
www.hdfgroup.org

The HDF Group

A Brief Introduction to
Parallel HDF5

May 21, 2015 Mira Performance Boot Camp

Quincey Koziol & Scot Breitenfeld
The HDF Group

koziol@hdfgroup.org, brtnfld@hdfgroup.org

1

http://bit.ly/ParallelHDF5-MPBC-2015

www.hdfgroup.org

Recent Parallel HDF5 Success Story

•  Performance of VPIC-IO on NCSA Blue Waters
•  I/O Kernel of a Plasma Physics application

•  56 GB/s I/O rate in writing 5TB data using 5K
cores with multi-dataset write optimization

•  VPIC-IO kernel running on 298,048 cores
•  ~10 Trillion particles
•  291 TB, single file
•  1 GB stripe size and 160 Lustre OSTs
•  52 GB/s
•  53% of the “practical” peak performance

May 21, 2015 Mira Performance Boot Camp 2

http://bit.ly/ParallelHDF5-MPBC-2015

www.hdfgroup.org

Outline

•  Quick Intro to HDF5
•  Overview of Parallel HDF5 design
•  Parallel Consistency Semantics
•  PHDF5 Programming Model
•  Examples
•  Performance Analysis
•  Parallel Tools
•  Details of upcoming features of HDF5

May 21, 2015 Mira Performance Boot Camp 3

http://bit.ly/ParallelHDF5-MPBC-2015

www.hdfgroup.org

QUICK INTRO TO HDF5

May 21, 2015 Mira Performance Boot Camp 4

www.hdfgroup.org

What is HDF5?

May 21, 2015 Mira Performance Boot Camp 5

•  HDF5 == Hierarchical Data Format, v5

•  A flexible data model
•  Structures for data organization and specifica"on	

•  Open source software
•  Works with data in the format

•  Open file format	

•  Designed for high volume or complex data

http://bit.ly/ParallelHDF5-MPBC-2015

www.hdfgroup.org

What is HDF5, in detail?

•  A versatile data model that can represent very complex
data objects and a wide variety of metadata.

•  An open source software library that runs on a wide
range of computational platforms, from cell phones to
massively parallel systems, and implements a high-level
API with C, C++, Fortran, and Java interfaces.

•  A rich set of integrated performance features that allow
for access time and storage space optimizations.

•  Tools and applications for managing, manipulating,
viewing, and analyzing the data in the collection.

•  A completely portable file format with no limit on the
number or size of data objects stored.

May 21, 2015 6 Mira Performance Boot Camp

http://bit.ly/ParallelHDF5-MPBC-2015

www.hdfgroup.org

HDF5 is like …

May 21, 2015 Mira Performance Boot Camp 7

www.hdfgroup.org

Why use HDF5?

•  Challenging data:
•  Application data that pushes the limits of what can be

addressed by traditional database systems, XML
documents, or in-house data formats.

•  Software solutions:
•  For very large datasets, very fast access requirements,

or very complex datasets.
•  To easily share data across a wide variety of

computational platforms using applications written in
different programming languages.

•  That take advantage of the many open-source and
commercial tools that understand HDF5.

•  Enabling long-term preservation of data.

May 21, 2015 8 Mira Performance Boot Camp

www.hdfgroup.org

Who uses HDF5?

•  Examples of HDF5 user communities
•  Astrophysics
•  Astronomers
•  NASA Earth Science Enterprise
•  US Dept. of Energy Labs
•  Supercomputing Centers in US, Europe and Asia
•  Synchrotrons and Light Sources in US and Europe
•  Financial Institutions
•  NOAA
•  Engineering & Manufacturing Industries
•  Many others

•  For a more detailed list, visit
•  http://www.hdfgroup.org/HDF5/users5.html

May 21, 2015 9 Mira Performance Boot Camp

www.hdfgroup.org

The HDF Group

•  Established in 1988
•  18 years at University of Illinois’ National Center for

Supercomputing Applications
•  8 years as independent non-profit company:

“The HDF Group”
•  The HDF Group owns HDF4 and HDF5

•  HDF4 & HDF5 formats, libraries, and tools are open
source and freely available with BSD-style license

•  Currently employ 37 people
•  Always looking for more developers!

May 21, 2015 10 Mira Performance Boot Camp

www.hdfgroup.org

HDF5 Technology Platform

•  HDF5 Abstract Data Model
•  Defines the “building blocks” for data organization and

specification
•  Files, Groups, Links, Datasets, Attributes, Datatypes,

Dataspaces

•  HDF5 Software
•  Tools
•  Language Interfaces
•  HDF5 Library

•  HDF5 Binary File Format
•  Bit-level organization of HDF5 file
•  Defined by HDF5 File Format Specification

11 May 21, 2015 Mira Performance Boot Camp

www.hdfgroup.org May 21, 2015 12

HDF5 Data Model

•  File – Container for objects
•  Groups – provide structure among objects
•  Datasets – where the primary data goes

•  Data arrays
•  Rich set of datatype options
•  Flexible, efficient storage and I/O

•  Attributes, for metadata

Everything else is built essentially from
these parts.

Mira Performance Boot Camp

www.hdfgroup.org May 21, 2015 13

Structures to organize objects

palette	

Raster	
 image	

3-­‐D	
 array	

2-­‐D	
 array	
 Raster	
 image	

lat	
 |	
 lon	
 |	
 temp	

-­‐-­‐-­‐-­‐|-­‐-­‐-­‐-­‐-­‐|-­‐-­‐-­‐-­‐-­‐	

	
 12	
 |	
 	
 23	
 |	
 	
 3.1	

	
 15	
 |	
 	
 24	
 |	
 	
 4.2	

	
 17	
 |	
 	
 21	
 |	
 	
 3.6	

Table	

“/” (root)	

“/TestData”	

“Groups”

“Datasets”

Mira Performance Boot Camp

www.hdfgroup.org

HDF5 Dataset

May 21, 2015 14

• 	
 HDF5 datasets organize and contain data elements.
• 	
 HDF5	
 datatype	
 describes	
 individual	
 data	
 elements.	

• 	
 HDF5	
 dataspace	
 describes	
 the	
 logical	
 layout	
 of	
 the	
 data	
 elements.	

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of
identically typed data elements

Specifications for single data
element and array dimensions

3
Rank

Dim[2] = 7

Dimensions

Dim[0] = 4
Dim[1] = 5

HDF5 Dataspace

Mira Performance Boot Camp

www.hdfgroup.org

HDF5 Attributes

•  Typically contain user metadata
•  Have a name and a value
•  Attributes “decorate” HDF5 objects

•  Value is described by a datatype and a dataspace
•  Analogous to a dataset, but do not support

partial I/O operations; nor can they be compressed
or extended

	

May 21, 2015 15 Mira Performance Boot Camp

www.hdfgroup.org

HDF5 Technology Platform

•  HDF5 Abstract Data Model
•  Defines the “building blocks” for data organization and

specification
•  Files, Groups, Links, Datasets, Attributes, Datatypes,

Dataspaces

•  HDF5 Software
•  Tools
•  Language Interfaces
•  HDF5 Library

•  HDF5 Binary File Format
•  Bit-level organization of HDF5 file
•  Defined by HDF5 File Format Specification

16 May 21, 2015 Mira Performance Boot Camp

www.hdfgroup.org

HDF5 Software Distribution

HDF5 home page: http://hdfgroup.org/HDF5/
•  Latest release: HDF5 1.8.15

HDF5 source code:
•  Written in C, and includes optional C++, Fortran 90

APIs, and High Level APIs
•  Contains command-line utilities (h5dump, h5repack,

h5diff, ..) and compile scripts
HDF5 pre-built binaries:

•  When possible, includes C, C++, F90, and High Level
libraries. Check ./lib/libhdf5.settings file.

