what’s inside”

USING INTEL™ CLUSTER TOOLS TO
OPTIMIZE MPI PROGRAMS

Agenda

Scaling with MPI Performance Snapshot

Tuning MPI Performance with Intel® Trace Analyzer and Collector

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPISCALING ANALYSIS CHALLENGES

MPI| Scaling Analysis Challenges
To Exascale... and Beyond

Application
Growth

Application/Tool Performance

Cluster Problem Application Size
Growth Growth o |
Application esssAnalysis Tools esssScalable Tools

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

MPI PERFORMANCE SNAPSHOT (MPS)

Why MPI Performance Snapshot (MPS)?

= Advantages
— Get an initial profile of the application very quickly
— Performance variation at scale can be detected and triaged quickly

— Provides development recommendations to developers based on analysis
— Intel® Trace Analyzer and Collector or Intel® VTune™ Amplifier XE for deeper analysis

— Easy to use out of the box functionality

= Benefits
— Difficult performance issues are easier to spot
— Application performance guidance is obtained easily
— Experienced & non-experienced developers can adopt quickly

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2 MPI Performance Snapshots

= Bundled version:
— is a part Parallel Studio Cluster Edition
— relies on Intel VTune Amplifier
— Intel MPI supports MPS (Hydra knows some environemt variables)

= Standalone version:
— Can be downloaded with no charge.

— Contains Application Perfomance Snapshot (APS) to collect Hardware
counters

— Has got a launcher script

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

What's new

Absolutely new collector which can collect rdpmc timer for really low intrusion

information from all MPI functions.
Binary file format for MPI statistics

Collector can work with any MPICH-based MPI

implementation (OpenMPI is not supported so far) Fach file writes to its own file

Different levels of statistics (MPS_STAT_LEVEL=1...5)
5 is default now.

Only one library to collect statistics and all other
metrics (except Gflops, CPl, Memory bound)

New parser for binary statistics. (Still supports native

Collector uses only MPI standard calls to support
iMPI statistics)

compatibility

New mechanism of MPI imbalance collection based Absolutely new HTML report. All metrics on one page.

on MPI_T_ mechanism - iMPI only HTML report now shows top 5 MPI functions

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

What's not supported

MPS doesn't print statistics on finalization

PAPI library — we cannot rely on this library

MPI_Pcontrol() is not supported yet.

No MPI imbalance in other MPIl implementations (might be added later)
OpenMP imbalance can be caught from Intel OpenMP library only.

MPI functions should not be called from OpenMP regions.

VTune Amplifier requires RedHat 6 and later and “perf" utility supported by kernel

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved Intel Confidential (Inte' . ©

*Other names and brands may be claimed as the property of others.

MPS USAGE

How to run

“Bundle”

$ mpirun -mps —n N app_name

Standalone
$ source mpsvars.sh --vtune

$ mpirun —-n N mpsrun.sh app_name

“mpsrun.sh’ is a script which sets needed environment variables including
LD PRELOAD.

In VTune mode it runs "amplxe-cl” for each process

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. Intel Confidential
e

MPS Output

Summary GENERAL STATISTICS
Total time: 448.391 sec (All ranks)

Files and folders: MPI.: 40.73%
NON_MPI: 59.27%

= stats.txt WallClock

MIN : 89.594 sec (rank 1)

— MPI statistics
MAX : 89.975 sec (rank 4)

= app_stat.txt

MEMORY USAGE STATISTICS
—_ MPS Collector All ranks: 226.969 MB

MIN: 24.172 MB (rank 2)

MAX: 96.465 MB (rank 0)

u < >
_mps/results. nOde / MPI IMBALANCE STATISTICS
VTune results MPI Imbalance: 31.798 sec 7.092% (All ranks)
MIN: 2.219 sec 2.467% (rank 4)
MAX: 9.157 sec 10.219% (rank 0)

statistics

=
@an |)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

HTML Reporting

MPI| Performance Snapshot Summary

WallClock time 21.78 sec
Total application lifetime. The time is elapsed time for the slowest process. This metric includes the MP| Time and the Computation time
below.

MPI Time: 17.28 sec 80.10%

Time spent inside the MPI library. High values are usually bad.
This value is HIGH. The application is Communication-bound. More details.

