INTEL™ VTUNE™ AMPLIFIER AND INTEL
ADVISOR - HANDS-ON LABS

aaaaaaaaaaaaaaaaaaaaa

Introduction

In this hands-on session you will use a simple n-body code to explore the
capabilities of Intel® Advisor and Intel® VTune™ Amplifier.

As you progress through the exercises you will investigate the code
performance, and use different analysis modes to identify performance issues.

You will not have to modify code directly, all code versions are provided.

The code used is C++, but if you use Fortran in your own work the steps would
be exactly the same.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Implementation Details

NOTE: This additional info is provided for your own reference, but it is not necessary to run the exercises.

For each particle the position, the velocity, the acceleration and the mass is stored in a C-like structure and for
an N particles case, an array of this structure is allocated. This is the simple data-structure which is very close
to the physical representation of a particle mass. The file Particle.hpp contains the implementation of such
data-structure.

For each particle indexed by i, the acceleration is computed ai = Gmij(ri-rj)/|ri-rj|*3, which value is used to
update the velocity and position using the Euler integration scheme. Furthermore the total energy of the
particles' group is computed. The file GSimulation.cpp contains the implementation of the algorithm.

The demo consists of several directories, which correspond to the different optimization steps to take to
enabling vectorization and OpenMP multi-threading of the code. Each directory has its own makefile to
compile and run the test case. To compiler the code type make and the run the simulation type make run.

As benchmark, the simulation starts with 2000 particles and 500 integration steps. One can change the default
giving the number of particles and the number of integration steps using the command line argument:
/nbody.x < # of particles> < # of integration>

Try to change the number of particles and observe how the performance changes.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Getting Started
https://github.com/fbaru-dev/nbody-demo

This is an example code based on a simple N-body simulation of a distribution
of point masses placed at location r_1,..,r N with masses m_1,...m_N. The
position of the particles after a specified time is computed using a finite
difference method.

To get started, copy the files to a directory of your choosing in the /projects
area;

$ tar xzvf /projects/intel/crosales/SDL 2018/nbody.tar.gz
Then change into the nbody directory:

$ cd ./nbody

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" ADVISOR

Collect Roofline Data

Start by building version 2 of the code:

$ cd ver2
$ make
You can check that the make file contains both appropriate ISA flags for KNL and debug flags.

Now collect both survey and trip counts data using the provided roofline.run script. You should look
inside the script to make sure you understand the configuration and commands used:

$ gsub ./roofline.run

Once the run is complete you will have a new directory, adv_res, which contains the performance data.
Make sure your collection has completed by checking that the job is done:

$ gstat -u <username>

[Optional] Generate a portable snapshot if you wish to look at the results in your own machine:
$ advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \
--cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody v2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Roofline Data

You can choose to do this step from a login node or from your own system if it has Intel®
Advisor installed and you have generated a snapshot. From a login node simply open the
collected data in the GUI:

$ source /opt/intel/advisor/advixe-vars.sh
$ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance - look at the
summary, the roofline graph, and the Survey report.

Try to answer the following questions:

= Whatis the execution time?

» Whatis the vectorization efficiency?

» Are there expensive operations inhibiting performance? (See the Code Analytics)

= From the Roofline representation, can you tell what should be the analysis step?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and e

Collect Memory Access Patterns

Using the current nbody build (ver2), submit the provided script, map.run, to perform a
Memory Access Patterns analysis. The commands in this script are:

$ gsub ./map.run

Note: you will have to have completed the Survey and Trip Counts analysis before this
step

As in the previous case, your output will be stored in the adv_res project directory. Make
sure your collection has completed by checking that the job is done:

$ gstat -u <username>

[Optional] Generate a portable snapshot if you wish to look at the results in your own machine:
$ advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \
--cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody naive

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Memory Access Patterns

You can choose to do this step from a login node or form your own system if it has
Intel® Advisor installed. From a login node simply open the collected data in the GUI:

$ source /opt/intel/advisor/advixe-vars.sh
$ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the Refinement Reports tab in the GUL.

