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● Profile analysis
■ Summary of aggregated metrics

► per function/callpath and/or per process/thread
■ Most tools (can) generate and/or present such profiles

► but they do so in very different ways, often from event traces!
■ e.g., gprof, mpiP, ompP, Scalasca, TAU, Vampir, ...

● Time-line analysis
■ Visual representation of the space/time sequence of events
■ Requires an execution trace
■ e.g., Vampir, Paraver, JumpShot, Intel TAC, Sun Studio, ...

● Pattern analysis
■ Search for event sequences characteristic of inefficiencies
■ Can be done manually, e.g., via visual time-line analysis
■ or automatically, e.g., KOJAK, Scalasca, Periscope, ...

Performance analysis, tools & techniques
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Automatic trace analysis

● Idea
■ Automatic search for patterns of inefficient behaviour
■ Classification of behaviour & quantification of significance

■ Guaranteed to cover the entire event trace
■ Quicker than manual/visual trace analysis
■ Parallel replay analysis exploits memory & processors

to deliver scalability
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The Scalasca project

● Overview
■ Helmholtz Initiative & Networking Fund project started in 2006
■ Headed by Bernd Mohr (JSC) & Felix Wolf (GRS)
■ Follow-up to pioneering KOJAK project (started 1998)

► Automatic pattern-based trace analysis

● Objective
■ Development of a scalable performance analysis toolset
■ Specifically targeting large-scale parallel applications

► such as those running on BlueGene/Q or Cray XT/XE/XK
with 10,000s to 100,000s of processes

● Latest release February 2012: Scalasca v1.4.1
■ Download from www.scalasca.org
■ Available on POINT/VI-HPS Parallel Productivity Tools DVD

http://www.scalasca.org/
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Scalasca features

● Open source, New BSD license
● Portable

■ Cray XT, IBM BlueGene, IBM SP & blade clusters,
NEC SX, SGI Altix, SiCortex, Solaris & Linux clusters, ...

● Supports parallel programming paradigms & languages
■ MPI, OpenMP & hybrid OpenMP+MPI
■ Fortran, C, C++

● Integrated instrumentation, measurement & analysis toolset
■ Automatic and/or manual customizable instrumentation
■ Runtime summarization (aka profiling)
■ Automatic event trace analysis
■ Analysis report exploration & manipulation
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Scalasca support & limitations

● MPI 2.2 apart from dynamic process creation
■ C++ interface deprecated with MPI 2.2

● OpenMP 2.5 apart from nested thread teams
■ partial support for dynamically-sized/conditional thread teams*
■ no support for OpenMP used in macros or included files

● Hybrid OpenMP+MPI
■ partial support for non-uniform thread teams*
■ no support for MPI_THREAD_MULTIPLE
■ no trace analysis support for MPI_THREAD_SERIALIZED 

(only MPI_THREAD_FUNNELED)

* Summary & trace measurements are possible, and traces 
may be analyzed with Vampir or other trace visualizers

■ automatic trace analysis currently not supported
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + MPI library

compiler

executable

● Application code 
compiled & linked into 
executable using 
MPICC/CXX/FC

● Launched with 
MPIEXEC

● Application processes 
interact via MPI library

Generic MPI application build & run
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

      instrumentercompiler

instrumented executable

● Automatic/manual
code instrumenter 

● Program sources
processed to add 
instrumentation and 
measurement library 
into application 
executable

● Exploits MPI standard 
profiling interface 
(PMPI) to acquire MPI 
events

Application instrumentation
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program
sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

summary
analysis

      instrumentercompiler

instrumented executable expt config

● Measurement library 
manages threads
& events produced
by instrumentation

● Measurements 
summarized by
thread & call-path 
during execution

● Analysis report unified 
& collated at 
finalization

● Presentation of 
summary analysis

Measurement runtime summarization

analysis report examiner
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program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● During measurement
time-stamped
events buffered
for each thread

● Flushed to files along 
with unified definitions 
& maps at finalization

● Follow-up analysis 
replays events and 
produces extended 
analysis report

● Presentation of 
analysis report

Measurement event tracing & analysis

analysis report examiner
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program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● Automatic/manual 
code instrumenter

