
ALCF Systems 1: On-Node

Goals of This Presentation:

✔ To present the basic design and organization of the BG/Q node.

✔ And compare with that found in commodity HPC hardware.

✔ Highlight aspects of the architecture relevant to code optimization.

A BG/Q node looks like this:

Not this:

Data Motion, Speed and Parallelism:

What does an application do:

 Retrieves data from memory

 Computes using that data

 Writes the results back into memory

 Interacts with other nodes, performs I/O, etc. (these are the subjects of later presentations)

The “speed” at which you can compute is determined by:

(clock rate of the core) x (the amount of parallelism you can exploit)

This is simple: 1.66 GHz

Types of Parallelism:

● Parallelism across nodes (using MPI, etc.) -- See upcoming presentations for information on this!

● Parallelism across “sockets” within a node [Not applicable to the BG/Q]

● Parallelism across cores within each socket

● Parallelism across pipelines within each core (i.e. instruction-level parallelism)

● Parallelism across vector lanes within each pipeline

● Using instructions that perform multiple operations simultaneously (e.g. FMAs)

Hardware threads tie in
here too.

This is similar to other systems for which you've optimized before,
but there are important differences...

There Is Only One “Socket”:

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

BG/Q: Only one “socket” with one CPU.
All memory is equally close:

No NUMA here!
(running only one MPI rank/node works well)

● Node has 1 CPU + 72 SDRAMs (16GB DDR3)
● Memory is soldered on for high reliability

Commodity HPC node with four sockets and
nonuniform memory access (NUMA):

Each core has DRAM to which it is closer.

There are 16 cores per node: Each BG/Q CPU has 16 cores
connected by a cross-bar interconnect

with an aggregate read bandwidth
of 409.6 GB/s (write bandwidth is half that)..

CNK, a lightweight
operating system,

runs on the 17th core.

Commodity HPC CPUs typically
have only 4 - 12 cores

(and the operating system does not
have a dedicated core)

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

Network controller, routing logic
and RDMA support

part of the CPU.

On the BG/Q, you'll want
(MPI process per node) x (threads per process)

to be at least 16 to run on all of the cores (as we'll
discuss later, you'll probably want this number to be
between 32 and 64).

There are two pipelines per core:

On the BG/Q, instruction dispatch feeds
only two pipelines in order.

In commodity HPC core, instructions are
dispatched to many pipelines after

dynamic rearrangement (out of order).

Only one choice for
any instruction:

no ILP vs. vectorization tradeoffs!

Multiple choices for
some instruction types.

Probably executes x86-64
instructions (including some set

of vector extensions).

Executes PowerPC instructions
(complying with the
POWER ISA v2.06)

plus QPX vector instructions.

Enhanced PowerPC A2 core:

There are four hardware threads per core:

Instructions from the four hardware threads
are dispatched round-robin.

The four threads share essentially
all resources (except the register file).

The two pipelines can simultaneously start
two instructions, but they must come from

two different threads.

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!

Vectorization: Quad Processing eXtension (QPX):

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

● On the BG/Q, only QPX vector instructions are supported!

● Only <4 x double> and <4 x bool> operations are provided.

● <4 x float> (single precision) is provided, but the only

advantage over double precision is decreased memory

bandwidth/footprint.

FP arithmetic completes in six cycles
(and is fully pipelined).

Loads/stores execute in the
XU pipeline (same as all other

load/stores).

The first vector element in each
vector register is the corresponding

scalar FP register

Arbitrary permutations
complete in

only two cycles.

On commodity HPC
hardware, integer

operations can also be
vectorized; but not on

the BG/Q.

32 QPX registers
(and 32 general purpose

registers) per thread.

Fused multiply-add (FMA) instructions:

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

qvfmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA1)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA3)×(QRC3)] + (QRB3)

qvfmsub:
QRT0 ← [(QRA0)×(QRC0)] - (QRB0)
QRT1 ← [(QRA1)×(QRC1)] - (QRB1)
QRT2 ← [(QRA2)×(QRC2)] - (QRB2)
QRT3 ← [(QRA3)×(QRC3)] - (QRB3)

qvfxmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

qvfxxnpmadd:
QRT0 ← - ([(QRA1)×(QRC1)] - (QRB0))
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← - ([(QRA3)×(QRC3)] - (QRB2))
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

There are a few like this:

And a few like this:

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.

Memory Components:

DRAM
(2 controllers)

L1 Cache (Per Core)

L1P Internal Buffer
(Per Core)

L2 Cache
(16 slices)

Commodity HPC cores
often also have an
L3 cache, we don't.

However, they have an L2
cache that is only
hundreds of KB.

