JOE INSLEY
Lead, Visualization & Data Analytics
Argonne Leadership Computing Facility

SILVIO RIZZI
Assistant Computer Scientist
Argonne Leadership Computing Facility

May 4th, 2017
Argonne National Laboratory
HERE’S THE PLAN...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Annotation and movie creation
- Visualization for debugging
- In-Situ Visualization and Analysis
MULTI-SCALE SIMULATION/VISUALIZATION

ARTERIAL BLOOD FLOW

Anterior Cerebral

Middle Cerebral

Aneurysm

Platelets

Basilar

Right Interior Carotid Artery

Left Interior Carotid Artery

Vertebral

Data courtesy of: George Karniadakis and Leopold Grinberg, Brown University
AEROSPACE
(JET NOZZLE NOISE)

Data courtesy of: Anurag Gupta and Umesh Paliath, General Electric Global Research
COSMOLOGY

Data courtesy of: Salman Habib, Katrin Heitmann, and the HACC team, Argonne National Laboratory
COOLEY

- Analytics/Visualization cluster
- Peak 223 TF
- 126 nodes; each node has
 - Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
 - NVIDIA Tesla K80 graphics processing unit (24GB)
 - **384 GB of RAM**
- Aggregate RAM of 47 TB (vs. ~6TB for Tukey)
- Aggregate GPU memory of~3TB (vs. ~1.1TB for Tukey)
- Cray CS System
- 216 port FDR IB switch with uplinks to our QDR infrastructure
- Mounts the same GPFS file systems as Mira, Cetus
VISUALIZATION TOOLS AND DATA FORMATS
ALL SORTS OF TOOLS

- Visualization Applications
 - VisIt
 - ParaView
 - EnSight

- Domain Specific
 - VMD, PyMol, RasMol

- APIs
 - VTK: visualization
 - ITK: segmentation & registration

- GPU performance
 - vl3: shader-based volume rendering

- Analysis Environments
 - Matlab
 - Parallel R

- Utilities
 - GnuPlot
 - ImageMagick

- Visualization Workflow
 - VisTrails
PARAVIEW & VISIT VS. VTK

- **ParaView & VisIt**
 - General purpose visualization applications
 - GUI-based
 - Scriptable
 - Extendable
 - Built on top of vtk (largely)

- **vtk**
 - Programming environment / API
 - Additional capabilities, finer control
 - Smaller memory footprint
 - Requires more expertise (build custom applications)
DATA FILE FORMATS (PARAVIEW & VISIT)

- VTK
 - Parallel (partitioned) VTK
- VTK MultiBlock (MultiGroup, Hierarchical, Hierarchical Box)
- Legacy VTK
 - Parallel (partitioned) legacy VTK
- EnSight files
- EnSight Master Server
- Exodus
- BYU
- XDMF
- PLOT2D
- PLOT3D
- SpyPlot CTH
- HDF5 raw image data
- DEM
- VRML
- PLY
- Polygonal Protein Data Bank
- XMol Molecule
- Stereo Lithography
- Gaussian Cube
- Raw (binary)
- AVS
- Meta Image
- Facet
- PNG
- SAF
- LS-Dyna
- Nek5000
- OVERFLOW
- paraDIS
- PATRAN
- PFLOTRAN
- Pixie
- PuReMD
- S3D
- SAS
- Tetrad
- UNIC
- VASP
- ZeusMP
- ANALYZE
- BOV
- GMV
- Tecplot
- Vis5D
- Xmdv
- XSF
DATA WRANGLING

- **XDMF**
 - XML wrapper around HDF5 data
 - Can define
 - data sets
 - subsets
 - hyperslabs

- **vtk**
 - Could add to your simulation code
 - Can write small utilities to convert data
 - Use your own read routines
 - Write vtk data structures
 - C++ and Python bindings
DATA ORGANIZATION

- **Format**
 - Existing tools support many flavors
 - Use one of these formats
 - Use (or write) a format converter
 - Write a custom reader for existing tool
 - Write your own custom vis tool

- **Serial vs. Parallel/Partitioned**
 - Single big file vs. many small files: middle ground generally best
 - vtk data types
 - XDMF for HDF5 (VisIt and ParaView)
 - Custom
DATA ORGANIZATION

- Serial vs. Parallel/Partitioned
 - Performance trade-offs
 - vtk/paraview: serial files all data read on head node, partitioned and distributed
 - vtk/paraview: parallel files: serial files partitioned

Performance example:

- Single serial .vtu file (unstructured grid)
 - Data size: ~3.8GB
 - Read time on 64 processes: > 15 minutes
 - most of this was spent partitioning and distributing

- Partitioned .pvtu file (unstructured grid)
 - Data size: ~8.7GB (64 partitions)
 - Read time on 64 processes: < 1 second
DATA REPRESENTATIONS
DATA REPRESENTATIONS: GLYPHS

