Software

PROFILING YOUR APPLICATION WITH INTEL
VTUNE" AMPLIFIER AND INTEL" ADVISOR

aaaaaaaaaaaaaaaaaaaaa

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
A Core
Y Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

Y Targeting the current ISA is fundamental to fully exploit vectorization

A Socket
a ENTT#H Gi1 G 1 HID TT7T G j1] GAHUU] 1 1 HIJT 1 AHID | G
a Up to 64 Physical cores and 256 logical processors per socket on Theta!

A Node

a Minimize remote memory access (control memory affinity)

a Minimize resource sharing (tune local memory access, disk IO and network traffic)

Optimization Notice

© © 20
& nes al

Tuning Workflow

Intel® W Tune™ Amplifier's
Application Performance Snapshot

MPI Bound CPU Bound Thread-level FPU
MPI Imbalance Mamory Bound serial time underutilization
Thread-level scalability issues parallelization {vector efficiency
+ {OpenMP analysis) issues)

Intel® Trace Analyzer ¢ +

and Collector

Intel® MPI Tuner

CLUSTER NODE CORE

Intel® Advisor

Intel® WTune™ Amplifier Threading Vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

~J A

VTuneL CIT j i ThTHI el Cjji1l1 GGij
Snapshot

High-level overview of application performance

>\

Identify primary optimization areas

>\

Recommend next steps in analysis

>\

Extremely easy to use

>\

Informative, actionable data in clean HTML report

>\

Detailed reports available via command line

>\

Low overhead, high scalability

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
$ source /opt/intel/vtune_amplifier/apsvars.sh
$ export PMI_NO_FORK=1
Launch your job in interactive or batch mode:
$ aprun -N<ppn> -n < totRanks > [affinity opts] aps ./exe
Produce text and html reports:

$aps -report=./ aps result _ é.

Optimization Notice
o] ni

tel C

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-07 12:08:48

Nmber of renks: 144 Your application is MPI bound.

anks per node:

Opgn,\fpm,eads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), nen-
HW Platform: Intel(R) Xeen(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling toals

Logical Core Count per node: 72 like [ntel® Trace Analyzer and Collector to explore performance bottlenecks.

121.39s BT

MPI Time 5374%K <10% | —
Elapsed Time OpenMP Imbalance 043% <10%

14.70% <20%

0.30%K >50%
0.00% <10%

50.98 0.68

SPFLOPS

MPI Time Stalls
53.74%N of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots
65.235, 0.52s
(65.235) (0529 Cache Stalls SBFLOPS per.Cycle

MPLImbalance 12.84% of cycles 0.08 Out of 32.00

11.03% of Elapsed Time

(19,59 5 b : DRAM Stalls Vector Capacity Usage

: i Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak. 786.96 MB ;‘1‘%’; — FP Instruction Mix
. .79% of remote accesses 9

Herd o Average: 687.49 MB d % of Packed FP |

- Per rank:
Barrier 5.52 Peak: 127.62 MB
Irecy 3.70 Average: 38.19 MB

Virtual: . .
Scatterv 0.00 P Arith/Mem Rd Instr. Ratio
Per node: 0.07R
Peak: 9173.34 MB
_| /OBOU n d Averag.e: 9064.92 MB
Per rank:

0.00%

Peak; 566.52 MB

(AVG 0.00, PEAK 0.00) Average 50361 MR

Copyright 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" ADVISOR

Vectorization and Threading

Intel® Advisor

Modern HPC processors explore different level of parallelism:
A between the cores: multi -threading (Theta: 64 cores, 256 threads)
A within a core: vectorization (Theta: 8 DP elements, 16 SP elements)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the
vectorization process

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -gis
recommended.

1. Collect survey and tripcounts data

A Investigate application place within roofline model

A Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

A Determine data structure optimization needs

3. Collect dependencies

A Differentiate between real and assumed issues blocking vectorization

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI
provides the same capabilities in a user -friendly interface.

| reccommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows,
Mac) to avoid issues with lag.

Some things of note:
A Use /projects rather than /home for profiling jobs
A Set your environment:
$ source /opt/intel/advisor/advixe - vars.sh

$export LD _LIBRARY_PATH=/opt/intel/advisor/lib64:$LD_LIBRARY_ PATH
$ export PMI_NO_FORK=1

Optimization Notice

©

Sample Script

#!/' bin/bash

#COBALT -t 30
ceOlstaIre il 4 —>Basic scheduler info (the usual)
#COBALT - g debug - cache - quad

#COBALT - A <project>

—>Environment setup

export LD _LIBRARY_PATH=/opt/intel/advisor/lib64:$ LD_LIBRARY_PATH
source / opt/intel/advisor/advixe - vars.sh
export PMI_NO_FORK=1 Two separate collections
f
aprun -nl -N21 advixe -cl -c survey -- project -dir ./ adv_res -- search -dir src :=/ -- search -dir bin:=./ -- .Jexe
aprun -nl -N21 advixe -cl -c tripcounts - flops -and- masks -- project -dir ./ adv_res \
-- search -dir src :=/ -- search -dir bin:=./ - .Jexe

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline

Next Steps

If under or near a
THT J 1k 1]]

A Try a MAP analysis.
Make any appropriate
cache optimizations .
If cache optimization
is impossible, try
reworking the
algorithm to have a
higher Al.

