 16 compute cores; 4 hardware thread contexts per core

• Impact: developers need guidance while adding threading

• HPCToolkit uses a novel technique to provide unique insight
— low-overhead measurement using sampling

– within and across nodes of MPI+threads
— new measurement methodology for root cause analysis of

performance losses in MPI+OpenMP programs
– assess idleness vs. work: for loops, procedures, call chains, program

— code-centric views precisely attribute time, work, idleness
— space-time diagrams illustrate performance over time

New!

12

Understanding Low Performance with Threads
• Inside OpenMP runtime systems

— worker threads await you to
– enter parallel regions
– dispatch work to threads

 SPMD work within a parallel region
 OpenMP work sharing: parallel loops, parallel sections
 OpenMP tasking

• Knowing that worker threads are idling or blocked is a symptom
of a problem

• What about the causes? You need to know:
— where in your code idling is a problem?
— how badly is idling contributing to performance losses in different

parts of your program?
– where are your biggest gains to be had?
– how much can changes improve overall program performance

 within a program region
 across the program as a whole

13

Root Cause Analysis of Losses with OpenMP
HPCToolkit’s measurement approach

• Add lightweight instrumentation of OpenMP runtime system
— keeps track of when a thread is working or idle
— precisely quantifies instantaneous idleness and work

– e.g. 6 out of 16 cores are working productively at this instant

• Precisely attribute blame for idleness to its causes
— examples of what this means

– when the master thread executes outside a parallel region leaving its
OpenMP threads sit idle

 associate idleness of workers with code executed by the master
– when an OpenMP worksharing loop unevenly distributes work

 associate idleness of workers with the code for the loop
— call stack unwinding associates costs with code in its full calling

context

Where to Find HPCToolkit
• Path to the tools on VEAS

— /home/projects/hpc/pkgs/hpctoolkit/bin

• User manual
— http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— /home/projects/hpc/pkgs/hpctoolkit/share/doc/hpctoolkit/manual/

HPCToolkit-users-manual.pdf

• Man pages
— /home/projects/hpc/pkgs/hpctoolkit/share/man

• All the above and more documentation on our website
— http://hpctoolkit.org

14

