

ANL/ALCF-17/2

Evaluation of the Single-precision Floating-point Vector

Add Kernel Using the Intel FPGA SDK for OpenCL

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

mailto:reports@osti.gov
http://www.osti.gov/
http://www.ntis.gov/
http://www.anl.gov/
http://www.osti.gov/scitech/)
mailto:orders@ntis.gov

ANL/ALCF-17/2

Evaluation of the Single-precision Floating-point Vector
Add Kernel Using the Intel FPGA SDK for OpenCL

prepared by

Zheming Jin, Kazutomo Yoshii, Hal Finkel, Franck Cappello

Argonne Leadership Computing Facility, Argonne National Laboratory

April 20, 2017

Contact Address: Zheming Jin, Leadership Computing Facility, 9700 South Cass Avenue, Bldg, 240, Argonne, IL 60439-4854 USA

Email: zjin@anl.gov

Evaluation of the Single-precision Floating-point Vector
Add Kernel Using the Intel FPGA SDK for OpenCL

Zheming Jin*

Kazutomo Yoshii

Hal Finkel

Franck Cappello

ABSTRACT

Open Computing Language (OpenCL) is a high-level

language that enables software programmers to explore

Field Programmable Gate Arrays (FPGAs) for application

acceleration. The Intel FPGA software development kit

(SDK) for OpenCL allows a user to specify applications at

a high level and explore the performance of low-level

hardware acceleration.

In this report, we present the FPGA performance and power

consumption results of the single-precision floating-point

vector add OpenCL kernel using the Intel FPGA SDK for

OpenCL on the Nallatech 385A FPGA board. The board

features an Arria 10 FPGA. We evaluate the FPGA

implementations using the compute unit duplication and

kernel vectorization optimization techniques. On the

Nallatech 385A FPGA board, the maximum compute kernel

bandwidth we achieve is 25.8 GB/s, approximately 76% of

the peak memory bandwidth. The power consumption of

the FPGA device when running the kernels ranges from

29W to 42W.

1. INTRODUCTION
The OpenCL standard is an open programming model for

accelerating algorithms on heterogeneous computing

system. OpenCL extends the C-based programming

language for developing portable codes on different

platforms such as CPU, GPU, DSP and FPGA. The Intel

FPGA SDK for OpenCL is a suite of tools that allows

developers to abstract away the complex FPGA-based

development flow for a high-level software development

flow. Users can focus on the design of hardware-

accelerated kernel functions in OpenCL and then direct the

tools to generate the low-level FPGA implementations.

Vendors offer board support package (BSP) variants to

support different applications on their boards. The BSP

leverages the on-board and low-level resources on FPGAs

to allow users to quickly develop applications without

manually building the hardware basic blocks. Users can

focus on the algorithm implementation on FPGAs rather

than the physical implementation at the board level.

With the SDK and BSP tools, users can evaluate the

performance of an FPGA implementation of a kernel within

one day though the FPGA compile time is still quite slow

(typically several hours) from the software development

aspect.

2. BACKGROUND

2.1 OpenCL application
An OpenCL application consists of host and kernel

programs. The OpenCL host program is written in standard

C/C++ that runs on most of modern microprocessors. The

host allocates data arrays in the global memory that will be

read by the kernel. When the data are ready for the kernel,

the host can launch the kernel that will be executed on an

FPGA device. A kernel typically executes computation by

reading data from global memory as specified by the host,

processing it, and then writing the results back into global

memory. When the results are ready, they can be read by

the host for post-processing.

2.2 Nallatech 385A
Nallatech provides OpenCL board support packages for

OpenCL users. Nallatech 385A is a PCIe-based FPGA

accelerator card. It features an Arria 10 GX1150 FPGA

device, PCIe x8 Generation 3 host interface, and two banks

of 4GB DDR3 memory. The theoretical peak floating-point

performance is 1.5 TFLOPS and the theoretical peak

memory bandwidth approximately 34 GB/s.

