
Carlos Rosales-Fernandez

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources

Á Core

Ý Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

Ý Targeting the current ISA is fundamental to fully exploit vectorization

Á Socket

ā ĚĲĨĭĦ Ġīī ĢĮıĤĲ Ĩĭ Ġ įıĮĢĤĲĲĮı ıĤİĴĨıĤĲ įĠıĠīīĤīĨĹĠĳĨĮĭ ßĒĕĎ# ĔĒĕ# , à

ā Up to 64 Physical cores and 256 logical processors per socket on Theta!

Á Node

ā Minimize remote memory access (control memory affinity)

ā Minimize resource sharing (tune local memory access, disk IO and network traffic)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Tuning Workflow

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VTuneĻ ĆĬįīĨĥĨĤıœĲ ĆįįīĨĢĠĳĨĮĭ ĕĤıĥĮıĬĠĭĢĤ
Snapshot
High-level overview of application performance

Á Identify primary optimization areas

Á Recommend next steps in analysis

Á Extremely easy to use

Á Informative, actionable data in clean HTML report

Á Detailed reports available via command line

Á Low overhead, high scalability

4

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Usage on Theta

Launch all profiling jobs from /projects rather than /home

No module available, so setup the environment manually :

$ source /opt/intel/vtune_amplifier/apsvars.sh

$ export PMI_NO_FORK=1

Launch your job in interactive or batch mode:

$ aprun - N < ppn> - n < totRanks > [affinity opts] aps ./exe

Produce text and html reports:

$ aps - report=./ aps_result _ é.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

APS HTML Report

6

Vectorization and Threading

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Intel® Advisor

Modern HPC processors explore different level of parallelism:

Ábetween the cores: multi -threading (Theta: 64 cores, 256 threads)

Áwithin a core: vectorization (Theta: 8 DP elements, 16 SP elements)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the
vectorization process

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

Á Investigate application place within roofline model

Á Determine vectorization efficiency and opportunities for improvement

2. Collect memory access pattern data

Á Determine data structure optimization needs

3. Collect dependencies

Á Differentiate between real and assumed issues blocking vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

I will focus on the command line since it is better suited for batch execution, but the GUI
provides the same capabilities in a user -friendly interface.

I recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows,
Mac) to avoid issues with lag.

Some things of note:

Á Use /projects rather than /home for profiling jobs

Á Set your environment:

$ source /opt/intel/advisor/advixe - vars.sh

$ export LD_LIBRARY_PATH=/opt/intel/advisor/lib64:$LD_LIBRARY_PATH

$ export PMI_NO_FORK=1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Sample Script

#!/ bin/bash

#COBALT - t 30

#COBALT - n 1

#COBALT - q debug - cache - quad

#COBALT - A <project>

export LD_LIBRARY_PATH=/opt/intel/advisor/lib64:$ LD_LIBRARY_PATH

source / opt/intel/advisor/advixe - vars.sh

export PMI_NO_FORK=1

aprun - n 1 - N 1 advixe - cl - c survey -- project - dir ./ adv_res -- search - dir src :=./ -- search - dir bin:=./ -- ./exe

aprun - n 1 - N 1 advixe - cl - c tripcounts - flops - and - masks -- project - dir ./ adv_res \

-- search - dir src :=./ -- search - dir bin:=./ -- ./exe

Basic scheduler info (the usual)

Environment setup

Two separate collections

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMA Peak

Vector Add Peak

Scalar Add Peak

12

Cache-Aware Roofline
Next Steps

If under or near a
ĬĤĬĮıĸ ıĮĮĥ,

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
ĘĢĠīĠı Ćģģ ĕĤĠĪ,

FLOPS

Arithmetic Intensity

Å Try a MAP analysis.
Make any appropriate
cache optimizations .

Å If cache optimization
is impossible, try
reworking the
algorithm to have a
higher AI.

ĈħĤĢĪ ŕęıĠĨĳĲŖ Ĩĭ ĳħĤ ĘĴıĵĤĸ ĳĮ ĲĤĤ Ĩĥ ċĒĆĲ ĠıĤ
used. If not, try altering your code or compiler
flags to induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the
recommendations to
ĨĬįıĮĵĤ Ĩĳ Ĩĥ ĨĳœĲ īĮĶ!

