
Scalable performance analysis
of large-scale parallel applications

Brian Wylie & Markus Geimer
Jülich Supercomputing Centre

scalasca@fz-juelich.de
April 2012

2

● Profile analysis
■ Summary of aggregated metrics

► per function/callpath and/or per process/thread
■ Most tools (can) generate and/or present such profiles

► but they do so in very different ways, often from event traces!
■ e.g., gprof, mpiP, ompP, Scalasca, TAU, Vampir, ...

● Time-line analysis
■ Visual representation of the space/time sequence of events
■ Requires an execution trace
■ e.g., Vampir, Paraver, JumpShot, Intel TAC, Sun Studio, ...

● Pattern analysis
■ Search for event sequences characteristic of inefficiencies
■ Can be done manually, e.g., via visual time-line analysis
■ or automatically, e.g., KOJAK, Scalasca, Periscope, ...

Performance analysis, tools & techniques

3

Automatic trace analysis

● Idea
■ Automatic search for patterns of inefficient behaviour
■ Classification of behaviour & quantification of significance

■ Guaranteed to cover the entire event trace
■ Quicker than manual/visual trace analysis
■ Parallel replay analysis exploits memory & processors

to deliver scalability

Call
path

P
ro

pe
rt

y

Location

Low-level
event trace

High-level
result

Analysis ≡

4

The Scalasca project

● Overview
■ Helmholtz Initiative & Networking Fund project started in 2006
■ Headed by Bernd Mohr (JSC) & Felix Wolf (GRS)
■ Follow-up to pioneering KOJAK project (started 1998)

► Automatic pattern-based trace analysis

● Objective
■ Development of a scalable performance analysis toolset
■ Specifically targeting large-scale parallel applications

► such as those running on BlueGene/Q or Cray XT/XE/XK
with 10,000s to 100,000s of processes

● Latest release February 2012: Scalasca v1.4.1
■ Download from www.scalasca.org
■ Available on POINT/VI-HPS Parallel Productivity Tools DVD

http://www.scalasca.org/

5

Scalasca features

● Open source, New BSD license
● Portable

■ Cray XT, IBM BlueGene, IBM SP & blade clusters,
NEC SX, SGI Altix, SiCortex, Solaris & Linux clusters, ...

● Supports parallel programming paradigms & languages
■ MPI, OpenMP & hybrid OpenMP+MPI
■ Fortran, C, C++

● Integrated instrumentation, measurement & analysis toolset
■ Automatic and/or manual customizable instrumentation
■ Runtime summarization (aka profiling)
■ Automatic event trace analysis
■ Analysis report exploration & manipulation

6

Scalasca support & limitations

● MPI 2.2 apart from dynamic process creation
■ C++ interface deprecated with MPI 2.2

● OpenMP 2.5 apart from nested thread teams
■ partial support for dynamically-sized/conditional thread teams*
■ no support for OpenMP used in macros or included files

● Hybrid OpenMP+MPI
■ partial support for non-uniform thread teams*
■ no support for MPI_THREAD_MULTIPLE
■ no trace analysis support for MPI_THREAD_SERIALIZED

(only MPI_THREAD_FUNNELED)

* Summary & trace measurements are possible, and traces
may be analyzed with Vampir or other trace visualizers

■ automatic trace analysis currently not supported

7

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + MPI library

compiler

executable

● Application code
compiled & linked into
executable using
MPICC/CXX/FC

● Launched with
MPIEXEC

● Application processes
interact via MPI library

Generic MPI application build & run

8

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

 instrumentercompiler

instrumented executable

● Automatic/manual
code instrumenter

● Program sources
processed to add
instrumentation and
measurement library
into application
executable

● Exploits MPI standard
profiling interface
(PMPI) to acquire MPI
events

Application instrumentation

9

program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

summary
analysis

 instrumentercompiler

instrumented executable expt config

● Measurement library
manages threads
& events produced
by instrumentation

● Measurements
summarized by
thread & call-path
during execution

● Analysis report unified
& collated at
finalization

● Presentation of
summary analysis

Measurement runtime summarization

analysis report examiner

10

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● During measurement
time-stamped
events buffered
for each thread

