
BUILDING your APPLICATION for THE
Intel® Xeon Phi™ x200 processor
Formerly Code named Knights Landing

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

Intel’s Optimizing Compiler: Very Brief Overview/Recap

(examples are for Linux* but behavior is the same for Windows*)

Intel® Xeon Phi™ x200 Processor Overview

(formerly code named Knights Landing, sometimes abbreviated to KNL to save space)

Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

High Bandwidth Memory

Consistency of Floating-Point Results

2

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Compiler: Brief Recap

Supports standards
• Fortran77, Fortan90, Fortran95, Fortran2003, much Fortran 2008
• Up to C99, C++11; C++ 14; Minimal C11 and C++17 (so far)

• -std=c99 -std=c++11 -std=c++14 -std=c++17

Intel® Fortran (and C/C++) binary compatible with gcc, gdb, …
• But not binary compatible with gfortran

Supports all instruction sets via vectorization (auto- and explicit)

OpenMP* 4.0 support, much 4.5, no user-defined reductions

Optimized math libraries (including for KNL)

Many advanced optimizations
• With detailed, structured optimization reports

Drivers: icc, icpc, ifort
• To set the environment: source compilervars.sh intel64

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations
• Excludes optimizations tending to increase code size

-O2 default (except with -g)
• includes auto-vectorization; some loop transformations such as unrolling;

inlining within source file;

• Start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations
• Including cache blocking, loop fusion, loop interchange, …

• May not help all applications; need to test

-qopt-report [=0-5]
• Generates compiler optimization reports in files *.optrpt

4

Basic Optimizations with icc/ifort -O…

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

InterProcedural Optimization (IPO)

icc -ipo

Analysis & Optimization across function and source file boundaries, e.g.

• Function inlining; Interprocedural constant propagation; Alignment analysis; Disambiguation;
Data & Function Layout; etc.

2-step process:

• Compile phase – objects contain intermediate representation

• “Link” phase – compile and optimize over all such objects

• Fairly seamless: the linker automatically detects objects built with -ipo, and their compile options

• May increase build-time and binary size

• But can be done in parallel with -ipo=n

• Entire program need not be built with IPO/LTO, just hot modules

Particularly effective for C++ apps with many smaller functions

Get report on inlined functions with -qopt-report-phase=ipo

5

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math Libraries

icc (ifort) comes with optimized math libraries
• libimf (scalar; faster than GNU libm) and libsvml (vector)

• Driver links libimf automatically, ahead of libm

• More functionality (replace math.h by mathimf.h for C)

• Optimized paths for Intel® AVX2 and Intel® AVX-512 (detected at run-time)

Don’t link to libm explicitly! -lm
• May give you the slower libm functions instead

• Though the Intel driver may try to prevent this

• GCC needs -lm, so it is often found in old makefiles

Options to control precision and “short cuts” for vectorized math library:
• -fimf-precision = < high | medium | low >

• -fimf-domain-exclusion = < mask >

• Library need not check for special cases (, nan, singularities)

6

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD: Single Instruction, Multiple
Data

• Scalar mode
– one instruction produces

one result

– E.g. vaddss, (vaddsd)

• Vector (SIMD) mode
– one instruction can produce

multiple results

– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =

x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

SSE
AVX

for (i=0; i<n; i++) z[i] = x[i] + y[i];

7

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Guidelines for Writing Vectorizable Code
Prefer simple “for” or “DO” loops

Write straight line code. Try to avoid:
• function calls (unless inlined or SIMD-enabled functions)
• branches that can’t be treated as masked assignments.

Avoid dependencies between loop iterations
• Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers
• Without help, the compiler often cannot tell whether it is safe to vectorize

code containing pointers.
• Try to use the loop index directly in array subscripts, instead of

incrementing a separate counter for use as an array address.
• Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses
• Favor inner loops with unit stride
• Minimize indirect addressing a[i] = b[ind[i]]
• Align your data consistently where possible (to 16, 32 or 64 byte boundaries)

8

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit SIMD (Vector) Programming

Modeled on OpenMP* for threading (explicit parallel programming)
#pragma omp simd <clauses> (for loops)

#pragma omp declare simd <clauses> (for functions)

Enables reliable vectorization of complex loops that compiler can’t auto-vectorize
• E.g. outer loops

Directives are commands to the compiler, not hints
• Programmer is responsible for correctness (like OpenMP threading)

