
• Click to add text

© 2008 IBM Corporation

Application Performance Characterization and
Analysis on Blue Gene/Q

Bob Walkup (walkup@us.ibm.com)

Blue Gene Application Performance IBM Corporation

Blue Gene/Q : Power-Efficient Computing
System date GHz cores/rack largest-system peak-PFlops
Blue Gene/L ~2004 0.70 2K 104 racks ~0.6
Blue Gene/P ~2008 0.85 4K 72 racks ~1.0
Blue Gene/Q ~2012 1.60 16K 96 racks ~20.1

#1 Top 500 List 06/2012 : 16.3 PFlops 96-rack Sequoia system LLNL

#2 Top 500 List 11/2101 … the #1 system recorded 17.6 PFlops

#1 Green 500 List 06/2012 : 2.1GFlops/Watt

#5 Green 500 List 11/2012 … #1 system recorded 2.5 GFlops/Watt

Blue Gene/Q : 4 threads/core * 16K cores/rack * 96 racks = 6,291,456 threads

How about applications … how can you tell if you are using the cores efficiently?

Instrument the code with hardware counters … MPI profiling interface is handy.

Measure the instruction mix and instruction throughput.

IPC = instructions per cycle per core is a good metric.

Some lessons learned from jobs with more than one million processes.

Blue Gene Application Performance IBM Corporation

Blue Gene/Q Hardware Overview

16 cores/node, 16 GB memory/node, 1024 nodes/rack

5D torus network, 2GB/sec per link, 40 GB/sec off-node bandwidth

System on a chip : cores, L2 cache, network devices are integrated on the chip

A2 cores: simple in-order execution 1.6 GHz frequency, no ILP

 Two execution units: XU for Integer/Load/Store, AXU for Floating-Point

 Six cycle latency, single-cycle throughput for floating-point operations.

 Four hardware threads … four sets of registers … the key to performance.

 At most one instruction can be completed per cycle per thread.

 At most two instructions can be completed per cycle per core, one from

 each of the two execution units.

 QPX unit for 4-wide SIMD operations => peak is 8*1.6 = 12.8 GFlops/core

 16 KB L1 D-cache, 4KB prefetch buffer per core

32 MB shared L2 cache with a full crossbar switch connecting all cores

Blue Gene Application Performance IBM Corporation

BG/Q Daxpy y(:) = a*x(:) + y(:)

0

50

100

150

200

250

300

350

400

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

Bytes/Core

B
a
n

d
w

id
th

 (
G

B
/s

e
c
)

p
e
 N

o
d

e

2thds/core QPX
1thd/core QPX
2thds/core noQPX
1thd/core noQPX
BGP-SIMD
BGP-noSIMD

Blue Gene Application Performance IBM Corporation

Stream Benchmark

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12 14 16

#Active Cores

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Copy - QPX

Scale - QPX

Add - QPX

Triad - QPX

Copy

Scale

Add

Triad

Blue Gene Application Performance IBM Corporation

BGQ Link Bandwidth Test

0

5000

10000

15000

20000

25000

30000

35000

100 1000 10000 100000 1000000 10000000

Message Size (Bytes)

B
a
n

d
w

id
th

 (
M

B
/s

e
c
)

18 links

16 links

14 links

12 links

10 links

8 links

6 links

4 links

2 links

Blue Gene Application Performance IBM Corporation

Blue Gene/Q Software Overview

Light-weight kernel on compute nodes, no context switches.

GNU and IBM XL compilers, Fortran, C, C++.

MPI optionally with OpenMP or Pthreads (and other comm methods).

File I/O is handled by separate I/O nodes; ratio is 1:32-128 io:compute

Real memory only, no paging, 16 GBytes per node.

Processes/node MB/process %hardware

64 206 80.4%

32 460 89.8%

16 970 94.7%

8 1929 94.2%

4 3969 96.9%

Most applications will

use 4-32 processes

per node.

Threading makes

more flexible use of

system resources.