Try to answer the following questions:
= Whatis the stride distribution?
* Whatis the recommendation given by Intel® Advisor?

» |s there an alternative to the current data layout that may help?

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

Changing the Code

The MAP analysis should have pointed you to a problem with the data structures in
the code. Let’ snow build version 3, which changes the default Array of Sructures
implementation to Structure of Arrays in the hope of improving performance.

You should still be inside the version 2 directory, so move to the version 3 directory
and build the new binary :

$ cd ../ver3
$ make
Now collect roofline data (survey and tripcounts) again, since you have a new binary:

$ gsub roofline.run

As with the previous version, once the collection completes you will see a new
directory called adv_res. Make sure execution is actually complete before moving
forward.

Optimization Notice

Copyright © 2018, Intel C
*Other names and brands

Analyze Roofline Data for Version 3

You can choose to do this step from a login node or from your own system if it has
Intel® Advisor installed and you have generated a snapshot. From a login node
simply open the collected data in the GUI:

$ source /opt/intel/advisor/advixe-vars.sh
$ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the summary, the roofline graph, and the Survey report.

Did the new Structure of Arrays implementation improve performance?
= Whatis the vectorization efficiency?
» Whatis the main performance issue in the current version?

*» From the advisor output, can you tell what should be the analysis step?

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

Collect Dependencies Data

Well, that was a surprise, wasn't it?

Looks like we have introduced data dependencies of some type that are
preventing vectorization (or at least the compiler thinks so)

Let's run a dependencies analysis to see if those dependencies are true or just
assumed:

$ gsub deps.run

As with the previous version, once the collection completes you will see a new
directory called adv_res. Make sure execution is actually complete before
moving forward.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Dependencies

You can choose to do this step from a login node or form your own system if it has
Intel® Advisor installed. From a login node simply open the collected data in the GUI:

$ source /opt/intel/advisor/advixe-vars.sh
$ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the Refinement Reports tab in the GUL.

Try to answer the following questions:
» Arethere any true dependencies?
= What are the dependency types?

» Canyou think of a way to resolve them? (you can see the fixes in version 4)

Optimization Notice

Copyright © 2018, Intel Co i rights reserved.
*Other names and brands ed as the property of others.

Performance of the nbody Optimized Version

At this point you should be familiar with the process of using Intel® Advisor.

If you are curious about the performance once the dependencies are fixed,
build version 4 and collect roofline data (survey and tripcounts) again.

If you compare this output to the original version 2 data you should observe the
following traits:

= Higher vectorization efficiency
= Better looking roofline representation

= Significant performance improvements overall

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" VTUNE™ AMPLIFIER'S APPLICATION
PERFORMANGE SNAPSHOT

A Simple APS Report

To run this simple exercise simply go back to the version 2 directory for the nbody
test and submit the aps.run job script:

$ gsub ./aps.run

Feel free to inspect the submission script, it simply sets up the environment for aps
and uses aprun to launch the data collection.

Once the job has completed (make sure it is not active in the queue) you can process
the data collected in the new aps_res directory:

= Setup your environment on the login node to be able to use aps:
$ source /opt/intel/vtune amplifier/apsvars.sh
* Produce text and html reports with the following command:

$ aps -report=./aps res

Optimization Notice

Copyright © 2018, Intel C
*Other names and brands

Analysis of the APS Report

Use either HTML or text output from APS to answer the following questions:
= What is the main performance bottleneck in this code?

» What percentage of floating point operations a packed instructions
(vectorized instructions)?

= What would be your next step in order to investigate the performance issue?

Note: While APS offers possible explanations for the low CPU utilization and
high proportion of back-end stalls, it does not pinpoint the cause. Instead, it
points us at VTune™ Amplifier to look into them.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL” VTUNE™ AMPLIFIER

Looking Into System Level Performance

In this exercise you will analyze the performance of a new nbody implementation
(version 7), which is an improvement over the previous versions we have considered.

Version 7 uses OpenMP* threads to parallelize the code and get rid of the extremely
low CPU utilization reported by APS.