• E.g. PRIVATE and REDUCTION clauses

• Overrides all dependency and cost-benefit analysis

Incorporated in OpenMP 4.0  portable
• -qopenmp or -qopenmp-simd to enable

9

void addit(double* a, double * b, int m, int n, int x) {
#pragma omp simd // I know x<0

for (int i = m; i < m+n; i++) a[i] = b[i] + a[i-x];
}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Knights Landing: Next-Generation Intel® Xeon Phi™

Binary-compatible
with

Intel® Xeon® processors

Server Processor

High-
Performance

Memory

Over 5x
STREAM vs. DDR43

Up to

16 GB
at launch

NUMA
support

60+ cores

3+ Teraflops1

3x Single-
Thread2

2-D Core Mesh

Cache Coherency

DDR4

Capacity
Comparable

to Intel®
Xeon®

Processors

Integrated Fabric

Architectural Enhancements = ManyX Performance

 14nm process technology

 4 Threads/Core

 Deep Out-of-Order Buffers

 Gather/Scatter

 Better Branch Prediction

 Higher Cache Bandwidth

… and many more

Core

Based on
Intel® Atom™ core (based

on Silvermont
microarchitecture) with
Enhancements for HPC

In partnership with

*

10

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Self- or leveraged-boot
• Self-boot may be easier to use (no more offload!)

• Intel® AVX-512 instruction set
• Slightly different from future Intel® Xeon architecture

Binary incompatible with KNC (mostly source compatible)

• Intel® SSE, AVX, AVX2 instruction sets

• Apps built for HSW and earlier can run on KNL without recompilation

• More cores than KNC, higher frequency
• Silvermont-based, better scalar performance

• New, on-package high bandwidth memory (MCDRAM)

• Lots of regular memory (100’s of GB DDR4)
• Run much larger HPC workloads than KNC

11

Processor Overview

Changes for SW development resulting from new Intel® AVX-512 ISA

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® AVX-512 - Greatly increased Register File

XMM0-15

16- bytes

YMM0-15

32 bytes

ZMM0-31

64 bytes

SSE
AVX2

AVX-512

0

1

5

3

1

Vector
Registers

IA32
(32bit)

Intel64
(64bit)

SSE
(1999)

8 x 128bit 16 x
128bit

AVX and AVX-
2
(2011 / 2013)

8 x 256bit 16 x
256bit

AVX-512
(2014 – KNL)

8 x 512bit 32 x
512bit

13

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Intel® AVX-512 Subsets [1]

 Comprehensive vector extension for HPC and enterprise

 All the key AVX-512 features: masking, broadcast…

 32-bit and 64-bit integer and floating-point instructions

 Promotion of many AVX and AVX2 instructions to AVX-512

 Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit Foundation instructions common between MIC and Xeon

 Allow vectorization of loops with possible address conflict

Will show up on Xeon

AVX-512 CD (Conflict Detection instructions)

 fast (28 bit) instructions for exponential and reciprocal (as well as RSQRT)

 New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 extensions for exponential and prefetch operations

AVX-512 F

AVX-512CD

AVX-512ER

AVX-512PR

14

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Intel® AVX-512 Subsets [2] (not KNL !)

 All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide

 Close 64bit gaps like VPMULLQ : packed 64x64  64
 Extend mask architecture to word and byte (to handle vectors)

 Packed/Scalar converts of signed/unsigned to SP/DP

AVX-512 Double and Quad word instructions

 Extend packed (vector) instructions to byte and word (16 and 8 bit) data types

MMX/SSE2/AVX2 re-promoted to AVX512 semantics
 Mask operations extended to 32/64 bits to adapt to number of objects in
512bit
 Permute architecture extended to words (VPERMW, VPERMI2W, …)

AVX-512 Byte and Word instructions

 Vector length orthogonality

Support for 128 and 256 bits instead of full 512 bit

 Not a new instruction set but an attribute of existing 512bit instructions

AVX-512 Vector Length extensions

AVX-512DQ

AVX-512BW

AVX-512VL

15

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Other New Instructions (not KNL!)