Blue Gene Application Performance IBM Corporation

Instrumentation : Hardware Counters, MPI Data,
Statement-level Profiling Data

Strategy : do data-reduction on the fly, save key information

Example: at the end of program execution (MPI_Finalize) one has

information about the work distribution, MPI timing, etc. … use it.

BGPM : Blue Gene Performance Monitor provides many counters for

the A2 cores, caches, memory, and network devices.

Aggregate counts at the process level, node level, and/or job level.

PMPI interface : collect cumulative information for MPI routines

Optionally collect the detailed time-history of MPI events.

Statement-level profiling : use support for the profil() routine in GNU libc.a.

Get basic histogram data : #hits at each program counter, map hits to

source lines using methods provided by GNU binary-file descriptor library.

Static linking with the instrumentation library is the default on BGQ.

Blue Gene Application Performance IBM Corporation

Save Data from Selected Processes

Way back when : write one small file per process

Now : don’t want a million files … best to be selective about what you save.

Simple strategy for MPI applications : when the app reaches MPI_Finalize(),

one can determine the ranks with the minimum, median, and maximum times

in MPI … save detailed data for those ranks … histogram the distribution.

Optionally save all data in one file.

In most cases, the rank that spent the least time in MPI did the most work.

Can use the same strategy based on hardware-counter data.

Can maintain low overhead non-intrusive performance monitoring at full scale.

Scaling limitation = memory! Any data-structure with size proportional

to #ranks will eventually be a problem.

Blue Gene Application Performance IBM Corporation

MPI profile data for LAMMPS, 1024K MPI ranks

Data for MPI rank 524474 of 1048576
Times and statistics from MPI_Init() to MPI_Finalize().

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 4 0.0 0.000
MPI_Comm_rank 10 0.0 0.000
MPI_Send 12618 25159.1 3.360
MPI_Irecv 12618 25154.3 0.069
MPI_Sendrecv 1188 4.0 0.248
MPI_Wait 12618 0.0 1.308
MPI_Bcast 69 183.0 0.083
MPI_Barrier 2 0.0 0.001
MPI_Allreduce 191 7.2 0.428

MPI task 524474 of 1048576 had the minimum communication time.
total communication time = 5.497 seconds.
total elapsed time = 143.969 seconds.
heap memory used = 64.301 MBytes.

This LAMMPS problem scales nearly perfectly beyond 1M processes. The

fraction of time in messaging remains 3-4% from a single node to 72 racks.

Blue Gene Application Performance IBM Corporation

MPI profile data : LAMMPS, 1024K MPI ranks

Histogram of times spent in MPI
 time-bin #ranks
 5.497 10
 6.783 53
 8.070 1199
 9.357 13983
 10.644 65604
 11.931 131666
 13.218 230704
 14.505 238892
 15.791 205515
 17.078 89530
 18.365 43006
 19.652 19365
 20.939 7149
 22.226 1738
 23.513 162

Time in MPI

0

50000

100000

150000

200000

250000

300000

5.5 6.8 8.1 9.4 10.6 11.9 13.2 14.5 15.8 17.1 18.4 19.7 20.9 22.2 23.5

Time (sec)

#
 R

a
n

k
s

Roughly “normal” distribution of times spent in MPI over all ranks.

The computational load is approximately balanced.

Blue Gene Application Performance IBM Corporation

MPI profile data : DNS3D, 3072^3 grid, 768K MPI Ranks

Data for MPI rank 0 of 786432
Times and statistics from summary_start() to summary_stop().
--
MPI Routine #calls avg. bytes time(sec)
--
MPI_Allreduce 894 53.3 0.393
MPI_Alltoallv 10728 384.0 91.164
--
total communication time = 91.557 seconds.
total elapsed time = 137.843 seconds.
heap memory used = 38.371 MBytes.
heap memory available = 783.617 MBytes.

