THREADS AND THEIR
USE WITH OPENMP

Scaling your science on

MIRA
May 25, 2016

ANSHU DUBEY
MATHEMATICS AND COMPUTER SCIENCE DIVISION

PROCESSES & THREADS

= Both are abstractions for control flow during execution

* They have their context; meta information necessary for
running

= Multiple threads and processes can run on the same hardware
through context switching
= They differ in what they share

= Each process has its own code and data
= Suitable for distributed memory (MPI) view

= Threads share code and data
» Suitable for shared memory view

* Threads are also less expensive

A Scaling your science on MIRA 5/25/16 2

USING THREADS

= A process can have multiple threads
* Threads associated with a process form a pool of peers

I
I

I

I

I

I . .
: “a | shared code, data

I and kernel context

I

I

I

I

I

I

I

Figure from Introduction to Computer Systems
é Scaling your science on MIRA 5/25/16 3

A VIEW OF SHARED THREADS

» Each thread has its own logical control flow (sequence
of PC values)
= Each thread shares the same code, data, and kernel

context
= Each thread has its own thread id (TID)
Thread 1 (main thread) Shared code and data Thread 2 (peer thread)
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes Condition codes
SP1 0 SP2
PC1 PC2
Kernel context:
Wl SEIES From Introduction to Computer
Systems

3 Scaling your science on MIRA 5/25/16

4

THREADS MEMORY MODEL

= Conceptual model:
» Eachthread runs in the context of a process.
= Eachthread has its own separate thread context.

= Thread ID, stack, stack pointer, program counter, condition codes, and general
purpose registers.

= All threads share the remaining process context.

= Code, data, heap, and shared library segments of the process virtual address
space.

= Open files and installed handlers
= QOperationally, this model is not strictly enforced:
= While register values are truly separate and protected....
= Any thread can read and write the stack of any other thread.

» Mismatch between the conceptual and operation model is a source of
confusion and errors.

From Introduction to Computer Systems
; Scaling your science on MIRA 5/25/16 5

CONCURRENT EXECUTION

= Two threads run concurrently (are concurrent) if
their logical flows overlap in time.

= Otherwise, they are sequential.

Thread A Thread B Thread C
= Examples: | .- (I 00
= Concurrent: A&B,A&C| I ______________________
= Sequential: B&C Tme | I ___________________________________] ______
From Introduction to Computer Systems | I ______

é Scaling your science on MIRA 5/25/16 6

CONTROL FLOW WITH TWO
THREADS

main thread

Create

main thread waits for
peer thread to terminate

. printf ()
return NULL;
(peer thread

............................... e

returns |«

exit
terminates

main thread and
any peer threads

From Introduction to Computer Systems
; Scaling your science on MIRA 5/25/16 7

THREAD UNSAFE FUNCTIONS

= Failing to protect shared variables.

= Relying on persistent state across multiple
function invocations.

* Incorrect handling of pointers
» Calling a thread unsafe function

3 Scaling your science on MIRA 5/25/16 8

USING THREADS - OPENMP

= An API for writing portable shared memory
applications with threading

= Constructs are mostly in the form of compiler directives
» Ignored when compiler flag for openmp is not set

= No library to build and link
= Trivially easy to get started and thread your code

= Often not trivial to obtain performance

* You need to understand your decomposition and code
behavior to get performance

'.\ Scaling your science on MIRA 5/25/16 9

BASICS OF OPENMP

= Constructs apply to statement blocks
= One entry and one exit point

= A functional call may be a part of the statement block

* If so, necessary to make sure that function is thread-safe in the
same way that the block is

= Most statement blocks can be made thread-safe by
designating variables to be thread-private as
needed

= Avoid majority of race or deadlock hazards in many
scientific applications

v\ Scaling your science on MIRA 5/25/16 10

MOST USED CONSTRUCTS

= For parallelizing
= #pragma omp parallel (!$OMP PARALLEL in FORTRAN)
= #pragma omp for (!I3OMP PARALLEL DO)
= There are qualifiers and clauses for these constructs
= Typical use
* Find compute intensive loops in the code

