ALCF EARLY SCIENCE PROGRAM
Mira ESP, Theta ESP gave us
- Breakthrough science
- Technical reports on code porting & tuning
- Open community workshops (science & technology)
- Synergy with Tools & Libraries project
- Stable production platform (problems shaken out)
- Persisting culture of apps readiness for next generation
- Success stories for postdocs
ALCF EARLY SCIENCE PROGRAM (ESP)

Applications Readiness

- Prepare applications for next-gen system:
 - Architecture
 - Scale
- ~Two year lead time

Proposals

- Ambitious targeted science calculation
- Parallel performance
- Development needed
- Team

Support

PEOPLE

- Funded ALCF postdoc
- Catalyst staff member support
- Vendor experts

TRAINING

- Training on HW and programming
- Community workshop to share lessons learned

COMPUTE RESOURCES

- Current ALCF systems
- Early next-gen hardware & simulators
- 3 months dedicated Early Science access
 - Pre-production (post-acceptance)
 - Large time allocation
 - Continued access for rest of year

http://esp.alcf.anl.gov
ESP APPLICATION EFFORTS

Balance of optimization, scaling, development

Next-Generation Cosmology Simulations with HACC: Challenges from Baryons

Code: HACC
PI: Katrin Heitmann (ANL)
N-body gravity + SPH hydro
Catalysts: H. Finkel, A. Pope
Postdoc: J.D. Emberson

- Tune kernel
- Develop CRK-SPY hydro
- Develop subgrid models

First-Principles Simulations of Functional Materials for Energy Conversion

Codes: WEST & Qbox
PI: Giulia Galli (U. Chicago)
MBPT & ab initio MD
Catalyst: C. Knight
Postdoc: H. Zheng

- Use the right optimized libraries
- Address scaling
 - Optimize communication
 - Add 3rd parallelism layer to WEST

Free Energy Landscapes of Membrane Transport Proteins

Code: NAMD
PI: Benoit Roux (U. Chicago, ANL)
MD with replica methods
Catalyst: W. Jiang
Postdoc: B. Radak

- Tune Charm++
- Develop constant-pH
- Develop statistical models

The Hadronic Contribution to the Anomalous Magnetic Moment of the Muon

Codes: MILC & CPS
PI: Paul Mackenzie (FNAL)
Lattice QCD
Catalyst: James Osborn

- Developed/tuned KNL code
- Studied communication issues
FIRST-PRINCIPLES SIMULATIONS OF FUNCTIONAL MATERIALS FOR ENERGY CONVERSION

Science Impact
- Properties of materials to be used for solar and thermal energy conversion will be optimized at an unprecedented level of accuracy—by combining ab initio molecular dynamics and post-density functional theory methods—thus providing truly predictive tools, ultimately for device performance, within a MGI material design framework.

Numerical Methods/Algorithms
- WEST implements Many Body Perturbation Theory at the GW level, starting from DFT inputs obtained either using GGA or hybrid functionals.
- Qbox is an ab initio molecular dynamics code. It is based on DFT and a plane wave basis.

Application Development
- Qbox: optimize FFT (MKL library), evaluate running entirely in MCDRAM
- WEST: vectorization, optimized linear algebra kernels such as DGEMM from MKL

Case Study: Theta ESP application optimization

This project will focus on high-performance calculations of nanoparticles and aqueous systems for energy applications. Nicholas Brawand, Institute for Molecular Engineering, University of Chicago
QBOX OPTIMIZATION

SINGLE NODE
- Strong dependence on libraries
 - Linear algebra
 - FFT
- Replace ScaLAPACK eigenvalue solver with ELPA
 - **5-10X** speedup
- Intel MKL for FFT
- After these optimizations, focus on scaling/multimode issues

PROCESSOR REMAPPING
- Different optimal processor maps for linear algebra, FFTs
 - Swap between two layouts
 - Implement custom “gather & scatter” remap
 - 1000X faster than **pgemr2d**

Zheng et al., IXPUG Fall 2017, APS March Meeting 2017
WEST OPTIMIZATION

NEW PARALLELISM LAYER
- Across bands N_b (in addition to across perturbations & plane waves $N_v \times N_z$)
- Good prognosis for 2-5K electron systems on pre-exascale/exascale

TASK-GROUPS FOR FFTS
- Distribute independent FFT operations on a smaller number of cores
 - Partition band group into task groups; each fits on single node
 - Shared memory MPI for transpose

Zheng et al., IXPUG Fall 2017, APS March Meeting 2017
EXTREME SCALE UNSTRUCTURED ADAPTIVE CFD: AERODYNAMIC FLOW CONTROL

Code: PHASTA • PI: Kenneth Jansen (U. Colorado Boulder) • CFD, unstructured mesh • Catalyst: Hal Finkel

Active synthetic jet actuator

- 3D finite element
- unstructured adaptive mesh
- fully implicit
- 5 billion elements
- 2048 Theta nodes (128K KNL cores)
EXTREME SCALE UNSTRUCTURED ADAPTIVE CFD: AERODYNAMIC FLOW CONTROL