To get started move into the ver7 directory:
$ cd ../ver?7

And compile this version of the code to get a new nbody.x executable:
$ make

Feel free to open the source code and explore the changes, although that is not
strictly necessary for this exercise.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenMP* Version (ver7)

For the next step you will submit a job that analyzes the execution of nbody.x using 64 threads and a much
larger workload than the default.

This is to avoid a trivial bottleneck due to synchronization issues if the workload is too small.
You can inspect the submission script vtune.run for details. To run simply execute the usual command:
$ gsub ./vtune.run

This will perform and hpc-performance analysis, which contains data regarding CPU microarchitecture,
memory subsystem, and OpenMP* synchronization.

Results will be saved to the vtune_hpc directory. Make sure your job is no longer in the queue before you try to
open the results!

[Optional] Archive the data and copy it over to your own system (requires a working installation of VTune™
Amplifier):

$ amplxe-cl -r ./vtune hpc -archive
$ cp ./*.cpp ./*.hpp ./vtune hpc
$ zip -r ./vtune hpc.zip ./vtune hpc

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenMP* Version (ver7)

Setup the environment for VTune™ Amplifier on the login node:

$ source /opt/intel/vtune amplifier/amplxe-vars.sh
Open the result using the GUI :

$ amplxe-gui ./vtune hpc

Look first at the summary, then click on the top time consuming function. This
will take you to the bottom-up view, where you can review its characteristics.

Can you tell what the main bottleneck for this part of the code is from the
provided statistics (you may have to scroll to the right to see all the columns)?

Proceed to the next slide for some answers.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenMP* Version (ver7)

& HPC Performance Characterization HPC Performance Characterization viewpoint (change) & INTEL VTUNE AMPLIFI
4/ Analysis Configuration [Collectionlog & Summary 3 Bottom-up

Elapsed Time : 124.101s
= We used only 64 out or 256 Effective CPU Utilization ”: 24.3% &

Average Effective CPU Utilization . 62.283 out of 256

logi Cal. C P U S Serial Time (outside parallel regions) : 0.414s (0.3%)

Parallel Region Time : 123.687s (99.7%)
u T h e effective ave rage u Sage is Effective CPU Utilization Histogram
actual[y 62 / 64 (or 970/0) Back-End Bound " 78.8% R of Pipeline Slots

L2 Hit Bound ~: 3.7% of Clockticks

CPU utilization is 24%, but this is
OK

Code is heavily back-End bound ~ Da e s 0%
. 80% Of pipeline SlOtS are SIMD Instructions per Cycle : 0.299
stalled - “'fr?tor;l;::::;‘;MDInslf. : 100.0%

% of Scalar SIMD Instr. 0.0%
H £ a Top Loops/Functions with FPU Usage by CPU Time
= N O S I gn Ifl Cant D R M /M C D RA M This section provides information for the most time consuming loops/functions with floating point operations.
us age Function CPU Time ” SIMD Instructions per Cycle ” Vector Instruction Set Loop Type
.

[Loop at line 157 in GSimulation::startSompSparallel_for@141] ~ 7533.822s 0.310 AVX512ER_512(512): AVX512F_512(512) Body
GSimulation: startSompSparallel_for@141 29.340s 0,018 AVX(128): AVX(256): AVK2(256); AVX512ER_512(512); AVX512F _512(512)

C |. i C k O n th e tO p ti m e_ CO n S u m i n g / [a_pc:cc;!:;T:::;::i:‘sswulamn startSomp$parallel_for@141) 1: :ig: gg?; AVX512ER_512(512); AVX512F_512(512) Peel
function to se the bottom-up view S
p res e n te d O n th e n ext S l I d e . “N/A is applied to non-summabie metrics

Collection and Platform Info

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Analysis of OpenMP* Version (ver7

Code is running reasonably well, but there is a significant number of L2 cache misses that are probably
causing the pipeline stalls.

Blocking for L2 would improve reuse and reduce this misses. This is implemented on version 8 of the
code (next).