--
Message size distributions:

MPI_Allreduce #calls avg. bytes time(sec)
 596 16.0 0.092
 298 128.0 0.301

MPI_Alltoallv #calls avg. bytes time(sec)
 5364 192.0 34.062
 5364 576.0 57.102

Parallel 3D FFTs using the p3dfft library and MPI_Alltoallv with 2D topology

Blue Gene Application Performance IBM Corporation

MPI profile data : DNS3D, 3072^3 grid, 768K ranks

 512x1536 process grid, 786432 MPI ranks

 elapsed time = 137.84 seconds

 MPI Time FP op count
time-bin #ranks flop-bin #ranks
 79.192 1468 1.862e+10 1741
 80.366 68 1.912e+10 413445
 81.540 0 1.962e+10 369710
 82.714 0 2.012e+10 0
 83.888 0 2.062e+10 0
 85.062 0 2.112e+10 0
 86.235 0 2.163e+10 0
 87.409 0 2.213e+10 0
 88.583 0 2.263e+10 0
 89.757 0 2.313e+10 225
 90.931 784895 2.363e+10 1307
 92.105 1 2.413e+10 4

Some load-imbalance: a total of 1536 MPI ranks have about 20% more

floating-point work, and all other MPI ranks wait for them. The ranks with

extra work are ranks with pex = 511, where the 2D coords are (pex, pey).

512

1536

2D process grid

Blue Gene Application Performance IBM Corporation

MPI Timing Data Mapped to the Simulation Domain

Total time in MPI

~32K MPI ranks

Blue = smallest time

Red = largest time

Load Imbalance

GFDL atmosphere

model – Chris Kerr.

Yellow bands arise

from ranks that have

one extra grid point.

Ranks in the red

squares have one

extra grid point in

each of two

dimensions.

Blue Gene Application Performance IBM Corporation

Time-history of MPI events : GTC at 128K MPI ranks

Must be selective, for example capture data for just a few time steps,

otherwise data volume is excessive. Can do event tracing at scale.

Blue Gene Application Performance IBM Corporation

Statement-Level Profiling with the profil() Routine

Interrupt 100 times/sec; histogram = #hits at each program counter.

Use the same criteria as before to save selected profile data.

The profil() routine is a useful relic … it needs updating … histogram buffer

is unsigned short, 16-bits, enough for 64K samples per address.

tics | Source
 1265| disc = bb*bb - aa*cc
 151| if (disc .lt. 0.0) go to 4
 6629| d = sqrt(disc)
 4346| l1 = (d - bb)/aa
 145| if (l1 .ge. 1.0d-10) then
 177| z1 = z + w*l1
 921| zzidks = zz(id,ks)
 874| zzidks1= zz(id,ks+1)
 337| isign = (z1.lt.zzidks .and. z1.lt.zzidks1) .or.
 | & (z1.gt.zzidks1 .and. z1.gt.zzidks)
 53| if (isign) l1 = 1000.0d0
 140| if (l1 .lt. lmin) lmin = l1
 | endif
 |
 5278| l2 = (-bb - d)/aa

Sequoia SPHOT Benchmark

Blue Gene Application Performance IBM Corporation

Some problems occur with millions of processes

32-bit integers overflow; two victims were DNS3D and GTC.
It is past time for 64-bit default integer size. Current fix is to find where
integer overflow occurs and use 8-byte integer types where it matters.

64-bit integers are not always adequate. Example: sum 64-bit counters
on enough processors : 1 GHz for 1 day on 1M cores => ~9E19 counts,
but a 64-bit integer can hold only ~2E19 counts. Current fix is to do sums
with 64-bit floating-point types.

More than a million core files is a bad idea … I know from experience.

Memory utilization often grows with increasing #processes. Any data
structure linear in #processes will eventually spell trouble.

Reducing the number of processes and using more threads can help.
Mixed distributed-memory/shared-memory programming is here to stay.

Applications with excellent locality, no global data structures, have an
advantage when it comes to scaling to millions of processes.

Blue Gene Application Performance IBM Corporation

Example of code tuning for BG/Q : GYRO

General Atomics code : https://fusion.gat.com/theory/Gyro

Objectives : Extend OpenMP coverage and scaling

 Make minor adjustments to improve computation and

 communication performance.