Set of instructions to implement checking a pointer against its bounds

Pointer Checker support in HW (today a SW only solution of e.g. Intel
Compilers)

Debug and security features

Intel® MPX – Intel Memory Protection Extension

 Fast implementation of cryptographic hashing algorithm as defined by NIST
FIPS PUB 180

Intel® SHA – Intel Secure Hash Algorithm

 needed for future memory technologies

Single Instruction – Flush a cache line

MPX

SHA

CLFLUSHOPT

Save and restore extended processor state XSAVE{S,C}

16

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® AVX-512 – KNL and future Xeon

 KNL and future Intel® Xeon
architecture share a large set
of instructions

– but sets are not identical

 Subsets are represented by
individual feature flags
(CPUID)

Future Xeon
Phi (KNL)

SSE*

AVX

AVX2*

AVX-512F

Future Xeon

SSE*

AVX

AVX2

AVX-512F

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR
AVX-

512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t

17

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Intel® Compiler Switches Targeting Intel® AVX-512

Switch Description

-xmic-avx512 KNL only

-xcore-avx512 Future Xeon only

-xcommon-avx512 AVX-512 subset common to both.
Not a fat binary.

-m, -march, /arch Not yet !

-axmic-avx512 etc. Fat binaries. Allows to target KNL
and other Intel® Xeon® processors

-qoffload-arch=mic-avx512 Offload to KNL coprocessor

Don’t use -mmic with KNL !

All supported in 16.0 and 17.0 compilers

Binaries built for earlier Intel® Xeon® processors will run unchanged on KNL
Binaries built for Intel® Xeon Phi™ coprocessors will not.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Consider Cross-Compiling

KNL is suited to highly parallel applications

• It’s scalar processor is less powerful than that of a “large core”
Intel® Xeon® processor

The Intel® Compiler is a mostly serial application

• Compilation is likely to be faster on an Intel Xeon processor

• For parallelism, try make -j

19

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report
subroutine test1(a, b ,c, d)

integer, parameter :: len=1024
complex(8), dimension(len) :: a, b, c
real(4), dimension(len) :: d
do i=1,len

c(i) = exp(d(i)) + a(i)/b(i)
enddo

end

$ ifort -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr -
qopt-report-phase=loop,vec,cg -qopt-report-embed test_rpt.f90

• 1 vector iteration comprises
• 16 floats in a single AVX-512 register (d)
• 16 double complex in 4 AVX-512 registers per variable (a, b, c)

• Replace exp(d(i)) by d(i) and the compiler will choose a vector length of 4
• More efficient to convert d immediately to double complex

20

From assembly listing:

VECTOR LENGTH 16
MAIN VECTOR TYPE: 32-bits floating point

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report

Compiler options: -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr
-qopt-report-phase=loop,vec,cg -qopt-report-embed
…

remark #15305: vectorization support: vector length 16

remark #15309: vectorization support: normalized vectorization overhead 0.087

remark #15417: vectorization support: number of FP up converts: single
precision to double precision 1 [test_rpt.f90(7,6)]

remark #15300: LOOP WAS VECTORIZED

remark #15482: vectorized math library calls: 1

remark #15486: divides: 1

remark #15487: type converts: 1
…

• New features include the code generation (CG) / register allocation report

• Includes temporaries; stack variables; spills to/from memory

21

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization works as for other targets

• 512, 256 and 128 bit instructions available

• 64 byte alignment is best, like for KNC

• New instructions can help

Vectorization of compress/expand loops:

• Uses vcompress/vexpand on KNL

Convert certain gathers to vector loads

Can auto-generate Conflict Detection instructions (Intel® AVX-512CD)

22

Optimization Improvements

for (int i; i <N; i++) {

if (a[i] > 0) {

b[j++] = a[i]; // compress

c[i] = a[k++]; // expand

}

}
• Cross-iteration dependencies

by j and k

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, does not auto-vectorize
 and vectorizing with an OpenMP* SIMD directive would be unsafe

ifort -c -xcore-avx2 -qopt-report-file=stderr -qopt-report=3 -qopt-report-phase=vec compress.f90
…

LOOP BEGIN at compress.f90(23,3)

remark #15344: loop was not vectorized: vector dependence prevents vectorization. …

remark #15346: vector dependence: assumed ANTI dependence between nb (25:7) and nb (25:7)

LOOP END

 C code behaves the same

23

Compress/Expand Loops VECTORIZE with Intel® AVX-512

nb = 0
do ia=1, na ! line 23

if(a(ia) > 0.) then
nb = nb + 1 ! dependency
b(nb) = a(ia) ! compress

endif
enddo

for (int i; i <N; i++) {
if (a[i] > 0) {

b[j++] = a[i]; // compress
// c[i] = a[k++]; // expand

}
}
// Cross-iteration dependencies via j and k

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile for Intel® AVX-512:

ifort -c -qopt-report-file=stderr -qopt-report=3 -qopt-report-phase=vec -xmic-avx512 compress.f90
…
LOOP BEGIN at compress.f90(23,3)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15457: masked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 14.040
remark #15497: vector compress: 1