FLOPS
A

A

If Under the Vector Add Peak

ChHGI

Fel GT jUOR T71

jhH |[E

used. If not, try altering your code or compiler

flags to induce FMA usage.

FMA Peak

\xtor Add Peak

Scalar Add Peak

H
ib

Optimization Notice

>
Arithmetic Intensity

If just above the

Scalar Add Peak

ChdcKVEctorization
efficiency in the Survey.
Follow the
recommendations to

o)

TTjor)7HA T4 1
If under the
EGGT Gi €g4g

Check the Survey Report
to see if the loop
vectorized. If not, try to
getitto vectorize if
possible. This may involve
running Dependencies to
DAA Th Tij el

1J

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

NB(]DY DEMUNSTRATIUN

code that could

Nbody gravity simulation

dHijceld G TRITgHI G ¢gT WUiT7T énJnfocatediat) h;rgnf BT ij T GUIIH

We want to calculate the position of the particles after a certain time interval using the Newton law of

gravity.
struct Particle for (i =0; i <n; i++){ /[update acceleration
{ for (=0;j<n; j ++{
public : real_type distance, dx, dy, dz;
Particle() { init ();} real_type distanceSqr =0.0;
void init () real_type distancelnv =0.0;
{
pos[0] =0.; pos[1] =0 pos[2] =0 dx = particleslj]. pos[0] - particles| i]. pos[O];
vel [0]=0.; vel [1]=0,; vel [2] =0, é
acc[0] =0 acc[1]=0 acc[2] =0,
mass =0, distanceSqr =dx*dx+ dy*dy + dz*dz + softeningSquared ;
} distancelnv =1.0/ sqrt (distanceSqr);
real_type pos [3];
real_type vel [3]; particles| i]. acc[0] +=dx * G * particles[j].mass *
real_type acc [3]; distancelnv * distancelnv * distancelnv
real_type mass; particles| i]. acc[l]+= é
b particles[i]. acc[2]+= €

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect Roofline Data

Starting with version 2 of the code we collect both survey and tripcounts data:
export LD _LIBRARY_PATH=/opt/intel/advisor/lib64:$LD LIBRARY_PATH

source /opt/intel/advisor/advixe - vars.sh

export PMI_NO_FORK=1

aprun -nl -N1 advixe -cl -- collect survey -- project -dir ./ adv_res -- search -dir src =/ \
-- search -dir bin:=./ -- ./ nbody.x

aprun -nl -N1 advixe -cl -- collect tripcounts - flops -and- masks -- project -dir ./ adv_res \
-- search -dir src :=/ -- search -dir bin:=./ -- ./ nbody.x

And generate a portable snapshot to analyze anywhere:

advixe -cl -- snapshot -- project -dir ./ adv_res -- pack -- cache -sources \
-- cache - binaries -- search -dir src :=./ -- search -dir bin:=/ -- nbody_naive

If finalization is too slow on compute add -no-auto-finalize to collection line.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

El LTE ,t All Modules ~ || All Sources ~
| L i

s —NIELAUVISUR 2018 GUI left panel provides accessto
Y —— . ' e further tests

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parall
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottle:
Advisor Roofline model automation.

I Summary provides overall performance
Eapsed Time | characteristics

Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 2120 Total GFLOPS 207
Total Arithmetic Intensity © 035165

A Lists instruction set(s) used

~' Loop metrics
Metrics Total

Total CPU time 10.14s (R 100.0% A I i 1

e e o A Top time consuming loops are listed

Time in scalar code 006s | Indlvldua”y

Total GFLOP Count 2120 ([1000%

A Loops are annotated as vectorized and
| Vectorization Gain/Efficiency !

Vectorized Loops Gam/E"ucl:ency wosx [EEGEGEGEGN) non-ve Cto rz ed

Program Approximate Gain ' 10.00x

D s A Vectorization efficiency is based on used

Loop Self Time Total Time Trip Counts

= = i oos 125 ISA, inthis case Intel® Advanced Vector

D [loop in GSi ion:: at <pp:136] 0.060s 10.140s 2000

D [loop in GSimulationzstart at GSimulation.cpp:133) 0s 10.140s 500 EXtenSIOHS 512 (AVX512)

