

Petascale Debugging via
Allinea DDT for IBM Blue Gene /P

and IBM Blue Gene /Q

Ian Lumb <ilumb@allinea.com>

Senior Systems Engineer, Allinea Software Inc.

ALCF L2P Workshop, May 23, 2012

Outline

● Experience petascaling Allinea DDT
● Petascaling Allinea DDT for IBM Blue Gene /x
● Getting Started with Allinea DDT

0 50,000 100,000 150,000 200,000
0

0.02

0.04

0.06

0.08

0.1

0.12

DDT 3.0 Performance Figures

Jaguar Cray XT5

All Step
All Breakpoint

MPI Processes

T
im

e
 (

S
e

co
n

d
s)

Petascaled Infrastructure
Allinea DDT 3.0 (April 2011)

● Allinea DDT scales – logarithmically
● Tree network for communication
● Partnership with largest users

● US DoE Oak Ridge National Laboratories
– OLCF applications
– Open MPI development

● Routine debugging at 80K processes
● High performance petascale debugging

● Even at 220,000 cores
● Step all and display stacks in ~1/10 second
● Scalable interface and features

Petascaled UI
Allinea DDT 3.1 (November 2011)

● The challenge
● Lightweight OS on compute nodes

– Only allows debug daemons at I/O nodes
– Ratio of compute nodes to I/O cores: 64-512

● Each I/O node is busy ...
– Handles compute node debug work for each core
– No tree to help here: not fast within one I/O node!
– The bottleneck of IBM Blue Gene /P

● Multiple I/O nodes scale logarithmically

Debugging the IBM Blue Gene /P

A Path to Petascale on IBM BG /P

● Phase 1 [2010]
● Cut memory usage per compute process at I/O

node
● Debuggers share common internal tables

– Memory mapping of symbol tables
– Raises limit to ~128 processes

● Delivered!

The memory mapped result

● Simplest to achieve – with
benefits to multicore
systems

● Boosted max cores per I/O
node to 256

● Reached 32K cores

● 32,000 cores as quick as 64
cores

● … flat – but not
instantaneous

● Most operations ~ 3
seconds

● Close work with ANL – ran
at scale on Intrepid

64 128 256 512 4096 8192 16384 32768

0

1

2

3

4

5

6

7

BG/P Measured Performance

SMP Mode

Step Step and variables Compare

Cores

S
e

co
n

d
s

Petascale IBM Blue Gene /P Debugging

● Phase 2 [2011]
● Reduce per-I/O-node daemon count
● Reduces context thrashing: faster!
● Each daemon handles multiple compute processes

– Multiplexing commands and responses via CIOD
– Multiplexing within the debugger
– Cuts memory usage and improves speed

● Limit 256-512 processes per I/O node

● Delivery: July 2012

O
ri

g
in

al
 A

rc
h

it
ec

tu
re

O
ri

g
in

al
 A

rc
h

it
ec

tu
re

M
u

lt
ip

le
xe

d
 A

rc
h

it
ec

tu
re

Current Status

● IBM Blue Gene /P
● Acceptance testing at ALCF (Allinea DDT 3.1)

– Scale for Intrepid
● Memory-mapped debugger data
● Multiplexed debugger daemons

● IBM Blue Gene /Q
● Under development (Allinea DDT 3.2)

– Early access for IBM Blue Gene /Q expected July 2012
● ALCF requirement

– Scale for Mira

http://www.alcf.anl.gov/resource-guides/allinea-ddt

R. Loy, ANL
ESP Workshop, 3/2012

http://www.alcf.anl.gov/resource-guides/allinea-ddt

Self-Paced Debugging Workshop

● Debugging use cases
● Straightforward crashes
● Memory errors and leaks
● Deadlocks
● Incorrect results

● Workshop-style approach
● Detailed examples via

annotated code

http://www.allinea.com/downloads/ddt_training.tar.gz

http://www.allinea.com/products/ddt-trial

http://www.allinea.com/downloads/ddt_training.tar.gz
http://www.allinea.com/products/ddt-trial

Summary

● Petascaling for > 1 year
● Petascaled infrastructure and UI

● Scaling for IBM Blue Gene /P
● Acceptance testing at ALCF

● Scaling for IBM Blue Gene /Q
● Addressing ALCF requirements

– Early access for IBM Blue Gene /Q expected July 2012

● Architecture applicable elsewhere
● Multicore/GPU??? architectures

● Exascaling ...

Additional Slides ...

Petascaling Allinea DDT

● A control tree gives scalability
● Ability to send bulk commands and

merge responses
● 100,000 processes in a depth 3 tree

● Compact data type to represent sets of
processes
● eg. For message envelopes
● An ordered tree of intervals, or a bitmap?

● Develop aggregations
● Merge operations are key: not everything

can/should merge losslessly
● Maintain the essence of the information:

eg. min, max, distribution

Process Control
● Interacting with application progress is easy with Allinea

DDT
● Step, breakpoint, play, or set data watchpoints based on groups
● Change interleaving order by stepping/playing selectively

● Group creation is easy
● Integrated throughout Allinea DDT - eg. stack and data views

● Common issues easily visible by seeing the outlier
● Divergence of processes is clear in the Parallel Stack View

● Clear need to see data
● Too many variables to trawl

manually
● Allinea DDT compares data

automatically

● Smart highlighting
● Subtle hints for differences and

changes
● Colour and sparklines!

● More detailed analysis
● Full cross process comparison
● Historical values via tracepoints

Sparklines (DDT 3.1, 11/2011)

Tracepoints (DDT 3.1, 11/2011)

● A scalable print alternative
● Merged print – with a sparkline graph showing

distribution
● Change at runtime – no recompilation required

Scaling for IBM Blue Gene /P ...

● Allinea DDT's architecture

● Two daemons per MPI
process: controller and a
single process debugger

● As close to process as
possible: on the I/O node

● Ideal for a full O/S

● But on the I/O node..

● RAM per core low
● Debugger cores per

compute core low

● Must do less work, and
do it for less memory

How to use less memory?

● Debugging needs memory

● Complex C++ generates biggest symbol tables

● … but with 256 cores even 20MB per process is too much

● Target is debugging multi-thousand core jobs on ANL ALCF
facilities

● Ideas ...

● Use one debugger and `multiplex' the process
– A good answer, but more work than necessary

● Load symbol table once and fork other debuggers from it …
– Wouldn't work for many cases – particularly shared libraries

● ... memory mapped read-only internal debugger data file
– Sounded plausible!

– Idea used before in GDB but suffered bit-rot

Where next?

● Future ratios need more work

● IBM Blue Gene /Q is a big step
● Compute-core to I/O node memory ratio shooting up
● A real hardware bottleneck – just when we cured the

software one

● What technologies are right?

● Multiplexing all daemons
● Good – but still lot of CPU load at the IO node

● Do more at compute node

● Real O/S (please!) or in-process debugging/off-load
● More opportunity if we had more speed: Potential to do

anything

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