LOOP END

 Compile with –S to see new instructions in assembly code:

grep vcompress compress.s

vcompressps %zmm4, -4(%rsi,%rdx,4){%k1} #14.7 c7 stall 1
vcompressps %zmm1, -4(%rsi,%r12,4){%k1} #14.7 c5
vcompressps %zmm1, -4(%rsi,%r12,4){%k1} #14.7 c5
vcompressps %zmm4, -4(%rsi,%rdi,4){%k1} #14.7 c7 stall 1

24

Compress Loop

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Run for 1,000,000 elements, repeated 1000 times:
– ifort -xcore-avx2 -qopt-report=3 driver.F90 compress.f90; ./a.out

– 13 secs
– ifort -xmic-avx512 -qopt-report=3 driver.F90 compress.f90; ./a.out

– 0.8 secs
– Similar for C version

 Speed-up depends on compression factor
– Less for high compression

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products

25

Compress Loop: speed-up

Intel® Xeon Phi™ 7250 processor
1.4 GHz 68 cores
Red Hat* EL 7.2
Intel® Compiler 17.0

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Motivation for Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to race conditions

Consider the “scatter” or “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Problem if two vector lanes try to increment the same histogram bin

• Code above is wrong if any values within B[i] are duplicated
− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-op-scatter
with vector of indexes that contain conflicts

26

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

INTEL® AVX-512 Conflict Detection Instructions

The VPCONFLICT instruction detects elements
with previous conflicts in a vector of indexes

 Allows to generate a mask with a subset of elements
that are guaranteed to be conflict free

 The computation loop can be re-executed with the
remaining elements until all the indexes have been
operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

VPCONFLICT instr.
VPCONFLICT{D,Q} zmm2/mem, zmm1{k1}

VPTESTNM{D,Q} zmm2, zmm3/mem, zmm2,
k2{k1}

VPBROADCASTM{W2D,B2Q} k2, zmm1

VPLZCNT{D,Q} zmm2/mem, zmm1 {k1}

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, this does not vectorize
 Store to h is a scatter

 ih can have the same value for different values of i

 Vectorization with a SIMD directive would cause incorrect results

ifort -c -xcore-avx2 histo2.f90 -qopt-report-file=stderr -qopt-report-phase=vec
LOOP BEGIN at histo2.f90(11,4)

remark #15344: loop was not vectorized: vector dependence prevents vectorization…
remark #15346: vector dependence: assumed FLOW dependence between line 15 and line 15

LOOP END

28

Histogramming with Intel® AVX2

! Accumulate histogram of sin(x) in h
do i=1,n

y = sin(x(i)*twopi)
ih = ceiling((y-bot)*invbinw)
ih = min(nbin,max(1,ih))
h(ih) = h(ih) + 1

enddo

for (i=0; i<n; i++) {
y = sinf(x[i]*twopi);
ih = floor((y-bot)*invbinw);
ih = ih > 0 ? ih : 0;
ih = ih < nbin ? ih : nbin-1;
h[ih] = h[ih] + 1;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile for Intel® Xeon Phi™ processor x200 family:

ifort -c -xmic-avx512 histo2.f90 -qopt-report-file=stderr -qopt-report=3 –S
…
LOOP BEGIN at histo2.f90(11,4)

remark #15300: LOOP WAS VECTORIZED
remark #15458: masked indexed (or gather) loads: 1
remark #15459: masked indexed (or scatter) stores: 1
remark #15478: estimated potential speedup: 13.930
remark #15499: histogram: 2

LOOP END

29

Histogramming with Intel® AVX-512 CD

Some remarks
omitted

vpminsd %zmm20, %zmm5, %zmm3
vpconflictd %zmm3, %zmm1
work on simd lanes without conflicts
vpgatherdd (%r13,%zmm3,4), %zmm6{%k1} # load h
vptestmd .L_2il0floatpacket.5(%rip), %zmm1, %k0
vpaddd %zmm21, %zmm6, %zmm2 #increment h
…
vpbroadcastmw2d %k1, %zmm4
vplzcntd %zmm1, %zmm4
vptestmd %zmm1, %zmm5, %k0

..B1.18 # loop over simd lanes with conflicts
kmovw %r10d, %k1
vpbroadcastmw2d %k1, %zmm4
vpermd %zmm2, %zmm0, %zmm2{%k1}
vpaddd %zmm21, %zmm2, %zmm2{%k1} #increment histo
vptestmd %zmm1, %zmm4, %k0{%k1}
kmovw %k0, %r10d
testl %r10d, %r10d
jne ..B1.18
…
vpscatterdd %zmm2, (%r13,%zmm3,4){%k1} # final store