•  Built with and require the SZIP and ZLIB external libraries

May 21, 2015 Mira Performance Boot Camp 17

www.hdfgroup.org

The General HDF5 API

•  C, Fortran, Java, C++, and .NET bindings
•  IDL, MATLAB, Python (h5py, PyTables)
•  C routines begin with prefix H5?

 ? is a character corresponding to the type of object the
function acts on

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

May 21, 2015 Mira Performance Boot Camp 18

	
 	
 	
 	
 	
 	
 Example Interfaces:

 H5D : Dataset interface e.g., H5Dread

 H5F : File interface e.g., H5Fopen
 H5S : dataSpace interface e.g., H5Sclose

www.hdfgroup.org

The HDF5 API

•  For flexibility, the API is extensive
ü  300+ functions

•  This can be daunting… but there is hope
ü A few functions can do a lot
ü Start simple
ü Build up knowledge as more features are needed

May 21, 2015 Mira Performance Boot Camp 19

Victorinox
Swiss Army
Cybertool 34

www.hdfgroup.org

General Programming Paradigm

•  Object is opened or created
•  Object is accessed, possibly many times
•  Object is closed

•  Properties of object are optionally defined
ü Creation properties (e.g., use chunking storage)
ü Access properties

May 21, 2015 Mira Performance Boot Camp 20

www.hdfgroup.org

Basic Functions

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create Dataspace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close Dataspace

H5Fclose close File

	
 	
 	
 	
 	

May 21, 2015 Mira Performance Boot Camp 21

www.hdfgroup.org

Useful Tools For New Users

May 21, 2015 Mira Performance Boot Camp 22

www.hdfgroup.org

OVERVIEW OF PARALLEL
HDF5 DESIGN

May 21, 2015 Mira Performance Boot Camp 23

www.hdfgroup.org

•  Parallel HDF5 should allow multiple
processes to perform I/O to an HDF5 file at
the same time
•  Single file image for all processes
•  Compare with one file per process design:

•  Expensive post processing
• Not usable by different number of processes
•  Too many files produced for file system

•  Parallel HDF5 should use a standard
parallel I/O interface

•  Must be portable to different platforms

Parallel HDF5 Requirements

May 21, 2015 Mira Performance Boot Camp 24

www.hdfgroup.org

Design requirements, cont

•  Support Message Passing Interface
(MPI) programming

•  Parallel HDF5 files compatible with
serial HDF5 files
• Shareable between different serial or

parallel platforms

May 21, 2015 Mira Performance Boot Camp 25

www.hdfgroup.org

Design Dependencies

•  MPI with MPI-IO
• MPICH, OpenMPI
• Vendor’s MPI

•  Parallel file system
•  IBM GPFS
• Lustre
• PVFS

May 21, 2015 Mira Performance Boot Camp 26

www.hdfgroup.org

PHDF5 implementation layers

HDF5 Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk
May 21, 2015 Mira Performance Boot Camp 27

www.hdfgroup.org

MPI-IO VS. HDF5

May 21, 2015 Mira Performance Boot Camp 28

www.hdfgroup.org

MPI-IO

•  MPI-IO is strictly an I/O API
•  It treats the data file as a “linear byte

stream” and each MPI application needs
to provide its own file and data
representations to interpret those bytes

May 21, 2015 Mira Performance Boot Camp 29

www.hdfgroup.org

MPI-IO

•  All data stored are machine dependent
except the “external32” representation

•  External32 is defined in Big Endianness
•  Little-endian machines have to do the data

conversion in both read or write operations
•  64-bit sized data types may lose

information

May 21, 2015 Mira Performance Boot Camp 30

www.hdfgroup.org

MPI-IO vs. HDF5

•  HDF5 is data management software
•  It stores data and metadata according

to the HDF5 data format definition
•  HDF5 file is self-describing

•  Each machine can store the data in its own
native representation for efficient I/O
without loss of data precision

•  Any necessary data representation
conversion is done by the HDF5 library
automatically

May 21, 2015 Mira Performance Boot Camp 31

www.hdfgroup.org

PARALLEL HDF5
CONSISTENCY SEMANTICS

May 21, 2015 Mira Performance Boot Camp 32

www.hdfgroup.org

Consistency Semantics

•  Consistency Semantics: Rules that define the
outcome of multiple, possibly concurrent,
accesses to an object or data structure by one
or more processes in a computer system.

May 21, 2015 Mira Performance Boot Camp 33

www.hdfgroup.org

Parallel HDF5 Consistency Semantics

•  Parallel HDF5 library defines a set of
consistency semantics to let users know what
to expect when processes access data
managed by the library.
•  When the changes a process makes are

actually visible to itself (if it tries to read back
that data) or to other processes that access the
same file with independent or collective I/O
operations

May 21, 2015 Mira Performance Boot Camp 34

www.hdfgroup.org

Parallel HDF5 Consistency Semantics

•  Same as MPI-I/O semantics

•  Default MPI-I/O semantics doesn’t guarantee
atomicity or sequence of above calls!

•  Problems may occur (although we haven’t
seen any) when writing/reading HDF5
metadata or raw data

Process 0 Process 1
MPI_File_write_at()
MPI_Barrier() MPI_Barrier()

MPI_File_read_at()

May 21, 2015 Mira Performance Boot Camp 35

www.hdfgroup.org

•  MPI I/O provides atomicity and sync-barrier-
sync features to address the issue

•  PHDF5 follows MPI I/O
•  H5Fset_mpio_atomicity function to turn on

MPI atomicity
•  H5Fsync function to transfer written data to

storage device (in implementation now)

May 21, 2015 Mira Performance Boot Camp 36

Parallel HDF5 Consistency Semantics

www.hdfgroup.org

•  For more information see “Enabling a strict
consistency semantics model in parallel
HDF5” linked from the HDF5
H5Fset_mpi_atomicity Reference Manual
page1

1 http://www.hdfgroup.org/HDF5/doc/RM/Advanced/
PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf

May 21, 2015 Mira Performance Boot Camp 37

Parallel HDF5 Consistency Semantics

www.hdfgroup.org

HDF5 PARALLEL
PROGRAMMING MODEL

May 21, 2015 Mira Performance Boot Camp 38

www.hdfgroup.org

How to compile PHDF5 applications

•  h5pcc – HDF5 C compiler command
•  Similar to mpicc

•  h5pfc – HDF5 F90 compiler command
•  Similar to mpif90

•  To compile:
•  % h5pcc h5prog.c
•  % h5pfc h5prog.f90

May 21, 2015 Mira Performance Boot Camp 39

www.hdfgroup.org

Programming restrictions

•  PHDF5 opens a parallel file with an MPI
communicator
•  Returns a file ID
•  Future access to the file via the file ID
•  All processes must participate in collective

PHDF5 APIs
•  Different files can be opened via different

communicators

May 21, 2015 Mira Performance Boot Camp 40

www.hdfgroup.org

Collective HDF5 calls

•  All HDF5 APIs that modify structural
metadata are collective!
•  File operations
-  H5Fcreate,	
 H5Fopen,	
 H5Fclose,	
 etc	

•  Object creation
- 	
 H5Dcreate,	
 H5Dclose,	
 etc	

•  Object structure modification (e.g., dataset
extent modification)
-  H5Dset_extent,	
 etc	

•  http://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

May 21, 2015 Mira Performance Boot Camp 41

www.hdfgroup.org

Other HDF5 calls

•  Array data transfer can be collective or
independent
- Dataset operations: H5Dwrite,	
 H5Dread	

•  Collectiveness is indicated by function
parameters, not by function names as in MPI API

	

May 21, 2015 Mira Performance Boot Camp 42

www.hdfgroup.org

What does PHDF5 support ?

