
Deephyper on Theta breakout, October -
1, 2019, ALCF SDL Workshop

Prasanna - pbalapra@anl.gov

Romain - romainegele@gmail.com

Misha - msalim@anl.gov

Romit - rmaulik@anl.gov

Note: Most of the material in this document can be revisited
at

https://deephyper.readthedocs.io/en/latest/

^^ Note that we will be looking at the latest version of the docs ^^

Some tips

Downloading data from theta to your local machine:

scp -r username@theta.alcf.anl.gov:/path_to_file /path_on_local_machine

Uploading data to theta from your local machine:

scp -r /path_on_local_machine username@theta.alcf.anl.gov:/path_to_file

Download this markdown document

tinyurl.com/sdl-oct2019-slides

Installation

From login node

1. Load miniconda: module load miniconda-3.6/conda-4.5.12

2. Load balsam: module load balsam/0.3
3. Make a new directory for running this breakout: mkdir dh-handson

4. Make a virtual environment: python -m venv --system-site-packages deephyper-dev-env

5. Activate this environment: source deephyper-dev-env/bin/activate

6. Temporary: pip install --upgrade setuptools

7. Install an ipykernel for postprocessing - pip install ipykernel
8. Install an ipython kernel: python -m ipykernel install --user --name deephyper-dev-env -

-display-name "Python deephyper-dev-env" - will be needed for analytics later.

af://n180
af://n182
af://n183
af://n184
af://n185
af://n186
https://deephyper.readthedocs.io/en/latest/
af://n189
af://n190
af://n192
af://n194
af://n196

9. Clone deephyper from Github: git clone https://github.com/deephyper/deephyper.git
deephyper_repo/

10. Go to root of cloned directory: cd deephyper_repo/
11. Checkout the develop branch: git checkout develop
12. Install the package: pip install -e .['analytics']

Deephyper should now be good to go. Run the following command to make sure all is well:
deephyper --help

Setting up to run Hyperparameter search (HPS) and
neural architecture search (NAS)

In order to run a Deephyper project on Theta, one must initialize a balsam database:

1. Go to the root of the hands-on directory: cd dh-handson/

2. Use balsam command line tool to initialize a database: balsam init
deephyper_breakout_db

3. Activate the balsam server with: source balsamactivate deephyper_breakout_db

Deephyper has some convenient command line tools to organize your HPS and/or NAS project.
We can set up a project directory within which all our HPS and NAS runs can be contained. To do
this

1. Create a new project directory: deephyper start-project theta_breakout_runs . This will
create a folder called theta_breakout_runs which has been pip installed like a package.

Make a HPS folder

1. Go to this project directory: cd theta_breakout_runs/

2. deephyper new-problem hps hps_run

Lets inspect our project directory now -

HPS

Case-directory

Let us define and execute an HPS on Theta. The following steps will lead you guide you through
this process

1. Go to the HPS run folder: cd hps_run/ . There are three files in this folder each having a
specific function (we encourage you to retain this structure). The load_data.py script
defines an interface for reading in your training and validation data. For this problem we are

theta_breakout_runs/
 __init__.py
 setup.py
 theta_breakout_runs.egg-info
 hps_run/
 __init__.py
 load_data.py
 model_run.py
 problem.py

af://n224
af://n237
af://n242
af://n245
af://n246

generating synthetic data using the polynome_2() function. You can play around with the
expression of this function.

The entire data generation (or loading from disk) operation is wrapped in a load_data()
function which returns a dataset split into training and validation.

2. Lets look at the model_run.py script contains the actual function run() for training your
framework (i.e., the model for which you want to find the best hyperparameters). Note how
this script imports load_data to interface with your training and validation data. You will

import os
import numpy as np

np.random.seed(2018)

def load_data(dim=10, a=-50, b=50, prop=0.80, size=10000):
 """Generate a random distribution of data for polynome_2 function: SUM(X**2)
where "**" is an element wise operator in the continuous range [a, b].