EHPCF Ch HPC Perfc \ce Characterization viewpoint (change) ©
A Analysis Configuration [l Collectionlog 1 Summary d Batiom-up
Grouping:| Function / Call Stack - ||| P
CPU Time | Back-End Bound « SIMD Instructions per Cycle -
AR plion "| spinTme = | OveeadTime | L2HitBound | L2MissBound PP Instruction Mix Vector Instruction Se
o al @over | | | | % of Packed SIMD Instr. | % of Scalar SIMD Instr. |
finish_task_switch 0s 0s 0.0 0.0 0.0% 0.0%
task_tick_fair Os 0s 0. 6.5 0.0% 0.0%
apic_timer_interrupt 0s 0s 0 0.0 100.0% 0.0%
__hrtimer_run_gueues 0s 0s 33 0.0% 0.0%
0s [3.0 0.0% 0.0%
0s 0s 0 0.0% 0.0%
0s 0s 0.0 0.0% 0.0%
ggLallel_for@179 0s 0s).0f 0.0% 0.0%
func@0x7bd0 0s 0s 0.0 0.0% 0.0%
[Loop at line 157 in GSimulation::startSompSpar® Os 47% 100.0% 0.0% AVXS12ER_512(512)
func@O0xdcd0 0s 0.0 0 0.0% 0.0%
_INTERNAL_25 src_kmp_barrier_cpp_3+ Os 00 0.0% 0.0%
[Loop at line 792 in _INTERNAL_25 src_ Os 0 0.0% 0.0%
_INTERNAL_25 src_kmp_barrier_cpp_3« Os [0;- 0.0% 0.0%
func@0x7eed 0s 0s 0.0% 0.0%
func@0xd7a0 0s 0.0% 0.0% SSE(128) SSE2(12¢
o 00% ADG1ZER 512612
_INTERNAL_25 src_kmp_barrier_cpp_3« 62.840s 0s 0.0% 0.0%
[Loop at line 866 in _INTERNAL_25 src_ 0.770s 0s 0.0% 0.0%
_INTERNAL_25 src_kmp_barrier_cpp_3« 0.010s 0s 0.0% 0.0%
> std::qenerate canonical<float. (unsianed Iunalz)d . 0s 0s 0.0% 100.0% AVX512F 512(512\) v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenMP* Version (ver8)

You can verify what improvement can be achieved by blocking this code using version 8. To get started move
into the ver8 directory:

S cd ../verS8

You can inspect the submission script vtune.run for details, it is exactly the same you just used for version 7.
To run simply execute the usual command:

$ gsub ./vtune.run

Results will be saved to the vtune_hpc directory. Make sure your job is no longer in the queue before you try to
open the results!

[Optional] Archive the data and copy it over to your own system (requires a working installation of VTune™
Amplifier):

$ amplxe-cl -r ./vtune hpc -archive
$ cp ./*.cpp ./*.hpp ./vtune hpc
$ zip -r ./vtune hpc.zip ./vtune hpc

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenMP* Version (ver8)

Open the result using the GUI :
$ amplxe-gui ./vtune hpc

Look first at the summary, then click on the top time consuming function. This
will take you to the bottom-up view, where you can review its characteristics.

Answer the following questions:

» Whatis the speedup of the code compared to the previous version?
» Has the fraction of pipeline stalls gone down as expected?

= Has the fraction of L2 cache misses gone down as expected?

Proceed to the next slide for some answers.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis of OpenM

The new codes should

speedup by a factor 3x—4x\

Code is now much less
back-end bound

40% of pipeline slots are _~
stalled

Still no significant
DRAM/MCDRAM usage.

