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Note: Most of the material in this document can be revisited
at

 

https://deephyper.readthedocs.io/en/latest/ 

^^ Note that we will be looking at the latest version of the docs ^^

Some tips  

Downloading data from theta to your local machine:  

scp -r username@theta.alcf.anl.gov:/path_to_file /path_on_local_machine

Uploading data to theta from your local machine:  

scp -r /path_on_local_machine username@theta.alcf.anl.gov:/path_to_file

Download this markdown document  

tinyurl.com/sdl-oct2019-slides

Installation  

From login node

1. Load miniconda: module load miniconda-3.6/conda-4.5.12

2. Load balsam: module load balsam/0.3
3. Make a new directory for running this breakout: mkdir dh-handson

4. Make a virtual environment: python -m venv --system-site-packages deephyper-dev-env

5. Activate this environment: source deephyper-dev-env/bin/activate

6. Temporary: pip install --upgrade setuptools

7. Install an ipykernel for postprocessing - pip install ipykernel
8. Install an ipython kernel: python -m ipykernel install --user --name deephyper-dev-env -

-display-name "Python deephyper-dev-env"  - will be needed for analytics later.
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9. Clone deephyper from Github: git clone https://github.com/deephyper/deephyper.git 
deephyper_repo/

10. Go to root of cloned directory: cd deephyper_repo/
11. Checkout the develop branch: git checkout develop
12. Install the package: pip install -e .['analytics']

Deephyper should now be good to go. Run the following command to make sure all is well: 
deephyper --help

Setting up to run Hyperparameter search (HPS) and
neural architecture search (NAS)

 

In order to run a Deephyper project on Theta, one must initialize a balsam database:

1. Go to the root of the hands-on directory: cd dh-handson/

2. Use balsam command line tool to initialize a database: balsam init 
deephyper_breakout_db

3. Activate the balsam server with: source balsamactivate deephyper_breakout_db

Deephyper has some convenient command line tools to organize your HPS and/or NAS project. 
We can set up a project directory within which all our HPS and NAS runs can be contained. To do 
this

1. Create a new project directory: deephyper start-project theta_breakout_runs . This will 
create a folder called theta_breakout_runs  which has been pip installed like a package.

Make a HPS folder  

1. Go to this project directory: cd theta_breakout_runs/

2. deephyper new-problem hps hps_run  

Lets inspect our project directory now -

HPS  

Case-directory  

Let us define and execute an HPS on Theta. The following steps will lead you guide you through 
this process

1. Go to the HPS run folder: cd hps_run/ . There are three files in this folder each having a 
specific function (we encourage you to retain this structure). The load_data.py  script 
defines an interface for reading in your training and validation data. For this problem we are 

theta_breakout_runs/
      __init__.py
      setup.py
      theta_breakout_runs.egg-info
      hps_run/
          __init__.py
          load_data.py
          model_run.py
          problem.py
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generating synthetic data using the polynome_2()  function. You can play around with the 
expression of this function.

The entire data generation (or loading from disk) operation is wrapped in a load_data()  
function which returns a dataset split into training and validation. 

2. Lets look at the model_run.py  script contains the actual function run()  for training your 
framework (i.e., the model for which you want to find the best hyperparameters). Note how 
this script imports load_data  to interface with your training and validation data. You will 

import os
import numpy as np

np.random.seed(2018)

def load_data(dim=10, a=-50, b=50, prop=0.80, size=10000):
    """Generate a random distribution of data for polynome_2 function: SUM(X**2) 
where "**" is an element wise operator in the continuous range [a, b].

    Args:
        dim (int): size of input vector for the polynome_2 function.
        a (int): minimum bound for all X dimensions.
        b (int): maximum bound for all X dimensions.
        prop (float): a value between [0., 1.] indicating how to split data 
between training set and testing set. `prop` corresponds to the ratio of data in 
training set. `1.-prop` corresponds to the amount of data in testing set.
        size (int): amount of data to generate. It is equal to 
`len(training_data)+len(testing_data).

    Returns:
        tuple(tuple(ndarray, ndarray), tuple(ndarray, ndarray)): of Numpy 
arrays: `(train_X, train_y), (valid_X, valid_y)`.
    """

    def polynome_2(x):
        return -sum([x_i**2 for x_i in x])

    d = b - a
    x = np.array([a + np.random.random(dim) * d for i in range(size)])
    y = np.array([[polynome_2(v)] for v in x])

    sep_index = int(prop * size)
    train_X = x[:sep_index]
    train_y = y[:sep_index]

    test_X = x[sep_index:]
    test_y = y[sep_index:]

    print(f'train_X shape: {np.shape(train_X)}')
    print(f'train_y shape: {np.shape(train_y)}')
    print(f'test_X shape: {np.shape(test_X)}')
    print(f'test_y shape: {np.shape(test_y)}')
    return (train_X, train_y), (test_X, test_y)

if __name__ == '__main__':
    load_data()



note that the run  function requires a dictionary to specify the hyperparameters for one 
training. This is how deephyper will interface with your model. The run()  functions returns 
the value of an objective function which deephyper will try to MAXIMIZE.