3. KERNEL APPLICATION

3.1 OpenCL vector add
Our case study is the OpenCL single-precision floating-

point vector add kernel based on the design example [1].

The vector add kernel sums up the two vectors X and Y and

then store the results in another vector Z. Figure 1 shows

the OpenCL vector add kernel. Each work item (thread) in

the global space reads two elements from X and Y and

writes the sum into Z. The inputs and output are read from

and written to the global external DDR memory. This

kernel can illustrate the impact of different kernel

configurations on the performance of the kernel

implementations using the Intel Altera SDK.

__kernel void vector_add(__global float *x,

 __global float *y,

 __global float *z)

{

 int i = get_global_id(0);

 z[i] = x[i] + y[i];

}

Figure 1. The OpenCL vector add kernel

mailto:zjin@anl.gov

3.2 Kernel optimizations
As described in [2], users can take advantage of compute

unit replication and kernel SIMD vectorization to achieve

higher throughput or lower kernel time. The compute

device replication generates multiple compute units for

each kernel. Each compute unit has its own memory access

interface. The SIMD vectorization duplicates only the data

path of the compute unit without generating additional

memory interfaces. When the kernel is vectorized, the static

memory coalescing is performed automatically by the

compiler to generate a memory interface that can coalesce

the multiple memory loads into a single wide load. While

there is no limit to the number of kernel copies that users

can specify, the number of SIMD lanes must be a power of

two. The compiler will give a warning when the width of

all the lanes exceeds the memory interface data width.

4. PERFORMANCE EVALUATION
In this work, a host system is set up with two 2.6 GHz Intel

Xeon processors and 32GB DDR3 memory for each node.

The PCI Express provides a Gen3×8 connection. CentOS

6.8 with Linux kernel 2.6.32 is installed as the operating

system. We used Intel’s FPGA SDK for OpenCL version

16.0.2 Pro Prime for producing the experimental results.

Table 1. Resource usage of the FPGA implementations

Kernel

type

Native

DSP(s)

Logic

utilization

Memory

bits

RAM

blocks

default 1 12% 5% 13%

cu2 2 12% 7% 15%

cu4 4 13% 8% 18%

cu8 8 16% 8% 24%

cu16 16 20% 10% 37%

cu32 32 29% 13% 62%

cu48 48 38% 15% 86%

simd2 2 13% 5% 13%

simd4 4 13% 5% 13%

simd8 8 13% 5% 13%

simd16 16 13% 5% 13%

simd16+cu2 32 13% 8% 15%

simd16+cu4 64 15% 8% 18%

simd16+cu8 128 18% 9% 24%

simd16+cu16 256 26% 12% 35%

simd16+cu32 512 41% 16% 58%

simd16+cu48 768 57% 21% 81%

Table 1 lists the FPGA resource usage reported by the SDK

for the different implementations of the kernel. The default

kernel is the example shown in Figure 1 without any kernel

optimization. Replication of compute unit is represented as

“cuX” where X indicates the replication times. We also

include the combination of kernel duplication and 16-lane

vectorization at the bottom of the table as “simd16+cuX”.

The number of floating-point DSP blocks generated by the

SDK depends on the kernel configurations. The logic

utilization ranges from 12% to 57%. The RAM block usage

increases significantly from 13% to 86% as the number of

compute units increase from 2 to 48. When the number of

compute units is 64 (cu64), the SDK fails to implement the

design that requires more RAM blocks than the target

device can provide. On the other hand, the SIMD

vectorization maintains 13% logic utilization as the number

of lanes increases from 2 to 16. Kernel vectorization

duplicates only the data path of the kernel with little

resource overhead for the additional control logics.