Survey Report (Source)

capeatme 0255 | | [T [JRTER. viosues][arsouces RIS o : Inli . . .
W |NIINE INTOrmMation regardin
| 7
[B) Summary % Survey & Roofline |™i Refinement Reports
. . i Vectorized Loops Bl FLops . .
+| =] Function Call Sites and Loops ¥ Performance Issues Self Time = | Total Time Type Why No Vectorization?
Vector..| Eficency | Gain E..| VL ve..|self GFLOPS 00 char acte Il Stl CS
[loop in t cpp:138] @2 gather/sc... 10.080s 8 10.080s B Vectorized (Body) AVXS... 10.05x 16 2093 ==
416 [loop in GSimulation:start at GSimulation.cpp:136] & 1 Opportunity for outer I. 0060s| 10.140s SN Scalar & inner loop was already v... 1.700 EEEED
A start 0000s! 10.140s NN Function
= 5 f main 0000s| | 10.140s S Function 4
By — 000051 101205 R Euncion A ISA used
410 [loop in GSimulation:start at GSimulation.cpp:133] % 1 Data type conversions .. 0.000s| 10.140s SN Scalar & inner loop was already V..
< > < > ~
35curce|rupo|mdemlyﬁu|Ascmbly|Q @ Why No / \ I ypes processed
Line Source Total Time | % | Loop/FunctionTime | % | Traits |~
132 CORSt ASUBLE tU = TIme.SEATE (] -z - -
R o e o A Compiler transformations
134 t
135 t30 += vime.start(); .
136 or (i = 0; i < n; i++)// update acceleration a Iled
137 {
138 © for (j = 0; 3 < a; j++) 0.100s 10,0805 m—
32; UInt32 data type(s) and includes 2-Scurce Perxm '! V t I th d
139 t g
140 real type dx, dy, dz;
141 real_type distanceSgr
142 real_type distancelnv n
143 A
Selected (Total Time): 0.100s v 1

2018, Intel Corporation. All rights reserved.

Copyright €
*Other names and brands may be claimed as the property of others.

Survey Report (Code Analytics)

Detailed loop information

Ve

A Instruction mix

A ISA used, including
subgroups

Ve

A Loop traits

A FMA
A Square root

Gathers / Blends point to
memory issues and vector
inefficiencies

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bl Summary % Survey & Roofline ("t Refinement Reports

¥ Performance

+] [=] Function Call Sites and Loops Self Time = Total Time | Type
Issues
[loop i at :138] w2 gat... 10.080s El 10.080s @l Vectorized (Body)
5 lloop in GSimulation:start at GSimulation.cpp:136] % 1 Opportunity for.. 0.060s| 10,1405 I Scalar
f _start 0.000s! 10.140s @I Function
F main 0.0005! 10.140s SR Function
f GSimulation:start 0.000s! 10.140s @I Function
5 [loop in GSimulation:start at GSimulation.cpp:133] @1 Data type conv.. 0.000s 10.140s I Scalar
< > <
Source I Top Down ‘ Code Analytics [Aﬂmb'y I.l & Why No
Loop in GSimulation. start at GSimulation.cpp:138 Average Trip Counts: 125 @
10.080s
ectorized (Body) Total time
Traits
AVX512ER_512; 10.080s ts ®
AVX512F_512 serime Square Roots
t Gathers
v . « Iregular Memory Access Patterns May Decrease Perfor
"t o 1 Suggestion: See Recommendations Tab
> Memory 39% (2 Hass '
> Compute 37% (21) EEID
* Mixed 4% (2)0 Blends
Other 21% (12) @ * Imegular Memory Access Patterns May Decrease Perfor
* Dynamic instruction Mix Summa Suggestion: See Recommendations Tab
FMA
@ 2-Source Permutes
BT 1 q00s ask anuiatons

63% Vectorization Efficiency

Vectorization Gain

Why No Vectorization?

inner loop was already v...

& inner loop was already v...

Vectorized Loops &l FLoP]
Vector... Efficiency | GainE... VL (Ve... | Self €

Avxs.. [63% |1005x 16 2,08

1.700

GFLOPS: 2.09325 ®
AVX-512 Mask Usage: 37

Static Instruction Mix @

CARM Analysis

Using single threaded roof

Performance (GFLOPS) X a

100

Code vectorized, but
performance on par with
scalar add peak?

A Irregular memory access
patterns force gather
operations.

01| andfE T
-

| | | A Overhead of setting up
Soff Elapsed Time: 10,0805 Total Time: 10.080's o ! et ensy (FLOPIBy) VeCtOI‘ OperatIOHS
reduces efficiency.

Next step is clear: perform a Memory Access Pattern analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement)

aprun -nl -N1 advixe -cl -- collect map -- project -dir ./ adv_res \
-- search -dir src :=/ -- search -dir bin:=/ -- ./ nbody.x

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non -unit
strides in memory access

A 33% unit

A 33% uniform, non -unit

A 33% non -uniform
Re-structuring the code into a
Structure Of Arrays (SOA) may

lead to unit stride access and
more effective vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

