
AURORA EXASCALE SYSTEM OVERVIEW

THOMAS APPLENCOURT – APL@ANL.GOV

DOE* HPC LANDSCAPE

2

Years at the floor Vendors
Summit 2018 IBM + NVIDIA
Sierra 2018 IBM + NVIDIA
Perlmutter 2020 AMD + NVIDIA
Aurora 2021 Intel + Intel
Frontier 2021 AMD + AMD
El Captain 2022 AMD + X

DOE HPC LANDSCAPE

3

• Heterogenous Computing (CPU + Accelerator)
• No, announced, NVIDIA Exascale System

• Need to port your CUDA code

AURORA: AN INTEL-CRAY SYSTEM

4

AURORA: A HIGH LEVEL VIEW

5

• Architecture:
• Intel/Cray machine arriving at Argonne in 2021
• Sustained Performance greater than 1 ExaFlops
• Greater than 10 PB of total memory
• Intel Xeon processors and Intel Xe GPUs
• Cray Slingshot network and Shasta platform

• Software (Intel One API umbrella):
• Intel compilers (C,C++,Fortran)
• Programming models: SYCL*, OpenMP, OpenCL
• Libraries: MKL, MKL-DNN, DAAL
• Tools: VTune, Advisor
• Python!

• IO:
• Uses Lustre and Distributed Asynchronous Object Store IO (DAOS)
• Greater than 230 PB of storage capacity and 25 TB/s of bandwidth

HARDWARE

INTEL GPUS

7

• Intel has been building GPUs integrated with CPUs

for over a decade which are widely available in:

• Laptops (e.g. MacBook pro)

• Desktops

• Servers

• Recent and upcoming integrated Generations:

• “Gen 9” – current products

• “Gen 11” – later this year in Ice Lake

• Double precision peak performance: 100-300 GF

• Low by design due to power and space limits

Architecture components layout for an Intel Core i7

processor 6700K for desktop systems (91 W TDP, 122 mm)

INTEL GPU BUILDING BLOCKS

8

Slice Execution Unit (EU)
- Many cuda-core (NVIDA)

Sub-Slice
- Streaming Multiprocessors (NVDIA)
- Compute Unit (AMD)

IRIS (GT4) GEN 9 BY THE NUMBERS

9

Value Derivation
Clock 1.15 GHz

Slices 3

EUs 72 3 slice * 3 sub-slices * 8 EUs

Hardware Threads 504 72 EUs * 7 threads

Concurrent Kernel Instances 16,128 504 thread * SIMD-32 compile

L3 Data Cache Size 1.5 MB 3 slices * 0.5 MB/slice

Max Shared Local Memory 576 KB 3 slice * 3 sub-slices * 64 KB/sub-slice

Last Level Cache Size 8 MB

eDRAM size 128 MB

32b float FLOPS 1152 FLOPS/cycle 72 EUs * 2 FPUs * SIMD-4 * (MUL + ADD)

64b float FLOPS 288 FLOPS/cycle 72 EUs * 1 FPU * SIMD-2 * (MUL + ADD)

32b integer IOPS 576 IOPS/cycle 72 EUs * 2 FPUs * SIMD-4

10

“BIG” GEN 9 CONFIGURATION

Metric Big Gen 9 V100
FP64 (Glops/s) 7900 7800

FP32 (Glops/s) 15860 15600

FP32 Function Units (CUDA cores) 5184 5120

Sub-slices (SS)/SM 81 80

Register File Size per SS/SM (KB) 224 256

BW (GB/s) 900 900

Hypothetically scale up a Gen 9 GPU by:
• Using 27 slices
• Upgrade the FP32 only FPU to a FP64 FPU
• Bump clock from 1.15 GHz to 1.5 GHz
• Connect it to HBM2 memory with 900 GB/s of bandwidth

CRAY SLINGSHOT NETWORK

11

• Dragonfly topology:
• Three network hops (for up to a quarter-million endpoints)
• Only one hops uses optical cables

• High bandwidth switch:
• 64 ports at 200 Gb/s in each direction
• Total bandwidth of 25.6 Tb/s per switch

• Adaptive routing:
• Avoids congestion by allowing packet to take different routes
• Low diameter network allows responsive adaptive routine

• Congestion control:
• Reduces message latency variation
• Temporarily throttles injection from nodes causing congestion

