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Fragmentation Methods

* Bilomolecules contain hundreds or thousands of atoms, making accurate quantum
calculations erther very difficult or impossible

* Quantum Mechanics/Molecular Mechanics (QM/MM)
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* As system size grows the QM region can get
unwieldy

* The energy contribution from the environment 25
becomes too large to obtain reasonable accuracy
fromm molecular mechanics g

Fragmentation methods offer a unique solution to accurate calculations on large molecules



The Fragment Molecular Orbrtal Method

* Exchange Is not long-range In most molecules monomer electron
density being calculated

X =—henehmss

* Long-range interactions can be treated using just
the Coulomb operator, thereby ignoring exchange

* Perform the molecular calculations individually in
the rigorous Coulomb field of the full system

e , Coulomb “bath” of the full
* Improved by explicit many-body corrections for system being taken into

fragment pairs and triples (dimers & trimers) account



The Fragment Molecular Orbrtal Method

* Bonds are fractioned electrostatically

* Electrons are assigned heterolytically

* FMO fragmentation should be conducted based upon chemical
knowledge (not a formal “mathematical exercise™)

* Hydrogen bonding Is accounted for by explicit dimer (fragment pair)
calculations ‘
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* Dimer & trimer (fragment triple) calculations allow for other QJ
quantum effects to be taken into account



The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method
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The Fragment Molecular Orbrtal Method

|. Divide molecule into fragments and assign electrons to these fragments

2. Calculate initial electron density distribution of the fragments in the Coulomb
“bath” of the full system

3. Construct the individual fragment Fock operators using the densities calculated in
2 and solve for the fragment energies

4. Determine if the density has converged for all the fragments. If not, go back to
SED 2

>.  Construct Hamiltonians for each dimer (trimer) calculation using the converged
monomer densities from steps 3-4

6. (Calculate total energy and electron density
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Coulomb “bath” of the full

monomer electron

system being taken into
account

density being calculated

8= Aenonier

-
Steps | through 3 are looped until the
density of the full system converges to

some predetermined threshold

SUED A

Steps 5-6:

converged Coulomb “bath”
of the full system from
monomer SCF

dimer electron
density being calculated in
the presence of the
converged ESP

each dimer calculation is
performed once




The Fragment Molecular Orbital Method

e Nmber ol dimer calculations Increases . n!
| # of dimers =
e Reheese /. Where n is the number of 2l(n-2)!

fragments. g
7 fragments = 21 dimers o Q Q‘-—M
SRlEemeERiSts = 28 dimers

| 20 dimers

| 6 fragments

“n;) AL

32 fragments = 496 dimers

64 fragments = 2016 dimers

| 28 fragments = 8128 dimers

The total number of dimer calculations increases rapidly!

Two solutions: Approximations and parallelization



The Fragment Molecular Orbital Method: Approximations
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The Fragment Molecular Orbital Method: Approximations
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The Fragment Molecular Orbrital Method: Parallelization
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* The Generalized Distributed Data Interface (GDDI)

* GDDI allows for massively parallel calculations on clusters of computers or
supercomputers

» After the molecule is divided into fragments, each fragment is sent to a group which is
composed of more than one processor or SMP enclosure

 Each fragment is then run in parallel in each group

* This provides two levels of parallelization, greatly speeding up the calculation



The Fragment Molecular Orbital Method: Parallelization

Group Master




The Fragment Molecular Orbital Method: Parallelization

Group Master




Benchmarks and Algorithmic Alterations

In previous FMO implementations, the master process of each group
created a direct-access file in which the densities of all fragments are
stored.

The new approach is based on a large array containing all fragment
densities created in shared memory distributed among nodes.

Fragment densities are stored on data servers and
sent on demand to compute nodes directly, with these
communications sometimes involving intergroup operations.

The energy of a cluster of 1024 water molecules was
calculated using FMO2 with MP2 and the 6-31G(d,p) basis
set, both with the previous disk-based implementation
(“FMOd") and the new implementation (“FMOmM").

Each calculation was run on 1024 nodes (4096 cores) on
the BG/P. The wall time required for the FMOd calculation
was 335.4 min, whereas the corresponding FMOm wall time
was 0.7 min.

The 31 -fold speed-up demonstrates that the
DDI-based density storage is paramount to
running FMO calculations effectively on large-
scale parallel computers.
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FMO2-MP2/6-31G(d) forces calculation of 12288 atoms on BG/P
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Benchmarks and Algorithmic Alterations
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The total number of dimer calculations required
increases dramatically with system size.
Specifically, the number of separated dimer
calculations for the benchmark calculations
increases by a factor of ~4 when the system size
is increased from 2048 to 4096 water
molecules.

While the separated dimer calculations take a
fraction of the time compared to QM dimer
calculations, the sheer number of these
calculations requires more computational effort
than the QM calculations after a certain system
size Is reached.



BG/Q Benchmarks
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The best timing on 1024 water molecules from BG/P was ~7-8 minutes
on 131,072 cores using the 6-31G(d) basis set.

BG/Q provides faster timings on 1024 nodes (16,384 cores) using
the aug=cc=-pVDZ basis set.

Previous BG/P benchmarks also did not use the fully analytic gradient
(increases computational cost by ~20%)
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FMO2-MP2/aug-cc-pVDZ gradient calculation on BG/Q




Biomass Recalcrtrance: Crystalline Cellulose |-alpha Microfiber Chain
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FMO2/MP2 Energy Calculations

Pair Interaction Energy Decomposition Analysis (PIEDA)
peformed to gain insight into what types of molecular
interactions are dominant
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Pair Interaction Energy Decomposition Analysis
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Quantum contributions to the interaction energy play an important role.



FMO Fully Analytic Gradient

The gradient for the FMO method was derived at the same time as the original
FMO equations.

Since the FMO method i1s not fully variational, a fully analytic gradient required the
solution of the Coupled Perturbed Hartree-Fock (CPHF) equations.

Due to the difficulty in solving the CPHF equations, their contribution to the
gradient was ignored (termed “near fully analytic™).

The original gradient was checked against numeric results, and it was determined
it was sufficient for geometry optimizations, but the accuracy was not high enough
for FMO-MD.

Additionally, with the original gradient, errors tended to increase for large basis sets.



FMO Fully Analytic Gradient
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FMO Fully Analytic Gradient

Chignolin/EFP RHF/cc-pVDZ
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FMO Molecular Dynamics with the Fully Analytic Gradient
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Cefelsiens

Highly scalable algorithms have been implemented and improved thanks to the INCITE and ESP access to Blue
Gene

These new and improved algorithms have allowed specific scientific questions that could not be answered to be
addressed at a high level of accuracy.

Due to work coming directly from INCITE and ESB accurate QM molecular dynamics simulations are now
possible with GAMESS. (DOE CSGF - Kurt Brorsen)

Future areas of improvement involve reductions in amount of I/O during FMO calculations and faster algorithms
for dealing with the increasing number of separated n-mer interactions.
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