INTEL® MATH KERNEL LIBRARY FOR DEEP NEURAL NETWORKS (INTEL MKL-DNN)

ALCF SDL workshop, October 4th 2018

The Intel MKL-DNN team
Presenter: Mourad Gouicem
Deep Learning Software Stack for Intel processors

Deep learning and AI ecosystem includes edge and datacenter applications.
- Open source frameworks (Tensorflow*, MXNet*, CNTK*, PaddlePaddle*)
- Intel deep learning products (Neon™ framework, BigDL, OpenVINO™ toolkit)
- In-house user applications

Intel MKL and Intel MKL-DNN optimize deep learning applications for Intel processors:
- through the collaboration with framework maintainers to upstream changes (Tensorflow*, MXNet*, PaddlePaddle*, CNTK*)
- through Intel optimized forks (Caffe*, Torch*, Theano*)
- by partnering to enable proprietary solutions

Intel MKL-DNN is an open source performance library for deep learning applications (available at https://github.com/intel/mkl-dnn)
- Fast open source implementations for wide range of DNN functions
- Early access to new and experimental functionality
- Open for community contributions

Intel MKL is a proprietary performance library for wide range of math and science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip)

*Other names and brands may be claimed as the property of others
Examples of speedups on Intel® Xeon® Scalable Processors

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANCE

TRAINING THROUGHPUT

14X

Intel-optimized TensorFlow ResNet50 training performance compared to default TensorFlow for CPU

INFERENCE THROUGHPUT

3.2X

Intel-optimized TensorFlow Inceptionv3 inference throughput compared to Default TensorFlow for CPU

PERFORMANCE GAINS REPORTED BY OTHERS

Unoptimized TensorFlow may not exploit the best performance from Intel CPUs.

Intel TensorFlow Scalability Results Presented by Google @ TF Summit March 30, '18

TensorFlow with Intel® MKL-DNN integration

3x inference speedup on Broadwell and Skylake

94% efficiency when training with 64 nodes cluster

"By making use of [Intel’s] open source library [MKL-DNN], we were able to achieve a 3x performance benefit and great scaling efficiency on training. This is an example of how important it is to have strong collaborations with companies like Intel."

Source: TENSORFLOW OPTIMIZED FOR INTEL® XEON™

*Other names and brands may be claimed as the property of others
TensorFlow with Intel MKL/MKL-DNN

Use **Intel Distribution for Python** *

- Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE=1
- Available via Conda, or YUM and APT package managers

Use pre-built Tensorflow wheels or build TensorFlow* with `bazel build --config=mkl`

- Building from source required for integration with Intel Vtune™ Amplifier
- Follow the [CPU optimization](https://www.intel.com) advices including setting affinity and # of intra- and inter- ops threads
- More Intel MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow* master if possible

*Other names and brands may be claimed as the property of others
Intel distribution of Caffe

A fork of BVLC Caffe* maintained by Intel

The best-performing CPU framework for CNNs

Supports low-precision inference on Intel Xeon Scalable Processors (formerly known as Skylake)
Intel MKL-DNN overview

Features:
- Training (float32) and inference (float32, int8)
- CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)
- Optimized for Intel processors

Portability:
- Compilers: Intel C++ compiler/Clang/GCC/MSVC*
- OSes: Linux*, Windows*, Mac*
- Threading: OpenMP*, TBB

Frameworks that use Intel MKL-DNN:
IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*
CNTK*, OpenVino, DeepBench*

Primitives	Class
(De-)Convolution, Inner Product, Vanilla RNN, LSTM, GRU | Compute intensive operations
Pooling AVG/MAX, Batch Normalization, Local Response Normalization, Activations (ReLU, Tanh, Softmax, ...), Sum | Memory bandwidth limited operations
Reorder, Concatenation | Data movement

*Other names and brands may be claimed as the property of others
KEY PERFORMANCE CONSIDERATIONS ON INTEL PROCESSORS
Memory layouts

Most popular memory layouts for image recognition are **nhwc** and **nchw**

- Challenging for Intel processors either for vectorization or for memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

- Example: **nhwc** with channels blocked by 16 – **nChw16c**
- Convolutions define which layouts are to be used by other primitives
- Optimized frameworks track memory layouts and perform reorders **only** when necessary
Fusing computations

On Intel processors a high % of time is typically spent in BW-limited ops

- ~40% of ResNet-50, even higher for inference

The solution is to fuse BW-limited ops with convolutions or one with another to reduce the # of memory accesses

- Conv+ReLU+Sum, BatchNorm+ReLU, etc
- Done for inference, WIP for training

The FWKs are expected to be able to detect fusion opportunities

- IntelCaffe already supports this

Major impact on implementation

- All the impls. must be made aware of the fusion to get max performance
- Intel MKL-DNN team is looking for scalable solutions to this problem
Low-precision inference

Proven only for certain CNNs by IntelCaffe at the moment

A trained float32 model quantized to int8

Some operations still run in float32 to preserve accuracy
Intel MKL-DNN integration levels

Intel MKL-DNN is designed for best performance.

However, topology level performance will depend on Intel MKL-DNN integration.