MP| Imbalance: 7.44 sec 34.47%
Mean unproductive wait time per process spent in the MPI library calls when a process is waiting for data. This time is part
of the MPI time above. High values are usually bad
This value is HIGH. The application workload is NOT well balanced between MPI ranks. M

B Computation Time: 4.29 sec 19.90%
Mean time per process spent in the application code. This Is the sum of the OpenMP Time and the Serial time. High values are
/ usually goed.
//////////// This value is LOW.
Bl OpenMP Time: 19.46 sec 90.19%
Mean time per process spent in the OpenMP parallel regions. High values are usually good and indicate that the application
is well-threaded.
This value is HIGH,
MPI Time: 17.28 sec 80.10% -
MP! Imbalance: 7.44 sec 34.47% % OpenMP Imbalance: 17.05 sec 79.03%
g o
Mean unproductive wait time per process spent in OpenMP parallel regions (normally at synchronization barriers). High
B Computation Time: 4.29 sec 19.90% values are usually bad.
B OpenMP Time: 19.46 sec 90.19% This value is HIGH. The application's OpenMP work sharing is NOT well load-balanced. More details...
% OpenMP Imbalance: 17.05 sec 79.03%
1 Serial Time: 0.00 sec 0.00% Ml Serial Time: 0.00 sec 0.00%

Mean application time per process spent outside OpenlMP parallel regions. High values may be good or bad depending on the
application algorithm.
This value is NEGLIGIELE. This application is well parallelized via OpenMP directives.

Application: build/heart_demo

Number of ranks: 17

lUsed statistics: app_stat_20160310-035458.txt, stats_20160310-035458.txt
Creation date: 2016-03-10 03:55:21

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

MPS HTML Report Breakdown — MPI Time

MPI Time — Time spent in MPI calls If MPI Time or MPI Imbalance are high,
use Intel® Trace Analyzer and
Collector to investigate and optimize
MPI usage

MPI Imbalance — MPI time spent
waiting

Lower is better

MPI Time: 17.28 sec 80.10%
Time spent inside the MPI library. High values are usually bad.
This value is HIGH. The application is Communication-bound. More details...

MP1 Imbalance: 7.44 sec 34.47%
Mean unproductive wait time per process spent in the MPI library calls when a process is waiting for data. This time is part

of the MPI time above. High values are usually bad.
This value is HIGH. The application workload is NOT well balanced between MPI ranks. More details...

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPS HTML Report Breakdown — OpenMP Time

OpenMP Time — Computation time If OpenMP Imbalance is high -
spent in OpenMP parallel regions — recommend using Intel® VTune™
higher is better Amplifier XE
OpenMP Imbalance — OpenMP Time If OpenMP Time is low - Intel® Advisor
spent waiting — lower is better to find opportunities to add more
threading

B OpenMP Time: 19.46 sec 90.19%

Mean time per prozess spent in the OpenlMP parallel regions. High values are usually good and indicate that the application

is well-threaded.

This value is HIGH.

OpenMP Imbalance: 17.05 sec 79.03%
Mean unproductive wait time per process spent in OpenMP parallel regions (normally at synchronization barriers). High

values are usually bad.
This value is HIGH. The application's OpenMP work sharing is WOT well load-balanced. More details...

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TUNING MPI APPLICATION PERFORMANCE
WITH INTEL" TRACE ANALYZER AND
COLLECTOR

Intel® Trace Analyzer and Collector

Value Proposition

Intel’s High Performance MPI Communications Profiler &
Analyzer for Scalable HPC Development

Scale Performance - Perform on More Nodes
Scale Forward - Multicore and Manycore Ready
Scale Efficiently - Tune & Debug on More Nodes

Visualize - Understand parallel application behavior
Evaluate - Profiling statistics and load balancing
Analyze — Automated analysis of common MPI issues
Identify - Communication hotspots

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel” Trace Analyzer and Collector Overview

Source
Code

ompile

Intel” Trace Analyzer and Collector helps the developer:

= Visualize and understand parallef™

= Evaluate profiling nc
API and -tcollect
= |dentify communi SRS

Features Intel® Trace Collector

Objects
Linker

= Event-based approach Binary

= Low overhead Trace File (.stf)

= Excellent scalability

: e . Output
= Powerful aggregation and filtering functions
et aggregatl rering runct Intel® Trace Analyzer
= Performance Assistance and Imbalance Tuning

NEW in 9.1: MPI Performance Snapshot

Runtime

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Strengths of Event-based Tracing

Predict Detailed MPI program behavior

Exact sequence of program states — keep

Record o .
timing consistent

Collect information about exchange of
messages: at what times and in which order

An event-based approach is able to detect temporal dependencies!