● Measurement library 
for runtime summary & 
event tracing

● Parallel (and/or serial)
event trace analysis 
when desired

● Analysis report 
examiner for 
interactive exploration 
of measured execution 
performance properties

Generic parallel tools architecture

analysis report examiner
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program
sources

unified
defs+maps trace  Ntrace  ..trace  2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace
analysis

summary
analysis

analysis report examiner

      instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUT   parallel trace analyzer

expt config

● Scalasca instrumenter
= SKIN

● Scalasca measurement 
collector & analyzer
= SCAN

● Scalasca analysis
report examiner
= SQUARE

Scalasca toolset components
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● One command for everything
% scalasca
Scalasca 1.4
Toolset for scalable performance analysis of large-scale apps
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:
    scalasca -instrument <compile-or-link-command>    # skin
2. run application under control of measurement system:
    scalasca -analyze <application-launch-command>   # scan
3. post-process & explore measurement analysis report:
    scalasca -examine <experiment-archive|report>       # square

[-h] show quick reference guide (only)

scalasca
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● Measurement & analysis runtime system
■ Manages runtime configuration and parallel execution
■ Configuration specified via EPIK.CONF file or environment

► epik_conf reports current measurement configuration
■ Creates experiment archive (directory): epik_<title>
■ Optional runtime summarization report
■ Optional event trace generation (for later analysis)
■ Optional filtering of (compiler instrumentation) events
■ Optional incorporation of HWC measurements with events

► via PAPI library, using PAPI preset or native counter names

● Experiment archive directory
■ Contains (single) measurement & associated files (e.g., logs)
■ Contains (subsequent) analysis reports

EPIK
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● Automatic instrumentation of OpenMP & POMP directives 
via source pre-processor
■ Parallel regions, worksharing, synchronization
■ OpenMP 2.5 with OpenMP 3.0 coming

► No special handling of guards, dynamic or nested thread teams
► OpenMP 3.0 ORDERED sequentialization support
► Support for OpenMP 3.0 tasks currently in development

■ Configurable to disable instrumentation of locks, etc.
■ Typically invoked internally by instrumentation tools

● Used by Scalasca/Kojak, ompP, Periscope, Score-P, TAU, 
VampirTrace, etc.
■ Provided with Scalasca, but also available separately

► OPARI 1.1 (October 2001)
► OPARI2 1.0 (January 2012)

OPARI
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● Parallel program analysis report exploration tools
■ Libraries for XML report reading & writing
■ Algebra utilities for report processing
■ GUI for interactive analysis exploration

► requires Qt4 library
► can be installed independently of Scalasca instrumenter and 

measurement collector/analyzer, e.g., on laptop or desktop

● Used by Scalasca/KOJAK, Marmot, ompP, PerfSuite, 
Score-P, etc.
■ Analysis reports can also be viewed/stored/analyzed with 

TAU Paraprof & PerfExplorer
■ Provided with Scalasca, but also available separately

► CUBE 3.4.1 (January 2012)
► CUBE 4.0 (December 2011)

CUBE
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Analysis presentation and exploration

● Representation of values (severity matrix)
on three hierarchical axes
■ Performance property (metric)
■ Call-tree path (program location)
■ System location (process/thread)

● Three coupled tree browsers

● CUBE displays severities
■ As value: for precise comparison
■ As colour: for easy identification of hotspots
■ Inclusive value when closed & exclusive value when expanded
■ Customizable via display mode
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Scalasca analysis report explorer (summary)

How is it
distributed across
the processes?

