SPI, mapping, and site ordering in Lattice QCD code on Mira

Heechang Na and James Osborn
Argonne Leadership Computing Facility, ANL
Outline

• Motivation
 • QCD and lattice QCD
 • Ising model and lattice QCD

• Communications with SPI
 • Resource structure
 • qspi
 • Benchmarks

• Mapping
• Site ordering
• Overall benchmarks
Motivation: QCD and Lattice QCD

- **QCD**: Quantum Chromodynamics
- **The Standard Model**
 - Electro-magnetic force (QED)
 - Strong force (QCD)
 - Weak force
- **Lattice QCD**
 - Realization of QCD in a finite grid (lattice)
 - Provide numerical solutions for non-perturbative quantities.
- Applications on **high energy particle physics** (flavor physics, spectroscopy, beyond the Standard Model, etc) and **nuclear physics** (periodic table, quark-gluon plasma, equation of state of QCD, etc..)
• **Motivation: Ising model and Lattice QCD**

 • **Ising model** is a model for **ferromagnetism**.
 • Local spin interaction model in **quantum mechanics**.
 • **Monte Carlo method** can be used for numerical study.

\[
H = -\sum J_{ij} \sigma_i \sigma_j - \sum h_j \sigma_j
\]

\[
L = \bar{\psi}_i (i\gamma^\mu D_\mu - m) \psi_j - \frac{1}{4} G_{\mu\nu} G^{\mu\nu}
\]

• **Lattice QCD** provides numerical solutions for QCD (Quantum Chromodynamics)

• **QCD** is a **local Quantum field theory**.
• **Monte Carlo method** is the main method of Lattice QCD.
• Motivation: Ising model and Lattice QCD
 • Local interactions are important.
 • Communications between near neighbor are more important
 • All boundaries are sending messages at the same time
 -> Better latency -> MU SPI communication
 • Reducing the surface area and number of hops for each message
 -> mapping
 • Reducing the number of chunks of memory -> site ordering

• Ising model:
 • Two column vector at each site (up or down)

• Lattice QCD:
 • Bosonic field: 3x3 complex matrix times 4 directions
 • Fermionic field: 3x3x4x4 complex matrix times N flavors
 • Typical size of lattice: $96^3 \times 192$, typical size of the matrix: $(4 \times 10^9)^2$
• **Communications with the Message Unit (MU) SPI**

• Resource structure in a node:
 - 16+1 groups, 4 sub-groups per group: 64 sub-groups per node
 - 8 FIFOs per sub-groups: 32 FIFOs per group or 512 FIFOs per node
 - same numbers of injection FIFOs and reception FIFOs

• **5D torus network: 10 optical cables**
 - 10 FIFOs per process would be optimal.
 - For c64 mode, one process has 8 FIFOs.
 - And, have to think about MPI

• **MU SPI provides:**
 - Point-to-point network
 - Collective network
 - Memory fifo, direct put, and remote get for each network
 - We utilize the point-to-point direct put for our qsipi communication library.
• **qspi communication library**

 - void qspi_init(void);
 - allocate FIFOs and base address tables
 - void qspi_set_send(int dest, void *buf, size_t size, qspi_msg_t send_msg);
 - void qspi_set_recv(int src, void *buf, size_t size, qspi_msg_t recv_msg);
 - prepare the handle variables
 - void qspi_prepare(qspi_msg_t msgs[], int num);
 - exchange the handles between senders and receivers (using MPI)
 - set the descriptors
 - void qspi_start(qspi_msg_t msg);
 - inject the descriptors
 - void qspi_wait(qspi_msg_t msg);
 - waiting until zero receive counter
 - void qspi_finalize(void);
Benchmarks between qspi and MPI

- Ping-pong between the nearest neighbors in c1 mode
 - Latency: qspi: 0.6 micro-sec, MPI: 3 micro-sec
• Benchmarks between qspi and MPI
 • Ping-pong between the nearest neighbors in c1 mode
 • Latency: qspi: 0.6 micro-sec, MPI: 3 micro-sec

 ![Graph showing speed up vs data size for qspi and MPI benchmarks. The graph indicates a decreasing trend in speed up with increasing data size.]
- Benchmarks between qspi and MPI

- 5D exchange in c1 mode

 - Latency: qspi: 2.3 micro-sec, MPI: 19 micro-sec
- Benchmarks between qspi and MPI
- 5D exchange in c1 mode
 - Latency: qspi: 2.3 micro-sec, MPI: 19 micro-sec
• Benchmarks between qspi and MPI

• 5D exchange in c64 mode

• Latency: qspi: 3.6 micro-sec, MPI: 55 micro-sec
• Mapping strategy for Lattice QCD

• Reducing the **surface volume** at the boundaries and the **number of hops** for each message are desirable.

• Proper mapping can reduce the surface volume and the number of hops.

 • For example, 2D mapping with 4 ranks/node:

```plaintext
  [Diagram showing re-mapping from a linear arrangement to a 2D grid]
```
Site ordering strategy for Lattice QCD

- Proper site ordering can reduce the number of fragmentations of sending messages.
- This is particularly important for the communications at the boundaries.
 - For example, site ordering of a 2D lattice:
• **Overall banchmarks**

• HISQ solver in the USQCD SciDAC modules
 - 12^4 volume/node on 128 nodes

<table>
<thead>
<tr>
<th>qspi</th>
<th>Mapping</th>
<th>mode</th>
<th>Gflops/node</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔️</td>
<td>c32</td>
<td>11.7</td>
</tr>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>c64</td>
<td>12.9</td>
</tr>
<tr>
<td>✔</td>
<td>✔️</td>
<td>c32</td>
<td>13.8</td>
</tr>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>c64</td>
<td>18.1</td>
</tr>
</tbody>
</table>