1 2 4 8 16

0.00

2.00

4.00

6.00

8.00

10.00

12.00

nl02a OpenM P Speed-up

Th re a d s

Blue = original code

Red = tuned code

Performance is shown

relative to orig. code with

1 OpenMP thread.

Blue Gene Application Performance IBM Corporation

GYRO : Optimization example - original code

 p_nek_loc = 0
 do p_nek=1+i_proc_1,n_nek_1,n_proc_1
 do is = 1, n_gk
 p_nek_loc = p_nek_loc+1
 . . .

 gyro_uv(:,:,p_nek_loc,is,1) = (0.0,0.0)
 kyro_uv(:,:,p_nek_loc,is,1) = (0.0,0.0)

!$omp parallel do default(shared) private(i_diff,m)
 do i=1,n_x
 do i_diff=-m_gyro,m_gyro-i_gyro
 do m=1,n_stack
 gyro_uv(m,i,p_nek_loc,is,1) = gyro_uv(m,i,p_nek_loc,is,1) +&
 w_gyro(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1)
 kyro_uv(m,i,p_nek_loc,is,1) = kyro_uv(m,i,p_nek_loc,is,1) +&
 w_gyro_rot(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1)
 enddo
 enddo
 enddo
!$omp end parallel do
 …
 end do
 end do

Issues: OpenMP parallel region is inside nested loops => repeat the overhead.

 Large arrays are set to zero outside the OpenMP parallel region.

Blue Gene Application Performance IBM Corporation

GYRO : Optimization example - tuned code

!$omp parallel private(p_nek_loc, . . .)
 p_nek_loc = 0
 do p_nek=1+i_proc_1,n_nek_1,n_proc_1
 do is = 1, n_gk
 p_nek_loc = p_nek_loc+1
 . . .

 do i=ibeg, iend
 gyro_uv(:,i,p_nek_loc,is,1) = (0.0,0.0)
 kyro_uv(:,i,p_nek_loc,is,1) = (0.0,0.0)
 do i_diff=-m_gyro,m_gyro-i_gyro
 do m=1,n_stack
 gyro_uv(m,i,p_nek_loc,is,1) = gyro_uv(m,i,p_nek_loc,is,1) +&
 w_gyro(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1)
 kyro_uv(m,i,p_nek_loc,is,1) = kyro_uv(m,i,p_nek_loc,is,1) +&
 w_gyro_rot(m,i_diff,i,p_nek_loc,is)*vf(m,i+i_diff,1)
 enddo
 enddo
 enddo
 …
 end do
 end do
!$omp end parallel

OpenMP parallel region is outside the nested loops, block partitioned “i” loop.

Large arrays are set to zero inside the OpenMP parallel region.

Blue Gene Application Performance IBM Corporation

GYRO : Optimization example – transpose operation

Original code: transpose (alltoall) is called in a loop using short messages
 | call rTRANSP_INIT(n_i,n_j,n_k,NEW_COMM_1)
 | do m=1,n_stack
 374| call rTRANSP_DO(f_coll(m,:,:),h_C(m,:,:))
 | enddo
 | call rTRANSP_CLEANUP

Tuned code uses one alltoall and all memory accesses are stride-1

 | call rTRANSP_INIT(n_i,n_j,n_k,n_stack,NEW_COMM_1)
 | call rTRANSP_DO(f_coll,h_C)
 | call rTRANSP_CLEANUP

Result is far fewer calls to MPI_Alltoall, using larger messages.

Eliminates array-section copies at “bad” stride.

Roughly 3x improvement for the collision code-section.

Blue Gene Application Performance IBM Corporation

BGPM – Blue Gene Performance Monitor

Can use 24 counters per A2 core, so just 6 counters per hardware

thread when counting on all four hardware threads. 64-bit counters.

Good default choice of A2 counters:
PEVT_LSU_COMMIT_CACHEABLE_LDS load instructions
PEVT_L1P_BAS_MISS load missed L1P buffer
PEVT_INST_XU_ALL XU instructions : int/ld/st/br
PEVT_INST_QFPU_ALL AXU = FPU instructions
PEVT_INST_QFPU_FPGRP1 weighted floating-point ops

Use along with L2 counters:
PEVT_L2_HITS L2 hits
PEVT_L2_MISSES L2 misses
PEVT_L2_FETCH_LINE 128-byte lines loaded from memory
PEVT_L2_STORE_LINE 128-byte lines stored to memory

The A2 counters are hardware-thread specific. The L2 counters are shared

across the node. These counters give instruction throughput, instruction mix,

information about load misses at all levels of cache/memory, and the load/store

traffic to memory. Other counters are needed to get more details.