import numpy as np
import keras.backend as K
import keras
from keras.callbacks import EarlyStopping
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import RMSprop

import os
import sys
here = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, here)
from load_data import load_data

def r2(y_pred, y_true):
    SS_res = K.sum(K.square(y_true-y_pred))
    SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
    return (1 - SS_res/(SS_tot + K.epsilon()))

HISTORY = None

def run(point):
    global HISTORY
    (x_train, y_train), (x_test, y_test) = load_data()

    model = Sequential()
    model.add(Dense(
        point['units'],
        activation=point['activation'],
        input_shape=tuple(np.shape(x_train)[1:])))
    model.add(Dense(1))

    model.summary()

    model.compile(loss='mse', optimizer=RMSprop(lr=point['lr']), metrics=[r2])

    history = model.fit(x_train, y_train,
                        batch_size=64,
                        epochs=1000,
                        verbose=1,
                        callbacks=[EarlyStopping(
                            monitor='val_r2',
                            mode='max',
                            verbose=1,
                            patience=10
                        )],
                        validation_data=(x_test, y_test))

    HISTORY = history.history



3. The search space for the hyperparameters are specified in problem.py . One can use the 
add_dim  option to add hyperparameter keys to the dictionary along with bounds. 
Hyperparameters can be real, integer or ordinal in nature. Starting points where you think 
the search algorithm can get a headstart can also be specified here.

4. Ensure each script works appropriately by using running it from the command line ( python 
model_run.py , python load_data.py , python problem.py ) with your virtual environment 
activated.

Execution  

Now that the case directory has been set up properly, we must execute a search using Deephyper 
and Balsam. We follow these steps in order:

1. Create an app in balsam for the executable: balsam app --name AMBS --exec "$(which 

python) -m deephyper.search.hps.ambs" . Check balsam ls apps  for newly added app.
2. Create a job in balsam for running the search: balsam job --name hps_run --workflow 

hps_run --app AMBS --args '--evaluator balsam --run hps_run.model_run.run --problem 

hps_run.problem.Problem --max-evals 10000 --acq-func LCB --learner RF' . Search for 
the job created using balsam ls jobs .

    return history.history['val_r2'][-1]

if __name__ == '__main__':
    point = {
        'units': 10,
        'activation': 'relu',
        'lr': 0.01
    }
    objective = run(point)
    print('objective: ', objective)
    import matplotlib.pyplot as plt
    plt.plot(HISTORY['val_r2'])
    plt.xlabel('Epochs')
    plt.ylabel('Objective: $R^2$')
    plt.grid()
    plt.show()

from deephyper.benchmark import HpProblem

Problem = HpProblem()

Problem.add_dim('units', (1, 100))
Problem.add_dim('activation', [None, 'relu', 'sigmoid', 'tanh'])
Problem.add_dim('lr', (0.0001, 1.))

Problem.add_starting_point(
    units=10,
    activation=None,
    lr=0.01)

if __name__ == '__main__':
    print(Problem)
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3. Finally submit your job for execution using: balsam submit-launch -q training -t 30 -n 4 

-A SDL_Workshop --job-mode serial --wf-filter hps_run

Postprocessing and Analytics  

After the job starts running, one can find results being populated in the balsam database we 
created earlier. You can access these results in: 
dh_handson/theta_breakout_db/data/hps_run/hps_run_** . For HPS these constitute a 
results.csv file which shows how AMBS has sampled in hyperparameter space and 
corresponding values of the objective function. If your model was spitting out any 
metrics/data/plots while training these will be saved in 
dh_handson/theta_breakout_db/hps_run/task** .

A jupyter-notebook with some statistical assessments of the search can be created in the 
following manner:

1. Go to dh-handson/theta_breakout_db/data/hps_run/hps_run_**/

2. With your virutal environment and balsam database active run: deephyper-analytics hps -

p results.csv -n visualization  at this location. This will create a visualization.ipnyb  
file which can be run on ALCF jupyter.

3. Through jupyter.alcf.anl.gov , navigate to the location of this file and visualize the 
results of your search and find the best combination of hyperparameters. (Make sure you 
are using the right Python kernel from the kernel dropdown menu) - Note there may be 
issues here which we are looking into right now.

