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DOE* HPC LANDSCAPE
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Years at the floor Vendors
Summit 2018 IBM + NVIDIA
Sierra 2018 IBM + NVIDIA
Perlmutter 2020 AMD + NVIDIA
Aurora 2021 Intel + Intel 
Frontier 2021 AMD + AMD
El Captain 2022 AMD + X



DOE HPC LANDSCAPE
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• Heterogenous Computing (CPU + Accelerator)
• No, announced, NVIDIA Exascale System 

• Need to port your CUDA code



AURORA: AN INTEL-CRAY SYSTEM
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AURORA: A HIGH LEVEL VIEW
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• Architecture:
• Intel/Cray machine arriving at Argonne in 2021
• Sustained Performance greater than 1 ExaFlops
• Greater than 10 PB of total memory
• Intel Xeon processors and Intel Xe GPUs
• Cray Slingshot network and Shasta platform

• Software (Intel One API umbrella): 
• Intel compilers (C,C++,Fortran)
• Programming models: SYCL*, OpenMP, OpenCL
• Libraries: MKL, MKL-DNN, DAAL
• Tools: VTune, Advisor
• Python!

• IO:
• Uses Lustre and Distributed Asynchronous Object Store IO (DAOS)
• Greater than 230 PB of storage capacity and 25 TB/s of bandwidth



HARDWARE



INTEL GPUS
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• Intel has been building GPUs integrated with CPUs 

for over a decade which are widely available in:

• Laptops (e.g. MacBook pro)

• Desktops

• Servers

• Recent and upcoming integrated Generations:

• “Gen 9” – current products

• “Gen 11” – later this year in Ice Lake

• Double precision peak performance: 100-300 GF

• Low by design due to power and space limits

Architecture components layout for an Intel Core i7 

processor 6700K for desktop systems (91 W TDP, 122 mm) 



INTEL GPU BUILDING BLOCKS
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Slice Execution Unit (EU)
- Many cuda-core (NVIDA)

Sub-Slice
- Streaming Multiprocessors (NVDIA) 
- Compute Unit (AMD)



IRIS (GT4) GEN 9 BY THE NUMBERS
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Value Derivation
Clock 1.15 GHz

Slices 3

EUs 72 3 slice * 3 sub-slices * 8 EUs

Hardware Threads 504 72 EUs * 7 threads

Concurrent Kernel Instances 16,128 504 thread * SIMD-32 compile

L3 Data Cache Size 1.5 MB 3 slices * 0.5 MB/slice

Max Shared Local Memory 576 KB 3 slice * 3 sub-slices * 64 KB/sub-slice

Last Level Cache Size 8 MB

eDRAM size 128 MB

32b float FLOPS 1152 FLOPS/cycle 72 EUs * 2 FPUs * SIMD-4 * (MUL + ADD)

64b float FLOPS 288 FLOPS/cycle 72 EUs * 1 FPU * SIMD-2 * (MUL + ADD)

32b integer IOPS 576 IOPS/cycle 72 EUs * 2 FPUs * SIMD-4
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“BIG” GEN 9 CONFIGURATION

Metric Big Gen 9 V100
FP64 (Glops/s) 7900 7800

FP32 (Glops/s) 15860 15600

FP32 Function Units (CUDA cores) 5184 5120

Sub-slices (SS)/SM 81 80

Register File Size per SS/SM (KB) 224 256

BW (GB/s) 900 900

Hypothetically scale up a Gen 9 GPU by: 
• Using 27 slices
• Upgrade the FP32 only FPU to a FP64 FPU
• Bump clock from 1.15 GHz to 1.5 GHz
• Connect it to HBM2 memory with 900 GB/s of bandwidth



CRAY SLINGSHOT NETWORK
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• Dragonfly topology:
• Three network hops (for up to a quarter-million endpoints)
• Only one hops uses optical cables

• High bandwidth switch:
• 64 ports at 200 Gb/s in each direction
• Total bandwidth of 25.6 Tb/s per switch

• Adaptive routing:
• Avoids congestion by allowing packet to take different routes
• Low diameter network allows responsive adaptive routine

• Congestion control: 
• Reduces message latency variation
• Temporarily throttles injection from nodes causing congestion

• Traffic classes:
• Allow overlaid virtual networks with traffic prioritization



PROGRAMMING MODELS
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Simulation Data Learning

Directives

Parallel Runtimes

Solver Libraries

HPC Languages

Big Data Stack

Statistical Libraries

Productivity Languages

Databases

DL Frameworks

Linear Algebra Libraries

Statistical Libraries

Productivity Languages

Math Libraries, C++ Standard Library, libc

I/O, Messaging

Scheduler

Linux Kernel, POSIX

THREE PILLARS

Compilers, Performance Tools, Debuggers

Containers, Visualization



HETEROGENOUS SYSTEM PROGRAMMING MODELS
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§ Applications will be using a variety of programming models for Exascale:
– CUDA
– OpenCL
– HIP
– OpenACC
– OpenMP
– SYCL
– Kokkos
– Raja

§ Not all systems will support all models
§ Libraries may help you abstract some programming models.



