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Goals of This Presentation:

v To present the basic design and organization of the BG/Q node.

v And compare with that found in commodity HPC hardware.

v Highlight aspects of the architecture relevant to code optimization.
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Data Motion, Speed and Parallelism:

What does an application do:

*

Retrieves data from memory

*

Computes using that data

*

Writes the results back into memory

*

Interacts with other nodes, performs /O, etc. (these are the subjects of later presentations)

The “speed” at which you can compute is determined by:

(clock rate of the core) x (the amount of parallelism you can exploit)

2 Argonne Leadership
Computing Facility



Types of Parallelism:

« Parallelism across nodes (using MPI, etc.) -- See upcoming presentations for information on this!
» Parallelism across “sockets” within a node [Not applicable to the BG/Q)]

» Parallelism across cores within each socket

« Parallelism across pipelines within each core (i.e. instruction-level parallelism) ==

* Parallelism across vector lanes within each pipeline 2

» Using instructions that perform multiple operations simultaneously (e.g. FMAS) -
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There Is Only One “Socket”:
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* Node has 1 CPU + 72 SDRAMs (16GB DDR3)

Image source: https://computing.linl.gov/tutorials/linux_clusters/ ) ] S
 Memory is soldered on for high reliability
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There are 16 cores per node:

On the BG/Q, you'll want
(MPI process per node) x (threads per process)
to be at least 16 to run on all of the cores (as we'll

discuss later, you'll probably want this number to be
between 32 and 64).

Shared L3 Cache

=\~ ~Shared 13 Cache:

Image source: https://computing.linl.gov/tutorials/linux_clusters/
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There are two pipelines per core:

Enhanced PowerPC A2 core:
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There are four hardware threads per core:
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You must have at least two threads (or processes)
per core to efficiently use the BG/Q!
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Vectorization: Quad Processing eXtension (QPX):

* On the BG/Q, only QPX vector instructions are supported! 256

Load

* Only <4 x double> and <4 x bool> operations are provided.

» <4 x float> (single precision) is provided, but the only

advantage over double precision is decreased memory RF RF F
bandwidth/footprint.
é7 AV
MAD1 MAD2
I e

-~ Argonne Leadership RN
Computing Facility NN



.
Fused multiply-add (FMA) instructions:

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

There are a few like this:

And a few like this:

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.
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Memory Components

Network
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Computing Facility

2 Argonne



L1 Cache and Prefetcher

« Each core has its own L1 cache and L1 Prefetcher (L1P)
* L1 Cache:
« Data: 16 KB, 8 way set associative, 64 byte cache lines, 6 cycle latency

 Instruction: 16 KB, 4 way set associative, 3 cycle latency
» L1 Pefetcher (L1P):
32 buffer entries, 128 bytes each, 24 cycle latency

Buffer is write back

Operates in list of stream modes (stream mode is the default)

~*» By default, tracks 10 streams x 3 128-byte cache lines deep
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L2 Cache and Memory

« L2 Cache:
* Shared by all cores, divided into 16 slices ggp
« 32 MB total, 2 MB per slice . v

* 16 way set associative, 128 byte lines, write-back, 82 cycle latency

* Prefetches from DRAM based on L1P requests

» Supports direct atomic operations

» Supports multiversioning (for transactional memory)
* Clocked @ 800 MHz (half of the CPU rate)
* Read: 32 bytes/cycle, Write: 16 bytes/cycle
« DRAM:
« Two on-chip memory controllers, each connected to 8 L2 slices
« Each controller drives a 16 byte DDR-3 channel @ 1.33 Gb/s
* The peak bandwidth 42.67 GB/s (excluding ECC)

~* The latency is > 350 cycles
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I
Odds and Ends

* The A2 core uses in-order dispatch, with one exception: There is an 8-entry load miss queue
(LMQ) that holds loads and prefetches that miss the L1 cache, shared by all threads. Upon a
cache miss, the issuing thread does not actually stall until a use of the load is encountered.

* Try not to request the same L1 cache line more than once (especially relevant when using
software prefetching); the second request will stall the thread until the first request satisfied.

* The L2 cache is write-through (so writing to a cache line knocks it out of cache), so avoid writing
to memory from which you soon expect to read. Unlike commodity hardware, which uses write-
back caches, making write locality important, write locality is essentially irrelevant on the BG/Q.

* For a mispredicted branch, there is a minimum penalty of 13 cycles.

 If you need to compute 1/x (and don't need the exact IEEE answer) or 1/sqrt(x), QPX provides
reciprocal estimate and reciprocal sqrt estimate functions. Combined with a Newton iteration or
two, these give nearly-exact answers and are much less expensive than alternative methods.

* There is a “timebase” register on the A2 core which provides exact cycle counts: if you're trying to

~ time something, use it!
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So what do you do with this information... An Example

void foo(double * restrict a, double * restrict b, etc.) {

#pragma omp parallel for T
for (i=0;i<n; ++i) {

a[i] = el[il*(b[i]*c[i] + d[i]) + f[il;

mli] = q[iI*(n[i]"o[i] + pli]) + ri];

}
}

v

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f[il;
}

#pragma omp parallel for
for (i=0;i<n;++i){

} m[i] = q[iI*(n[i]*c[i] + p[i]) + rlil;
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So what do you do with this information... An Example (cont.)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(b[i*c[i] + d[i]) + f[il;
}

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

#pragma unroll(3)

for (i=0;i<n; ++i){

ali] = ef[il*(b[i]*c[i] + d[i]) + f[il;
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So what do you do with this information... An Example (cont.)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
#pragma unroll(3)

for (i=0;i<n;++i){

a[i] = e[i*(bli*c(i] + d[i]) + fli;
}
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