Cleanup  

Lets say something went wrong in your job specification/execution and you would like to resubmit 
the problem in hps_run . Cleaning up presubmitted jobs and apps can be carried out with -

1. Removing the jobs: balsam rm jobs --name hps_run

2. Removing apps: balsam rm apps --name AMBS

NAS  

Make a NAS folder  

1. Go to this project directory: cd theta_breakout_runs/
2. deephyper new-problem nas nas_run

Lets inspect our project directory now -

theta_breakout_runs/
      __init__.py
      setup.py
      theta_breakout_runs.egg-info
      hps_run/
          __init__.py
          load_data.py
          model_run.py
          problem.py
      nas_run/
          __init__.py
          load_data.py
          problem.py
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Deephyper-NAS differs from HPS in that the model specification is no longer black-box. By now 
you must know that HPS requires the specification of a scalar metric to maximize and does not 
care for the model architecture beyond how it interacts with the hyperparameters. In NAS, a 
reinforcement learning agent (an LSTM) explores a model search space which can be interpreted 
as a directed acylical graph. The sequential nature of the graph can thus be exploited for more 
efficient neural architecture exploration.

Case-directory  

Let us define and execute NAS on Theta. The following steps will lead you guide you through this 
process

1. The load_data.py  script is similar in function to its counterpart in hps_run/ .

          search_space.py

import os
import numpy as np

np.random.seed(2018)

def load_data(dim=10, a=-50, b=50, prop=0.80, size=10000):
    """Generate a random distribution of data for polynome_2 function: SUM(X**2) 
where "**" is an element wise operator in the continuous range [a, b].

    Args:
        dim (int): size of input vector for the polynome_2 function.
        a (int): minimum bound for all X dimensions.
        b (int): maximum bound for all X dimensions.
        prop (float): a value between [0., 1.] indicating how to split data 
between training set and testing set. `prop` corresponds to the ratio of data in 
training set. `1.-prop` corresponds to the amount of data in testing set.
        size (int): amount of data to generate. It is equal to 
`len(training_data)+len(testing_data).

    Returns:
        tuple(tuple(ndarray, ndarray), tuple(ndarray, ndarray)): of Numpy 
arrays: `(train_X, train_y), (valid_X, valid_y)`.
    """

    def polynome_2(x):
        return -sum([x_i**2 for x_i in x])

    d = b - a
    x = np.array([a + np.random.random(dim) * d for i in range(size)])
    y = np.array([[polynome_2(v)] for v in x])

    sep_index = int(prop * size)
    train_X = x[:sep_index]
    train_y = y[:sep_index]

    test_X = x[sep_index:]
    test_y = y[sep_index:]

    print(f'train_X shape: {np.shape(train_X)}')
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2. The search_space.py  represents the primary effort of the user in NAS. This script must 
define a graph with a number of nodes from which multiple architectures can be sampled. 
Within this script, the function create_search_space  contains instructions for the addition 
of nodes and (possible) skip connections to a search space. The choice of operations at each 
node is selected by the NAS agent in the form of a real-valued number ( index ) between 0-1 
which maps to an operation through int(index * len(ops)) . Skip connections can be 
incorporated using AddByProjecting  which projects the skipco input to the right shape 
through a linear operation. Other options include Concatenate  and AddByPadding .

    print(f'train_y shape: {np.shape(train_y)}')
    print(f'test_X shape: {np.shape(test_X)}')
    print(f'test_y shape: {np.shape(test_y)}')
    return (train_X, train_y), (test_X, test_y)

if __name__ == '__main__':
    load_data()

import collections

import tensorflow as tf

from deephyper.search.nas.model.space import AutoKSearchSpace
from deephyper.search.nas.model.space.node import ConstantNode, VariableNode
from deephyper.search.nas.model.space.op.basic import Tensor
from deephyper.search.nas.model.space.op.connect import Connect
from deephyper.search.nas.model.space.op.merge import AddByProjecting
from deephyper.search.nas.model.space.op.op1d import Dense, Identity

def add_dense_to_(node):
    node.add_op(Identity()) # we do not want to create a layer in this case

    activations = [None, tf.nn.relu, tf.nn.tanh, tf.nn.sigmoid]
    for units in range(16, 97, 16):
        for activation in activations:
            node.add_op(Dense(units=units, activation=activation))

def create_search_space(input_shape=(10,),
                        output_shape=(7,),
                        num_layers=10,
                        *args, **kwargs):

    arch = AutoKSearchSpace(input_shape, output_shape, regression=True)
    source = prev_input = arch.input_nodes[0]

    # look over skip connections within a range of the 3 previous nodes
    anchor_points = collections.deque([source], maxlen=3)

    for _ in range(num_layers):
        vnode = VariableNode()
        add_dense_to_(vnode)

        arch.connect(prev_input, vnode)