What kind of
performance

problem?
Where is it in the

source code?
In what context?
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Scalasca analysis report explorer (trace)
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● Computational astrophysics
■ (magneto-)hydrodynamic simulations on 1-, 2- & 3-D grids
■ part of SPEC MPI2007 1.0 benchmark suite (132.zeusmp2)
■ developed by UCSD/LLNL
■ >44,000 lines Fortran90 (in 106 source modules)
■ provided configuration scales to 512 MPI processes

● Run with 512 processes on JUMP
■ IBM p690+ eServer cluster with HPS at JSC

● Scalasca summary and trace measurements
■ ~5% measurement dilation (full instrumentation, no filtering)
■ 2GB trace analysis in 19 seconds
■ application's 8x8x8 grid topology automatically captured from 

MPI Cartesian

ZeusMP2/JUMP case study
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Scalasca summary analysis: zeusmp2 on JUMP

● 12.8% of time spent 
in MPI point-to-point 
communication

● 45.0% of which is 
on program callpath 
transprt/ct/hsmoc

● With 23.2% std dev 
over 512 processes

● Lowest values in 3rd 
and 4th planes of 
the Cartesian grid
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Scalasca trace analysis: zeusmp2 on JUMP

● MPI point-to-point 
communication time 
separated into 
transport and Late 
Sender fractions

● Late Sender 
situations dominate 
(57%)

● Distribution of 
transport time (43%) 
indicates congestion 
in interior of grid
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● Automatic function instrumentation (and filtering)
■ CCE, GCC, IBM, Intel, PathScale & PGI compilers
■ optional PDToolkit selective instrumentation (when available) 

and manual instrumentation macros/pragmas/directives
● MPI measurement & analyses

■ scalable runtime summarization & event tracing
■ only requires application executable re-linking
■ P2P, collective, RMA & File I/O operation analyses

● OpenMP measurement & analysis
■ requires (automatic) application source instrumentation
■ thread management, synchronization & idleness analyses

● Hybrid OpenMP/MPI measurement & analysis
■ combined requirements/capabilities
■ parallel trace analysis requires uniform thread teams

Scalasca 1.4 functionality
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● Improved configure/installation
● Improved parallel & distributed source instrumentation

■ OpenMP/POMP source instrumentation with OPARI2
● Improved MPI communicator management
● Additional summary metrics

■ MPI-2 File bytes transferred (read/written)
■ OpenMP-3 ORDERED sequentialization time

● Improved OpenMP & OpenMP+MPI tracefile management 
via SIONlib parallel I/O library

● Trace analysis reports of severest pattern instances
■ linkage to external trace visualizers Vampir & Paraver

● New boxplot and topology presentations of distributions
● Improved documentation of analysis reports

Scalasca 1.4 added functionality
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● /soft/perftools/scalasca
■ link to /home/projects/scalasca subdirectories

● /home/projects/scalasca/cube-3.4.1
■ link from /soft/perftools/cube/latest 
■ Qt4-based GUI for Scalasca analysis report exploration

● /home/projects/scalasca/scalasca-1.4.2rc1+sion
■ configured with PDT, PAPI & SIONlib
■ generally recommended
■ link from /soft/perftools/scalasca/latest

● /home/projects/scalasca/scalasca-1.4.2rc1-sion
■ configured with PDT, PAPI & without SIONlib
■ available as a backup in case of problems
■ link from /soft/perftools/scalasca/scalasca-regio

Scalasca on VEAS
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● Instrumentation
■ compatibilities of different compilers/libraries unknown

► if in doubt, rebuild everything

● Measurement collection & analysis
■ runjob & qsub support likely to be incomplete

► quote ignorable options and try different variations of syntax
► can't use “scan qsub” with qsub script mode

▬ use “scan runjob” within script instead

► in worst case, should be able to configure everything manually
■ node-level hardware counters replicated for every thread 
■ scout.hyb generally coredumps after completing trace analysis

● Analysis report examination
■ Hardware topology shows only one process per compute node 

(the one with the largest rank)

Scalasca issues & limitations (BG/Q): general
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● Tracing experiments collect trace event data in trace files, 
which are automatically analysed with a parallel analyzer
■ parallel trace analysis requires the same configuration of MPI 

processes and OpenMP threads as used during collection
■ generally done automatically using the allocated partition

● By default, Scalasca uses separate trace files for each MPI 
process rank stored in the unique experiment archive
■ for pure MPI, data written directly into archive files