• Traffic classes:
• Allow overlaid virtual networks with traffic prioritization

PROGRAMMING MODELS

13

Simulation Data Learning

Directives

Parallel Runtimes

Solver Libraries

HPC Languages

Big Data Stack

Statistical Libraries

Productivity Languages

Databases

DL Frameworks

Linear Algebra Libraries

Statistical Libraries

Productivity Languages

Math Libraries, C++ Standard Library, libc

I/O, Messaging

Scheduler

Linux Kernel, POSIX

THREE PILLARS

Compilers, Performance Tools, Debuggers

Containers, Visualization

HETEROGENOUS SYSTEM PROGRAMMING MODELS

14

§ Applications will be using a variety of programming models for Exascale:
– CUDA
– OpenCL
– HIP
– OpenACC
– OpenMP
– SYCL
– Kokkos
– Raja

§ Not all systems will support all models
§ Libraries may help you abstract some programming models.

AURORA PROGRAMMING MODELS

15

§ Programming models available on Aurora:
– CUDA
– OpenCL
– HIP
– OpenACC
– OpenMP
– SYCL*
– Kokkos
– Raja

MAPPING OF EXISTING PROGRAMMING MODELS TO AURORA

16

OpenMP w/o target

OpenMP with target

OpenACC

OpenCL

CUDA
MPI +

OpenMP

SYCL*

OpenCL

Kokkos Kokkos

Raja Raja

Aurora Models

Vendor Supported
Programming Models

ECP Provided
Programming Models

OPENMP 5
§ OpenMP 5 constructs will provide directives based programming model for Intel GPUs
§ Available for C, C++, and Fortran
§ A portable model expected to be supported on a variety of platforms
§ Optimized for Aurora
§ For Aurora OpenACC codes could be converted into OpenMP

– ALCF staff will assist with conversion, training, and best practices
– Automated translation possible through the clacc conversion tool (for C/C++)

17

OPENMP 4.5/5: FOR AURORA

§ OpenMP 4.5/5 specification has significant updates to allow for improved support of accelerator devices

18

Distributing iterations of the loop

to threads

Offloading code to run on Aurora Controlling data transfer between

devices

#pragma omp target [clause[[,]
clause],…]

structured-block
#pragma omp declare target

declarations-definition-seq
#pragma omp declare

variant*(variant-func-id) clause new-
line

function definition or declaration

#pragma omp teams [clause[[,]
clause],…]

structured-block
#pragma omp distribute [clause[[,]
clause],…]

for-loops
#pragma omp loop* [clause[[,]
clause],…]

for-loops

map ([map-type:] list)
map-type:=alloc | tofrom | from | to |

…

#pragma omp target data [clause[[,]
clause],…]

structured-block
#pragma omp target update [clause[[,]
clause],…]

* denotes OMP 5
Environment variables

• Control default device through

OMP_DEFAULT_DEVICE

Runtime support routines:

• void omp_set_default_device(int dev_num)

• int omp_get_default_device(void)

• int omp_get_num_devices(void)

• int omp_get_num_teams(void)

19

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(float*p, float*v1, float*v2, int N)
{
int i;
init(v1, v2, N);
#pragma omp target teams distribute parallel for simd \

map(to: v1[0:N], v2[0:N]) map(from: p[0:N])
for (i=0; i<N; i++)
{

p[i] = v1[i]*v2[i];
}
output(p, N);

}

Creates
teams of
threads in the
target device

Distributes
iterations to the
threads, where
each thread uses
SIMD parallelism

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

Controlling
data transfer

The number of threads in a team and number of
teams can be expressed with OpenMP clauses
num_teams() and thread_limit()

Hierarchical thread organization/parallelism
• Each OpenMP thread executes (vectorized) loop

bodies
• OpenMP threads are organized into teams

OPENMP 5 EXAMPLE

SYCL/DPC++
§ SYCL

– SYCL is a C++ based abstraction layer
• Builds on OpenCL concepts (but single-source)

– Runs on today’s CPUs and nVidia, AMD and Intel GPUs
– Tools exist for translating CUDA to SYCL
– Current Implementations of SYCL:

• ComputeCPP™ (www.codeplay.com)
• Intel SYCL (github.com/intel/llvm)
• triSYCL (github.com/triSYCL/triSYCL)
• hipSYCL (github.com/illuhad/hipSYCL)

§ DPC++
– Intel extension of SYCL to support new innovative features
– Not meant to be specific to Aurora
– But Implementation will be optimized for Aurora