Collect

Optimization Notice

Copyright © 2016, Intel C

Multiple Methods for Data Collection
Collection Mechanism

Run with -trace or Automatically collects No user code
preload trace collector all MPI calls, requires collection.
library. no modification to
source, compile, or
link.
Link with —trace. Automatically collects No user code
all MPI calls. collection.
Must be done at link
time.
Compile with —tcollect. Automatically Requires recompile of

instruments all function code.
entries/exits.

Add API calls to source Can selectively Requires code
code. instrument desired modification.
code sections.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Views and Charts

Helps navigating through the trace
data and keep orientation

Every View can contain several Charts
All Charts in a View are linked to a
single:

— time-span

— set of threads

— set of functions

All Charts follow changes to View (e.g.
zooming)

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Chaf 3

......

Average Yarefer Sate [EA] (erder by Recerver)

e

Event Timeline

7.488 (500 = 7.450 (500 = T.451 (500 =

T7.488 (500 =
7485 (000 = 7.480 (000 = 7.4581 (000 = 7.48Z (000 =

MUCONVERGENCE MPI Applic A JRELA MICONVERGENCE MPI AppliczgiSH RELA MFZONVERGENCE MPI Appliczs:

ON\wappliczs

Get detailed impression of program structure

Display functions, messages, and collective operations for each rank/thread
along time-axis

