

INTEL® PARALLEL STUDIO XE 2016 CLUSTER EDITION

For Distributed Performance

Intel[®] Parallel Studio XE 2016 development suite -Empowering Faster Code Faster

Delivering HPC Development Solutions

- Over 20 years
- Industry Collaboration on Standards
- Developed with Performance & Scaling with Intel hardware

Meeting the Challenges

- Boosting Performance
- Increasing Scalability
- Increasing Productivity

*Other names and brands may be claimed as the property of others

How Intel[®] Parallel Studio XE 2016 helps make *Faster Code Faster* for HPC

inte

Intel[®] MPI Library

Value Proposition

What	Intel's High Performance MPI Library
Why	 Scale Performance – Tuned for Latest Intel Architectures Scale Forward – Multicore and Manycore Ready Scale Efficiently – Flexible Fabric Selection & Compatibility
How	 Standards Based – Built on Open Source MPICH Implementation Sustained Scalability – Tuning for Low Latencies, High Bandwidth & Increased Processes Multi Fabric Support – Supports Popular High Performance Networking Fabrics

Intel[®] MPI Library Overview

Optimized MPI application performance

- Application-specific tuning
- Automatic tuning

Lower latency and multi-vendor interoperability

- Industry leading latency
- Performance optimized support for the latest OFED capabilities through DAPL 2.x

Faster MPI communication

Optimized collectives

Sustainable scalability beyond 262K cores

 Native InfiniBand* interface support allows for lower latencies, higher bandwidth, and reduced memory requirements

More robust MPI applications

 Seamless interoperability with Intel[®] Trace Analyzer and Collector

ínte

Superior MPI performance on Linux* 64

288 Processes, 8 nodes (InfiniBand + shared memory)

Superior Performance with Intel® MPI Library 5.1 288 Processes, 8 nodes (InfiniBand + shared memory), Linux* 64 Relative (Geomean) MPI Latency Benchmarks (Higher is Better)

■ IntelMPI 5.1 ■ PlatformMPI 9.1.2 CE ■ MVAPICH2 2.1 ■ OpenMPI 1.8.5

Configuration Info:

Hardware: CPU: Dual Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz; 64 GB RAM. Interconnect: Mellanox Technologies MT27600 [Connect-IB].

Software: RedHat* RHEL 6.5; OFED 3.12-1; Intel® MPI Library 5.1; Intel® MPI Benchmarks 4.1 (built with Intel® C++ Compiler XE 15.0.3 for Linux*);

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others

Superior MPI performance on Linux* 64

1792 Processes, 64 nodes (InfiniBand + shared memory)

Superior Performance with Intel® MPI Library 5.1

1792 Processes, 64 nodes (InfiniBand + shared memory), Linux* 64 Relative (Geomean) MPI Latency Benchmarks (Higher is Better)

Configuration Info:

Hardware: CPU: Dual Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz; 64 GB RAM. Interconnect: Mellanox Technologies MT27500 Family [ConnectX-3].

Software: RedHat* RHEL 6.5; OFED 3.5-2; Intel® MPI Library 5.1 Intel® MPI Benchmarks 4.1 (Built with Intel® C++ Compiler XE 15.0.3 for Linux*);

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Superior MPI performance on Windows* 64

96 Processes, 8 nodes (IP over InfiniBand + shared memory)

Superior Performance with Intel® MPI Library 5.1

96 Processes, 8 nodes (sock + shared memory), Linux* 64 Relative (Geomean) MPI Latency Benchmarks (Higher is Better)

Configuration Info:

HOST Hardware : Intel[®] Xeon[®] CPU X5680 @ 3.33GHz, RAM 24GB; Interconnect: InfiniBand, Mellanox ConnectX VPI (MT26428) QDR;

Software: Microsoft Windows Server 2008 HPC Edition, OFED 3.2, Intel® C/C++ Compiler XE 15.0.3, Intel® MPI Benchmarks 4.1.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

IntelMPI 5.1

MS-MPI v6

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others

Superior MPI performance on Xeon Phi[™]

64 Processes, 8 nodes (InfiniBand + shared memory)

Superior Performance with Intel® MPI Library 5.1

64 Processes, 8 nodes (InfiniBand + shared memory), Linux* 64 Relative (Geomean) MPI Latency Benchmarks (Higher is Better)

Configuration Info:

HOST Hardware : Intel® Xeon® CPU E5-2680 @ 2.70GHz, RAM 64GB; Interconnect: InfiniBand, Mellanox Technologies MT27500 Family [ConnectX-3];

MIC Hardware: Intel[®] Xeon Phi[™] coprocessor SE10/7120 series (rev 20) 1238095 kHz; 61 cores. RAM: 15872 MB per card.