● Flushed to files along
with unified definitions
& maps at finalization

● Follow-up analysis
replays events and
produces extended
analysis report

● Presentation of
analysis report

Measurement event tracing & analysis

analysis report examiner

11

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● Automatic/manual
code instrumenter

● Measurement library
for runtime summary &
event tracing

● Parallel (and/or serial)
event trace analysis
when desired

● Analysis report
examiner for
interactive exploration
of measured execution
performance properties

Generic parallel tools architecture

analysis report examiner

12

program
sources

unified
defs+maps trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report examiner

 instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT parallel trace analyzer

expt config

● Scalasca instrumenter
= SKIN

● Scalasca measurement
collector & analyzer
= SCAN

● Scalasca analysis
report examiner
= SQUARE

Scalasca toolset components

13

● One command for everything
% scalasca
Scalasca 1.4
Toolset for scalable performance analysis of large-scale apps
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:
 scalasca -instrument <compile-or-link-command> # skin
2. run application under control of measurement system:
 scalasca -analyze <application-launch-command> # scan
3. post-process & explore measurement analysis report:
 scalasca -examine <experiment-archive|report> # square

[-h] show quick reference guide (only)

scalasca

14

● Measurement & analysis runtime system
■ Manages runtime configuration and parallel execution
■ Configuration specified via EPIK.CONF file or environment

► epik_conf reports current measurement configuration
■ Creates experiment archive (directory): epik_<title>
■ Optional runtime summarization report
■ Optional event trace generation (for later analysis)
■ Optional filtering of (compiler instrumentation) events
■ Optional incorporation of HWC measurements with events

► via PAPI library, using PAPI preset or native counter names

● Experiment archive directory
■ Contains (single) measurement & associated files (e.g., logs)
■ Contains (subsequent) analysis reports

EPIK

15

● Automatic instrumentation of OpenMP & POMP directives
via source pre-processor
■ Parallel regions, worksharing, synchronization
■ OpenMP 2.5 with OpenMP 3.0 coming

► No special handling of guards, dynamic or nested thread teams
► OpenMP 3.0 ORDERED sequentialization support
► Support for OpenMP 3.0 tasks currently in development

■ Configurable to disable instrumentation of locks, etc.
■ Typically invoked internally by instrumentation tools

● Used by Scalasca/Kojak, ompP, Periscope, Score-P, TAU,
VampirTrace, etc.
■ Provided with Scalasca, but also available separately

► OPARI 1.1 (October 2001)
► OPARI2 1.0 (January 2012)

OPARI

16

● Parallel program analysis report exploration tools
■ Libraries for XML report reading & writing
■ Algebra utilities for report processing
■ GUI for interactive analysis exploration

► requires Qt4 library
► can be installed independently of Scalasca instrumenter and

measurement collector/analyzer, e.g., on laptop or desktop

● Used by Scalasca/KOJAK, Marmot, ompP, PerfSuite,
Score-P, etc.
■ Analysis reports can also be viewed/stored/analyzed with

TAU Paraprof & PerfExplorer
■ Provided with Scalasca, but also available separately

► CUBE 3.4.1 (January 2012)
► CUBE 4.0 (December 2011)

CUBE

17

Analysis presentation and exploration

● Representation of values (severity matrix)
on three hierarchical axes
■ Performance property (metric)
■ Call-tree path (program location)
■ System location (process/thread)

● Three coupled tree browsers

● CUBE displays severities
■ As value: for precise comparison
■ As colour: for easy identification of hotspots
■ Inclusive value when closed & exclusive value when expanded
■ Customizable via display mode

Call
path

P
ro

pe
rt

y

Location

18

Scalasca analysis report explorer (summary)

How is it
distributed across
the processes?

What kind of
performance

problem?
Where is it in the

source code?
In what context?