Blue Gene Application Performance IBM Corporation

SPHOT : Instruction Mix, 16K cores

SPHOT XU AXU

Int/Ld/St/Br 61.57 38.43 Floating-Point

FP Loads 17.94 26.82 FP single

FP Stores 1.82 47.25 FP madd

Quad Loads 0.00 0.42 FP div

Quad Stores 0.00 0.12 FP sqrt

Int Loads 11.61 19.97 FP other

Int Stores 7.74 2.76 FP move

Branch 14.82 0.00 Quad single

Int Arithmetic 45.32 0.00 Quad madd

Int Other 0.74 2.67 Quad other

0.00 Quad move

Sum 100.00 100.00 Sum

Instruction mix is dominated by integer, load, store, branch operations.

Blue Gene Application Performance IBM Corporation

SPHOT : Speed-up using multiple threads per core

threads/core 1 2 4 units

performance 1.00 1.88 2.94 relative

total instr 1.00 1.00 1.01 relative

issue rate 0.32 0.60 0.94 instr/cycle

GFlops/node 4.9 9.2 14.5

L1 91.2 91.2 88.8 %

L1P 0.6 0.2 0.1 %

L2 8.1 8.5 11.0 %

DDR 0.0 0.0 0.0 %

LD-BW 0.0 0.0 0.0 Bytes/cycle

ST-BW 0.0 0.0 0.0 Bytes/cycle

TOT-BW 0.0 0.0 0.0 Bytes/cycle

SPHOT has the highest speed-up ~3x for 4 threads per core. The

main performance issue is pipeline stalls, not data loads/stores.

Blue Gene Application Performance IBM Corporation

GTC : Instruction Mix , main loop, 8K cores

GTC XU AXU

Int/Ld/St/Br 65.3 34.7 Floating-Point

FP Loads 27.3 37.5 FP single

FP Stores 8.3 38.5 FP madd

Quad Loads 0.0 0.3 FP div

Quad Stores 0.0 0.2 FP sqrt

Int Loads 18.5 20.8 FP other

Int Stores 6.4 2.3 FP move

Branch 8.4 0.0 Quad single

Int Arithmetic 29.6 0.0 Quad madd

Int Other 1.5 0.4 Quad other

0.0 Quad move

Sum 100.0 100.0 Sum

Roughly 2:1 ratio of integer/load/store/branch operations to floating-point.

Blue Gene Application Performance IBM Corporation

GTC : Speed-up using multiple threads per core.

Get 2.25x speedup using 4 threads/core, very little contention for caches,

modest memory bandwidth requirement, good total instruction throughput

=> efficient use of the cores.

threads/core 1 2 4 units

performance 1.00 1.64 2.25 relative

total instr 1.00 1.01 1.06 relative

issue rate 0.30 0.50 0.71 instr/cycle

GFlops/node 3.8 6.2 8.5 GFlops/node

L1 94.3 94.3 94.3 %

L1P 1.9 1.6 1.4 %

L2 3.1 3.2 3.2 %

DDR 0.8 1.0 1.2 %

LD-BW 2.0 3.5 5.9 Bytes/cycle

ST-BW 0.8 1.5 2.8 Bytes/cycle

TOT-BW 2.9 4.9 8.7 Bytes/cycle

Blue Gene Application Performance IBM Corporation

LAMMPS : Instruction Mix, main loop, 16K cores

LAMMPS XU AXU

Int/Ld/St/Br 69.7 30.3 Floating-Point

FP Loads 23.4 43.6 FP single

FP Stores 7.1 43.9 FP madd

Quad Loads 0.0 0.1 FP div

Quad Stores 0.1 0.0 FP sqrt

Int Loads 26.7 12.4 FP other

Int Stores 2.7 0.0 FP move

Branch 8.6 0.0 Quad single

Int Arithmetic 31.0 0.0 Quad madd

Int Other 0.3 0.0 Quad other

0.0 Quad move

Sum 100.0 100.0 Sum

More than 2:1 ratio of integer/load/store/branch instructions to floating-point.