Software: RHEL 6.5, OFED 3.12-1, MPSS Version: 3.5, Intel® C/C++ Compiler XE 15.0.3, Intel® MPI Benchmarks 4.1.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel[®] MPI Library 5.1 *What's New*

MPI Library

Ease of use

 Brand new Troubleshooting section for quicker issue resolution

Performance & Scaling

- Support for OpenFabrics* Interface (OFI*) v1.0
- Additional features for faster automatic tuning

Application performance at scale (Dual Xeon™ E5-2697 v3 @ 2.60GHz, -ppn 24)

Based on the following set of tests: SpecMPI-2.0/104.milc, SpecMPI-2.0/127.wrf2 (Built with Intel® C++ Compiler XE 15.0.3.187 for Linux*); Hardware: CPU: Dual Intel® Xeon E5-2697V3@2.60Ghz; 64 GB RAM. Interconnect: Mellanox Technologies* MT27500 Family [ConnectX*-3] FDR. Software: RedHat* RHEL 6.5; OFED 3.5-2-MIC-rc3; Intel® MPI Library 5.1, MVAPICH2-2.1. Environment: MV2 IBA. HCA=mix4_0 (mvapich2 only).

Performance Tuning Tools for Distributed Applications

Intel® Trace Analyzer and Collector

Trace A: 🔚 🎁 🛄 🔂 0.042 186	- 0.042 601 : 0.000 415 Seconds	💌 🖳 All_Processes 🛛 🧏 Major Function Groups 🔗 🍸 🗱 🕺 🔏
Trace B: 📰 👔 🛄 🔝 0.033 612	- 0.033 946 : 0.000 334 Seconds	💌 😏 All_Processes 🛛 🧏 Major Function Groups 🔗 🍸 🔯 🚈 🏄 🌾
P0 Application Application		Application Application AppliMPI
P1 Application	SVAppliMPI	Application AppliAppliAppliAppliAppliAppliAppliAppl
P2 Application	MAppliMPI	Application Application Appl
P3 Application Application	n MPI AppHMPI	Application MPLApplication AppliMPL AppliAppl
P4 Application Applic	ation AppliMPI	Application MPI Application AppliMPI
P5 Application MPI Appli	ication AppliMPI	Application MPI Application MAppli MPI AF
P0 Application Application	MAppliMPI Application	Application AppliMPI
P1 Application	AppliMPI	Application Appl MPI
P2 Application	Application	Application MAppl MPI
P3 Application	Appli MPI Application	Application AMPApphMPI
P4 Application WApplicatio	n MappliMPI Application	MPS Application 20 Appl MPI
P5 Application	AppliAppliApplication	Application Appl MPI
4		
4		,
Flat Profile Load Balance Call Tr	ee	Total Time B/A [1] (Sender by Receiver)
All_Processes		
B/A 🛆 TSelf TSelf	TTotal #Calls TSelf/Call	PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P1C P11 P12 P13 P14 P15 iun 1e - 3.260
▲ All_Processes		PO
Group Application 0.997 Group MPI 0.486	0.805 n.a. n.a. 0.486 2.211 0.220	P1 2.240
		P2 ····································
		P4
		P5
L		· · · · · · · · · · · · · · · · · · ·

Tune cross-node MPI

- Visualize MPI behavior
- Evaluate MPI load balancing
- Find communication hotspots

Intel[®] VTune[™] Amplifier XE

Tune single node threading

- Visualize thread behavior
- Evaluate thread load balancing
- Find thread sync bottlenecks

Optimization Notice

íntel

Intel® Trace Analyzer and Collector

Value Proposition

What	 Intel's High Performance MPI Communications Profiler & Analyzer for Scalable HPC Development
Why	 Scale Performance – Perform on More Nodes Scale Forward – Multicore and Manycore Ready Scale Efficiently – Tune & Debug on More Nodes
How	 Visualize - Understand parallel application behavior Evaluate - Profiling statistics and load balancing Analyze - Automated analysis of common MPI issues Identify - Communication hotspots

Intel[®] Trace Analyzer and Collector Overview

- Performance Assistance and Imbalance Tuning
- NEW in 9.1: MPI Performance Snapshot

íntel

Using the Intel[®] Trace Analyzer and Collector is ... Easy!