19

Scalasca analysis report explorer (trace)

20

● Computational astrophysics
■ (magneto-)hydrodynamic simulations on 1-, 2- & 3-D grids
■ part of SPEC MPI2007 1.0 benchmark suite (132.zeusmp2)
■ developed by UCSD/LLNL
■ >44,000 lines Fortran90 (in 106 source modules)
■ provided configuration scales to 512 MPI processes

● Run with 512 processes on JUMP
■ IBM p690+ eServer cluster with HPS at JSC

● Scalasca summary and trace measurements
■ ~5% measurement dilation (full instrumentation, no filtering)
■ 2GB trace analysis in 19 seconds
■ application's 8x8x8 grid topology automatically captured from

MPI Cartesian

ZeusMP2/JUMP case study

21

Scalasca summary analysis: zeusmp2 on JUMP

● 12.8% of time spent
in MPI point-to-point
communication

● 45.0% of which is
on program callpath
transprt/ct/hsmoc

● With 23.2% std dev
over 512 processes

● Lowest values in 3rd
and 4th planes of
the Cartesian grid

22

Scalasca trace analysis: zeusmp2 on JUMP

● MPI point-to-point
communication time
separated into
transport and Late
Sender fractions

● Late Sender
situations dominate
(57%)

● Distribution of
transport time (43%)
indicates congestion
in interior of grid

23

● Automatic function instrumentation (and filtering)
■ CCE, GCC, IBM, Intel, PathScale & PGI compilers
■ optional PDToolkit selective instrumentation (when available)

and manual instrumentation macros/pragmas/directives
● MPI measurement & analyses

■ scalable runtime summarization & event tracing
■ only requires application executable re-linking
■ P2P, collective, RMA & File I/O operation analyses

● OpenMP measurement & analysis
■ requires (automatic) application source instrumentation
■ thread management, synchronization & idleness analyses

● Hybrid OpenMP/MPI measurement & analysis
■ combined requirements/capabilities
■ parallel trace analysis requires uniform thread teams

Scalasca 1.4 functionality

24

● Improved configure/installation
● Improved parallel & distributed source instrumentation

■ OpenMP/POMP source instrumentation with OPARI2
● Improved MPI communicator management
● Additional summary metrics

■ MPI-2 File bytes transferred (read/written)
■ OpenMP-3 ORDERED sequentialization time

● Improved OpenMP & OpenMP+MPI tracefile management
via SIONlib parallel I/O library

● Trace analysis reports of severest pattern instances
■ linkage to external trace visualizers Vampir & Paraver

● New boxplot and topology presentations of distributions
● Improved documentation of analysis reports

Scalasca 1.4 added functionality

25

● /soft/perftools/scalasca
■ link to /home/projects/scalasca subdirectories

● /home/projects/scalasca/cube-3.4.1
■ link from /soft/perftools/cube/latest
■ Qt4-based GUI for Scalasca analysis report exploration

● /home/projects/scalasca/scalasca-1.4.2rc1+sion
■ configured with PDT, PAPI & SIONlib
■ generally recommended
■ link from /soft/perftools/scalasca/latest

● /home/projects/scalasca/scalasca-1.4.2rc1-sion
■ configured with PDT, PAPI & without SIONlib
■ available as a backup in case of problems
■ link from /soft/perftools/scalasca/scalasca-regio

Scalasca on VEAS

26

● Instrumentation
■ compatibilities of different compilers/libraries unknown

► if in doubt, rebuild everything

● Measurement collection & analysis
■ runjob & qsub support likely to be incomplete

► quote ignorable options and try different variations of syntax
► can't use “scan qsub” with qsub script mode

▬ use “scan runjob” within script instead

► in worst case, should be able to configure everything manually
■ node-level hardware counters replicated for every thread
■ scout.hyb generally coredumps after completing trace analysis

● Analysis report examination
■ Hardware topology shows only one process per compute node

(the one with the largest rank)

Scalasca issues & limitations (BG/Q): general

27

● Tracing experiments collect trace event data in trace files,
which are automatically analysed with a parallel analyzer
■ parallel trace analysis requires the same configuration of MPI

processes and OpenMP threads as used during collection
■ generally done automatically using the allocated partition

● By default, Scalasca uses separate trace files for each MPI
process rank stored in the unique experiment archive
■ for pure MPI, data written directly into archive files

► the number of separate trace files may become overwhelming
■ for hybrid MPI+OpenMP, data written initially to files for each

thread, merged into separate MPI rank files during experiment
finalization, and then split again during trace analysis
► the number of intermediate files may be overwhelming
► merging and parallel read can be painfully slow

Scalasca issues & limitations (BG/Q): tracing

28

● Scalasca can be configured to use the SIONlib I/O library
■ optimizes parallel file reading and writing