Code: PHASTA • **PI:** Kenneth Jansen (U. Colorado Boulder) • CFD, unstructured mesh • **Catalyst:** Hal Finkel
AURORA
Intel Aurora supercomputer planned for 2018 shifted to 2021
Scaled up from 180 PF to over 1000 PF

Support for three “pillars”

Simulation

Data

Learning

Pre-planning review
NRE contract award
Design review
Rebaseline review
Build contract modification

ALCF-3 Facility and Site Prep, Commissioning
ALCF-3 ESP: Application Readiness
NRE: HW and SW engineering and productization
Build/Delivery
Acceptance

AURORA
Hardware and software optimized for Simulation, Data, and Learning

COMPUTE
- FLOPS
- Concurrency
- Memory performance
- ML/DL operations

I/O
- Speed
- Capacity
- Flexibility
 - Conventional I/O
 - Database
 - Analytics middleware

Programming Environment
- Optimizing compilers
- Latest OpenMP
- Key Big Data stack components
- Productivity languages
- ML/DL frameworks
- Optimized libraries
 - Math
 - Statistics
 - ML/NN
AURORA SYSTEM

- Nodes will have both high single thread core performance and the ability to get exceptional performance when there is concurrency of modest scale in the code.

- Architecture optimized to support codes with sections of fine grain concurrency (~100 lines of code in a FOR loop e.g.) separated by serial sections:
 - Degree of fine grain concurrency (e.g. number of loop iterations) that will be needed to fully exploit the performance opportunities is moderate. (~1000 for most applications)
 - Independence of these loops is ideal but not required for correctness
 - No limit on the number of such loops; overhead of starting/ending loops is very low

- Serial code (within an MPI rank) will execute very efficiently.

- OpenMP 5 will likely contain the constructs necessary to guide the compiler to get optimal performance.

- The compute performance of the nodes will raise in a manner similar to the memory bandwidth.

- The memory capacity will not grow as fast as the compute:
 - The memory will all be high performance alleviating some concerns of explicitly managing multievel memory & data movement
 - The memory in a node will be coherent

- All compute will be first class citizens: equal access to all resources, memory and fabric etc.

- The fabric BW will be increasing similar to the compute performance for local communication patterns:
 - Global communication BW will likely to not increase as fast as compute performance.
AURORA EARLY SCIENCE PROGRAM
AURORA ESP SIMULATION PROJECTS

<table>
<thead>
<tr>
<th>Project</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extending Moore’s Law computing with Quantum Monte Carlo</td>
<td>Anouar Benali</td>
</tr>
<tr>
<td>Design and evaluation of high-efficiency boilers for energy production using a hierarchical V/UQ approach</td>
<td>Martin Berzins</td>
</tr>
<tr>
<td>High fidelity simulation of fusion reactor boundary plasmas</td>
<td>C.S. Chang</td>
</tr>
<tr>
<td>NWChemEx: Tackling Chemical, Materials & Biochemical Challenges in the Exascale Era</td>
<td>Thomas Dunning</td>
</tr>
<tr>
<td>Extreme-Scale Cosmological Hydrodynamics</td>
<td>Katrin Heitmann</td>
</tr>
<tr>
<td>Extreme Scale Unstructured Adaptive CFD: From Multiphase Flow to Aerodynamic Flow Control</td>
<td>Kenneth Jansen</td>
</tr>
<tr>
<td>Benchmark Simulations of Shock-Variable Density Turbulence and Shock-Boundary Layer Interactions with Applications to Engineering Modeling</td>
<td>Sanjiva Lele</td>
</tr>
<tr>
<td>Lattice Quantum Chromodynamics Calculations for Particle and Nuclear Physics</td>
<td>Paul Mackenzie</td>
</tr>
<tr>
<td>Metascalable Layered Materials Genome</td>
<td>Aiichiro Nakano</td>
</tr>
<tr>
<td>Free Energy Landscapes of Membrane Transport Proteins</td>
<td>Benoit Roux</td>
</tr>
</tbody>
</table>
CALL FOR PROPOSALS: A21 ESP DATA, LEARNING PROJECTS

CFP January 2018
- Deadline 8 April 2018

Selections June 2018
- 5 Data projects
- 5 Learning projects

Two-year funded ALCF postdoc

Cross-cutting proposals targeting the convergence of simulation, data and learning are very much encouraged.

DATA
- Experimental/observational data
 - Image analysis
 - Multidimensional structure discovery
- Complex and interactive workflows
- On-demand HPC
- Persistent data techniques
 - Object store
 - Databases
- Streaming/real-time data
- Uncertainty quantification
- Statistical methods
- Graph analytics

LEARNING
- Deep learning
- Machine learning steering simulations
 - Parameter scans
 - Materials design
 - Observational signatures
- Data-driven models and refinement for science using ML/DL
- Hyperparameter optimization
- Pattern recognition
- Reduced model derivation
- Bridging gaps in theory

THANK YOU

Upcoming Program Deadlines

Aurora Early Science Program for Learning and Data
Call for Proposals in January 2018

ADSP Program
Call for Proposals in April 2018