Intel[®] Trace Analyzer and Collector

Chart showing how the MPI processes interact

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ínte

Improving Load Balance: Real World Case

íntel

Improving Load Balance: Real World Case

íntel

Improving Load Balance: Real World Case

Optimization Notice

(intel

Ideal Interconnect Simulator (Idealizer)

Helps to figure out application's imbalance simulating its behavior in the "ideal communication environment"

Actual trace

0 s 40 s 80 s 120 s	160 s 200 s 240 s 280 s 320 s 140 s 180 s 220 s 260 s 300 s	340 s 400 s 440 s 480 s
PCI Application Application Application	n_ <u>/#F151/#_IMATSJUUUT</u> 95/MITTIN/MITTIN/MApplication/MENTLATETIN/TELEVITENTELIN/TELEVITENT	I Application I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
P1 MPI_Recv MPI_Recv	NV.1 F.K. WWW. 97 (MINTERNET MMPL_Allreduce MPTIL V WWWWWWWWWWWWWWWWWWWW	100600000 App/App/App/App.00.000000000000000000000
P2 MPI_Recv MPI_Recv	NUT US 2 99999 97 (NUTT) AMPLAIREDUCE METU A MATHIMUM NUTTINI MUMINIMUM NUTTINI AMMINIMUM NUTTINI AMMINIMUM NUT	AAVAA./J.A./J./J./AQUIACA(MPL_1)////MPL_Alireduce N/NAppMPL_AlirM131.011//////MPL_SWP1
P3 MPI_Recv MPI_Recv		VII. JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
P41 MPI_Recv MPI_Recv		UIIAIPAIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPI
P5/ MPI_Recv MPI_Recv		IIIIIIIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
P6I. MPI_Recv MPI_Recv	NINKXY (1999) VINININ MMPLAIreduce MPULIA INNINININININININININININININININININ	IIIIIIIIAIIIIIIAIIIIIIAAMPLAireduce NMAprMPLAIMTA IIIIIIIIIII MPLSend
P7II.MPI_Recv MPI_Recv		MIAppi MPL/MLV MPLAIreduce
0 s 40 s 120 s	160 s 240 s 320 s 320 s	~
PCApplication Application Application	AF#91645#####F#Application F##TMApplication ####################################	PIMP/
P1MPI_Recv MPI_Recv	Charles Children Chi	¥И
P2MPI_Recv MPI_Recv	VN. C. JIIIIII VV MPL_Allreduce //IIN./A/AAA/IIA/A/JAAA/IIA/A/MPL_Allreduce PorMPL_AllrA/II/J/ API	
P3MPI_Recv MPI_Recv	VILV. UNITED FMPL_Alireduce UNE_ULEUTION FULLEUTION APPLIAUAAppMPL_AUAAppMPL_AUAAppMPL_AUAA	Idealized Trace
PCMPI_Recv WPI_Recv PCMPI_Recv MPI_Recv		Idealized Trace
PSMPI_Recv WPI_Recv P MPI_Recv MPI_Recv PSMPI_Recv MPI_Recv MPI_Recv	NN 4.5 JJJJJ FU MPL Alleduce JJJ FJ JJJJJJ HJ HJ HJ HJ HJ HJ HJ HA AQ (MPL A) VJJJ VJ V Opication 1.5 JJJ J Ac UNI 4.7 JJJJJ M V MPL Alleduce CJN V HJ HA HJ	Idealized Trace
PS_MIPI_Recv MPI_Recv PS_MIPI_Recv MPI_Recv PS_MIPI_Recv MPI_Recv PS_MIPI_Recv MPI_Recv	Million MPL_Alleduce IIII / I / IIII / IIIII / IIII / IIIII / IIII / IIIII/ / IIII / IIIIII	Idealized Trace

Easy way to identify application bottlenecks

MPI Performance Assistance

Automatic Performance Assistant

- Detect common MPI performance issues
- Automated tips on potential solutions

Automatically detect performance issues and their impact on runtime

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. inte

MPI Performance Snapshot High capacity MPI profiler

Lightweight Low overhead profiling for 100K+ Ranks

Scalability Performance variation at scale can be detected sooner

Identifying Key Metrics Shows PAPI counters and MPI/OpenMP imbalances

MPI Performance Snapshot Summary

	==== GENERAL	STATISTICS						
WallClock:	284.274 s	ec (All p	rocesses)					
MIN:	31.998 s	ec (rank	0)					
MAX:	35.534 s	ec (rank	7)					
	= HW COUNTER	S STATISTIC	s					
GFlops: 9.563	MPI: 11.2	8% NON M	PI: 88.72%					
		_	M	PT IMBALANCE	STATISTICS			
Floating-Point in	istructions:	45.77%		207 047	DIALIDITOD	72 12%	(711 m	
Vectorized DP in	istructions:	24.69%		207.047	sec	73,123	(ATT DI	COCES
Memory access in	istructions:	42.35%		23.044	sec	64,85%	(rank	6)
				30.113	sec	88,57%	(rank	1)
	== MEMORY USA	GE STATISTI	CS					
All processes:	256.740MB		1 mm 1	== OpenMP ST	ATISTICS ==:			
MIN:	30.608MB	(process	7)	228.631	sec	80,43%		56
MAX:	33.136MB	(process	1)	25.348	sec	71.33%		7
			MAX:	33.124	sec	97,42%		7
		OpenMP	Imbalance:	103.92	4 sec	36,56%	a (All	proc
			MIN:	11.52	2 sec	32,43%	(ran)	k 3)
			MAX:	15.05	7 sec	44,29%	(ran)	k 2)