Blue Gene Application Performance IBM Corporation

LAMMPS : Speed-up using multiple threads per core

threads/core 1 2 4 units

performance 1.00 1.61 2.39 relative

total instr 1.00 0.99 1.05 relative

issue rate 0.25 0.39 0.62 instr/cycle

GFlops/node 2.8 4.5 6.6

L1 92.8 89.9 87.5 %

L1P 0.8 1.2 1.2 %

L2 5.9 8.5 10.8 %

DDR 0.5 0.5 0.5 %

LD-BW 1.2 1.9 2.9 Bytes/cycle

ST-BW 0.4 0.7 1.2 Bytes/cycle

TOT-BW 1.6 2.6 4.1 Bytes/cycle

Get ~2.4x speed-up with four threads/core, in spite of clear evidence of

contention for L1 D-Cache. Memory bandwidth requirement is low,

instruction issue rate is good.

Blue Gene Application Performance IBM Corporation

Held-Suarez : Instruction Mix, main loop, 32K cores

Held-Suarez XU AXU

Int/Ld/St/Br 56.7 43.3 Floating-Point

FP Loads 17.9 48.7 FP single

FP Stores 13.4 15.5 FP madd

Quad Loads 0.7 1.4 FP div

Quad Stores 0.3 0.0 FP sqrt

Int Loads 12.6 29.1 FP other

Int Stores 6.7 4.0 FP move

Branch 10.4 0.0 Quad single

Int Arithmetic 35.5 0.0 Quad madd

Int Other 2.3 1.3 Quad other

0.0 Quad move

Sum 100.0 100.0 Sum

Closer balance for the two execution units, but still more Int/Ld/St/Br.

Blue Gene Application Performance IBM Corporation

Held-Suarez : Speed-up using multiple threads per core.

threads/core 1 2 4 units

performance 1.00 1.72 2.18 relative

total instr 1.00 1.03 1.10 relative

issue rate 0.37 0.66 0.89 instr/cycle

GFlops/node 5.3 9.2 11.9 GFlops/node

L1 93.0 93.4 93.0 %

L1P 6.4 5.8 5.2 %

L2 0.1 0.0 0.5 %

DDR 0.5 0.8 1.2 %

LD-BW 1.1 3.1 6.6 Bytes/cycle

ST-BW 1.1 2.9 4.8 Bytes/cycle

TOT-BW 2.3 6.0 11.4 Bytes/cycle

Get ~2.18x speeed-up with four threads per core. There is some

instruction inflation, and significant requirement for memory bandwidth.

The total instruction issue rate is very good.

Blue Gene Application Performance IBM Corporation

NEK : Instruction Mix, 64K cores

NEK XU AXU

Int/Ld/St/Br 72.9 27.1 Floating-Point

FP Loads 28.3 11.8 FP single

FP Stores 8.7 41.6 FP madd

Quad Loads 4.5 0.0 FP div

Quad Stores 2.1 0.0 FP sqrt

Int Loads 11.0 1.7 FP other

Int Stores 5.7 0.4 FP move

Branch 11.3 1.7 Quad single

Int Arithmetic 26.9 28.5 Quad madd

Int Other 1.6 0.0 Quad other

14.3 Quad move

Sum 100.0 100.0 Sum

QPX multiply-add instructions are mainly from matrix-matrix

multiplication routines, integer/load/store/branch instructions dominate.

Blue Gene Application Performance IBM Corporation

NEK : Speed-up using multiple MPI ranks per core

threads/core 1 2 4 units

performance 1.00 1.39 1.46 relative

total instr 1.00 1.08 1.20 relative

issue rate 0.32 0.50 0.57 instr/cycle

GFlops/node 7.5 10.5 11.0 GFlops/node

L1 92.4 91.0 88.9 %

L1P 6.3 6.8 6.8 %

L2 0.6 1.2 3.0 %

DDR 0.7 0.9 1.3 %

LD-BW 4.2 6.2 7.7 Bytes/cycle

ST-BW 1.8 2.7 3.3 Bytes/cycle

TOT-BW 6.1 8.9 11.0 Bytes/cycle

The total instruction count increases (near the strong-scaling limit) and

the memory-bandwidth requirement is significant. The speed-up is

limited, but the instruction throughput is still good.