Click on the top time-
consuming function to se
the bottom-up view
presented on the next slide.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

~

P* Version (ver8)

& HPC Performance Characterization HPC Per

/A Analysis Configuration (] Collection log & Summary 43 Bottom-up
Elapsed Time : 36.052s

int change) © INTELUTUNE AHPL

Effective CPU Utilization : 22.9% &
Average Effective CPU Utilization : 58.528 out of 256
Serial Time (outside parallel regions) : 0.381s (1.1%)
Parallel Region Time : 35.671s (98.9%)

Effective CPU Utilization Histogram

Back-End Bound
L2 Hit Bound :
L2 Miss Bound :
MCDRAM Bandwidth Bound 0.0%
DRAM Bandwidth Bound 0.0%
Bandwidth Utilization Histogram

: 43.2% of Pipeline Slots
11.6%
5.1%

of Clockticks
of Clockticks

SIMD Instructions per Cycle
FP Instruction Mix:
% of Packed SIMD Instr. : 100.0%
% of Scalar SIMD Instr. 0.0%
Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the most time consuming loopsffunctions with floating point operations.

1 0.918

Function CPU Time
2042.623s
8.630s
1.680s
1.360s
0.020s

SIMD Instructions per Cycle Vector Instruction Set
1.014
01
oo
0.100
1.231

Loop Type
[Loop at line 167 in GSimulation: startSompSparaliel_for@142) Body

GSimulation: :startSompSparaliel_for@142

AVXS12ER_512(512); AVX512F_512(512)
AVX(128); AVX(256); AVX2(256); AVXS512ER_512(512); AVXS12F_512(512)
__kmp_yleld

[Loop at line 167 in GSimulation: startSompSparallel_for@142]
[Loop at line 64 in GSimulation::init_vel]

AVXS12ER_512(512), AVXS12F_512(512)
AVX512F_512(512)

Peel
Body

“NiA is appiied [0 non-summable melrics

Collection and Platform Info

Analysis of OpenMP* Version (ver8

L2 Miss Bound column has gone down by a factor 2-3X, while Hit bound has
increased by a similar factor.

4/ Analysis Configuration [J CollectionLlog & Summary & Bottam-up
Grouping:| Function / Call Stack “|[%][2][=
CPU Time Back-End Bound =l -
Function / Call Stack U Time flective Ti il nv » » FP Instn
e S aon m.f:;‘; S Over SpinTme | OverheadTime | L2 Hit Bound
Os | 20426235 0
GSimulation::startSomp$parallel_for@142 0.000s 8.630s | Os Os 22 100.0%
task_tick_fair Os 5.870s | Os 0s 0.0 LAY 0.0%
entry_SYSCALL_64_fastpath Os 3.000s Os Os 0.0 0.0 0.0%
apic_timer_interrupt Os 2.540s Os Os 0.0 0.0 0.0%
entry_SYSCALL_64 0.010s 2.410s Os Os 0.0 0.0 0.0%
entry SYSCALL_64_after_swapgs 0s 2.300s 0s Os 0.0 0.0 0.0%
rcu_check_callbacks 0.020s 1.870s 0s 0s 0.0 0 0.0%
[Loop at line 167 in GSimulation::startSomp$p Os 1.360s Os Os 0.0 0 100.0%
pick_next_task_fair Os 1.270s 0Os Os 0.0 0. 0.0%
cpuacct_charge 0s 1.250s 0s Os 0.0 0.0 0.0%
[Loop at line 196 in GSimulation::startSomp$p Os 1.100s Os Os 46.3% 0.0 0.0%
update_curr Os 1.030s Os Os 0.0 0.0%
native_sched_clock Os 1.000s Os Os 0.0 0.0%
thread_return 0s 0.970s Os 0s 0.0 0.0%
x86_ibrs_enabled Os 0.960s Os Os 0.0 0.0%
sched_clock_cpu Os 0.940s Os Os 0.0 0.0%
__hrtimer_run_queues 0s 0.900s 0s 0s 0.0 0.0%
__update_cpu_load Os 0.880s Os Os 0.0 3 0.0%
pick_next_entity 0Os 0.860s Os 0Os 0.0 0.0 0.0%
trigger_load_balance 0s 0.860s 0s 0s 0.0 88.5% 0.0%
< > || < >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and
workloads utilized in the testing, and may not be applicable to any particular user's components, computer system or workloads. The results are not necessarily
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