Retrieval of detailed event information

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Quantitative Timeline

Get impression on parallelism and load balance

Show for every function how many threads/ranks are currently executing it

OMP_SYNC
MATMUL
PRECON

SOLVER
MPI

Flat Function Profile

Statistics about functions

Flat Profile | Load Balance | Call Tree | Call Graph | FlatProfle | Load Balance | CaliTree | Call Graph |
Group All_Threads j Children of Group All_Threads ~
Name [Tself [Tselr [TTotal #Calls __ [Tseff/cal | Narme [Tsei [Tsel [TTotal #Calls__ [Tsefi/ical [l
=~ Group All_Threads MPI_Comm_dup
PRECON 678.787 445 5 6787874455 49536 0.013703s -MPI_Waitall
OMP_SYNC 580.473344 s MM 580.473344s 286320 0.001858s - Process 31 Thread 0 0.213 338 s [N 0913338 s 1546 0000591 s
MATMUL 410,463 131 s [N 410463131s 43260 00083285 “Process 24 Thread 0 0801994 [N 0.501994s 1546 0.000519s
SOLVER 326,400 819 s [N 2169.146 9345 128 25656315 -Process 28 Thread 0 0756392 s [N 0.755392 s 1546 0,000 489 s
~User_Code 148746 154 s [l 2383561817 s 128 1.168988Zs +Process 23 Thread 0 0.721 329 s NN 0721329 s 1546 0000467 s
-~ MPI_Bcast 94227 914sl 94227 914s 37248 0.002530s i-Process 27 Thread 0 0711 207 s [0711207 s 1546 00004605
ASSEMBLY 438227013 43822701 s 32 1368458s - Process 7 Thread 0 0.643 754 s N 0643754 s 1546 0000416
MPI_Barrier 24222 499 5| 24222 499 5 49312 0.000481s - Process 15 Thread 0 0637 547 < [N 0637547 5 1546 00004125
MPI_Reduce 23.807 645 s | 23807845 5 37184 0.000640 s - Process 16 Thread 0 0628 403 s [N 0628 403 5 1546 00004065
MPI_Waitall 17607 615 s| 17607615 s 49472 0000356 +~Process 0 Thread 0 0610 254 s [N 0610254 s 1546 0.000395s
-MPI_Comm_dup 11.756 564 s | 11.756 564 5 64 0183696 s Process 8 Thread 0 0.538 698 s [N 0.598 698 s 1546 00003875
~MPI_Isend 7.838 689 5| 7.838 689 s 145324 0.000054s “-Process 4 Thread 0 0594 556 s [INNEGEGN 0594556 s 1546 0.000385s
- MPI_Wtime 7490313 s| 7.480313s 136192 0.000055s ~Process z0 Thread 0 0575 368 s [N 0575 368 5 1546 0.000372s
MPI_Irecy 4909197 s 4808197s 145324 0.000034s “-Process 25 Thread 0 0.573 404 s [N 0573 404 5 1546 00003715
MP|_Finalze 0.006 268 s 0.006 288 s 3z 0000197 s - Process 26 Thread 0 0571 285 5 [N 05712855 1546 0000370
MPI_Comm_size ~ 0.001205s 0001205 s 64 00000185 -Process 11 Thread 0 0,555 121 s [N 0555 121s 1546 00003585
MPI_Comm_rank 0,000 293 s 0000293 s 32 0000008 s i-Process 30 Thread 0 0.547 251 s [0547 251 s 1546 0.000354s
Process 29 Thread 0 0.547 177 s [N 0547 177 s 1546 0.000354s
- Process 3 Thread 0 0540 298 s I 0540298 s 1546 0.000343 s
~Process 19 Thread 0 0510765 s 0510765 s 1546 00003305
= Process 2 Thread 0 0.485 491 s [N 0.495 481 s 1546 0.000320s
- Process 12 Thread 0 0.485 023 s [N 0485023 5 1546 0.000314s
- Process S Thread 0 0.480 013 s [N 0480013 s 1546 0.000310s
Process 21 Thread 0 0.474 150 s [N 0474150 s 1546 0.000307 s
- Process 6 Thread 0 0.486212's 0466212 s 1546 0.000302 5
~Process 18 Thread 0 0.452 495 s [0452 495 5 1546 0000293 s
- Process 1 Thread 0 0.443 999 s [N 0448999 5 1546 0.000280s
- Process 13 Thread 0 0.392 865 s [0.392 865 5 1546 0.000254s
i-Process 22 Thread 0 0.387 010 s [03870105 1546 0000250
Process 14 Thread 0 0.377 664 s [N 0.377 664 5 1546 0.000244 s
Process 17 Thread 0 0.377 174 s [l 0377 174s 1546 0.000244s
Process 10 Thread 0 0.374 776 s [l 0374776 s 1546 0000242's
“-Process 8 Thread 0 0357 603 s [0.357 603 s 1546 0.000231s
MPI_lrecv
Process 19 Thread 0 0245502 s 0245502 s 6184 0.000040 s
- Process 17 Thread 0 0.243 382 s I 0243382 s 6184 00000385 x|

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Call Tree and Call Graph

Function statistics including calling hierarchy
= Call Tree shows call stack

= Call Graph shows calling dependencies

Fla: Profie | Load Balance | Call Tree ICaH Greph |

Children of Group Al Processes v/
Neme [Telf [Tselt [TTotal #Calls__[TSeli/Call | TSelf/call /| 2]
[F-Process &
Process ¢
Process 3
- User_Code 06770035 164.033 352 5 1 0677 00z s (DD
VIFI_Barrier 01787115 01787115 2 oosassesll Flat Profle | Load Balance | Call Tree | Call Graph |
<~ iteration 147729405 162.267 992 5 4458 00033145
MPI_Allreduce 127.781 639 s [N 127.781 53¢ s 4458 00286BEs| Group All_Processes M
ExchangeStart 4.567 565 Sl 7.396 47€ 5 4458 0.001 025 s
MPI_Isend 1.435 251 5| 14352515 8916 00001615 Name % |TSEH |TSEH |W0ta\ |#CaHs |TSeWCa\I
MPI_l-ecy 1393662 5| 1393662 5 8916 0.000 15€ 5
ExchangeEnd 2.797 721 5| 12.336 93E 5. 4458 0.000 62€ 5 = Gmup A\LPV’OCESSES
it s - Callers
0.004554 s 0.00474E s 2 0.002 q " "
WP Conm_rank 0009 100 e S et STF_RgaghedEndOfE\\ter caling STF_WUHfStackH\stury 0001 000 s [0,002 868 5 37 00000Z7 s