Blue Gene Application Performance IBM Corporation

UMT : Instruction Mix, 16K cores

UMT XU AXU

Int/Ld/St/Br 79.0 21.0 Floating-Point

FP Loads 15.8 24.8 FP single

FP Stores 6.6 18.5 FP madd

Quad Loads 7.4 0.2 FP div

Quad Stores 4.6 0.0 FP sqrt

Int Loads 12.9 3.5 FP other

Int Stores 5.7 0.1 FP move

Branch 11.0 19.1 Quad single

Int Arithmetic 34.4 28.2 Quad madd

Int Other 1.7 2.3 Quad other

3.4 Quad move

Sum 100.0 100.0 Sum

Good QPX code generation by the compiler; integer, load, store, branch

instructions dominate the mix.

Blue Gene Application Performance IBM Corporation

UMT : Speed-up using multiple threads per core

threads/core 1 2 4 units

performance 1.00 1.32 1.30 relative

total instr 1.00 1.00 1.02 relative

issue rate 0.28 0.38 0.38 instr/cycle

GFlops/node 5.8 7.6 7.5

L1 93.1 92.4 89.1 %

L1P 5.4 5.3 5.5 %

L2 0.0 0.0 2.1 %

DDR 1.5 2.3 3.4 %

LD-BW 7.1 10.1 10.2 Bytes/cycle

ST-BW 2.6 3.4 3.4 Bytes/cycle

TOT-BW 9.7 13.5 13.6 Bytes/cycle

Speed-up is limited by bandwidth to memory.

Blue Gene Application Performance IBM Corporation

Performance Data Repository

Collect performance data and store them into Mysql database
Help to characterize applications and machine usage efficiently
Uniform storage format to support queries and presentation

DB2

bgqsn2

grotius

Blue Gene/Q

Compute nodes

mgmt

perf. data

submit

Instrumented

binary

Mysql

bgqfen6

grotius

Chart from I-Hsin Chung, IBM Watson

Blue Gene Application Performance IBM Corporation

Average Application Characteristics vs. Key Benchmarks

%FXU %FPU %Max Flops %DDR BW IPC

App AVG 70.5 29.5 5.7 40.7 0.56

Linpack 43.8 56.2 74.9 22.6 1.34

Graph 500 100.0 0.0 0.0 75.9 0.34

Example algorithms:

 sparse matrix-vector multiplication : 80% Int/Ld/St/Br 20% FPU

 array update y(:) = a*x(:) + y(:) 78% Int/Ld/St/Br 22% FPU

IPC = instructions completed per cycle per core is a good indicator of

how much work you are getting out of each core.

The general characteristics of most scientific applications are pretty

similar, and are really different from some popular benchmarks.

Blue Gene Application Performance IBM Corporation

Conclusions

The Blue Gene/Q design, low-power simple cores, four hardware
threads per core, results in high instruction throughput, and thus
exceptional power efficiency for applications. Can effectively fill in
pipeline stalls and hide latencies in the memory subsystem.

The consequence is low performance per thread, so a high degree
of parallelization is required for high application performance.

Traditional programming methods (MPI, OpenMP, Pthreads) hold
up at very large scales. Memory costs can limit scaling when there
are data-structures with size linear in the number of processes,
threading helps by keeping the number of processes manageable.

Detailed performance analysis is viable at >10^6 processes but
requires care. On-the-fly performance data reduction has merits.

Blue Gene Application Performance IBM Corporation

Acknowledgements

IBM staff past and present worldwide

Livermore National Laboratory

Argonne National Laboratory

Many users who struggle to get excellent parallel performance.

U.S. Dept. of Energy LLNL subcontract no. B554331