•  After a file is opened by the processes of a
communicator
•  All parts of file are accessible by all processes
•  All objects in the file are accessible by all

processes
•  Multiple processes may write to the same data

array
•  Each process may write to individual data array

May 21, 2015 Mira Performance Boot Camp 43

www.hdfgroup.org

PHDF5 API languages

•  C and F90, 2003 language interfaces
•  Most platforms with MPI-IO supported. e.g.,

•  IBM BG/x
•  Linux clusters
•  Cray

May 21, 2015 Mira Performance Boot Camp 44

www.hdfgroup.org

Programming model

•  HDF5 uses access property list to control
the file access mechanism

•  General model to access HDF5 file in
parallel:
- Set up MPI-IO file access property list
- Open File
- Access Data
- Close File

May 21, 2015 Mira Performance Boot Camp 45

www.hdfgroup.org

MY FIRST PARALLEL HDF5
PROGRAM

Moving your sequential application to the HDF5 parallel world

May 21, 2015 Mira Performance Boot Camp 46

www.hdfgroup.org

Example of Serial HDF5 C program

www.hdfgroup.org

Example of Parallel HDF5 C program

www.hdfgroup.org

WRITING PATTERNS -
EXAMPLE

May 21, 2015 Mira Performance Boot Camp 49

www.hdfgroup.org

Parallel HDF5 tutorial examples

•  For sample programs of how to write different
data patterns see:

 http://www.hdfgroup.org/HDF5/Tutor/parallel.html

May 21, 2015 Mira Performance Boot Camp 50

www.hdfgroup.org

Programming model

•  Each process defines memory and file
hyperslabs using H5Sselect_hyperslab	

•  Each process executes a write/read call using
hyperslabs defined, which can be either
collective or independent

•  The hyperslab parameters define the portion of
the dataset to write to:
- Contiguous hyperslab
- Regularly spaced data (column or row)
- Pattern
- Blocks

May 21, 2015 Mira Performance Boot Camp 51

www.hdfgroup.org

Four processes writing by rows

HDF5	
 "SDS_row.h5"	
 {	

GROUP	
 "/"	
 {	

	
 	
 	
 DATASET	
 "IntArray"	
 {	

	
 	
 	
 	
 	
 	
 DATATYPE	
 	
 H5T_STD_I32BE	
 	
 	

	
 	
 	
 	
 	
 	
 DATASPACE	
 	
 SIMPLE	
 {	
 (
 8,	
 5	
)	
 /	
 (
 8,	
 5	
)	
 }	
 	

	
 	
 	
 	
 	
 	
 DATA	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 10,	
 10,	
 10,	
 10,	
 10,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 10,	
 10,	
 10,	
 10,	
 10,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 11,	
 11,	
 11,	
 11,	
 11,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 11,	
 11,	
 11,	
 11,	
 11,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 12,	
 12,	
 12,	
 12,	
 12,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 12,	
 12,	
 12,	
 12,	
 12,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 13,	
 13,	
 13,	
 13,	
 13,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 13,	
 13,	
 13,	
 13,	
 13	

	
 	
 	
 	
 	
 	

May 21, 2015 Mira Performance Boot Camp 52

www.hdfgroup.org

Parallel HDF5 example code
71 /*
72 * Each process defines dataset in memory and writes it to the
73 * hyperslab in the file.
74 */
75 count[0] = dims[0] / mpi_size;
76 count[1] = dims[1];
77 offset[0] = mpi_rank * count[0];
78 offset[1] = 0;
79 memspace = H5Screate_simple(RANK, count, NULL);
80
81 /*
82 * Select hyperslab in the file.
83 */
84 filespace = H5Dget_space(dset_id);
85 H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, NULL,

 count, NULL);

May 21, 2015 Mira Performance Boot Camp 53

www.hdfgroup.org

Two processes writing by columns

www.hdfgroup.org

Four processes writing by pattern

www.hdfgroup.org

Four processes writing by blocks

HDF5	
 "SDS_blk.h5"	
 {	

GROUP	
 "/"	
 {	

	
 	
 	
 DATASET	
 "IntArray"	
 {	

	
 	
 	
 	
 	
 	
 DATATYPE	
 	
 H5T_STD_I32BE	
 	
 	

	
 	
 	
 	
 	
 	
 DATASPACE	
 	
 SIMPLE	
 {	
 (
 8,	
 4	
)	
 /	
 (
 8,	
 4	
)	
 }	
 	

	
 	
 	
 	
 	
 	
 DATA	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 1,	
 1,	
 2,	
 2,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 1,	
 1,	
 2,	
 2,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 1,	
 1,	
 2,	
 2,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 1,	
 1,	
 2,	
 2,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 3,	
 3,	
 4,	
 4,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 3,	
 3,	
 4,	
 4,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 3,	
 3,	
 4,	
 4,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 3,	
 3,	
 4,	
 4	

	
 	
 	
 	
 	
 	

May 21, 2015 Mira Performance Boot Camp 56

www.hdfgroup.org

Complex data patterns

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

HDF5 doesn’t have restrictions on data patterns and data balance

May 21, 2015 Mira Performance Boot Camp 57

www.hdfgroup.org

Examples of irregular selection

•  Internally, the HDF5 library creates an MPI
datatype for each lower dimension in the
selection and then combines those types into
one giant structured MPI datatype

May 21, 2015 Mira Performance Boot Camp 58

www.hdfgroup.org

PERFORMANCE ANALYSIS

May 21, 2015 Mira Performance Boot Camp 59

www.hdfgroup.org

Performance analysis

•  Some common causes of poor performance
•  Possible solutions

May 21, 2015 Mira Performance Boot Camp 60

www.hdfgroup.org

My PHDF5 application I/O is slow

“Tuning HDF5 for Lustre File Systems” by
Howison, Koziol, Knaak, Mainzer, and
Shalf1

v  Chunking and hyperslab selection
v  HDF5 metadata cache
v  Specific I/O system hints

May 21, 2015 Mira Performance Boot Camp 61

1http://www.hdfgroup.org/pubs/papers/howison_hdf5_lustre_iasds2010.pdf

www.hdfgroup.org

INDEPENDENT VS.
COLLECTIVE RAW DATA I/O

May 21, 2015 Mira Performance Boot Camp 62

www.hdfgroup.org

Collective vs. independent calls

•  MPI definition of collective calls:
•  All processes of the communicator must participate

in calls in the right order. E.g.,
•  Process1 Process2
•  call A(); call B(); call A(); call B(); **right**
•  call A(); call B(); call B(); call A(); **wrong**

•  Independent means not collective J
•  Collective is not necessarily synchronous, nor

must require communication

May 21, 2015 Mira Performance Boot Camp 63

www.hdfgroup.org

Independent vs. collective access

•  User reported
independent data
transfer mode was
much slower than
the collective data
transfer mode

•  Data array was tall
and thin: 230,000
rows by 6 columns

:
:
:

230,000 rows
:
:
:

May 21, 2015 Mira Performance Boot Camp 64

www.hdfgroup.org

Debug Slow Parallel I/O Speed(1)

•  Writing to one dataset
- Using 4 processes == 4 columns
- HDF5 datatype is 8-byte doubles
- 4 processes, 1000 rows == 4x1000x8 = 32,000

bytes
•  % mpirun -np 4 ./a.out 1000
- Execution time: 1.783798 s.

•  % mpirun -np 4 ./a.out 2000
- Execution time: 3.838858 s.

•  Difference of 2 seconds for 1000 more rows =
32,000 bytes.

•  Speed of 16KB/sec!!! Way too slow.