Figure 2. Compute kernel bandwidth

We use a vector size of 512M to measure the compute

kernel bandwidth for each kernel mentioned above. The

compute kernel bandwidth is defined as follows:

BWkernel = 512 × 2
20

 × 12 / (kernel execution time)

Each single-precision floating-point operation accesses 12

bytes from the memory. As shown in Figure 2, the

maximum bandwidth is 25.8 GB/s, approximately 76% of

the peak memory bandwidth on the Nallatech 385A board.

The hybrid kernel (SIMD16+cu4) achieves the maximum

bandwidth. Kernel duplication increases the kernel

bandwidth from 3.1GB/s (default) to 19.5GB/s (cu8) and

from 21.1GB/s (SIMD16) to 25.8 GB/s (SIMD16+cu4). As

more duplicate kernels are added, the bandwidth starts to

diminish due to the external memory accesses contention.

So the results for more than 16 duplicate kernels are not

included in the report.

Table 2 compares the ideal and actual speedup for each

kernel using the 512M vector size. The ideal speedup is the

number of compute units using kernel duplication and/or

vectorization for a kernel while the actual speedup is the

ratio of the execution time of the baseline kernel (default)

to the execution time of the kernel using kernel duplication

and/or vectorization. As seen in Table 2, SIMD2, SIMD4

and cu2 achieve the expected speedup while the gap

between the ideal and actual speedup gradually widens for

other cases. Overall it is worthwhile to duplicate the kernel

eight times or utilize eight vector lanes to achieve higher

performance if resource usage is not a constraint. However,

the performance gain diminishes significantly using more

than eight DSPs for both kernel duplication and

vectorization.

3.1
6.4

12.7

18.3
21.1

6.3

10.3

19.5
17.4

24.4 25.8
23.6 22.1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Compute kernel bandwidth (GB/s)

Table 2. The ideal speedup vs. the actual speed

Kernel type Kernel

time (ms)

Ideal

speedup

Actual

speedup

default 1954 1 1

SIMD2 932 2 2

SIMD4 472 4 4

SIMD8 328 8 6

SIMD16 284 16 6.9

cu2 950 2 2

cu4 584 4 3.3

cu8 308 8 6.3

cu16 345 16 5.7

SIMD16+cu2 246 32 7.9

SIMD16+cu4 233 64 8.4

SIMD16+cu8 254 128 7.7

SIMD16+cu16 272 256 7.2

Figure 3 presents the power consumption in Watts of the

FPGA device when each kernel is running on the Nallatech

385A. The power measured is for 12V power supply.

FPGA power consumption ranges from 29W to 42W. As

shown in Figure 3, adding more compute kernels generally

increases the power consumption.

Figure 3. FPGA power consumption

5. CONCLUSION
The performance evaluation of the single-precision

floating-point vector add OpenCL kernel on the Nallatech

385A FPGA illustrates the impact of kernel optimizations

on the performance and power consumption of the FPGA

implementations. Compute kernel duplication and kernel

vectorization can reduce the kernel execution time at the

cost of more hardware resources. Compute device

duplication requires a memory interface for each duplicated

kernel while kernel vectorization only duplicates the data

path of the kernel to utilize memory bandwidth more

efficiently.

Given the 512-bit user interface of the DDR3 memory

controller implemented on the FPGA, the 16-lane SIMD-

based vector add kernels achieve the best compute kernel

bandwidths. For the same number of DSPs and logic

utilization, kernel vectorization is more efficient to improve

the performance than the duplication. Heavy kernel

duplication significantly diminishes the performance gain

due to the memory access contentions. Overall SIMD

kernel vectorization is the preferred optimization technique

to reduce the kernel execution time when the external

memory interface and the number of DSPs support SIMD

computation.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the U.S.

Department of Energy Office of Science, under contract

DEAC02-06CH11357.

7. REFERENCES
[1] https://www.altera.com/support/support-

resources/design-examples/design-

software/opencl/vector-addition.html

[2] https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/hb/opencl-

sdk/aocl_optimization_guide.pdf

25

30

35

40

45

FPGA power consumption (Watts)

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