 Args:
 dim (int): size of input vector for the polynome_2 function.
 a (int): minimum bound for all X dimensions.
 b (int): maximum bound for all X dimensions.
 prop (float): a value between [0., 1.] indicating how to split data
between training set and testing set. `prop` corresponds to the ratio of data in
training set. `1.-prop` corresponds to the amount of data in testing set.
 size (int): amount of data to generate. It is equal to
`len(training_data)+len(testing_data).

 Returns:
 tuple(tuple(ndarray, ndarray), tuple(ndarray, ndarray)): of Numpy
arrays: `(train_X, train_y), (valid_X, valid_y)`.
 """

 def polynome_2(x):
 return -sum([x_i**2 for x_i in x])

 d = b - a
 x = np.array([a + np.random.random(dim) * d for i in range(size)])
 y = np.array([[polynome_2(v)] for v in x])

 sep_index = int(prop * size)
 train_X = x[:sep_index]
 train_y = y[:sep_index]

 test_X = x[sep_index:]
 test_y = y[sep_index:]

 print(f'train_X shape: {np.shape(train_X)}')
 print(f'train_y shape: {np.shape(train_y)}')
 print(f'test_X shape: {np.shape(test_X)}')
 print(f'test_y shape: {np.shape(test_y)}')
 return (train_X, train_y), (test_X, test_y)

if __name__ == '__main__':
 load_data()

note that the run function requires a dictionary to specify the hyperparameters for one
training. This is how deephyper will interface with your model. The run() functions returns
the value of an objective function which deephyper will try to MAXIMIZE.

import numpy as np
import keras.backend as K
import keras
from keras.callbacks import EarlyStopping
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import RMSprop

import os
import sys
here = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, here)
from load_data import load_data

def r2(y_pred, y_true):
 SS_res = K.sum(K.square(y_true-y_pred))
 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
 return (1 - SS_res/(SS_tot + K.epsilon()))

HISTORY = None

def run(point):
 global HISTORY
 (x_train, y_train), (x_test, y_test) = load_data()

 model = Sequential()
 model.add(Dense(
 point['units'],
 activation=point['activation'],
 input_shape=tuple(np.shape(x_train)[1:])))
 model.add(Dense(1))

 model.summary()

 model.compile(loss='mse', optimizer=RMSprop(lr=point['lr']), metrics=[r2])

 history = model.fit(x_train, y_train,
 batch_size=64,
 epochs=1000,
 verbose=1,
 callbacks=[EarlyStopping(
 monitor='val_r2',
 mode='max',
 verbose=1,
 patience=10
)],
 validation_data=(x_test, y_test))

 HISTORY = history.history

3. The search space for the hyperparameters are specified in problem.py . One can use the
add_dim option to add hyperparameter keys to the dictionary along with bounds.
Hyperparameters can be real, integer or ordinal in nature. Starting points where you think
the search algorithm can get a headstart can also be specified here.

4. Ensure each script works appropriately by using running it from the command line (python
model_run.py , python load_data.py , python problem.py) with your virtual environment
activated.

Execution

Now that the case directory has been set up properly, we must execute a search using Deephyper
and Balsam. We follow these steps in order:

1. Create an app in balsam for the executable: balsam app --name AMBS --exec "$(which

python) -m deephyper.search.hps.ambs" . Check balsam ls apps for newly added app.
2. Create a job in balsam for running the search: balsam job --name hps_run --workflow

hps_run --app AMBS --args '--evaluator balsam --run hps_run.model_run.run --problem

hps_run.problem.Problem --max-evals 10000 --acq-func LCB --learner RF' . Search for
the job created using balsam ls jobs .

 return history.history['val_r2'][-1]

if __name__ == '__main__':
 point = {
 'units': 10,
 'activation': 'relu',
 'lr': 0.01
 }
 objective = run(point)
 print('objective: ', objective)
 import matplotlib.pyplot as plt
 plt.plot(HISTORY['val_r2'])
 plt.xlabel('Epochs')
 plt.ylabel('Objective: R^2')
 plt.grid()
 plt.show()

from deephyper.benchmark import HpProblem

Problem = HpProblem()

Problem.add_dim('units', (1, 100))
Problem.add_dim('activation', [None, 'relu', 'sigmoid', 'tanh'])
Problem.add_dim('lr', (0.0001, 1.))