May 21, 2015 Mira Performance Boot Camp 65

www.hdfgroup.org

Debug slow parallel I/O speed(2)

•  Build a version of PHDF5 with
•  ./configure --enable-debug --enable-parallel …
•  This allows the tracing of MPIO I/O calls in the

HDF5 library.
•  E.g., to trace

•  MPI_File_read_xx and MPI_File_write_xx calls
•  % setenv H5FD_mpio_Debug “rw”

May 21, 2015 Mira Performance Boot Camp 66

www.hdfgroup.org

Debug slow parallel I/O speed(3)

% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 # Indep.; contiguous.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=2056 size_i=8
in H5FD_mpio_write mpi_off=2048 size_i=8
in H5FD_mpio_write mpi_off=2072 size_i=8
in H5FD_mpio_write mpi_off=2064 size_i=8
in H5FD_mpio_write mpi_off=2088 size_i=8
in H5FD_mpio_write mpi_off=2080 size_i=8
…
•  Total of 4000 of these little 8 bytes writes == 32,000 bytes.

May 21, 2015 Mira Performance Boot Camp 67

www.hdfgroup.org

Independent calls are many and small

•  Each process writes
one element of one
row, skips to next
row, write one
element, so on.

•  Each process issues
230,000 writes of 8
bytes each.

:
:
:

230,000 rows
:
:
:

May 21, 2015 Mira Performance Boot Camp 68

www.hdfgroup.org

Debug slow parallel I/O speed (4)

% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=3688 size_i=8000
in H5FD_mpio_write mpi_off=11688 size_i=8000
in H5FD_mpio_write mpi_off=27688 size_i=8000
in H5FD_mpio_write mpi_off=19688 size_i=8000
in H5FD_mpio_write mpi_off=96 size_i=40
in H5FD_mpio_write mpi_off=136 size_i=544
in H5FD_mpio_write mpi_off=680 size_i=120
in H5FD_mpio_write mpi_off=800 size_i=272
…
Execution time: 0.011599 s.

May 21, 2015 Mira Performance Boot Camp 69

www.hdfgroup.org

Use collective mode or chunked storage

•  Collective I/O will
combine many small
independent calls
into few but bigger
calls

•  Chunks of columns
speeds up too

:
:
:

230,000 rows
:
:
:

May 21, 2015 Mira Performance Boot Camp 70

www.hdfgroup.org

Collective vs. independent write

0

100

200

300

400

500

600

700

800

900

1000

0.25 0.5 1 1.88 2.29 2.75

Se
co

nd
s

to
 w

rit
e

Data size in MBs

Independent write
Collective write

May 21, 2015 Mira Performance Boot Camp 71

www.hdfgroup.org

Collective I/O in HDF5

•  Set up using a Data Transfer Property List
(DXPL)

•  All processes must participate in the I/O call
(H5Dread/write) with a selection (which could
be a NULL selection)

•  Some cases where collective I/O is not used
even when the use asks for it:
•  Data conversion
•  Compressed Storage
•  Chunking Storage:

• When the chunk is not selected by a certain
number of processes

May 21, 2015 Mira Performance Boot Camp 72

www.hdfgroup.org

Enabling Collective Parallel I/O with HDF5

/* Set up file access property list w/parallel I/O access */
fa_plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fa_plist_id, comm, info);

/* Create a new file collectively */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC,

 H5P_DEFAULT, fa_plist_id);

/* <omitted data decomposition for brevity> */

/* Set up data transfer property list w/collective MPI-IO */
dx_plist_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(dx_plist_id, H5FD_MPIO_COLLECTIVE);

/* Write data elements to the dataset */
status = H5Dwrite(dset_id, H5T_NATIVE_INT,

 memspace, filespace, dx_plist_id, data);

May 21, 2015 Mira Performance Boot Camp 73

www.hdfgroup.org

Collective I/O in HDF5

•  Can query Data Transfer Property List (DXPL)
after I/O for collective I/O status:
•  H5Pget_mpio_actual_io_mode

• Retrieves the type of I/O that HDF5 actually
performed on the last parallel I/O call

•  H5Pget_mpio_no_collective_cause
• Retrieves local and global causes that broke

collective I/O on the last parallel I/O call
•  H5Pget_mpio_actual_chunk_opt_mode

• Retrieves the type of chunk optimization that
HDF5 actually performed on the last parallel I/O
call. This is not necessarily the type of
optimization requested

May 21, 2015 Mira Performance Boot Camp 74

www.hdfgroup.org

EFFECT OF HDF5 STORAGE

May 21, 2015 Mira Performance Boot Camp 75

www.hdfgroup.org

Contiguous storage

•  Metadata header separate from dataset data
•  Data stored in one contiguous block in HDF5 file

Application memory

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

Dataset data

May 21, 2015 Mira Performance Boot Camp 76

www.hdfgroup.org

On a parallel file system

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was
created with.

May 21, 2015 Mira Performance Boot Camp 77

www.hdfgroup.org

Chunked storage

•  Data is stored in chunks of predefined size
•  Two-dimensional instance may be referred to as data

tiling
•  HDF5 library writes/reads the whole chunk

Contiguous Chunked

May 21, 2015 Mira Performance Boot Camp 78

www.hdfgroup.org

Chunked storage (cont.)

•  Dataset data is divided into equally sized blocks (chunks).
•  Each chunk is stored separately as a contiguous block in

HDF5 file.

Application memory

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

A D C B header Chunk
index

Chunk
index

A B C D

May 21, 2015 Mira Performance Boot Camp 79

www.hdfgroup.org

On a parallel file system

File A D C B

OST 1 OST 2 OST 3 OST 4

header Chunk
index

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was
created with

May 21, 2015 Mira Performance Boot Camp 80

www.hdfgroup.org

Which is better for performance?

•  It depends!!
•  Consider these selections:

•  If contiguous: 2 seeks
•  If chunked: 10 seeks

•  If contiguous: 16 seeks
•  If chunked: 4 seeks

Add to that striping over a Parallel File System, which
makes this problem very hard to solve!

May 21, 2015 Mira Performance Boot Camp 81

www.hdfgroup.org

Chunking and hyperslab selection

•  When writing or reading, try to use hyperslab
selections that coincide with chunk
boundaries.

May 21, 2015 Mira Performance Boot Camp

P2 P1 P3

82

www.hdfgroup.org

Parallel I/O on chunked datasets

•  Multiple options for performing I/O when
collective:
•  Operate on all chunks in one collective I/O

operation: “Linked chunk I/O”
•  Operate on each chunk collectively: “Multi-

chunk I/O”
•  Break collective I/O and perform I/O on each

chunk independently (also in “Multi-chunk I/O”
algorithm)

May 21, 2015 Mira Performance Boot Camp 83

www.hdfgroup.org

Linked chunk I/O

•  One MPI Collective I/O Call

May 21, 2015 Mira Performance Boot Camp 84

www.hdfgroup.org

Multi-chunk I/O

•  Collective I/O per chunk
•  Determine for each chunk if enough processes

have a selection inside to do collective I/O
•  If not enough, use independent I/O

May 21, 2015 Mira Performance Boot Camp 85

www.hdfgroup.org

Decision making

May 21, 2015 Mira Performance Boot Camp 86

www.hdfgroup.org

EFFECT OF HDF5 METADATA
CACHE

May 21, 2015 Mira Performance Boot Camp 87

www.hdfgroup.org

Parallel HDF5 and Metadata

•  Metadata operations:
•  Creating/removing a dataset, group, attribute, etc…
•  Extending a dataset’s dimensions
•  Modifying group hierarchy
•  etc …

•  All operations that modify metadata are collective,
i.e., all processes have to call that operation:
•  If you have 10,000 processes running your

application, and one process needs to create a
dataset, ALL processes must call H5Dcreate to
create 1 dataset.

May 21, 2015 Mira Performance Boot Camp 88

www.hdfgroup.org

Space allocation

•  Allocating space at the file’s EOF is very simple in
serial HDF5 applications:
•  The EOF value begins at offset 0 in the file
•  When space is required, the EOF value is

incremented by the size of the block requested.
•  Space allocation using the EOF value in parallel

HDF5 applications can result in a race condition if
processes do not synchronize with each other:
•  Multiple processes believe that they are the sole

owner of a range of bytes within the HDF5 file.
•  Solution: Make it Collective

May 21, 2015 Mira Performance Boot Camp 89

www.hdfgroup.org

Example

•  Consider this case, where 2 processes want
to create a dataset each.