L1 Cache and Prefetcher

L1DataL1Data

L1 InstL1 Inst
Core L1 PreL1 Pre

Cross Bar Switch

● Each core has its own L1 cache and L1 Prefetcher (L1P)

● L1 Cache:

● Data: 16 KB, 8 way set associative, 64 byte cache lines, 6 cycle latency

● Instruction: 16 KB, 4 way set associative, 3 cycle latency

● L1 Pefetcher (L1P):

● 32 buffer entries, 128 bytes each, 24 cycle latency

● Buffer is write back

● Operates in list of stream modes (stream mode is the default)

● By default, tracks 10 streams x 3 128-byte cache lines deep

Hardware prefetching will never
insert data directly into

the L1 cache (data is stored
in the L1P's buffer instead).

Only explicit “software”
prefetching can do that.
The latency of reading

from the L1P is still significant.

L2 Cache and Memory

L2 slice 0

DRAM 0

L2 slice 1

L2 slice 2

L2 slice 3

L2 slice 4

L2 slice 5

L2 slice 6

L2 slice 7

L2 slice 8

L2 slice 9

L2 slice 10

L2 slice 11

L2 slice 12

L2 slice 13

L2 slice 14

L2 slice 15

DRAM 1

Cr
os

sb
ar

● L2 Cache:

● Shared by all cores, divided into 16 slices

● 32 MB total, 2 MB per slice

● 16 way set associative, 128 byte lines, write-back, 82 cycle latency

● Prefetches from DRAM based on L1P requests

● Supports direct atomic operations

● Supports multiversioning (for transactional memory)

● Clocked @ 800 MHz (half of the CPU rate)

● Read: 32 bytes/cycle, Write: 16 bytes/cycle

● DRAM:

● Two on-chip memory controllers, each connected to 8 L2 slices

● Each controller drives a 16 byte DDR-3 channel @ 1.33 Gb/s

● The peak bandwidth 42.67 GB/s (excluding ECC)

● The latency is > 350 cycles

This is twice the L1
cache line size. If you have performance-critical

locks, this is important!

Odds and Ends

● The A2 core uses in-order dispatch, with one exception: There is an 8-entry load miss queue

(LMQ) that holds loads and prefetches that miss the L1 cache, shared by all threads. Upon a

cache miss, the issuing thread does not actually stall until a use of the load is encountered.

● Try not to request the same L1 cache line more than once (especially relevant when using

software prefetching); the second request will stall the thread until the first request satisfied.

● The L2 cache is write-through (so writing to a cache line knocks it out of cache), so avoid writing

to memory from which you soon expect to read. Unlike commodity hardware, which uses write-

back caches, making write locality important, write locality is essentially irrelevant on the BG/Q.

● For a mispredicted branch, there is a minimum penalty of 13 cycles.

● If you need to compute 1/x (and don't need the exact IEEE answer) or 1/sqrt(x), QPX provides

reciprocal estimate and reciprocal sqrt estimate functions. Combined with a Newton iteration or

two, these give nearly-exact answers and are much less expensive than alternative methods.

● There is a “timebase” register on the A2 core which provides exact cycle counts: if you're trying to

time something, use it!

So what do you do with this information... An Example

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];
}

}

We use “restrict” here to tell the
compiler that the arrays are

disjoint in memory.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
}

We want at
least 2 threads

per core.

Each statement requires 5 L1P streams,
but we have only 10 per core shared

among all threads.
Split loop body.

So what do you do with this information... An Example (cont.)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...
}

The RHS expression is two
dependent FMAs requiring

at least 3 QPX registers
(5 registers if we “preload” all of the
input values). The first FMA has a

6 cycle latency, and if we
run two threads/core, we have

an effective latency
of 3 cycles/thread to hide

Unroll (interleaved) by a factor of 3.
This will require up to

3*5 == 15 QPX registers,
but we have 32 of them.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...
}

If the pragma does not do what you need,
unrolling by hand is always an options.

But there's more...

So what do you do with this information... An Example (cont.)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...
}

These loads are not explicitly
prefetched, so they'll be

coming from the L1P buffer,
not the L1 cache. We'll have

~24 cycles of latency,
~12 cycles/thread, to hide.

But, the compiler will probably “preload” the data for each iteration during
the preceding iteration in order to hide this latency. If it does not, then

you can perform this transformation manually, unroll more, etc.

But, the L2 can deliver only 32 bytes every two cycles,
so for the L2 to “keep up”, you want to do at least 2 QPX operations

for every loaded value. That would be 10 operations here, but we have only
2 FMAs + 5 loads + 1 store == 8 operations:
Only a higher-level change introducing more

data reuse can solve this problem!

.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