► avoids explicit merging and splitting of trace data files
■ can greatly reduce file creation cost for large numbers of files
■ ELG_SION_FILES specifies the number of files to be created

► default of 0 reverts to previous behaviour with non-SION files
■ for pure MPI, try one SION file per (I/O) node
■ for hybrid MPI+OpenMP,

set ELG_SION_FILES equal to number of MPI processes
► trace data for each OpenMP thread included in single SION file
► not usable currently with more than 61 threads per SION file

due to exhaustion of available file descriptors

Scalasca issues & limitations (BG/Q): sionlib

29

● Everything should generally work as on other platforms
(particularly BG/P), but runjob & Cobalt qsub are unusual

● scalasca -instrument
■ skin mpixlf77 -O3 -c bt.o
■ skin mpixlf77 -O3 -o bt.1024 *.o

● scalasca -analyze
■ scan -s mpirun -np 1024 -mode SMP -exe ./bt.1024

► epik_bt_smp1024_sum
■ scan -s runjob --np 1024 --ranks-per-node 16 : ./bt.1024

► epik_bt_16p1024_sum
■ scan -s qsub -n 16 --mode c16 ./bt.1024

► epik_bt_16p1024_sum (after submitted job actually starts)

● scalasca -examine
■ square epik_bt_16p1024_sum

Scalasca 1.4.2rc2 on BG/Q (MPI only)

30

● Everything should generally work as on other platforms
(particularly BG/P), but runjob & Cobalt qsub are unusual

● scalasca -instrument
■ skin mpixlf77_r -qsmp=omp -O3 -c bt.o
■ skin mpixlf77_r -qsmp=omp -O3 -o bt-mz.256 *.o

● scalasca -analyze
■ scan -s mpirun -np 256 -mode SMP -exe ./bt-mz.256 \

 -env OMP_NUM_THREADS=4
► epik_bt-mz_smp256x4_sum

■ scan -s runjob --np 256 --ranks-per-node 16 \
 --envs OMP_NUM_THREADS=4 : ./bt-mz.256

■ scan -s qsub -n 16 --mode c16
 -env OMP_NUM_THREADS=4 ./bt-mz.256
► epik_bt-mz_16p256x4_sum (after submitted job actually starts)

Scalasca 1.4.2rc2 on BG/Q (MPI+OpenMP)

31

● Scalasca experiment archive directories uniquely store
measurement collection and analysis artefacts
■ experiment title prefixed with epik_

● Default EPIK experiment title composed from
■ executable basename (without suffix): bt-mz
■ ranks-per-node: 16p
■ number of MPI ranks: 256
■ number of OMP threads: x4
■ type of experiment: sum or trace
■ (+ HWC metric-list specification)

● Can alternatively be specified with -e command-line option
or EPK_TITLE environment variable

Scalasca 1.4.2rc2 on BG/Q: experiment names

32

● Scalasca experiments can include hardware counters
■ specify lists of PAPI presets or native counters
■ via -m option or EPK_METRICS environment variable

► EPK_METRICS=PAPI_FP_OPS:PEVT_IU_IS1_STALL_CYC
■ alternatively create a file defining groups of counters, specify

this file with EPK_METRICS_SPEC and use the group name
● Available hardware counters (and PAPI presets) and

supported combinations are platform-specific
● Shared counters are read and stored for each thread
● Although counters are stored in Scalasca traces, they are

(currently) ignored by the parallel trace analyzers
■ storage for counters is not included in max_tbc estimates
■ summary+trace experiments produce combined analysis

reports including measured hardware counter metrics

Scalasca 1.4.2rc2 on BG/Q: HWC experiments

	Scalasca intro title
	Performance analysis
	Pattern analysis
	Project overview
	Basic features
	Basic limitations
	MPI build
	MPI inst
	Summ arch
	Trace arch
	Toolset arch
	Component names
	Folie 13
	EPIK
	OPARI
	CUBE
	CUBE3 display
	Summary display
	Trace display
	zeusmp2@jump
	zeusmp2@jump.sum
	zeusmp2@jump.trace
	Folie 23
	Scalasca 1.4 new
	Scalasca 1.4
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