P1

H5Dcreate(D1) H5Dcreate(D2)

Each call has to allocate space in file to store
the dataset header.

Bytes 4 to 10 in the file are
free

Bytes 4 to 10 in the file are
free

Conflict!
May 21, 2015 Mira Performance Boot Camp

P2

90

www.hdfgroup.org

Example

P1

H5Dcreate(D1) H5Dcreate(D1)
Allocate space in file to store the dataset header.
Bytes 4 to 10 in the file are free.

Create the dataset.

May 21, 2015

Mira Performance Boot Camp

P2

H5Dcreate(D2) H5Dcreate(D2)

Bytes 11 to 17 in the file are free.
Create the dataset.

Allocate space in file to store the dataset header.

91

www.hdfgroup.org

Metadata cache

•  To handle synchronization issues, all HDF5
operations that could potentially modify the
metadata in an HDF5 file are required to be
collective
•  A list of these routines is available in the HDF5

reference manual:
http://www.hdfgroup.org/HDF5/doc/RM/
CollectiveCalls.html

May 21, 2015 Mira Performance Boot Camp 92

www.hdfgroup.org

Managing the metadata cache

•  All operations that modify metadata in the HDF5
file are collective:
•  All processes will have the same dirty metadata

entries in their cache (i.e., metadata that is
inconsistent with what is on disk).

•  Processes are not required to have the same clean
metadata entries (i.e., metadata that is in sync with
what is on disk).

•  Internally, the metadata cache running on process
0 is responsible for managing changes to the
metadata in the HDF5 file.
•  All the other caches must retain dirty metadata until

the process 0 cache tells them that the metadata is
clean (i.e., on disk).

May 21, 2015 Mira Performance Boot Camp 93

www.hdfgroup.org

Example

E1

E2

E3

E4

E1

E7

E8

E2

E4

E6

E1

E5

E12

E32

E1

E4

P0 P1 P2 P3

•  Metadata Cache is clean for all processes:

May 21, 2015 Mira Performance Boot Camp 94

www.hdfgroup.org

Example

•  All processes call H5Gcreate that modifies
metadata entry E3 in the file:

E3

E1

E2

E4

E3

E1

E7

E8

E3

E4

E6

E1

E3

E12

E32

E1

May 21, 2015 Mira Performance Boot Camp

P0 P1 P2 P3

95

www.hdfgroup.org

Example

•  All processes call H5Dcreate that modifies
metadata entry E2 in the file:

E3

E2

E1

E4

E3

E2

E1

E7

E3

E2

E4

E6

E3

E2

E12

E32

May 21, 2015 Mira Performance Boot Camp

P0 P1 P2 P3

96

www.hdfgroup.org

Example

•  Process 0 calls H5Dopen on a dataset
accessing entry E5

E3

E2

E1

E7

E3

E2

E4

E6

E3

E2

E12

E32

E5
E3

E2

E1

May 21, 2015 Mira Performance Boot Camp

P0 P1 P2 P3

97

www.hdfgroup.org

Flushing the cache

•  Initiated when:
•  The size of dirty entries in cache exceeds a

certain threshold
•  The user calls a flush

•  The actual flush of metadata entries to disk is
currently implemented in two ways:
•  Single Process (Process 0) write
•  Distributed write

May 21, 2015 Mira Performance Boot Camp 98

www.hdfgroup.org

Single Process (Process 0) write

•  All processes enter a synchronization point.
•  Process 0 writes all the dirty entries to disk

while other processes wait
•  Process 0 marks all the dirty entries as clean
•  Process 0 broadcasts the cleaned entries to all

processes, which mark them as clean too

May 21, 2015 Mira Performance Boot Camp 99

www.hdfgroup.org

Distributed write

•  All processes enter a synchronization point.
•  Process 0 broadcasts the metadata that needs

to be flushed to all processes
•  Each process algorithmically determines which

metadata cache entries it should write, and
writes them to disk independently

•  All processes mark the flushed metadata as
clean

May 21, 2015 Mira Performance Boot Camp 100

www.hdfgroup.org

PARALLEL TOOLS

May 21, 2015 Mira Performance Boot Camp 101

www.hdfgroup.org

Parallel tools

•  h5perf
•  Performance measuring tool showing

I/O performance for different I/O APIs

May 21, 2015 Mira Performance Boot Camp 102

www.hdfgroup.org

h5perf

•  An I/O performance measurement tool
•  Tests 3 File I/O APIs:

•  POSIX I/O (open/write/read/close…)
•  MPI-I/O (MPI_File_{open,write,read,close})
•  HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose)

•  An indication of I/O speed upper limits

May 21, 2015 Mira Performance Boot Camp 103

www.hdfgroup.org

Useful parallel HDF5 links

•  Parallel HDF information site
http://www.hdfgroup.org/HDF5/PHDF5/

•  Parallel HDF5 tutorial available at
http://www.hdfgroup.org/HDF5/Tutor/

•  HDF Help email address
help@hdfgroup.org

May 21, 2015 Mira Performance Boot Camp 104

www.hdfgroup.org

UPCOMING FEATURES IN
HDF5

May 21, 2015 Mira Performance Boot Camp 105

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Multi-dataset read/write operations
•  Avoiding file truncation
•  Collective object open (avoiding “metadata

read storm”)
•  Metadata aggregation and page buffering

May 21, 2015 Mira Performance Boot Camp 106

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Multi-dataset read/write operations
•  Allows single collective operation on multiple

datasets
•  Similar to PnetCDF “write-combining” feature

•  H5Dmulti_read/write(<array of datasets,
selections, etc>)

•  Order of magnitude speedup

May 21, 2015 Mira Performance Boot Camp 107

www.hdfgroup.org

H5Dwrite vs. H5Dwrite_multi

May 21, 2015 Mira Performance Boot Camp

0
1
2
3
4
5
6
7
8
9

50 100 200 400 800

W
rit

e
tim

e
in

 s
ec

on
ds

Number of datasets

H5Dwrite
H5Dwrite_multi

Chunked floating-point datasets

Rank = 1
Dims = 200
Chunk size = 20

108

www.hdfgroup.org

H5Dwrite vs. H5Dwrite_multi

May 21, 2015 Mira Performance Boot Camp

0

1

2

3

4

5

6

7

8

9

400 800 1600 3200 6400

W
rit

e
tim

e
in

 s
ec

on
ds

Number of datasets

H5Dwrite
H5Dwrite_multi

Rank = 1
Dims = 200

Contiguous floating-point datasets

109

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Avoid file truncation
•  File format currently requires call to truncate

file, when closing
•  Expensive in parallel (MPI_File_set_size)
•  Change to file format will eliminate truncate call

May 21, 2015 Mira Performance Boot Camp 110

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Collective Object Open
•  Currently, object open is independent
•  All processes perform I/O to read metadata

from file, resulting in I/O storm at file system
•  Change will allow a single process to read, then

broadcast metadata to other processes

May 21, 2015 Mira Performance Boot Camp 111

www.hdfgroup.org

Collective Object Open Performance

May 21, 2015 Mira Performance Boot Camp 112

www.hdfgroup.org

AUTOTUNING

Research Focus -

May 21, 2015 Mira Performance Boot Camp 113

www.hdfgroup.org

Autotuning Background

•  Software Autotuning:
•  Employ empirical techniques to evaluate a set of

alternative mappings of computation kernels to an
architecture and select the mapping that obtains the
best performance.