AURORA PROGRAMMING MODELS

15

§ Programming models available on Aurora:
– CUDA
– OpenCL
– HIP
– OpenACC
– OpenMP
– SYCL*
– Kokkos
– Raja



MAPPING OF EXISTING PROGRAMMING MODELS TO AURORA
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OpenMP w/o target

OpenMP with target

OpenACC

OpenCL

CUDA
MPI + 

OpenMP

SYCL*

OpenCL

Kokkos Kokkos

Raja Raja

Aurora Models

Vendor Supported 
Programming Models

ECP Provided
Programming Models



OPENMP 5
§ OpenMP 5 constructs will provide directives based programming model for Intel GPUs
§ Available for C, C++, and Fortran
§ A portable model expected to be supported on a variety of platforms
§ Optimized for Aurora
§ For Aurora OpenACC codes could be converted into OpenMP

– ALCF staff will assist with conversion, training, and best practices
– Automated translation possible through the clacc conversion tool (for C/C++)
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OPENMP 4.5/5: FOR AURORA

§ OpenMP 4.5/5 specification has significant updates to allow for improved support of accelerator devices
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Distributing iterations of the loop 

to threads

Offloading code to run on Aurora Controlling data transfer between 

devices

#pragma omp target [clause[[,] 
clause],…]

structured-block
#pragma omp declare target

declarations-definition-seq
#pragma omp declare 

variant*(variant-func-id) clause new-
line

function definition or declaration

#pragma omp teams [clause[[,] 
clause],…]

structured-block
#pragma omp distribute [clause[[,] 
clause],…]

for-loops
#pragma omp loop* [clause[[,] 
clause],…]

for-loops

map ([map-type:] list )
map-type:=alloc | tofrom | from | to | 

…

#pragma omp target data [clause[[,] 
clause],…]

structured-block
#pragma omp target update [clause[[,] 
clause],…]

* denotes OMP 5
Environment variables

• Control default device through 

OMP_DEFAULT_DEVICE

Runtime support routines:

• void omp_set_default_device(int dev_num)

• int omp_get_default_device(void)

• int omp_get_num_devices(void)

• int omp_get_num_teams(void)
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extern void init(float*, float*, int); 
extern void output(float*, int);
void vec_mult(float*p, float*v1, float*v2, int N)
{
int i;
init(v1, v2, N); 
#pragma omp target teams distribute parallel for simd \

map(to: v1[0:N], v2[0:N]) map(from: p[0:N])
for (i=0; i<N; i++)
{

p[i] = v1[i]*v2[i];
}
output(p, N);

}

Creates 
teams of 
threads in the 
target device

Distributes 
iterations to the 
threads, where 
each thread uses 
SIMD parallelism

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

Controlling 
data transfer

The number of threads in a team and number of  
teams can be expressed with OpenMP clauses 
num_teams() and thread_limit()

Hierarchical thread organization/parallelism
• Each OpenMP thread executes (vectorized) loop 

bodies
• OpenMP threads are organized into teams

OPENMP 5 EXAMPLE



SYCL/DPC++
§ SYCL

– SYCL is a C++ based abstraction layer
• Builds on OpenCL concepts (but single-source)

– Runs on today’s CPUs and nVidia, AMD and Intel GPUs
– Tools exist for translating CUDA to SYCL
– Current Implementations of SYCL:

• ComputeCPP™ (www.codeplay.com)
• Intel SYCL (github.com/intel/llvm)
• triSYCL (github.com/triSYCL/triSYCL)
• hipSYCL (github.com/illuhad/hipSYCL)

§ DPC++
– Intel extension of SYCL to support new innovative features
– Not meant to be specific to Aurora
– But Implementation will be optimized for Aurora