► the number of separate trace files may become overwhelming
■ for hybrid MPI+OpenMP, data written initially to files for each 

thread, merged into separate MPI rank files during experiment 
finalization, and then split again during trace analysis
► the number of intermediate files may be overwhelming
► merging and parallel read can be painfully slow

Scalasca issues & limitations (BG/Q): tracing
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● Scalasca can be configured to use the SIONlib I/O library
■ optimizes parallel file reading and writing

► avoids explicit merging and splitting of trace data files
■ can greatly reduce file creation cost for large numbers of files
■ ELG_SION_FILES specifies the number of files to be created 

► default of 0 reverts to previous behaviour with non-SION files
■ for pure MPI, try one SION file per (I/O) node
■ for hybrid MPI+OpenMP, 

set ELG_SION_FILES equal to number of MPI processes
► trace data for each OpenMP thread included in single SION file
► not usable currently with more than 61 threads per SION file

due to exhaustion of available file descriptors

Scalasca issues & limitations (BG/Q): sionlib
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● Everything should generally work as on other platforms 
(particularly BG/P), but runjob & Cobalt qsub are unusual

● scalasca -instrument
■ skin  mpixlf77 -O3 -c bt.o
■ skin  mpixlf77 -O3 -o bt.1024  *.o

● scalasca -analyze
■ scan -s  mpirun -np 1024 -mode SMP -exe ./bt.1024

► epik_bt_smp1024_sum
■ scan -s  runjob --np 1024 --ranks-per-node 16  :  ./bt.1024

► epik_bt_16p1024_sum
■ scan -s  qsub -n 16 --mode c16 ./bt.1024

► epik_bt_16p1024_sum (after submitted job actually starts)

● scalasca -examine
■ square  epik_bt_16p1024_sum

Scalasca 1.4.2rc2 on BG/Q (MPI only)



30

● Everything should generally work as on other platforms 
(particularly BG/P), but runjob & Cobalt qsub are unusual

● scalasca -instrument
■ skin  mpixlf77_r -qsmp=omp -O3 -c bt.o
■ skin  mpixlf77_r -qsmp=omp -O3 -o bt-mz.256  *.o

● scalasca -analyze
■ scan -s  mpirun -np 256 -mode SMP -exe ./bt-mz.256 \

                    -env OMP_NUM_THREADS=4
► epik_bt-mz_smp256x4_sum

■ scan -s  runjob --np 256 --ranks-per-node 16 \
                 --envs OMP_NUM_THREADS=4  :  ./bt-mz.256

■ scan -s  qsub -n 16 --mode c16 
                       -env OMP_NUM_THREADS=4  ./bt-mz.256
► epik_bt-mz_16p256x4_sum (after submitted job actually starts)

Scalasca 1.4.2rc2 on BG/Q (MPI+OpenMP)
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● Scalasca experiment archive directories uniquely store 
measurement collection and analysis artefacts
■ experiment title prefixed with epik_

● Default EPIK experiment title composed from
■ executable basename (without suffix): bt-mz
■ ranks-per-node: 16p
■ number of MPI ranks: 256
■ number of OMP threads: x4
■ type of experiment: sum or trace
■ (+ HWC metric-list specification)

● Can alternatively be specified with -e command-line option 
or EPK_TITLE environment variable

Scalasca 1.4.2rc2 on BG/Q: experiment names
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● Scalasca experiments can include hardware counters
■ specify lists of PAPI presets or native counters
■ via -m option or EPK_METRICS environment variable

► EPK_METRICS=PAPI_FP_OPS:PEVT_IU_IS1_STALL_CYC
■ alternatively create a file defining groups of counters, specify 

this file with EPK_METRICS_SPEC and use the group name
● Available hardware counters (and PAPI presets) and 

supported combinations are platform-specific
● Shared counters are read and stored for each thread
● Although counters are stored in Scalasca traces, they are 

(currently) ignored by the parallel trace analyzers
■ storage for counters is not included in max_tbc estimates
■ summary+trace experiments produce combined analysis 

reports including measured hardware counter metrics

Scalasca 1.4.2rc2 on BG/Q: HWC experiments
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