- Naïve integration will have reorder overheads.
- Better integration will propagate layouts to reduce reorders.
- Best integration will fuse memory bound layers with compute intensive ones or with each other.

Example: inference flow

Original code:
Convolution → ReLU → Batch Norm

Naïve integration:
Reorder → Convolution → Reorder → ReLU → Batch Norm

Layout propagation:
Reorder → Convolution → ReLU → Batch Norm → Reorder

Layer fusion:
Reorder → Conv+ReLU → Reorder

Transform weights to integrate BN (offline)
INTEL MKL-DNN LIBRARY PHILOSOPHY
Intel MKL-DNN concepts

Descriptor: a structure describing memory and computation properties

Primitive: a handle to a particular compute operation

- Examples: Convolution, ReLU, Batch Normalization, etc.
- Three key operations on primitives: create, execute and destroy
- Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.) across multiple calls to execute

Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device
Layout propagation: the steps to create a primitive

1. Create memory descriptors
 - These describe the shapes and memory layouts of the tensors the primitive will compute on
 - Use the layout ‘any’ as much as possible for every input/output/weights if supported (e.g. convolution or RNN). Otherwise, use the same layout as the previous layer output.

2. Create primitive descriptor and primitive

3. Create needed input reorders
 - Query the primitive for the input/output/weight layout it expects
 - Create the needed memory buffers and reorder primitives to accordingly reorder the data to the appropriate layout

4. Enqueue primitives and reorders in the stream queue for execution
Fusing layers through post-ops

1. Create a post_ops structure
2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)
3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)

1. Set the scaling factors and rounding mode in an attribute structure
2. Pass the attribute structure to the primitive descriptor creation
KEY TAKEAWAYS
Key Takeaways

1. Application developers already benefit of Intel MKL-DNN through integration in popular frameworks

2. Framework developers can get better performance on Intel processors by integrating Intel MKL-DNN

3. There are different levels of integration, and depending on the level you will get different performance

4. Profiling can help you identify performance gaps due to
 - Integration not fully enabling Intel MKL-DNN potential (more on that in the hands-on session).
 - Performance sensitive function not enabled with Intel MKL-DNN (make requests on Github*)
 - Performance issue in Intel MKL-DNN (raise the issue on Github*)
Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, Atom, OpenVINO, neon, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Primitives and their implementations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutions fp32</td>
<td>[JIT Winograd (AVX512 SKX/KNL only)] Separate implementations for SSE4.2, AVX2 and AVX512F+</td>
</tr>
<tr>
<td></td>
<td>1x1 JIT non-1x1 JIT FWD non-1x1 JIT BWD_D non-1x1 JIT BWD_W Reference</td>
</tr>
<tr>
<td>Convolutions int8</td>
<td>[JIT (AVX512BW)] Intel MKL GEMM (WIP) Reference</td>
</tr>
<tr>
<td>InnerProduct fp32</td>
<td>[JIT (AVX512F+ only)] Intel MKL GEMM Reference</td>
</tr>
<tr>
<td>BatchNorm fp32</td>
<td>[JIT (any ISA)] Reference</td>
</tr>
<tr>
<td>LRN fp32</td>
<td>[JIT (any ISA)] Reference</td>
</tr>
<tr>
<td>Pooling fp32 / int8</td>
<td>[JIT (any ISA)] [JIT (nchw, any ISA)] Reference</td>
</tr>
<tr>
<td>Elementwise</td>
<td>[JIT (any ISA)] Reference</td>
</tr>
<tr>
<td>Reorders</td>
<td>[JIT (AVX2)] Reference</td>
</tr>
</tbody>
</table>

Multiple conv impls. to support diff. features and have diff. perf.

- Conv 1x1 – special vectorization and blocking
- Conv non-1x1 – better support for 3x3, 5x5, etc
- GEMM – support for dilation (hard to implement in direct JIT)
- Winograd is only for 3x3; only the (special) GEMM part is JIT-ed
PROFILING
Integration with Intel VTune Amplifier

Full application analysis

Report types:

- CPU utilization
- Parallelization efficiency
- Memory traffic

Profiling of run-time generated code must be enabled at compile time

```bash
$ # building Intel MKL-DNN using cmake
$ cmake -DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install
$ # an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/lib64 -ljitprofiling" bazel build
```
Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

- Similar to Intel MKL verbose
- Enabled via environment variable or function call
- Output is in CSV format

Output includes:

- The marker, state and primitive kind
- Implementation details (e.g. jit:avx2)
- Primitive parameters
- Creation or execution time (in ms)

Example below (details here)

```
$ # MKLDNN_VERBOSE is unset  
$ ./examples/simple-net-c  
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime  
$ ./examples/simple-net-c # | grep "mkldnn_verbose"  
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249  
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988  
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093  
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805  
passed
```
Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not enabled in Intel MKL-DNN

Integration gaps: your hotspot uses Intel MKL-DNN but runs much faster in a standalone benchmark (more details in the hands-on session)

Intel MKL-DNN performance issue: your hotspot uses Intel MKL-DNN but is very slow given its parameters

In any of these cases, feel free to contact the Intel MKL-DNN team through the Github* page issues section.

*Other names and brands may be claimed as the property of others