•  Autotuning Categories:
•  Self-tuning library generators such as ATLAS, PhiPAC

and OSKI for linear algebra, etc.
•  Compiler-based autotuners that automatically generate

and search a set of alternative implementations of a
computation

•  Application-level autotuners that automate empirical
search across a set of parameter values proposed by
the application programmer

May 21, 2015 Mira Performance Boot Camp 114

www.hdfgroup.org

HDF5 Autotuning

•  Why?
•  Because the dominant I/O support request at

NERSC is poor I/O performance, many/most of
which can be solved by enabling Lustre
striping, or tuning another I/O parameter

•  Users shouldn’t have to figure this stuff out!
•  Two Areas of Focus:

•  Evaluate techniques for autotuning HPC
application I/O
•  File system, MPI, HDF5

•  Record and Replay HDF5 I/O operations
May 21, 2015 Mira Performance Boot Camp 115

www.hdfgroup.org

Autotuning HPC I/O

•  Goal: Avoid tuning each application to each
machine and file system
•  Create I/O autotuner library that can inject “optimal”

parameters for I/O operations on a given system
•  Using Darshan* tool to create wrappers for HDF5

calls
•  Application can be dynamically linked with I/O

autotuning library
•  No changes to application or HDF5 library

•  Using several HPC applications currently:
•  VPIC, GCRM, Vorpal

May 21, 2015 Mira Performance Boot Camp

* - http://www.mcs.anl.gov/research/projects/darshan/
116

www.hdfgroup.org

Autotuning HPC I/O

•  Initial parameters of interest
•  File System (Lustre): stripe count, stripe unit
•  MPI-I/O: Collective buffer size, coll. buffer

nodes
•  HDF5: Alignment, sieve buffer size

May 21, 2015 Mira Performance Boot Camp 117

www.hdfgroup.org

Autotuning HPC I/O

The$whole$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&1&1&4&

1&
MB&

1048
576&128&32&128&128&

…$ 23040$

May 21, 2015 Mira Performance Boot Camp 118

www.hdfgroup.org

Autotuning HPC I/O

•  Autotuning Exploration/Generation Process:
•  Iterate over running application many times:

•  Intercept application’s I/O calls
•  Inject autotuning parameters
• Measure resulting performance

•  Analyze performance information from many
application runs to create configuration file,
with best parameters found for application/
machine/file system

May 21, 2015 Mira Performance Boot Camp 119

www.hdfgroup.org

Autotuning HPC I/O

•  Using the I/O Autotuning Library:
•  Dynamically link with I/O autotuner library
•  I/O autotuner library automatically reads

parameters from config file created during
exploration process

•  I/O autotuner automatically injects autotuning
parameters as application operates

May 21, 2015 Mira Performance Boot Camp 120

www.hdfgroup.org

Autotuning HPC I/O

May 21, 2015 Mira Performance Boot Camp

Smallersetof$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&4&1&4&

512&5242
88&128&16&64&128&

…$ 72$

121

www.hdfgroup.org

Autotuning HPC I/O

0$

200$

400$

600$

800$

1000$

1200$

1$ 3$ 5$ 7$ 9$ 11$ 13$ 15$ 17$ 19$ 21$ 23$ 25$ 27$ 29$ 31$ 33$ 35$ 37$ 39$ 41$ 43$ 45$ 47$ 49$ 51$ 53$ 55$ 57$ 59$ 61$ 63$ 65$ 67$ 69$ 71$

Ti
m
e(
s)
&

Different&ConfiguraLons&

Result&of&Running&Our&Script&using&72&ConfiguraLon&files&on&32&Cores/1&Node&of&
Ranger&

CP_F_HDF_WRITE_TIME$

Time&=&540.08&s&
ConfiguraLon&#&=&68&

May 21, 2015 Mira Performance Boot Camp 122

www.hdfgroup.org

Autotuning HPC I/O

Configura'on$#68$

May 21, 2015 Mira Performance Boot Camp 123

www.hdfgroup.org

Autotuning in HDF5

•  “Auto-Tuning of Parallel IO Parameters for
HDF5 Applications”, Babak Behzad, et al,
poster @ SC12

•  "Taming Parallel I/O Complexity with Auto-
Tuning”, Babak Behzad, et al, SC13

May 21, 2015 Mira Performance Boot Camp 124

www.hdfgroup.org

Autotuning HPC I/O

•  Remaining research:
•  Determine “speed of light” for I/O on system

and use that to define “good enough”
performance

•  Entire space is too large to fully explore, we are
now evaluating genetic algorithm techniques to
help find “good enough” parameters

•  How to factor out “unlucky” exploration runs
•  Methods for avoiding overriding application

parameters with autotuned parameters

May 21, 2015 Mira Performance Boot Camp 125

www.hdfgroup.org

 Other HDF5 Improvements in Progress

•  Single-Writer/Multiple-Reader (SWMR)
•  Virtual Object Layer (VOL)
•  Virtual Datasets

May 21, 2015 Mira Performance Boot Camp 126

www.hdfgroup.org

Single-Writer/Multiple-Reader (SWMR)

•  Improves HDF5 for Data Acquisition:
•  Allows simultaneous data gathering and

monitoring/analysis
•  Focused on storing data sequences for

high-speed data sources
•  Supports ‘Ordered Updates’ to file:

• Crash-proofs accessing HDF5 file
•  Possibly uses small amount of extra

space

May 21, 2015 127 Mira Performance Boot Camp

www.hdfgroup.org

VIRTUAL OBJECT LAYER
(VOL)

May 21, 2015 Mira Performance Boot Camp 128

www.hdfgroup.org

Virtual Object Layer (VOL)

•  Goal
- Provide an application with the HDF5 data model

and API, but allow different underlying storage
mechanisms

•  New layer below HDF5 API
-  Intercepts all API calls that can touch the data on

disk and routes them to a VOL plugin
•  Potential VOL plugins:
- Native HDF5 driver (writes to HDF5 file)
- Raw driver (maps groups to file system directories

and datasets to files in directories)
- Remote driver (the file exists on a remote machine)

May 21, 2015 Mira Performance Boot Camp 129

www.hdfgroup.org

VOL Plugins

May 21, 2015 Mira Performance Boot Camp 130

VOL plugins

www.hdfgroup.org

Virtual Object Layer

May 21, 2015 Mira Performance Boot Camp 131

www.hdfgroup.org

Why not use the VFL?

•  VFL is implemented below the HDF5
abstract model
- Deals with blocks of bytes in the storage

container
- Does not recognize HDF5 objects nor abstract

operations on those objects
•  VOL is layered right below the API layer to

capture the HDF5 data model

May 21, 2015 Mira Performance Boot Camp 132

www.hdfgroup.org

Sample API Function Implementation

hid_t	
 H5Dcreate2	
 (hid_t	
 loc_id,	
 const	
 char	
 *name,	

hid_t	
 type_id,	
 hid_t	
 space_id,	
 hid_t	
 lcpl_id,	
 hid_t	

dcpl_id,	
 hid_t	
 dapl_id)	
 {	

/*	
 Check	
 arguments	
 */	

	
 …	

/*	
 call	
 corresponding	
 VOL	
 callback	
 for	
 H5Dcreate	
 */	

	
 dset_id	
 =	
 H5_VOL_create	
 (TYPE_DATASET,	
 …);	

/*	
 	

	
 Return	
 result	
 to	
 user	
 (yes	
 the	
 dataset	
 is	
 created,	

	
 or	
 no	
 here	
 is	
 the	
 error)	
 	

*/	

	
 return	
 dset_id;	

}	

May 21, 2015 Mira Performance Boot Camp 133

www.hdfgroup.org

CONSIDERATIONS
Work in progress: VOL

May 21, 2015 Mira Performance Boot Camp 134

www.hdfgroup.org

VOL Plugin Selection

•  Use a pre-defined VOL plugin:
hid_t	
 fapl	
 =	
 H5Pcreate(H5P_FILE_ACCESS);	

H5Pset_fapl_mds_vol(fapl,	
 …);	

hid_t	
 file	
 =	
 H5Fcreate("foo.h5",	
 …,	
 …,	
 fapl);	

H5Pclose(fapl);	

•  Register user defined VOL plugin:
H5VOLregister	
 (H5VOL_class_t	
 *cls)	

H5VOLunregister	
 (hid_t	
 driver_id)	

H5Pget_plugin_info	
 (hid_t	
 plist_id)	

May 21, 2015 Mira Performance Boot Camp 135

www.hdfgroup.org

Interchanging and Stacking Plugins

•  Interchanging VOL plugins
•  Should be a valid thing to do
•  User’s responsibility to ensure plugins coexist

•  Stacking plugins

•  Stacking should make sense.
•  For example, the first VOL plugin in a

stack could be a statistics plugin, that
does nothing but gather information on
what API calls are made and their
corresponding parameters.