Problem.add_starting_point(
 units=10,
 activation=None,
 lr=0.01)

if __name__ == '__main__':
 print(Problem)

af://n264

3. Finally submit your job for execution using: balsam submit-launch -q training -t 30 -n 4

-A SDL_Workshop --job-mode serial --wf-filter hps_run

Postprocessing and Analytics

After the job starts running, one can find results being populated in the balsam database we
created earlier. You can access these results in:
dh_handson/theta_breakout_db/data/hps_run/hps_run_** . For HPS these constitute a
results.csv file which shows how AMBS has sampled in hyperparameter space and
corresponding values of the objective function. If your model was spitting out any
metrics/data/plots while training these will be saved in
dh_handson/theta_breakout_db/hps_run/task** .

A jupyter-notebook with some statistical assessments of the search can be created in the
following manner:

1. Go to dh-handson/theta_breakout_db/data/hps_run/hps_run_**/

2. With your virutal environment and balsam database active run: deephyper-analytics hps -

p results.csv -n visualization at this location. This will create a visualization.ipnyb
file which can be run on ALCF jupyter.

3. Through jupyter.alcf.anl.gov , navigate to the location of this file and visualize the
results of your search and find the best combination of hyperparameters. (Make sure you
are using the right Python kernel from the kernel dropdown menu) - Note there may be
issues here which we are looking into right now.

Cleanup

Lets say something went wrong in your job specification/execution and you would like to resubmit
the problem in hps_run . Cleaning up presubmitted jobs and apps can be carried out with -

1. Removing the jobs: balsam rm jobs --name hps_run

2. Removing apps: balsam rm apps --name AMBS

NAS

Make a NAS folder

1. Go to this project directory: cd theta_breakout_runs/
2. deephyper new-problem nas nas_run

Lets inspect our project directory now -

theta_breakout_runs/
 __init__.py
 setup.py
 theta_breakout_runs.egg-info
 hps_run/
 __init__.py
 load_data.py
 model_run.py
 problem.py
 nas_run/
 __init__.py
 load_data.py
 problem.py

af://n273
af://n284
af://n291
af://n292

Deephyper-NAS differs from HPS in that the model specification is no longer black-box. By now
you must know that HPS requires the specification of a scalar metric to maximize and does not
care for the model architecture beyond how it interacts with the hyperparameters. In NAS, a
reinforcement learning agent (an LSTM) explores a model search space which can be interpreted
as a directed acylical graph. The sequential nature of the graph can thus be exploited for more
efficient neural architecture exploration.

Case-directory

Let us define and execute NAS on Theta. The following steps will lead you guide you through this
process

1. The load_data.py script is similar in function to its counterpart in hps_run/ .

 search_space.py

import os
import numpy as np

np.random.seed(2018)

def load_data(dim=10, a=-50, b=50, prop=0.80, size=10000):
 """Generate a random distribution of data for polynome_2 function: SUM(X**2)
where "**" is an element wise operator in the continuous range [a, b].

 Args:
 dim (int): size of input vector for the polynome_2 function.
 a (int): minimum bound for all X dimensions.
 b (int): maximum bound for all X dimensions.
 prop (float): a value between [0., 1.] indicating how to split data
between training set and testing set. `prop` corresponds to the ratio of data in
training set. `1.-prop` corresponds to the amount of data in testing set.
 size (int): amount of data to generate. It is equal to
`len(training_data)+len(testing_data).