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. intel

MPI Correctness Checking

Highlights: Checks and pin-point hard to find run-time errors

- Unique feature to identify run-time errors
- Displays the correctness (parameter passing) of MPI communication for more robust and reliable MPI based HPC applications

Γ	0 s 1 s	ž s	4 s 3 s	\$,	6 s 7 s	8 s	9 s	, ц.,	12 5	14 s		18 s	-			
PO	ApMPI_Isend		PI_Barrier						Pl_Barrier	MPI_Barrier	Function	Issue	1			
		VWWW	WN						X		Process	Show	Time [c]	Туре	Leve	Description
P1	ArMPI_Recv	ММММММ	MMMMPI_Barrier						MPI_Barrier				11.909 9	D9 LOCAL:MPI:C/	ALL FAILED warn	inc Null MPI Request
P2	ArMPL_Isend				MPI_Barrier				IPI_Barrier	MPI_Barrie			•			
P3	3 <mark>Ar</mark> MPI_Recv	MPI_RIMPI_R			PI_MPI_Barrier				Req.MPI_Ba	Recy MPI_54						
P	ArMPL Isend	lsen	Isend Ise		e I Isend	Jsend J	sert4P1_Barrier		NIPI_Barrier	NMPI_Barrier	M M MPI_Finalize					
Pŧ	ArMPI_Recv	MPI_Recv	IPI_Recv MPI_Recv	MPI_Recv MPI_RecMPI_I	ecv MPI_RecMPI_Recv	MPL_Recv MPL_I	RecMPI_Barrier			Recv	MPI_B-M MMPI_Finalize					
PE	ApMPI_Isend	lsend	Isend	lsend lsen	i Liser Liser	d Usen	lsend	Isend		MPI_Barrier	M M MPI_Finalize					
P	ArMPI_Recv	MPI_Recv	MPI_Recv	MPI_Recv MPI_Rec	MPL_Recv MPL_Rec	W MPL_Recv MF	L_Recv	MPI_Recv MPI_	lore d	Sails c	on <mark>#</mark> Wa	rning	s" 🗾	"Run-ti	me Errors	" and
4	1		_,										×	"Warnır	ngs" can b	e
G	Flat Profile Load Bala roup All_Processes	ance Call Tree Call Gi	aph											identifie	ed easily.	By a single
M	lame	∠ TSelf	TSelf TTotal #Call	s TSelf/Call												
Ľ	MPI_Conn_siz	esses te Os	0 s 8	0 s										mouse-	-click, mor	e detalled
	MPI_Conm_rar MPI_Finalize MPI_Recv MPI_Request_ MPI_Isend MPI_Vaitall	uk 0 s 19.6098 s 33.0497 s free 3.81997 s 29.3298 s 0 s 1200-2 s	0 s 8 19.6098 s 8 33.0497 s 164 3.81997 s 8 29.3298 s 160 0 s 80 120e=3 c 124	0 s 2.45123 s 201.523e-3 s 477.496e-3 s 183.311e-3 s 0 s) "Ru	n-time	Errors	"		informa identify	ation help v root-cau	s to ses
	MPI_Barrier MPI_Reduce MPI_Send_ini Group Applic	50.1996 s 1.32 s t 0 s ation 979.992e-3 s	50.1996 s 52 1.32 s 12 0 s 16 138.439 s 8	965.377e-3 s 110e-3 s 0 s 122.499e-3 s				\langle) "Wa	rnings	"					
	MPI	statist	ics													

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. More details on issues

Intel[®] MPI Benchmarks 4.1

Standard benchmarks with OSIcompatible CPL license

- Enables testing of interconnects, systems, and MPI implementations
- Comprehensive set of MPI kernels that provide performance measurements for:
 - Point-to-point message-passing
 - Global data movement and computation _ routines
 - One-sided communications
 - File I/O
 - Supports MPI-1.x, MPI-2.x, and MPI-3.x standards

What's New:

Introduction of new benchmarks

Measure cumulative bandwidth and message rate values

The Intel® MPI Benchmarks provide a simple and easy way to measure MPI performance on your cluster

Online Resources

Intel[®] MPI Library product page

- www.intel.com/go/mpi
- Intel[®] Trace Analyzer and Collector product page
- www.intel.com/go/traceanalyzer

Intel[®] Clusters and HPC Technology forums

http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology

Intel[®] Xeon Phi[™] Coprocessor Developer Community

http://software.intel.com/en-us/mic-developer

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