May 21, 2015 Mira Performance Boot Camp 136

www.hdfgroup.org

Mirroring

•  Extension to stacking
•  HDF5 API calls are forwarded through a mirror plugin to

two or more VOL plugins

May 21, 2015 Mira Performance Boot Camp 137

www.hdfgroup.org

Sample Plugins: Metadata Server

May 21, 2015 Mira Performance Boot Camp

MDS

Compute Nodes

H5F H5D H5A
H5O H5G H5L

Metadata File

VOL

Raw Data File

HDF5 container

Application processes

138

www.hdfgroup.org

Raw Plugin

•  The flexibility of the virtual object layer
provides developers with the option to
abandon the single file, binary format like the
native HDF5 implementation.

•  A “raw” file format could map HDF5 objects
(groups, datasets, etc …) to file system objects
(directories, files, etc …).

•  The entire set of raw file system objects
created would represent one HDF5 container.

May 21, 2015 Mira Performance Boot Camp 139

www.hdfgroup.org

Remote Plugin

•  A remote VOL plugin would allow access to
files located on a server.

•  Prototyping two implementations:
•  Web-services via RESTful access:

http://www.hdfgroup.org/projects/hdfserver/
•  Native HDF5 file access over sockets:

http://svn.hdfgroup.uiuc.edu/h5netvol/trunk/

May 21, 2015 Mira Performance Boot Camp 140

www.hdfgroup.org

Implementation

•  VOL Class
- Data structure containing general variables and

a collection of function pointers for HDF5 API
calls

•  Function Callbacks
- API routines that potentially touch data on disk
- H5F, H5D, H5A, H5O, H5G, H5L, and H5T

May 21, 2015 Mira Performance Boot Camp 141

www.hdfgroup.org

Implementation

•  We will end up with a large set of function
callbacks:
•  Lump all the functions together into one data

structure OR
•  Have a general class that contains all common

functions, and then children of that class that
contain functions specific to certain HDF5
objects OR

•  For each object have a set of callbacks that are
specific to that object (This is design choice that
has been taken).

May 21, 2015 Mira Performance Boot Camp 142

www.hdfgroup.org

Filters

•  Need to keep HDF5 filters in mind
•  Where is the filter applied, before or after the

VOL plugin?
- Logical guess now would be before, to avoid

having all plugins deal with filters

May 21, 2015 Mira Performance Boot Camp 143

www.hdfgroup.org

Current status of VOL

•  ?

May 21, 2015 Mira Performance Boot Camp 144

www.hdfgroup.org

Virtual Datasets

•  Mechanism for creating a composition of multiple
source datasets, while accessing through single
virtual dataset

•  Modifications to source datasets are visible to
virtual dataset
•  And writing to virtual dataset modifies source

datasets
•  Can have subset within source dataset mapped to

subsets within virtual dataset
•  Source and virtual datasets can have unlimited

dimensions
•  Source datasets can be virtual datasets

themselves
May 21, 2015 Mira Performance Boot Camp 145

www.hdfgroup.org

Virtual Datasets, Example 1

May 21, 2015 Mira Performance Boot Camp 146

www.hdfgroup.org

Virtual Datasets, Example 2

May 21, 2015 Mira Performance Boot Camp 147

www.hdfgroup.org

Virtual Datasets, Example 3

May 21, 2015 Mira Performance Boot Camp 148

www.hdfgroup.org

HDF5 Roadmap

May 21, 2015 149

•  Concurrency
•  Single-Writer/Multiple-

Reader (SWMR)
•  Internal threading

•  Virtual Datasets
•  Virtual Object Layer (VOL)
•  Data Analysis

•  Query / View / Index APIs

•  Native HDF5 client/server

•  Performance
•  Scalable chunk indices
•  Metadata aggregation

and Page buffering
•  Asynchronous I/O
•  Variable-length

records
•  Fault tolerance
•  Parallel I/O

•  I/O Autotuning

Extreme Scale Computing HDF5

“The best way to predict the
future is to invent it.”

– Alan Kay

www.hdfgroup.org

The HDF Group

Thank You!

Questions?

May 21, 2015 Mira Performance Boot Camp 150

www.hdfgroup.org

Codename “HEXAD”

•  Excel is a great frontend with a not so great rear ;-­‐)	

•  We’ve fixed that with an HDF5 Excel Add-in
•  Let’s you do the usual things including:

•  Display content (file structure, detailed object info)
•  Create/read/write datasets
•  Create/read/update attributes

•  Plenty of ideas for bells an whistles, e.g., HDF5
image & PyTables support

•  Send in* your Must Have/Nice To Have feature list!
•  Stay tuned for the beta program * help@hdfgroup.org
May 21, 2015 151 Mira Performance Boot Camp

www.hdfgroup.org

HDF Server

•  REST-based service for HDF5 data
•  Reference Implementation for REST API
•  Developed in Python using Tornado

Framework
•  Supports Read/Write operations
•  Clients can be Python/C/Fortran or Web Page
•  Let us know what specific features you’d like to

see. E.g. VOL REST Client Plugin

May 21, 2015 152 Mira Performance Boot Camp

www.hdfgroup.org

HDF Server Architecture

May 21, 2015 153 Mira Performance Boot Camp

www.hdfgroup.org

Restless About HDF5/REST

May 21, 2015 154 Mira Performance Boot Camp

www.hdfgroup.org

HDF Compass

•  “Simple” HDF5 Viewer application
•  Cross platform (Windows/Mac/Linux)
•  Native look and feel
•  Can display extremely large HDF5 files
•  View HDF5 files and OpenDAP resources
•  Plugin model enables different file formats/

remote resources to be supported
•  Community-based development model

May 21, 2015 155 Mira Performance Boot Camp

www.hdfgroup.org

Compass Architecture

May 21, 2015 156 Mira Performance Boot Camp

www.hdfgroup.org

The Poisson Problem

•  The Poisson Problem is a simple PDE

 given on the boundary

•  Solve the Poisson equation numerically over a region
by discretizing it in the x and y directions to obtain a
grid of points

•  Compute the approximate solution values at these
points
May 21, 2015 Mira Performance Boot Camp, ANL 157

http://bit.ly/1FzDeEZ

www.hdfgroup.org

The Poisson Problem

•  We may replace the partial derivatives by
numerical approximations involving first-order
finite difference

•  We can write a Jacobi iteration as

May 21, 2015
Mira Performance Boot Camp, ANL

 158 Mira Performance Boot Camp, ANL

http://bit.ly/1FzDeEZ

www.hdfgroup.org

One-dimension Decomposition of Domain

May 21, 2015 159

 … Figure out communication and decomposition of the domain

 DO WHILE (diffnorm > tolerance)
 …..Actually do the computation
 END DO

 … After our ground breaking solution we need to save the solution

Algorithm

Mira Performance Boot Camp, ANL

http://bit.ly/1FzDeEZ

www.hdfgroup.org

Method I: One File per Process

 OPEN(10,file='oned'//ichr4//'.dat', ACCESS='STREAM')

 dx = 1.0_dp/REAL(nx, KIND=dp)
 x = 0.0_dp
 DO i = 0, nx+1
 y = (sy-1)*dx
 DO j = sy, ey+1
 WRITE(10) b(i,j)
 y = y + dx
 ENDDO
 x = x + dx
 ENDDO
 close(10)