 Returns:
 tuple(tuple(ndarray, ndarray), tuple(ndarray, ndarray)): of Numpy
arrays: `(train_X, train_y), (valid_X, valid_y)`.
 """

 def polynome_2(x):
 return -sum([x_i**2 for x_i in x])

 d = b - a
 x = np.array([a + np.random.random(dim) * d for i in range(size)])
 y = np.array([[polynome_2(v)] for v in x])

 sep_index = int(prop * size)
 train_X = x[:sep_index]
 train_y = y[:sep_index]

 test_X = x[sep_index:]
 test_y = y[sep_index:]

 print(f'train_X shape: {np.shape(train_X)}')

af://n302

2. The search_space.py represents the primary effort of the user in NAS. This script must
define a graph with a number of nodes from which multiple architectures can be sampled.
Within this script, the function create_search_space contains instructions for the addition
of nodes and (possible) skip connections to a search space. The choice of operations at each
node is selected by the NAS agent in the form of a real-valued number (index) between 0-1
which maps to an operation through int(index * len(ops)) . Skip connections can be
incorporated using AddByProjecting which projects the skipco input to the right shape
through a linear operation. Other options include Concatenate and AddByPadding .

 print(f'train_y shape: {np.shape(train_y)}')
 print(f'test_X shape: {np.shape(test_X)}')
 print(f'test_y shape: {np.shape(test_y)}')
 return (train_X, train_y), (test_X, test_y)

if __name__ == '__main__':
 load_data()

import collections

import tensorflow as tf

from deephyper.search.nas.model.space import AutoKSearchSpace
from deephyper.search.nas.model.space.node import ConstantNode, VariableNode
from deephyper.search.nas.model.space.op.basic import Tensor
from deephyper.search.nas.model.space.op.connect import Connect
from deephyper.search.nas.model.space.op.merge import AddByProjecting
from deephyper.search.nas.model.space.op.op1d import Dense, Identity

def add_dense_to_(node):
 node.add_op(Identity()) # we do not want to create a layer in this case

 activations = [None, tf.nn.relu, tf.nn.tanh, tf.nn.sigmoid]
 for units in range(16, 97, 16):
 for activation in activations:
 node.add_op(Dense(units=units, activation=activation))

def create_search_space(input_shape=(10,),
 output_shape=(7,),
 num_layers=10,
 *args, **kwargs):

 arch = AutoKSearchSpace(input_shape, output_shape, regression=True)
 source = prev_input = arch.input_nodes[0]

 # look over skip connections within a range of the 3 previous nodes
 anchor_points = collections.deque([source], maxlen=3)

 for _ in range(num_layers):
 vnode = VariableNode()
 add_dense_to_(vnode)

 arch.connect(prev_input, vnode)

 # * Cell output

3. problem.py defines the NAS problem allowing for the search agent to interface with the
data and the search space. Additionally preprocessing and neural architecture
hyperparameters (such as batch size, learning rate etc.) can be provided here. The reward
for reinforcement of the search is given by the objective option.

 cell_output = vnode

 cmerge = ConstantNode()
 cmerge.set_op(AddByProjecting(arch, [cell_output], activation='relu'))

 for anchor in anchor_points:
 skipco = VariableNode()
 skipco.add_op(Tensor([]))
 skipco.add_op(Connect(arch, anchor))
 arch.connect(skipco, cmerge)

 # ! for next iter
 prev_input = cmerge
 anchor_points.append(prev_input)

 return arch

def test_create_search_space():
 """Generate a random neural network from the search_space definition.
 """
 from random import random
 from tensorflow.keras.utils import plot_model
 import tensorflow as tf

 search_space = create_search_space(num_layers=10)
 ops = [random() for _ in range(search_space.num_nodes)]

 print(f'This search_space needs {len(ops)} choices to generate a neural
network.')

 search_space.set_ops(ops)

 model = search_space.create_model()
 model.summary()

 plot_model(model, to_file='sampled_neural_network.png', show_shapes=True)
 print("The sampled_neural_network.png file has been generated.")

if __name__ == '__main__':
 test_create_search_space()

from deephyper.benchmark import NaProblem
from nas_problems.polynome2.load_data import load_data
from nas_problems.polynome2.search_space import create_search_space
from deephyper.search.nas.model.preprocessing import minmaxstdscaler