» Make sure that there are no dependencies between
different instances of the loop

= Apply omp construct

3 Scaling your science on MIRA 5/25/16 11

EXAMPLE

#pragma omp parallel

#pragma Omp for By default the number of

#pragma omp para||e| num_threads(4) threads used in the loop

will be the same as that

I [' defined with an
{ //beginning of a parallel region | cened with an
fOr(i=O; |<N, i++) But it is possible to use
fewer threads by using
a[l]=b[|]*C[|], another construct

I end of parallel region

é Scaling your science on MIRA 5/25/16 12

EXAMPLE

#pragma omp parallel

#pragma omp for

{ //beginning of a parallel region
for(i=0; i<N; i++)

a[|]=b*C[|] Still thread-safe because
, . b is not updated, read
¥/ end of parallel region conflicts do not cause

race conditions

o) Scaling yourscience on MIRA 5/25M16 13

EXAMPLE

Not thread-safe because
a is updated, there is a

#pragma omp para”el write conflict which can
cause race conditions
#pragma omp for
{ //beginning of a parallel region
for(i=0; i<N; i++)
a=a+Dbl[i];
Ml end of parallel region “5io0d SUSH @926 winen

writing application from

scratch. If you have them
then you trade-off
memory with cpu

é Scaling your science on MIRA 5/25/16 14

CONCURRENT EXECUTION

= Key idea: In general, any sequentially consistent
interleaving is possible, but some are incorrect!

= There are three operations: load, update, store

= Race condition, correctness depends upon
threads reaching specific points in specific order

= Assuming we start with a=0, b[i]=i+1

i (thread) instr, a a=a+blil; i (thread) instr, a
0 L, 0 0 Lo 0
0 Uy 0 0 Ug 0
0 So 1 1 L, 0
1 L, 1 1 U, 0
1 U, 1 0 So 1
1 51- 3 1 S1 2

A Scaling your science on MIRA 5/25/16 15

EXAMPLE

#pragma omp parallel
#pragma omp for reduction (+:a)
{ //beginning of a parallel region
for(i=0; i<N; i1++)
a=a+Db[i]*c[i];
Ml end of parallel region

é Scaling your science on MIRA 5/25/16 16

EXAMPLE

#pragma omp parallel private())
#pragma omp for
{ //beginning of a parallel region
for(i=0; i<N; i++)
{
J=bli]*c[i];
#pragma omp critical
a=atj;
}

W/l end of parallel region

Barrier is implied at the end of parallel region

; Scaling your science on MIRA 5/25/16 17

OTHER CONSTRUCTS

= #pragma omp master
= executed only on the master thread
= no implied barrier

= #pragma omp barrier
= #pragma omp single
= executes on a single thread
= implied barrier at the end of parallel region

= #pragma ordered

= #pragma omp sections
» set of structured blocks to distributed among threads

= #pragma omp task
= #Hpragma omp threadprivate
http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

é Scaling your science on MIRA 5/25/16 18

USING OPENMP WITH MIRA

= XL compilers support for OpenMP v3.1
= GCC 4.4.4 compilers support OpenMP v3.0

= Compilerflags
Intel —openmp, GNU —fopenmp, BlueGene bgxic r —
gsmp=omp
-gthreaded

* Mixed mode threading is permitted

= SMP not NUMA

= Hardware threads share L1 cache — 16KB, can be
a challenge

A Scaling your science on MIRA 5/25/16 19

POSSIBLE CONFIGURATIONS

Evolution time (s)

é Scaling your science on MIRA

300 T T T T T T T T
: —Y— 8 MPI ranks / node
——— 16 MPI ranks / node
—— 32 MPI ranks / node
D50 b N 4
200 e PP, S
150 |- S eeeeeneneeees L TP PTPRPTR PP PPRE PR 4
Fastest time to solution! -
; - 32 MPI ranks / node
: - 2 threads / MPI rank
100 1 2 3 4 5 6 7 8