ExchangeEnd 0.000567 5 0.000 89t 5 2 000029%s STF_InitFilelnput caling STF_WorkStackHistory 0000021 35 00000555 1 00000z1s
MPI_Watall 0000311 s 0000311s 2 Do IsEs ~STF_DecodeFiter_enter function calling STF_WorkStackHistory 0.000 0345 0,000 320 5 1 00000945

MFI_Finalize 0.000 268 5 0.000 26€ 5 1 0.00026Es - Lo R)

Setup_riesh 00002005 00254155 1 000020CS -~ STF_ContentFilter_one_to_one_communication calling STF_WorkStackHistory 0.000 112 5 00014765 2 0000D0SEs
MP|_Cart create 00251775 00251775 1ooozs7rs| | STF_ContentFiter_all_to_all_communication calling STF_WorkStackHistory 0,000 068 5 00015285 1 0000068 S
MPI_Cart_shift 00000115 0000011 1 0000011s - = . =
MPI_Comm_rank 0000009 5 0000 008 5 1 000000ES - 5TF_DecodeFilter_leave_function calling STF_WorkStackHistory 00003728 00133 s 3 00001zds
MPI_Comm_size 0000018 0000 0TE S 2 ooooooes - STF_DecodeFiter_enter function 1 caling STF_WorkStackHistory 0000032 5| 0.000 244 5 1 0000032 s

MFI_Comm_free 0.000139 5 0.000 13¢5 1 0.000 13¢5 - L - - -

MFI_Wiime 00005185 000051E s 4 000013Cs STF_WorkStackHistary 0.001 633 5 00168265 45 0000037 s

Ger_command_line 0000083 5 0.856 630 5 1 000008Es = Callees
MPI_Bcast " " "

O peene) yeene o mm— L-STF _WorkStackHstory caling PAL_JsInTrgets 0001 663 s I 0076 8105 ¥ 0m00s

MFI_Comm_size 00000185 0.00001E 5 2 000000ES -~ STF_WorkStackHistory caling STF_WillyForAll 0.001 1045 0.005 784 5 30 00000375

P,mG:f:gude 0663430's 163870788 5 1 0665 43 s I STF_WorkStackHistory caling STF_CallFromCantent_begin_of_history 0001 426 5 0.076 352 5 0.000 045 5

MFI_Barrier 0040269 5 0.040 26€ 5 2 002013¢s| STF_WorkStackHistory calling STF_CallHandler 0.001 647 5 0016717 5 0.000 047 5

-~ iteration 148596185 162.377 10E 8 4458 " " .
WP Allreduce #5085 437 - I 55,085 487 & Jass o = STF_WorkStackHistory calling STF_CallFromContent_end_of_history 0.001 426 5 0016352 5 0.000 045 5
F
00002215 I 0.000 365 5 3 0000074s

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Communication Profiles

Statistics about point-to-point or collective communication
Matrix supports grouping by attributes in each dimension

= Sender, Receiver, Data volume per msg, Tag, Communicator, Type

. l b l - b N Total Time [s] (Sender by Receiver)
¢
Available attributes -
PO Pi P2 P3 P4 PS5 P6 P7 Sum | Mean | StdDe
PO 74.641| 74.641| 0.000 70
= Count, B ferred, Time, Transf
ount, Bytes transterreq, Iime, Iranster rate > o 1
2% Total Time [s] (Collective Operation by Process) P2 81550 99.551) 49.776 1.819 =
| +— — =
po [Pt [Pz [pa [pa |ps [pe [P7 [sum [Mean |stdpe P3 ansos) WO 7e.s09) 39.254 2.351]
23 sal_|
MPI_Barrier 0.953| 0.119| 0.080) 10 P4 5185 54,114 105.672| 52.836 1.272|
il = 49
| e
MP|_Beast 6.010| 0.751f 0.284 96 P5 Kqﬁl!l 24 72,146 36,073 1.e01
82 B 5 44
I P8 36.740 0.87)
MP|_Allreduce | 87.299) 68.085| 89.071] 109.330) 883,576 110.447| 18.704| 69 =
- p7 24384 24.384] 0.000 32
Sum 87.362| 121.530| 88.390| 128.218| 30.182|125.187(110.268| 138.141| 830.538
4 Sum | 23.303126.231 85854 99.53f 74 788 91.733| 58,646 35.851(s87 535 34
i
Mean 29.121] 40.530| 29.663(42.933| 30.061| 41.728| 36.756 46.047 37.106 I‘ 27
Mean | 23.903| 63.115] 43.427| 49.759| 37.294| 45.868(29.323| 35.861] 42,681 29
14
StdDev 41.133| 56.675| a1.312| 59.993| 41.727| 58.363| s1.318| 64.359 52.973 e o IR e B el oo SR e e S