Problem = NaProblem(seed=2019)

Problem.load_data(load_data)

Execution

Now that the case directory has been set up properly, we must execute a search using Deephyper
and Balsam. We follow these steps in order:

1. Create an app in balsam for the executable: balsam app --name PPO --exec "$(which

python) -m deephyper.search.nas.ppo" . Check balsam ls apps for newly added app.
2. Create a job in balsam for running the search: balsam job --name nas_run --workflow

nas_run --app PPO --num-nodes 2 --args '--evaluator balsam --problem

nas_run.problem.Problem' . Search for the job created using balsam ls jobs .
3. Finally submit your job for execution using: balsam submit-launch -q training -t 30 -n

12 -A SDL_Workshop --job-mode mpi --wf-filter nas_run .

Postprocessing and Analytics

NAS requires a slightly different parsing strategy-

1. Execute deephyper-analytics parse deephyper.log with the data/nas_run/nas_run_**/
directory. This will create a json file with the explored networks.

2. Transform from json using: deephyper-analytics single -p *.json -n visualization .
3. Use jupyter.alcf.anl.gov to access visualization.ipynb and run analytics. (Make sure

you are using the right Python kernel from the kernel dropdown menu).

NOTE: In case of trouble with analytics on ACLF jupyter

Problem.preprocessing(minmaxstdscaler)

Problem.search_space(create_search_space, num_layers=3)

Problem.hyperparameters(
 batch_size=32,
 learning_rate=0.01,
 optimizer='adam',
 num_epochs=20,
 callbacks=dict(
 EarlyStopping=dict(
 monitor='val_r2', # or 'val_acc' ?
 mode='max',
 verbose=0,
 patience=5
)
)
)

Problem.loss('mse') # or 'categorical_crossentropy' ?

Problem.metrics(['r2']) # or 'acc' ?

Problem.objective('val_r2__last') # or 'val_acc__last' ?

Just to print your problem, to test its definition and imports in the current
python environment.
if __name__ == '__main__':
 print(Problem)

af://n316
af://n325
af://n334

Make a shadow virtual environment on your local machine and follow these steps to install and
run deephyper-analytics from the command line (balsam will not be required). I am assuming
you have some version of python 3 on your machine.

1. Make a new directory somewhere convenient and navigate inside it: mkdir dh-handson and
cd dh-handson

2. Make a virtual environment within this directory: python -m venv --system-site-packages

deephyper-dev-env

3. Activate this environment: source deephyper-dev-env/bin/activate

4. Temporary: pip install --upgrade setuptools

5. Install an ipykernel for postprocessing - pip install ipykernel
6. Install an ipython kernel: python -m ipykernel install --name deephyper-dev-env --

display-name "Python deephyper-dev-env" - for analytics.
7. Clone deephyper from Github: git clone https://github.com/deephyper/deephyper.git
deephyper_repo/

8. Go to root of cloned directory: cd deephyper_repo/
9. Checkout the develop branch: git checkout develop

10. Install the package: pip install -e .['analytics']

One can then scp -r username@theta.alcf.anl.gov:/path_to_results_file

/path_to_shadow_directory and run a jupyter notebook on their local machine.

	Deephyper on Theta breakout, October - 1, 2019, ALCF SDL Workshop
	Prasanna - pbalapra@anl.gov
	Romain - romainegele@gmail.com
	Misha - msalim@anl.gov
	Romit - rmaulik@anl.gov
	Note: Most of the material in this document can be revisited at

	Some tips
	Downloading data from theta to your local machine:
	Uploading data to theta from your local machine:
	Download this markdown document

	Installation
	Setting up to run Hyperparameter search (HPS) and neural architecture search (NAS)
	Make a HPS folder

	HPS
	Case-directory
	Execution
	Postprocessing and Analytics
	Cleanup

	NAS
	Make a NAS folder
	Case-directory
	Execution

	Postprocessing and Analytics
	NOTE: In case of trouble with analytics on ACLF jupyter