Number of threads per MPI rank

From Chris Daley (LBL)

5/25/16

20

TRADE-OFFS

dom=1, nc

ISOMP PARALLEL DO PRIVATE(i,j,k)

do k =1o(3),hi(3)
do j=10(2),hi(2)
doi=lo(1),hi(1)

up(i,j,k,m) = OneThird * up(i,j,k,m) + &
TwoThirds * (unp(i,j,k,m) + dt * (dp(i,j,k,m) + fp(i,j,k,m)))

end do
end do
end do
ISOMP END PARALLEL DO
end do
end do

A Scaling your science on MIRA

#pragma omp parallel
#pragma omp for
#endif
for(intigrid = 0; igrid < dit.size(); igrid++)
{

FArrayBox& bigData = a_data[dit[igrid]];

const Box& ghostBlock = a_data[dit[igrid]].box();
FORT_SIMULATION_BLOCK(CHF_FRA(bigData),
CHF_BOX(ghostBlock),
CHF_CONST REALVECT(a_dx)):}}

5/25/16

21

TRADE-OFFS

700

600 -

500 -

B
o
o

B block

Time in seconds
w
o
o

® |oop

200 -

100 -

512 1024 2048 4096 8192
MPI Ranks

, ° Scaling your science on MIRA 5/25/16 22

I$Somp parallel if (hy_threadWithinBlock) &

I$omp default(none) &

I$omp shared(i0,j0,k0,imax,jmax,kHydro,kUSM,kmax,k2,k3,&

I$omp scrchFaceXPtr,scrchFaceYPtr,scrchFaceZPtr,&

I$omp hy_fullSpecMsFluxHandling,normalFieldUpdateOnly,&

I$omp blockID,blkLimitsGC,dt,del,ogravX,ogravY,ogravZ,FlatCoeff,hy SpcR,hy SpcL,hy SpcSig,&
I$omp hy useGravity,U,Bx,By,Bz,hy useGravHalfUpdate,transOrder3d,leftEig,rghtEig,lambda,&
I$Somp hy_order,hy_flattening,FlatTilde,blkLimits,hdt,hy _shockDetectOn,&

I$omp hy_use3dFullCTU,hy geometry,hy useHybridOrder,hy cfl_original, &

I$omp hy_cfl, minCfl,&

I$Somp xCenter,DivU,kGrav,sig,hy_forceHydroLimit,hy_killdivb,datasize) &

I$omp private(i,j,k,Ibx,ubx,lby,uby,bz,ubz,iDim, un,cf,Vc,order,Wn,Wp,sigmptr,sigcptr,sigpptr,&
I$omp k4,im2,ip2,jm2,jp2,km2,kp2,&

I$omp dp1,dp2,dv1,presL,presR,Sp,magPhi,magZ,sGeo_magp,sGeo_magz,&

I$omp TransX updateOnly,TransY_updateOnly,TransZ_updateOnly,&

I$omp cellCfl,lowerCflAtBdry,&

I$omp dt2dxdy6,dt2dydz6,dt2dzdx6, TransFluxXY, TransFluxYZ, TransFluxZ X, &

I$omp TransFluxYX, TransFluxZY,TransFluxXZ,Rinv,velPhi,velTht,&

I$omp sGeo_dens,sGeo_velx,sGeo velp,sGeo_pres,sGeo_trans,sGeo_eint,&

I$omp geoFac,cs,eta,enth,dir,HY_ velPhi,HY velTht,h_magphi,h_magz)

v\ Scaling your science on MIRA

5/25/16

23

USEFUL LINKS

OpenMP site : http://openmp.org

Quick reference : http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

Introductory material: http://openmp.org/mp-documents/omp-hands-on-
SCO08.pdf

Comprehensive tutorial:
https://computing.linl.gov/tutorials/openMP

MIRA specific details:
http://www.alcf.anl.gov/user-guides/how-manage-threading#specification

; Scaling your science on MIRA 5/25/16 24