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of

Zooming

; 4.4 s 4.6 4.8 s 5.0 s i,
4.1 s 4.3 s 4.5 s 4.7 s 4.9 s 5.
PO T il
P1 il “inngilh
L ! Ll
P2 i ‘il il i i i 7 e
i Pem— P
P3 i Sunnninlle il i i i ' it il
-] I =~
) fpsdbench |
Jeltes) intvrbench
B elvrbhs
] auxhs
—— Joasa
T 00 © Duration of Messages_l
0.04 s Multiple
0.00 s || Fom— u‘l“hhu | ""llJl .Lll"uuu L "Ihk || —— -l‘h |
o >l
Flat Profile |Load Balance | Call Tree | Call Graph | N Count [#] (Sender by Receiver)
TGroup All_Processes j PO |P1|P2 P33 |P4|PS5|P6|P7 |P8|PS|P10|P11|P12|P122]
Name [Tserr [Tserr [TTotal #cals__|||Po
=~ TGroup All_Processes P1
FGroup MPI s746s8s s 746558 s 7812 || P2
FGroup intvrbench ~ 3.824 473 s [8.272 278 s 18240 |[53
i~ FGroup mpb 2379 724s 74315269 s 540 (157
- FGroup elvrbhs 1748885 s 4342 490 s 9540 =
FGroup fpsdbench 6.107 156 5 6508
FGroup auxhs 0857 200 s [l 2610683s 17055 ||P
FGroup bpfurhs 0340816 s 0340816 s 6585 || P7
~ FGroup mtxb 0.012948 s 17.163 427 s 128 || P8 13|
* FGroup Application 0.000 000 s 33.182880 s [| =] 19 13
P10 13 19
P11 13 19
P12 19
« | 2l

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Grouping and Aggregation

Allow analysis on different levels of detail by aggregating data upon group-definitions

Functions and threads can be grouped hierarchically
= Process Groups and Function Groups

E All_Processes _—'/_3j Major Function Groups

Arbitrary nesting is supported
= Functions/threads on the same level as groups

= User can define his/her own groups

Aggregation is part of View-definition
= Allcharts in a View adapt to requested grouping

= All charts support aggregation

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Aggregation Example

4.25 s 4.2 s 4.28 s | 4.31 s 4.38 s 5 |
4.26 s 4.28 s 4.30 s 4.32 s =

TG castor1 [i I BT T R e R R R R TR
TG castor8 HniEinedebie i e iR in i iilinieieie bivirigd8int -]
TG castord [
TG castor7 v R e B irdr T Eed 1 iinticiidii e i i i
TG castor3 L R A R R R R A R T R
TG castor2 [b1 LR T R TR G R R
TG castor6 [{i} lintir i intininir iriiciricy g2 inticiiiiintinirir il iy
TG castor5 (SISiEISERiNs =