Check the Survey Report
to see if the loop
vectorized . If not, try to
get it to vectorize if
possible. This may involve
running Dependencies to
ĲĤĤ Ĩĥ ĨĳœĲ ĲĠĥĤ ĳĮ ĥĮıĢĤ Ĩĳ!

The naïve code that could

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Nbody gravity simulation
https:// github.com/fbaru -dev/nbody -demo (Dr. Fabio Baruffa)

đĤĳœĲ ĢĮĭĲĨģĤı Ġ ģĨĲĳıĨġĴĳĨĮĭ Įĥ įĮĨĭĳ ĬĠĲĲĤĲ ĬÎ;#,#m_n located at ıÎ;#,#r_n.

We want to calculate the position of the particles after a certain time interval using the Newton law of
gravity.

struct Particle

{

public :

Particle() { init ();}

void init ()

{

pos [0] = 0.; pos [1] = 0.; pos [2] = 0.;

vel [0] = 0.; vel [1] = 0.; vel [2] = 0.;

acc [0] = 0.; acc [1] = 0.; acc [2] = 0.;

mass = 0.;

}

real_type pos [3];

real_type vel [3];

real_type acc [3];

real_type mass;

};

for (i = 0; i < n; i ++){ // update acceleration

for (j = 0; j < n; j ++){

real_type distance, dx, dy , dz ;

real_type distanceSqr = 0.0;

real_type distanceInv = 0.0;

dx = particles[j]. pos [0] - particles[i]. pos [0];

é

distanceSqr = dx*dx + dy * dy + dz * dz + softeningSquared ;

distanceInv = 1.0 / sqrt (distanceSqr);

particles[i]. acc [0] += dx * G * particles[j].mass *

distanceInv * distanceInv * distanceInv ;

particles[i]. acc [1] += é

particles[i]. acc [2] += é

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Collect Roofline Data

Starting with version 2 of the code we collect both survey and tripcounts data:
export LD_LIBRARY_PATH=/opt/intel/advisor/lib64:$LD_LIBRARY_PATH

source /opt/intel/advisor/advixe - vars.sh

export PMI_NO_FORK=1

aprun - n 1 - N 1 advixe - cl -- collect survey -- project - dir ./ adv_res -- search - dir src :=./ \

-- search - dir bin:=./ -- ./ nbody.x

aprun - n 1 - N 1 advixe - cl -- collect tripcounts - flops - and - masks -- project - dir ./ adv_res \

-- search - dir src :=./ -- search - dir bin:=./ -- ./ nbody.x

And generate a portable snapshot to analyze anywhere:
advixe - cl -- snapshot -- project - dir ./ adv_res -- pack -- cache - sources \

-- cache - binaries -- search - dir src :=./ -- search - dir bin:=./ -- nbody_naive

If finalization is too slow on compute add -no-auto-finalize to collection line.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

GUI left panel provides access to
further tests

Summary provides overall performance
characteristics

Á Lists instruction set(s) used

Á Top time consuming loops are listed
individually

Á Loops are annotated as vectorized and
non-vectorized

Á Vectorization efficiency is based on used
ISA, in this case Intel® Advanced Vector
Extensions 512 (AVX512)

Summary Report

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Inline information regarding
loop characteristics

Á ISA used

Á Types processed

Á Compiler transformations
applied

Á Vector length used

Á ,

Survey Report (Source)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Detailed loop information

Á Instruction mix

Á ISA used, including
subgroups

Á Loop traits

Á FMA

Á Square root

Á Gathers / Blends point to
memory issues and vector
inefficiencies

Survey Report (Code Analytics)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Using single threaded roof

Code vectorized , but
performance on par with
scalar add peak?

Á Irregular memory access
patterns force gather
operations.

Á Overhead of setting up
vector operations
reduces efficiency.

CARM Analysis

Next step is clear: perform a Memory Access Pattern analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non -unit
strides in memory access

Á 33% unit

Á 33% uniform, non -unit

Á 33% non -uniform

Re-structuring the code into a
Structure Of Arrays (SOA) may
lead to unit stride access and
more effective vectorization

Memory Access Pattern Analysis (Refinement)

aprun - n 1 - N 1 advixe - cl -- collect map -- project - dir ./ adv_res \

-- search - dir src :=./ -- search - dir bin:=./ -- ./ nbody.x

