
1

Profiling with Rice HPCToolkit

Mark W. Krentel
Department of Computer Science

Rice University
krentel@rice.edu

http://hpctoolkit.org

Mira Performance Boot Camp May 24, 2016

mailto:krentel@rice.edu
mailto:krentel@rice.edu

HPCToolkit Basic Features
• Run application natively and every 100-200 times per second,

interrupt program, unwind back to main(), record call stack,
and combine these into a calling context tree (CCT).

• Combine sampling data with a static analysis of the program
structure for loops, inline functions, etc.

• Present top-down, bottom-up and flat views of calling context
tree (CCT) and time-sequence trace view. Metrics are
displayed per source line in the context of their call path.

• Can sample on Wallclock (itimer), POSIX timers and Hardware
Performance Counter Events (PAPI preset and native events):
cycles, flops, cache misses, etc.

2

HPCToolkit Advanced Features
• Finely-tuned unwinder to handle multi-lingual, fully-optimized

code, no frame pointers, broken return pointers, stack trolling,
etc.

• Derived metrics -- compute flops per cycle, or flops per
memory reads, etc. and attribute to lines in source code.

• Compute strong and weak scaling loss, for example:
strong: 8 * (time at 8K cores) - (time at 1K cores)
weak: (time at 8K cores and 8x size) - (time at 1K cores)

• Load imbalance -- display distribution and variance in metrics
across processes and threads.

• Blame shifting -- when thread is idle or waiting on a lock,
blame the working threads or holder of lock.

3

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

4

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

Where to find HPCToolkit
• Home site: user’s manual, build instructions, links to source

code, download viewers:
http://hpctoolkit.org/

• On mira, vesta, cooley:
/projects/Tools/hpctoolkit/pkgs-mira/hpctoolkit/bin
/projects/Tools/hpctoolkit/pkgs-vesta/hpctoolkit/bin

• Source code now on GitHub:
http://github.com/hpctoolkit
git clone https://github.com/hpctoolkit/hpctoolkit
git clone https://github.com/hpctoolkit/hpctoolkit-externals

• Send questions to:
hpctoolkit-forum at mailman.rice.edu

5

http://github.com/hpctoolkit
http://github.com/hpctoolkit
https://github.com/hpctoolkit/hpctoolkit
https://github.com/hpctoolkit/hpctoolkit
https://github.com/hpctoolkit/hpctoolkit-externals
https://github.com/hpctoolkit/hpctoolkit-externals

Using OpenMP Tools Library
• Replace -fopenmp with libomp.a from llvm-openmp in hpclink.

On vesta:
— /projects/Tools/hpctoolkit/pkgs-vesta/llvm-openmp-gnu/lib

• Use hpclink from hpctoolkit-ompt.
— /projects/Tools/hpctoolkit/pkgs-vesta/hpctoolkit-ompt

• Add event OMP_IDLE (no number) plus time-based event:
WALLCLOCK or PAPI_TOT_CYC.

• Someday, this will be part of the OpenMP Tools standard, but
not yet.

6

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

8

Understanding Temporal Behavior

Time

Processes

Call
stack

AMG2006: 8PE x 8 OMP Threads

9

OpenMP loop in hypre_BoomerAMGRelax using
static scheduling has load imbalance; threads
idle for a significant fraction of their time

Code-centric view: hypre_BoomerAMGRelax

10

Note: The highlighted OpenMP loop in
hypre_BoomerAMGRelax accounts for
only 4.6% of the execution time for this

benchmark run. In real runs, solves
using this loop are a dominant cost

across all instances of this OpenMP
loop in hypre_BoomerAMGRelax

19.7% of time in this loop is spent
idle idle w.r.t. total effort in this loop

Serial Code in AMG2006 8 PE, 8 Threads

11

7 worker threads are
idle in each process
while its main MPI
thread is working

200K

400K600K

12

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

P ×

coefficients for analysis
of strong scaling

 Q ×