Finir fid intineir i i i ieQEEgine i i i i

=
Kil| d i
Flat Profile \ Load Balance [Call Tree | Call Graph] N Count [#] (Sender by Receiver)
Children of TGroup All_Nodes :] TG castor! | TG castor8 | TG castord | TG castor7 | TG castor3
Name | Tsel [Tsef T [TTotal [#cais [12]|| TG castort
+- Function MP|_Isend TG castor8
+- Function MP|_Irecv TG castor4
= Function MP|_Waitall TG castor?
~TGroup castors 0.044 710 s [N 0.044710s 2
TG castor3 1.6
TGroup castorz 0,051 460 s [N 0.051 460 s 2 = .
~TGroup castors 0071689 s M 0071689 s 2 i .
- TGroup castor? 0,071 929 s [00719295 2 TG castoré -
~TGroup castor1 0.072533 s I 00725335 2 TG castorS
{ 1.4
Groupcastors 0.072748 s 0072748s 2 Sum 3 4 4 4 ‘
~TGroup castor4 0.079 206 s [0075 206 s 2 _| | mean 1 1 1 1 1.3
TGroup castors 0.083 194 s [N 0.083 1845 2 StdDav ol ol o o
- Function MP|_Wait 1.2
-~ FGroup Application
- FGroup mpb - =
< | 2y |] 1.0
428048 s

N

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tagging and Filtering 7~

Help concentrating on relevant parts
Avoid getting lost in huge amounts of trace data

Define a set of interesting data
= E.g.all occurrences of function x

= E.g. all messages with tag y on communicator z

Combine several filters:
Intersection, Union, Complement

Apply it
= Tagging: Highlight messages

= Filtering: Suppress all non-matching events

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tagging Example

I 5.490 s .500 s 5.510 s 5.520 s 5.530 s 5.540 s 5.550 s 3 |
| 5.495 s 55058 | 5.515 3 55252 | 5.5358 5.5d5 g | 5.5%5 8 =
PO 4 i b
P1
P2 I
P3
bled ‘
P4 —
PS5
P6 J I Invert
— I Invert
0.02 s Duration of Messages_J
SR Single I Invert
0.01 s l J | ” I ’ — Single Tagged J I Invert
. L ok LLLULLA I 08 TN A e
Rl] 2|
- _| I Invert
Flat Profile | Load Balance | Call Tree I Call Graph [> Total Time [s] {Collective Operation by TGroup)
I Invert
TGroup All_Processes Ll 028
. - Invert
Name |TSeIf TSelf / | A1 [MPI_Barrier L
- .025
=~ TGroup All_Processes MP|_Bcast I Invert
e EGroug Application 0.000 000 s MPI_Reduce
- EGroup Application 0.000 000 s Sum T P P e e rent Clause
_"F—E-Gﬂwb 0.000000°s Mean 0.011|0.010{0.008|0.008[0.007|0.
“%ﬁ b gggg gggz StdDev 0.014|0.014f{0.011|0.011|0.006(0.
- EGroup mpb 0.108 744 s R
FGroup MPI 0.312 039 s [INEGN
FGroup fpsdbench 0.166 031 s
- FGroup fpsdbench 0025942 s _’_vJ
| L | > 5 |
5.51837 s
FE ST DT, T | ANTCET I

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Filtering Example

5.49%0 s 5.500 s | 5.510 s 5.520 s | 5.530 s 5.540 s | 5.550 s | Al
| 5.495 s L6505 ¢ | 5515 8 | 535 g 5.535 s | 5.545 s 5.555 s =
PO =
P1
P2 ons |
Pa |
P4 n o i i i itmph rsembled ‘
P5 11l g0
[T —-—
P& ('l i it Zmixb Bl I nuer
e y e X
e Duration of Messages __| ¥ Invert
0.01-s ‘ ‘ ’ | ‘ ’ ‘ } Single I inuer
A L L bl 1 100 | et
kil | o I~ Invert
Flat Profile | Load Balance \ Call Tree l Call Graph I = Total Time [s] (Collective Operation by TGroup) ™ Invert
TGroup All_Processes ;I .028 |current Clause
Name ITSeIf TSelf / [~| || MPI_Bcast [ERURERERGER .
=~ TGroup All_Processes MP|_Reduce [CRESGRLLLRY -
2 FGroup Application 0.000000 s Sum 0.032(0.030/0.027|0.024[0.020/0.019(0.¢ p.022
= F,GmUp Application 0.000 000 s Mean 0-0160.015/0.014]0.012/0.010/0. 010 0. ¢ | p.019
=5 EGroup mpb 0.000000°s StdDev 0.015(0.015]/0.011|0.012|0.005|0.009(0.¢ ‘;_ 0.016
= EGroup mixh 0.000 000 s
=~ FGroup mpb 0093927 s Il -012
=~ FGroup mpb 0.420 783 s NG . [p.009
FGroup mtxb 0.224041 s = oo
FGroup fpsdbench 0.166 031 s [=
-FGroup fpsdbench 0025942 s - -003
< | I | Y | 3 000
5.50568 s
Heset Llialog UK | Cancel | I