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Run time for Intel® AVX2 (non-vectorized) : 59 secs

Intel® AVX-512 (vectorized) : 6.6 secs

Speed-up depends on problem details

• Comes mostly from vectorization of other heavy computation in the loop

• Not from the scatter itself

• Speed-up may be (much) less if there are many conflicts

• E.g. histograms with a singularity or narrow spike

• Similar behavior for C and Fortran versions

Other problems map to this

• E.g. energy deposition in cells in particle transport Monte Carlo simulation

30

Histogramming with Intel® AVX-512: speed-up

Intel® Xeon Phi™ 7250 processor, 1.4 GHz
Red Hat* EL 7.2
Intel® Compiler 17.0
Performance depends on many factors,
see slide 26

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Gather TO SHUFFLE (“G2S”) Optimization
or “Adjacent Gather Optimization”

for (j=0; j<n; j++) {
y[j] = x[j][1] + x[j][2] + x[j][3] + x[j][4] …

• Elements of x are adjacent in memory, but vector index is in other dimension

• Compiler generates simd loads and shuffles for x instead of gathers

• Before AVX2: gather of x[1][1], x[2][1], x[3][1], x[4][1],…

• With AVX-512: SIMD loads of x[1][1], x[1][2], x[1][3], x[1][4] etc.,
followed by permutes to get back to x[1][1], x[2][1], x[3][1], x[4][1] etc.

• Message in optimization report:

remark #34029: adjacent sparse (indexed) loads optimized for speed

• Large arrays of short vectors or structs are very common

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

G2S Example - ARRAY OF STRUCTURES

float sumsq(struct Point *ptvec, int n) {
float t_sum = 0;
int i;

// #pragma omp simd reduction(+:t_sum)
// #pragma vector nog2s

for (i = 0; i < n; i++) { // loop over points
t_sum += ptvec[i].x * ptvec[i].x;
t_sum += ptvec[i].y * ptvec[i].y;
t_sum += ptvec[i].z * ptvec[i].z;

#ifdef VEC4
t_sum += ptvec[i].t * ptvec[i].t;

#endif
}

return t_sum;
}

struct Point {
float x;
float y;
float z;

#ifdef VEC4
float t;

#endif
};

Calculate sum of squares
of components of a vector

Driver loops 100000 times over
an array of 10000 points

32

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

G2S EXAMPLE

From the version 15 compiler optimization report: (15.0.7.235)

$ icc -xmic-avx512 -qopt-report=4 test_g2s.c sumsq.c

LOOP BEGIN at sumsq.c(9,9)
remark #15415: vectorization support: gather was generated for the variable ptvec: strided by 3 [sumsq.c(10,22)]
remark #15415: vectorization support: gather was generated for the variable ptvec: strided by 3 [sumsq.c(10,35)]

…
remark #15300: LOOP WAS VECTORIZED

remark #15460: masked strided loads: 6
LOOP END

Problem: pt[0].x, pt[1].x and pt[2].x are not adjacent in memory

  gather instructions are generated (slow)

pt[0].x, pt[0].y and pt[0].z are adjacent in memory, but we’re not vectorizing in this dimension

 Much better to vectorize loop over many points than loop over 3 components

Run time 1.5 secs

33

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Can we do better?

pt[0].x pt[0].y pt[0].z …

pt[1].x pt[1].y pt[1].z …

pt[2].x pt[2].y pt[2].z …

… … … …

SIMD load (unit stride) V
e

cto
rize

d
 

lo
o

p
 in

d
e

x i

Transpose using Intel® AVX-512 permute instructions, vperm…
Enables unit stride SIMD loads as well as SIMD arithmetic
Supported in version 16 and 17 compilers

L
o

a
d

s th
is w

a
y



w
o

u
ld

 h
a

v
e

h

a
d

 strid
e

 3

34

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

G2S Example:

From the version 17 compiler optimization report:

Compiler options: -xmic-avx512 -qopt-report=4

LOOP BEGIN at sumsq.c(9,9)
remark #15415: vectorization support: non-unit strided load was generated for the variable <ptvec->x[i]>, stride is 3