        # * Cell output



3. problem.py  defines the NAS problem allowing for the search agent to interface with the 
data and the search space. Additionally preprocessing and neural architecture 
hyperparameters (such as batch size, learning rate etc.) can be provided here. The reward 
for reinforcement of the search is given by the objective  option.

        cell_output = vnode

        cmerge = ConstantNode()
        cmerge.set_op(AddByProjecting(arch, [cell_output], activation='relu'))

        for anchor in anchor_points:
            skipco = VariableNode()
            skipco.add_op(Tensor([]))
            skipco.add_op(Connect(arch, anchor))
            arch.connect(skipco, cmerge)

        # ! for next iter
        prev_input = cmerge
        anchor_points.append(prev_input)

    return arch

def test_create_search_space():
    """Generate a random neural network from the search_space definition.
    """
    from random import random
    from tensorflow.keras.utils import plot_model
    import tensorflow as tf

    search_space = create_search_space(num_layers=10)
    ops = [random() for _ in range(search_space.num_nodes)]

    print(f'This search_space needs {len(ops)} choices to generate a neural 
network.')

    search_space.set_ops(ops)

    model = search_space.create_model()
    model.summary()

    plot_model(model, to_file='sampled_neural_network.png', show_shapes=True)
    print("The sampled_neural_network.png file has been generated.")

if __name__ == '__main__':
    test_create_search_space()

from deephyper.benchmark import NaProblem
from nas_problems.polynome2.load_data import load_data
from nas_problems.polynome2.search_space import create_search_space
from deephyper.search.nas.model.preprocessing import minmaxstdscaler

Problem = NaProblem(seed=2019)

Problem.load_data(load_data)



Execution  

Now that the case directory has been set up properly, we must execute a search using Deephyper 
and Balsam. We follow these steps in order:

1. Create an app in balsam for the executable: balsam app --name PPO --exec "$(which 

python) -m deephyper.search.nas.ppo" . Check balsam ls apps  for newly added app.
2. Create a job in balsam for running the search: balsam job --name nas_run --workflow 

nas_run --app PPO --num-nodes 2 --args '--evaluator balsam --problem 

nas_run.problem.Problem' . Search for the job created using balsam ls jobs .
3. Finally submit your job for execution using: balsam submit-launch -q training -t 30 -n 

12 -A SDL_Workshop --job-mode mpi --wf-filter nas_run .

Postprocessing and Analytics  

NAS requires a slightly different parsing strategy-

1. Execute deephyper-analytics parse deephyper.log  with the data/nas_run/nas_run_**/  
directory. This will create a json file with the explored networks.

2. Transform from json using: deephyper-analytics single -p *.json -n visualization .
3. Use jupyter.alcf.anl.gov  to access visualization.ipynb  and run analytics. (Make sure 

you are using the right Python kernel from the kernel dropdown menu).

NOTE: In case of trouble with analytics on ACLF jupyter  

Problem.preprocessing(minmaxstdscaler)

Problem.search_space(create_search_space, num_layers=3)

Problem.hyperparameters(
    batch_size=32,
    learning_rate=0.01,
    optimizer='adam',
    num_epochs=20,
    callbacks=dict(
        EarlyStopping=dict(
            monitor='val_r2', # or 'val_acc' ?
            mode='max',
            verbose=0,
            patience=5
        )
    )
)

Problem.loss('mse') # or 'categorical_crossentropy' ?

Problem.metrics(['r2']) # or 'acc' ?

Problem.objective('val_r2__last') # or 'val_acc__last' ?

# Just to print your problem, to test its definition and imports in the current 
python environment.
if __name__ == '__main__':
    print(Problem)
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Make a shadow virtual environment on your local machine and follow these steps to install and 
run deephyper-analytics from the command line (balsam will not be required). I am assuming 
you have some version of python 3 on your machine.

1. Make a new directory somewhere convenient and navigate inside it: mkdir dh-handson  and 
cd dh-handson

2. Make a virtual environment within this directory: python -m venv --system-site-packages 

deephyper-dev-env

3. Activate this environment: source deephyper-dev-env/bin/activate

4. Temporary: pip install --upgrade setuptools

5. Install an ipykernel for postprocessing - pip install ipykernel
6. Install an ipython kernel: python -m ipykernel install --name deephyper-dev-env --

display-name "Python deephyper-dev-env"  - for analytics.
7. Clone deephyper from Github: git clone https://github.com/deephyper/deephyper.git 
deephyper_repo/

8. Go to root of cloned directory: cd deephyper_repo/
9. Checkout the develop branch: git checkout develop

10. Install the package: pip install -e .['analytics']

One can then scp -r username@theta.alcf.anl.gov:/path_to_results_file 

/path_to_shadow_directory  and run a jupyter notebook on their local machine.
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