§ Example:
– https://github.com/alcf-perfengr/sycltrain
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https://github.com/alcf-perfengr/sycltrain
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#include <CL/sycl.hpp>
#include <iostream>
int main() {
using namespace cl::sycl;
int A[1024]; // Allocate data to be worked on

default_selector selector; // Selectors determine which device to dispatch to.
// Create your own or use {cpu,gpu,accelerator}_selector
{

queue myQueue(selector); // Create queue to submit work to, based on selector 

// Wrap data in a sycl::buffer
buffer<cl_int, 1> bufferA(A, 1024);

myQueue.submit([&](handler& cgh) { 

//Create an accessor for the sycl buffer.
auto writeResult = bufferA.get_access<access::mode::discard_write>(cgh);

// Kernel 
cgh.parallel_for<class hello_world>(range<1>{1024}, [=](id<1> idx) {

writeResult[idx] = idx[0];
}); // End of the kernel function

}); // End of the queue commands
}  // End of scope, wait for the queued work to stop. 

for (size_t i = 0; i < 1024; i++)
std::cout<< "A[ " << i <<" ] = " << A[i] << std::endl;

return 0;
}

Get a device

SYCL buffer 
using host 
pointer

Kernel

Buffer out of 
scope

Data 
accessor

SYCL Example 



OPENCL
§ Open standard for heterogeneous device programming (CPU, GPU, FPGA)

– Utilized for GPU programming

§ Standardized by multi-vendor Khronos Group, V 1.0 released in 2009
– AMD, Intel, nVidia, …
– Many implementations from different vendors

§ Intel implementation for GPU is Open Source (https://github.com/intel/compute-runtime) 

§ SIMT programming model 
– Distributes work by abstracting loops and assigning work to threads
– Not using pragmas / directives for specifying parallelism
– Similar model to CUDA

§ Consists of a C compliant library with kernel language 
– Kernel language extends C
– Has extensions that may be vendor specific

§ Programming aspects:
– Requires host and device code be in different files 
– Typically uses JIT compilation

§ Example: https://github.com/alcf-perfengr/alcl
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https://github.com/intel/compute-runtime


TOOLS AND LIBRARIES



VTUNE AND ADVISOR
§ VTune

– Widely used performance analysis tool
– Currently supports analysis on Intel integrated GPUs
– Will support future Intel GPUs

§ Advisor
– Provides roofline analysis
– Offload analysis will identify components for profitable offload

• Measure performance and behavior of original code
• Model specific accelerator performance to determine offload opportunities
• Considers overhead from data transfer and kernel launch
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INTEL MKL

§ Highly tuned algorithms
§ Optimized for every Intel compute platform
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AI AND ANALYTICS
§ MKL-DNN

– High Performance Primitives to accelerate deep learning frameworks
– Powers Tensorflow, PyTorch, MXNet, Intel Caffe, and more
– Running on Gen9 today (via OpenCL)

§ DAAL
– Classical Machine Learning Algorithms
– Easy to use one line daal4py Python interfaces
– Powers Scikit-Learn

§ Apache Arrow
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www.anl.gov

I/O



DAOS & LUSTRE
§ DAOS spec:

– Greater than 230 PB of storage capacity
– Greater than 25 TB/s of bandwidth

§ User see single namespace which is in Lustre
– “Links” point to DAOS containers within the /project directory
– DAOS aware software interpret these links and access the DAOS containers

§ Data resides in a single place (Lustre or DAOS)
– Explicit data movement, no auto-migration

§ Users keep:
– Source and binaries in Lustre
– Bulk data in DAOS

§ Applications codes will not need 
changes in most cases
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Regular PFS directories & files
HDF5 Container
DAOS POSIX Container
DAOS MPI-IO Container

lustre

users libs projects

Buzz mkl.so hdf5.so Apollo Gemini

.shrc moon.mpg
Simul.outResult.dnSimul.h5

/mnt

daos

PUUID1 PUUID2

CUUID1 CUUID2 CUUID3

MPI-IO Container

MPI-IO file

MPI-IO file

MPI-IO file

POSIX Container

datadatadatadatafilet

dir

datadatadatadatafile

dir

datadatadatadatafile

dir

root

HDF5 Container



www.anl.gov

TRY IT NOW



CURRENT HARDWARE AND SOFTWARE
§ Argonne’s Joint Laboratory for System Evaluation (JLSE) provides testbeds for 

Aurora – available today 
– 20 Nodes of Intel Xeons with Gen 9 Iris Pro [No NDA required]

• SYCL, OpenCL, Intel VTune and Advisor are available.
– Intel’s Aurora SDK that already includes many of the compilers, libraries, 

tools, and programming models planned for Aurora. [NDA required]

§ If you have workloads that are of great interest to you, please send them to us. 
We'll make sure they run well™ on Aurora!
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www.anl.gov

QUESTIONS?