- 2D or 3D geometric object to represent point data
- Location dictated by coordinate
 - 3D location on mesh
 - 2D position in table/graph
- Attributes graphical entity dictated by attributes of a data
 - color, size, orientation
DATA REPRESENTATIONS: CONTOURS (ISOSURFACES)

- A Line (2D) or Surface (3D), representing a constant value
- VisIt & ParaView:
 - good at this
- vtk:
 - same, but again requires more effort
DATA REPRESENTATIONS: CUTTING PLANES

- Slice a plane through the data
 - Can apply additional visualization methods to resulting plane
- VisIt & ParaView & vtk good at this
- VMD has similar capabilities for some data formats
DATA REPRESENTATIONS: STREAMLINES

- From vector field on a mesh (needs connectivity)
 - Show the direction an element will travel in at any point in time.
- VisIt & ParaView & vtk good at this
MOLECULAR DYNAMICS VISUALIZATION

- **VMD:**
 - Lots of domain-specific representations
 - Many different file formats
 - Animation
 - Scriptable
 - Not parallel

- **VisIt & ParaView:**
 - Limited support for these types of representations

- **VTK:**
 - Anything’s possible if you try hard enough
ANNOTATION AND MOVIE CREATION
ANNOTATION, COMPOSITING, SCALING...

- ImageMagick
 - convert, composite, montage, etc.
ANNOTATION, COMPOSING, SCALING...

- ImageMagick
 - scale, fade
MOVIE CREATION

- VisIt and ParaView can spit out a movie file (.avi, etc.)
 - can also spit out individual images

- Combine multiple segments of frames
 - Create a directory of symbolic links to all frames in order

- ffmpeg: Movie encoding
 - ffmpeg -sameq -i frame.%04d.png movie.mp4
VISUALIZATION FOR DEBUGGING
VISUALIZATION FOR DEBUGGING
VISUALIZATION FOR DEBUGGING
VISUALIZATION AS DIAGNOSTICS: COLOR BY THREAD ID
IN-SITU VISUALIZATION AND ANALYSIS
MULTIPLE IN-SITU INFRASTRUCTURES
CAN WE....

- Enable use of any in situ framework?
- Develop analysis routines that are portable between codes?
- Make it easy to use?

OUR APPROACH

- Data model – to pass data between Simulation & Analysis
- API – for instrumenting simulation and analysis codes
DATA MODEL: VTK

- Used by ParaView/Catalyst and VisIt/Libsim
- Supports common scientific dataset types
- On going independent efforts to evolve for exascale
- Supports using simulation memory directly (zero-copy) for multiple memory layouts

http://www.vtk.org/
SENSEI: API: COMPONENTS
INSTRUMENTATION TASKS

FOR SIMULATION

- Write a Data Adaptor to map simulation data to VTK data model
- Write a Bridge to define API entry points for simulation

FOR ANALYSIS

- Write analysis adaptor that uses Data Adaptor API to access Data
- Transform data, if needed and invoke analysis
ADDING A CATALYST PYTHON SCRIPT ANALYSIS

- 13 lines of CMake code changes
- 18 lines of C++ code
- In situ work can be specified via SENSEI XML

```
<sensei>
  <analysis type="catalyst" pipeline="pythonscript" filename="slice_contourcut.py"/>
  <analysis type="autocorrelation" array="data" association="cell" window="10" k-max="3"/>
  <analysis type="adios" filename="oscillators.bp" method="MPI"/>
  <analysis type="libsim" options="-no-icet" plots="Pseudocolor" plotvars="cell_data" visitdir="/global/homes/w/whitlocb/Development/SC16/install_static" slice-origin="32.5,32.5,32.5" slice-normal="0,0,1" image-filename="slice%ts" image-width="1600" image-height="1600" image-format="png"/>
</sensei>
```
EXAMPLE WITH CATALYST PYTHON SCRIPT

CartIso
https://github.com/PETT/miniIO

data adaptor
bridge
analysis adaptor

Catalyst Python Script Analysis

<sensei>
<analysis type="catalyst" pipeline="pythonscript" filename="slice_contourcut.py" />
</sensei>
CATALYST LIVE THROUGH PYTHON SCRIPT

 sensei

 data adaptor

 bridge

 analysis adaptor

 Catalyst Python Script Analysis

 ParaView Server

 Theta@ALCF

 Local
Sensei: A Lightweight In Situ Interface for Contemporary Infrastructure Tools and Architectures

Andrew Bauer, Patrick O’Leary and Utkarsh Ayachit
QUESTIONS?

Silvio Rizzi
srizzi@anl.gov

Joe Insley
insley@anl.gov