…
remark #15305: vectorization support: vector length 16

remark #15300: LOOP WAS VECTORIZED
remark #15452: unmasked strided loads: 6

…

Report from: Code generation optimizations [cg]

sumsq.c(10,22):remark #34030: adjacent sparse (strided) loads optimized for speed.
Details: stride { 12 }, types { F32-V512, F32-V512, F32-V512 }, number of elements { 16 }, select mask { 0x000000007 }.
…

Run time 0.7 seconds

 Disable G2S with #pragma nog2s, to confirm it is responsible

 Run time reverts to 1.5 secs

35

Intel® Xeon Phi™ 7250 processor, 1.4 GHz
Red Hat* EL 7.2
Intel® Compiler 17.0
Performance depends on many factors,
see slide 26

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A Bigger Struct

Suppose our points have 4 dimensions, not 3 (compile with -DVEC4)

 By default, compiler constructs and vectorizes an inner loop over components

LOOP BEGIN at sumsq.c(9,9)
remark #15542: loop was not vectorized: inner loop was already vectorized

…
LOOP BEGIN at sumsq.c(14,13)

…
remark #15305: vectorization support: vector length 4
remark #15427: loop was completely unrolled
remark #15301: MATERIALIZED LOOP WAS VECTORIZED

Run time 1.9 secs

 Inner loop trip count is short; better to vectorize outer loop

36

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A Bigger Struct: outer loop vectorization

To enforce vectorization of outer loop, use:

#pragma omp simd reduction(+:t_sum)

icc -xmic-avx512 -qopenmp-simd -qopt-report=4 -DVEC4 test_g2s.c sumsq.c

LOOP BEGIN at sumsq.c(9,9)

remark #15415: vectorization support: non-unit strided load was generated for the variable <ptvec->x[i]>, stride is 4

remark #15305: vectorization support: vector length 16

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

remark #15452: unmasked strided loads: 8

…

Report from: Code generation optimizations [cg]

sumsq.c(10,22):remark #34030: adjacent sparse (strided) loads optimized for speed. Details: stride { 16 }, types { F32-
V512, F32-V512, F32-V512, F32-V512 }, number of elements { 16 }, select mask { 0x00000000F }.

We have outer loop vectorization back, followed by the G2S optimization

 Run time 0.8 secs

37

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FROM Intel® SSE or INTEL® AVX to Intel®AVX-512:
Setting Expectations

Doubling or quadrupling the vector length to 512 bits can boost application
performance, but typically by less than 2x or 4x

 Applications have scalar sections, so are subject to Amdahl’s Law

 Some applications are limited by access to data
– If throughput bound, high bandwidth memory may help

– If latency bound, prefetching may help

 Loops may need larger trip counts to get full benefit

But gains from newly vectorized loops can be large (new instructions!)

 SIMD directives not yet applicable to new vector loop types

 Working on new clauses…

Application hotspots may change

38

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

Hardware prefetcher is more effective than for KNC

Software (compiler-generated) prefetching is off by default
 Like for Intel® Xeon® processors

 Enable by -qopt-prefetch=[1-5]

KNL has gather/scatter prefetch

 Enable auto-generation to L2 with -qopt-prefetch=5
 Along with all other types of prefetch, in addition to h/w prefetcher – careful.

 Or hint for specific prefetches
 !DIR$ PREFETCH var_name [: type : distance]
 Needs at least -qopt-prefetch=2

 Or call intrinsic
 _mm_prefetch((char *) &a[i], hint); C
 MM_PREFETCH(A, hint) Fortran

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Gather Prefetch Example

void foo(int n, int* A, int *B, int *C) {
// pragma_prefetch var:hint:distance

#pragma prefetch A:1:3 // prefetch to L2 cache 3 iterations ahead
#pragma vector aligned
#pragma simd
for(int i=0; i<n; i++)
C[i] = A[B[i]];

}
icc -O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S emre5.cpp

remark #25033: Number of indirect prefetches=1, dist=2
remark #25035: Number of pointer data prefetches=2, dist=8
remark #25150: Using directive-based hint=1, distance=3 for indirect memory reference [emre5.cpp(…
remark #25540: Using gather/scatter prefetch for indirect memory reference, dist=3 [emre5.cpp(9,12)]
remark #25143: Inserting bound-check around lfetches for loop