§ Example:
– https://github.com/alcf-perfengr/sycltrain

20

https://github.com/alcf-perfengr/sycltrain

21

#include <CL/sycl.hpp>
#include <iostream>
int main() {
using namespace cl::sycl;
int A[1024]; // Allocate data to be worked on

default_selector selector; // Selectors determine which device to dispatch to.
// Create your own or use {cpu,gpu,accelerator}_selector
{

queue myQueue(selector); // Create queue to submit work to, based on selector

// Wrap data in a sycl::buffer
buffer<cl_int, 1> bufferA(A, 1024);

myQueue.submit([&](handler& cgh) {

//Create an accessor for the sycl buffer.
auto writeResult = bufferA.get_access<access::mode::discard_write>(cgh);

// Kernel
cgh.parallel_for<class hello_world>(range<1>{1024}, [=](id<1> idx) {

writeResult[idx] = idx[0];
}); // End of the kernel function

}); // End of the queue commands
} // End of scope, wait for the queued work to stop.

for (size_t i = 0; i < 1024; i++)
std::cout<< "A[" << i <<"] = " << A[i] << std::endl;

return 0;
}

Get a device

SYCL buffer
using host
pointer

Kernel

Buffer out of
scope

Data
accessor

SYCL Example

OPENCL
§ Open standard for heterogeneous device programming (CPU, GPU, FPGA)

– Utilized for GPU programming

§ Standardized by multi-vendor Khronos Group, V 1.0 released in 2009
– AMD, Intel, nVidia, …
– Many implementations from different vendors

§ Intel implementation for GPU is Open Source (https://github.com/intel/compute-runtime)

§ SIMT programming model
– Distributes work by abstracting loops and assigning work to threads
– Not using pragmas / directives for specifying parallelism
– Similar model to CUDA

§ Consists of a C compliant library with kernel language
– Kernel language extends C
– Has extensions that may be vendor specific

§ Programming aspects:
– Requires host and device code be in different files
– Typically uses JIT compilation

§ Example: https://github.com/alcf-perfengr/alcl

22

https://github.com/intel/compute-runtime

TOOLS AND LIBRARIES

VTUNE AND ADVISOR
§ VTune

– Widely used performance analysis tool
– Currently supports analysis on Intel integrated GPUs
– Will support future Intel GPUs

§ Advisor
– Provides roofline analysis
– Offload analysis will identify components for profitable offload

• Measure performance and behavior of original code
• Model specific accelerator performance to determine offload opportunities
• Considers overhead from data transfer and kernel launch

24

INTEL MKL

§ Highly tuned algorithms
§ Optimized for every Intel compute platform

25

AI AND ANALYTICS
§ MKL-DNN

– High Performance Primitives to accelerate deep learning frameworks
– Powers Tensorflow, PyTorch, MXNet, Intel Caffe, and more
– Running on Gen9 today (via OpenCL)

§ DAAL
– Classical Machine Learning Algorithms
– Easy to use one line daal4py Python interfaces
– Powers Scikit-Learn

§ Apache Arrow

26

www.anl.gov

I/O

DAOS & LUSTRE
§ DAOS spec:

– Greater than 230 PB of storage capacity
– Greater than 25 TB/s of bandwidth

§ User see single namespace which is in Lustre
– “Links” point to DAOS containers within the /project directory
– DAOS aware software interpret these links and access the DAOS containers

§ Data resides in a single place (Lustre or DAOS)
– Explicit data movement, no auto-migration

§ Users keep:
– Source and binaries in Lustre
– Bulk data in DAOS

§ Applications codes will not need
changes in most cases

28

Regular PFS directories & files
HDF5 Container
DAOS POSIX Container
DAOS MPI-IO Container

lustre

users libs projects

Buzz mkl.so hdf5.so Apollo Gemini

.shrc moon.mpg
Simul.outResult.dnSimul.h5

/mnt

daos

PUUID1 PUUID2

CUUID1 CUUID2 CUUID3

MPI-IO Container

MPI-IO file

MPI-IO file

MPI-IO file

POSIX Container

datadatadatadatafilet

dir

datadatadatadatafile

dir

datadatadatadatafile

dir

root

HDF5 Container

www.anl.gov

TRY IT NOW

CURRENT HARDWARE AND SOFTWARE
§ Argonne’s Joint Laboratory for System Evaluation (JLSE) provides testbeds for

Aurora – available today
– 20 Nodes of Intel Xeons with Gen 9 Iris Pro [No NDA required]

• SYCL, OpenCL, Intel VTune and Advisor are available.
– Intel’s Aurora SDK that already includes many of the compilers, libraries,

tools, and programming models planned for Aurora. [NDA required]

§ If you have workloads that are of great interest to you, please send them to us.
We'll make sure they run well™ on Aurora!

30

www.anl.gov

QUESTIONS?