May 21, 2015 160

Gnuplot

VisIT

Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File

SUBROUTINE WRITE_HDF(b, nx, sy, ey, my_id, nprocs, MPI_COMM_WORLD)

 INTEGER :: nx, sy, ey, my_id, nprocs
 REAL (KIND=dp), DIMENSION (0:nx+1,sy-1:ey+1), TARGET :: b

 CHARACTER(LEN=7), PARAMETER :: filename = "oned.h5" ! File name
 CHARACTER(LEN=3), PARAMETER :: dsetname = "Var" ! Dataset name

 INTEGER(HID_T) :: file_id ! File identifier
 INTEGER(HID_T) :: dset_id ! Dataset identifier
 INTEGER(HID_T) :: filespace ! Dataspace identifier in file
 INTEGER(HID_T) :: memspace ! Dataspace identifier in memory
 INTEGER(HID_T) :: plist_id ! Property list identifier

 INTEGER(HSIZE_T), DIMENSION(2) :: dimsf ! Dataset dimensions.

 INTEGER(HSIZE_T), DIMENSION(2) :: count
 INTEGER(HSSIZE_T), DIMENSION(2) :: offset
 INTEGER :: rank = 2 ! Dataset rank
 TYPE(c_ptr) :: f_ptr
 INTEGER :: error, error_n ! Error flags
 INTEGER :: MPI_COMM_WORLD

May 21, 2015 161 Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File

 dimsf = (/nx+2,nx+2/)

 ! Initialize FORTRAN predefined datatypes
 CALL h5open_f(error)

 ! Setup file access property list with parallel I/O access.
 CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)
 CALL h5pset_fapl_mpio_f(plist_id, MPI_COMM_WORLD, MPI_INFO_NULL, error)
 ! Create the file collectively.
 CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error, access_prp = plist_id)
 CALL h5pclose_f(plist_id, error)
 ! Create the data space for the dataset.
 CALL h5screate_simple_f(rank, dimsf, filespace, error)
 ! Create the dataset with default properties.
 CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_DOUBLE, filespace, dset_id, error)
 CALL h5sclose_f(filespace, error)

May 21, 2015 162 Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File
 ! Each process defines dataset in memory and writes it to the hyperslab
 ! in the file.
 COUNT(1) = nx+2
 COUNT(2) = ey-sy + 1
 offset(1) = 0
 offset(2) = my_id * COUNT(2)
 CALL h5screate_simple_f(rank, count, memspace, error)

May 21, 2015 163

Proc 1 (memory space)

File

Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File

 ! Select hyperslab in the file.
 CALL h5dget_space_f(dset_id, filespace, error)
 CALL h5sselect_hyperslab_f (filespace, H5S_SELECT_SET_F, offset, &
 count, error)

 ! Create property list for collective dataset write
 CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error)
 CALL h5pset_dxpl_mpio_f(plist_id, H5FD_MPIO_COLLECTIVE_F, error)

 ! Write the dataset collectively.
 f_ptr = C_LOC(b(0,sy))
 CALL h5dwrite_f(dset_id, H5T_NATIVE_DOUBLE, f_ptr, error, &
 file_space_id = filespace, mem_space_id = memspace, &
 xfer_prp = plist_id)
 ! Write the dataset independently.
 ! CALL h5dwrite_f(dset_id, H5T_NATIVE_DOUBLE, f_ptr, error, &
 ! file_space_id = filespace, mem_space_id = memspace)

 May 21, 2015 164 Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File

 ! Close dataspaces.
 CALL h5sclose_f(filespace, error)
 CALL h5sclose_f(memspace, error)

 ! Close the dataset and property list.
 CALL h5dclose_f(dset_id, error)
 CALL h5pclose_f(plist_id, error)

 ! Close the file.
 CALL h5fclose_f(file_id, error)

 ! Close FORTRAN predefined datatypes.
 CALL h5close_f(error)

 May 21, 2015 165 Mira Performance Boot Camp, ANL

www.hdfgroup.org

Method II: Write to a Single HDF File

•  All the processes
create one HDF5
file

•  View data with
HDFView

May 21, 2015 166 Mira Performance Boot Camp, ANL

www.hdfgroup.org

Don’t Reinvent the Wheel…

•  Use libraries that utilize HDF, but represent the scientific
data using a set of conventions, i.e.
•  How to represent meshes
•  Variable definitions
•  Multiple datasets
•  Component definitions

•  Some parallel formats using HDF
•  CFD: CGNS
•  Meshless Methods: H5Part
•  FEM: MOAB
•  General: NetCDF

•  Hides the complexity of HDF

May 21, 2015 167 Mira Performance Boot Camp, ANL

www.hdfgroup.org

CGNS example

 /* ====================================== */
 /* == **WRITE THE CGNS FILE ** == */
 /* ====================================== */

cgp_open(fname, CG_MODE_WRITE, &fn);

cg_base_write(fn, "Base 1", cell_dim, phys_dim, &B);
cg_zone_write(fn, B, "Zone 1", nijk, Unstructured, &Z);

May 21, 2015 168 Mira Performance Boot Camp, ANL

www.hdfgroup.org

CGNS example

 /* ====================================== */
 /* == (A) WRITE THE NODAL COORDINATES == */
 /* ====================================== */

 count = nijk[0]/comm_size;
 min = count*comm_rank+1;
 max = count*(comm_rank+1);

 cgp_coord_write(fn,B,Z,CGNS_ENUMV(RealDouble),"CoordinateX",&Cx);
 cgp_coord_write(fn,B,Z,CGNS_ENUMV(RealDouble),"CoordinateY",&Cy);
 cgp_coord_write(fn,B,Z,CGNS_ENUMV(RealDouble),"CoordinateZ",&Cz);
 Cvec[0] = Cx;
 Cvec[1] = Cy;
 Cvec[2] = Cz;
 cgp_coord_multi_write_data(fn, B, Z, Cvec, &min,&max, Coor_x, Coor_y, Coor_z);

May 21, 2015 Mira Performance Boot Camp, ANL 169

www.hdfgroup.org

CGNS example
 /* ====================================== */
 /* == (B) WRITE THE CONNECTIVITY TABLE == */
 /* ====================================== */

 start = 1;
 end = nijk[1];

 cgp_section_write(fn,B,Z,"Elements",PENTA_6,start,end,0,&S);
 count = nijk[1]/comm_size;
 emin = count*comm_rank+1;
 emax = count*(comm_rank+1);
 cgp_elements_write_data(fn, B, Z, S, emin, emax, elements);

May 21, 2015 170 Mira Performance Boot Camp, ANL

www.hdfgroup.org

CGNS example
 /* ====================================== */
 /* == (C) WRITE THE FIELD DATA == */
 /* ====================================== */
 count = nijk[0]/comm_size;

 cg_sol_write(fn, B, Z, "Solution", Vertex, &S);

 cgp_field_write(fn,B,Z,S,CGNS_ENUMV(RealDouble),"MomentumX",&Fx) ;
 cgp_field_write(fn,B,Z,S,CGNS_ENUMV(RealDouble),"MomentumY",&Fy);
 cgp_field_write(fn,B,Z,S,CGNS_ENUMV(RealDouble),"MomentumZ",&Fz);
 Fvec[0] = Fx;
 Fvec[1] = Fy;
 Fvec[2] = Fz;

 cgp_field_multi_write_data(fn,B,Z,S,Fvec,&min,&max,
 3,Data_Fx,Data_Fy,Data_Fz);

May 21, 2015 171 Mira Performance Boot Camp, ANL

Reading the file is just as easy…