% grep gatherpf emre5.s
vgatherpf1dps (%rsi,%zmm0){%k1} #9.12 c7 stall 2

% grep prefetch emre5.s
mark_description "-O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S -g";

prefetcht0 512(%r9,%rcx) #9.14 c1
prefetcht0 512(%r9,%r8) #9.5 c7

Adapting software to make best use of KNL MCDRAM

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

API is open-sourced (BSD licenses)
 https://github.com/memkind ; also part of XPPSL at

https://software.intel.com/articles/xeon-phi-software

 User jemalloc API underneath

 http://www.canonware.com/jemalloc/

 https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-
using-jemalloc/480222803919

malloc replacement:

42

High Bandwidth On-Package Memory API

#include <memkind.h>

hbw_check_available()

hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)

hbw_free()

hbw_posix_memalign(), _posix_memalign_psize()

hbw_get_policy(), _set_policy()

ld … -ljemalloc –lnuma –lmemkind –lpthread

https://github.com/memkind
https://software.intel.com/articles/xeon-phi-software
http://www.canonware.com/jemalloc/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fortran:

!DIR$ ATTRIBUTES FASTMEM :: data_object1,
 Flat or hybrid mode only

 More Fortran data types may be supported eventually

 Global, local, stack or heap;

 Currently just allocatable arrays (16.0) and pointers (17.0)

 OpenMP private copies: preview in 17.0 update 1

 Must remember to link with libmemkind !

Possible addition in a future compiler:
 Placing FASTMEM directive before ALLOCATE statement

 Instead of ALLOCATABLE declaration

C++: can pass hbw_malloc() etc.

standard allocator replacement for e.g. STL like
#include <hbw_allocator.h>

std::vector<int, hbw::allocator::allocate>

Available already, working on documentation

43

HBW API for Fortran, C++

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Fortran 2003 C-interoperability features to call memkind API

interface
function hbw_check_available() result(avail) bind(C,name='hbw_check_available')
use iso_c_binding
implicit none
integer(C_INT) :: avail

end function hbw_check_available
end interface

integer :: istat
istat = hbw_check_available()
if (istat == 0) then

print *, HBM available'
else
print *, 'ERROR, HBM not available, return code=', istat

end if

44

HBW APIs (Fortran)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <memkind.h>

int hbw_get_size(int partition, size_t * total, size_t * free) { // partition=1 for HBM
memkind_t kind;

int stat = memkind_get_kind_by_partition(partition, &kind);
if(stat==0) stat = memkind_get_size(kind, total, free);
return stat;

}

Fortran interface:
interface

function hbw_get_size(partition, total, free) result(istat) bind(C, name='hbw_get_size')
use iso_c_binding
implicit none
integer(C_INT) :: istat
integer(C_INT), value :: partition
integer(C_SIZE_T) :: total, free

end function hbw_get_size
end interface

HBM doesn’t show as “used” until first access after allocation

45

How much HBM is left?

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Happens if HBW Memory is Unavailable? (Fortran)

In 16.0: silently default over to regular memory

New Fortran intrinsic in module IFCORE in 17.0:

integer(4) FOR_GET_HBW_AVAILABILITY() returns values:

 FOR_K_HBW_NOT_INITIALIZED(= 0)
 Automatically triggers initialization of internal variables
 In this case, call a second time to determine availability

 FOR_K_HBW_AVAILABLE (= 1)

 FOR_K_HBW_NO_ROUTINES (= 2) e.g. because libmemkind not linked

 FOR_K_HBW_NOT_AVAILABLE (= 3)

 does not distinguish between HBW memory not present; too little HBW available;
and failure to set MEMKIND_HBW_NODES

New RTL diagnostics when ALLOCATE to fast memory cannot be honored:
183/4 warning/error libmemkind not linked
185/6 warning/error HBW memory not available
Severe errors 184, 186 may be returned in STAT field of ALLOCATE statement

46

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Controlling What Happens if HBM is Unavailable (Fortran)

In 16.0: you can’t

New Fortran intrinsic in module IFCORE in 17.0:
integer(4) FOR_SET_FASTMEM_POLICY(new_policy)

input arguments:

 FOR_FASTMEM_INFO (= 0) return current policy unchanged

 FOR_FASTMEM_NORETRY (= 1) error if unavailable (default)

 FOR_FASTMEM_RETRY_WARN (= 2) warn if unavailable, use default memory

 FOR_FASTMEM_RETRY (= 3) if unavailable, silently use default memory

 returns previous HBW policy

Environment variables (to be set before program execution):

 FOR_FASTMEM_NORETRY =T/F default False
 FOR_FASTMEM_RETRY =T/F default False
 FOR_FASTMEM_RETRY_WARN =T/F default False