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

MPI Performance Assistance

Automatic Performance Assistant

Detect common MPI performance
issues

Automated tips on potential solutions

Automatically detect

performance issues and
theirimpact on runtime

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

L P A
! S

Wait at Barrier 0.90% 5.97002e-3 s
Late Sender 0.80% 5.2878%e-3 s
Late Receiver 0.80% 5.2878%e-3 s
Show all....

Description Affected Processes Source Locations (Root Causes)

Wait at Barrier
wait ime

P1 _| barrier |_

wait ime
Pn 4[barrier Ii
time
-
:

This problem occurs when barrier collective operations (such as MPI_Barrier or all-to-all operations such as MPI_Alit
problem indicates load imbalance in a program.

0.0397587 s, Function MPI

Summary page shows computation vs.
communication breakdown

e Intel® Trace Anal

AL File Options Project Windows Help

Summary

Total time: 0.756704 sec. Resources: 16 processes, 4 nodes. Reso U rce U Sage
Is your

| Ez3 application
CPU-bound?

Is your
application
MPI- >
bound? fop WP functons

MPI_Allreduce 00358 sec (449 %)

MPI_Sendrecy 0.032 sec (4%)

wei_Finaiize [0.0161 sec (2.02%)
Largest MPI
wei_scast [0011 sec (138 %)

CO n S u m e rS MPI_Errhandler_create

0.000189 sec (0.0237 %)

Where to start with analysis

To analyze the MPL-bound application, click "Next" to open To optimize node-level performance for the CPU-bound application
the trace file View and leverage the Intel(R) Trace Analyzer use the Intel(R) VTune(TM) Amplifier XE running on a specific rank,
functionality: see below for a sample command line:

- Performance Assistant - to identify possible perfermance problems <rpirun_script> -n 15 <your app name> [<arg(s)>]

- imbalance Diagram - for detailed imbalance overview -n 1 amplxe-cl -c hotspots <your_app name> [<arg(s)>]

- Tagging/Filtering - for thorough customizable analysis
For more information see the article from the Intel(R) VTune(TM) Amplifier XE

documentation.

Analyzing MPI Applications

Show Summary Fage when open fracefie

Next Steps

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others,

MPI-3.0 Support

Support for major MPI-3.0 features

Non-blocking collectives

FaSt RMA T File Options Project Windows Help

View Cherts Mavigste Advanced Layout

E ‘ Ml 0.073582-0.073813:0.000 231 O All_Processes W MP1 expanded in (Major Function Groups) &
Large counts

MMM
.1

MPI_Iallr MPI_Wait

MPL Tallf MPI Wait

MPL Tallre MP1 Wait

MLME
]

T Waitall MPI lall MPI_Wait

N O n - b lo C ki n g MEMMP itall MP]_Iallre

MPMEVIP IV Mr MPL lallri
T

——— A
aP1_Wiaitall MPI_Talle MPL \W/ait
re u C e —_ ! _; [| it o
y L

e Waitall MP1_Iall MPL_Wait
Y A

I T |
(MPI_Iallreduce) I —— RAPIS — i}

MPL Wait

MPL Wait

Performance Issue Duration (%)
{Wait at Barrier_| 0.00% 48304635
Late Receiver 0.00% 1228Me3 5
LateSender 0.00% 186.548e6 5

TTotal

A1l Processes

Group Rpplication 28.703%-3 = [N 24.1354e-3 = 1811 18 Description Affected Processes Source Locations (Root Cau:
MET_Tallreduce 4.082e-3 s [l 4.082e-3 s 384 10) |
MPI_Isend 2.41077e-3 s [I 3.41077e-2 = 1617 2. Wait at Barrier
MPI_Irecw 1.78376e-3 = | 1.78376e-3 = 1698 1.
MDT_Waitall 5 451832-3 = Wl 5.451932-3 = 526 10
40_667e-3 s I 40 £67e-3 s

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of other

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(lntel) |
experience
what'’s inside”