47

Getting consistent floating-point results when moving to the Intel® Xeon Phi™ x200
processor family from Intel® Xeon® processors or from Intel® Xeon Phi™ x100
Coprocessors

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Floating-Point Reproducibility

-fp-model precise disables most value-unsafe optimizations
(especially reassociations)

 The primary way to get consistency between different platforms (including KNL)
or different optimization levels

 Does not prevent differences due to:

 Different implementations of math functions

 Use of fused multiply-add instructions (FMAs)

 Floating-point results on Intel® Xeon Phi™ x100 coprocessors may not be
bit-for-bit identical to results obtained on Intel® Xeon® processors or on KNL

49

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization of loops containing transcendental functions

Fast, approximate division and square roots

Flush-to-zero of denormals

Vectorization of reduction loops

Other reassociations

(including hoisting invariant expressions out of loops)

Evaluation of constant expressions at compile time

…

50

Disabled by -fp-model precise

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math functions

Implementation of math functions may differ between different processors

 For consistency of math functions between KNL and Intel® Xeon® processors, use

-fimf-arch-consistency=true for both

 Not available for KNC

 -fp-model precise (or -fimf-precision=high) should get you close

 These options come at a cost in performance

51

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

The most common cause of differences between Intel® Xeon® processors
and Intel® Xeon Phi™ x100 coprocessors or KNL

 Not disabled by -fp-model precise

 Can disable for testing with -no-fma

 Or by function-wide pragma or directive:

#pragma float_control(fma,off)

!dir$ nofma

 With some impact on performance

 -fp-model strict disables FMAs, amongst other things

 But on KNC, results in non-vectorizable x87 code

 The fma() intrinsic in C should always give a result with a single rounding, even
on processors with no FMA instruction

52

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

Can cause issues even when both platforms support them
(e.g. Haswell and KNL)

 Optimizer may not generate them in the same places

 No language rules

 FMAs may break the symmetry of an expression:

c = a; d = -b;
result = a*b + c*d; (= 0 if no FMAs)

If FMAs are supported, the compiler may convert to either

result = fma(c, d, (a*b)) or result = fma(a, b, (c*d))

Because of the different roundings, these may give results that are non-zero
and/or different from each other.

53

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Other Differences

-fp-model fast=2 enables some more aggressive optimizations for
Intel® MIC™ Architecture

 Faster in-lined versions of some math functions

 May not give standard behavior for extreme or exceptional arguments

 Assumes smaller dynamic range for complex numbers, so does not protect
against overflows, e.g. in complex division (same as on Intel® Xeon® processors)

Can unmask and trap floating-point exceptions on KNL (not KNC)

 -fpe0 -traceback (Fortran) or -fp-trap=common (C/C++)

54

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

To get consistent results between KNL and Intel® Xeon®
processors, use

-fp-model precise -fimf-arch-consistency=true -no-fma

(you could try omitting -no-fma for Xeon processors that support FMA,
but FMA’s could still possibly lead to differences)

In the 17.0 compiler, this can be done with a single switch:

 -fp-model consistent

To get consistent results that are as close as possible between KNC and
Intel® Xeon® processors or KNL, try

-fp-model precise -no-fma on both.

55

Bottom Line for FP consistency

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Resources

https://software.intel.com/articles/xeon-phi-software

https://software.intel.com/articles/intel-xeon-phi-coprocessor-code-named-knights-landing-
application-readiness

https://software.intel.com/sites/default/files/managed/4c/1c/parallel_mag_issue20.pdf

https://github.com/memkind

https://software.intel.com/articles/consistency-of-floating-point-results-using-the-intel-compiler

Intel® Compiler User and Reference Guides:
https://software.intel.com/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/intel-fortran-compiler-17.0-user-and-reference-guide

Compiler User Forums at http://software.intel.com/forums

Intel® Compiler Support at https://servicetickets.intel.com

56

https://software.intel.com/articles/xeon-phi-software
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
https://software.intel.com/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/intel-fortran-compiler-17.0-user-and-reference-guide
http://software.intel.com/forums
https://servicetickets.intel.com/

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Resources (Optimization)
Webinars:
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-webinar-code-samples
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops

Vectorization Guide (C):

https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:
https://software.intel.com/articles/vectorization-essential

https://software.intel.com/articles/fortran-array-data-and-arguments-and-vectorization

Compiler User Forums at http://software.intel.com/forums

Intel® Compiler Support at https://servicetickets.intel.com

57

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-webinar-code-samples
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
http://software.intel.com/forums
https://servicetickets.intel.com/

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, Core and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

5858

