

ANL/ALCF/ESP-13/17

ALCF-2 Early Science Program Technical Reports

 Compendium of Individual Technical Reports for the 16 ESP Projects

Argonne Leadership Computing Facility

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831-0062
 phone (865) 576-8401
 fax (865) 576-5728
 reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF/ESP-13/17

ALCF-2 Early Science Program Technical Reports

Compendium of Individual Technical Reports for the 16 ESP Projects

Edited by
Timothy J. Williams
Argonne Leadership Computing Facility, Argonne National Laboratory

July 18, 2013

ALCF-2 Early Science Program Technical Reports

Editor: Timothy J. Williams, Argonne Leadership Computing Facility

July 2013

1

Contents ALCF-2 Early Science Program Technical Reports

Contents

1 The Early Science Program 3
1.1 These Technical Reports . 3

2 Acknowledgements 3

3 Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Re-
solving Model 5

4 Materials Design and Discovery: Catalysis and Energy Storage 11

5 Direct Numerical Simulation of Autoignition in a Jet in a Cross-Flow 23

6 High Accuracy Predictions of the Bulk Properties of Water 39

7 Cosmic Structure Probes of the Dark Universe 45

8 Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy
Production and Storage with MADNESS and MPQC 57

9 Petascale, Adaptive CFD 71

10 Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Esti-
mates 85

11 High-Speed Combustion and Detonation (HSCD) 91

12 Petascale Simulations of Turbulent Nuclear Combustion 97

13 Lattice Quantum Chromodynamics 119

14 Petascale Direct Numerical Simulations of Turbulent Channel Flow 129

15 Ab-initio Reaction Calculations for Carbon-12 141

16 NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular
Systems Based on a Polarizable Force Field 157

17 Global Simulation of Plasma Microturbulence at the Petascale & Beyond 161

18 Multiscale Molecular Simulations at the Petascale 175

Title Page Photos: Top: Mira—one of three rows of 16 IBM Blue Gene/Q racks.
Bottom: Attendees at the ALCF Early Science Program Kick-Off Workshop, 18-19
October 2010, in front of Argonne National Laboratory’s TCS Conference Center.

2

The ESP ALCF-2 Early Science Program Technical Reports

1 The Early Science Program

The Early Science Program (ESP) is managed for the Department of Energy by the Argonne
Leadership Computing Facility (ALCF). ESP was funded to prepare key scientific applications for
the architecture and scale of Mira, a 48K-node IBM Blue Gene/Q system that went into production
at ALCF in April 2013, and to solidify libraries and infrastructure that will pave the way for other
production applications. To distinguish it from past and future Early Science Programs, we denote
this one as the ALCF-2 ESP (ALCF-2 is the project name associated with procurement of Mira).

The 16 Early Science projects are the result of a call for proposals in 2010, and were chosen based
on computational and scientific reviews. The projects, in addition to promising delivery of exciting
new science, are all based on state-of-the-art, petascale, parallel applications. Starting in October
2010, the project teams, in collaboration with ALCF staff and IBM, have undertaken intensive
efforts to adapt their software to take advantage of Mira’s Blue Gene/Q architecture, which, in
a number of ways, is a precursor to future HPC architectures. Together, the 16 projects span
a diverse range of scientific fields, numerical methods, programming models, and computational
approaches. The latter include particle-mesh methods, adaptive meshes, spectral methods, Monte
Carlo, molecular dynamics, and ab initio computational chemistry methods. These applications also
represent a large portion of the ALCFs current and projected production computational workload.

The official Early Science period lasted only about three months (between machine acceptance
and commencement of production), during which the ESP had dedicated use of Mira. Projects
have about 2 billion core-hours to use on Mira, as much as possible during that 3 month period,
so It was essential that the projects were ”ready to run” when the clock started ticking. The long
lead time of the Program, and dedicated postdoctoral appointees for most projects, working with
ALCF staff, helped make that possible.

1.1 These Technical Reports

The purpose of the Technical Reports gathered here is to document and publicly circulate what the
ESP projects have done and learned in preparing their application codes for Mira. This includes,
for example, approaches for better use of in-node thread parallelism, accessing the BG/Q’s QPX
functionality (4-way SIMD vectorization), use of BG/Q specific libraries such as the low-level PAMI
communication system, and using ESSL and Mass libraries. We hope that these examples will
inform and help our production users on Mira, and those working on optimization applications en
route to applying for computer time grants on ALCF systems via the INCITE and ALCC programs.

2 Acknowledgements

For all projects in these reports: This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357.

3

The ESP ALCF-2 Early Science Program Technical Reports

4

GFDL esp ALCF-2 Early Science Program Technical Reports

3 Climate-Weather Modeling Studies Using a Prototype Global
Cloud-System Resolving Model

PI: V. Balaji (Geophysical Fluid Dynamics Laboratory)

Project Summary

We expect our understanding of the role of clouds in climate to undergo a qualitative change as
the resolutions of global models begin to encompass clouds. At these resolutions, non-hydrostatic
dynamics become significant and deep convective processes are resolved. We are poised at the
threshold of being able to run global scale simulations that include direct, non-parameterized,
simulations of deep convective clouds. The goal of this project is to use Mira to explore the frontier
of weather prediction and climate modeling with the newly developed Geophysical Fluid Dynamics
Laboratory (GFDL) global cloud-resolving model. A single, unified atmospheric modeling system
with a cubed-sphere dynamical core and bulk cloud microphysics running at hydrostatic (∼10 km)
and non-hydrostatic (≤5 km) resolutions will be run with the goal of capturing the climatology of
clouds and severe storms in a warming world. The ability to reproduce historical tropical storm
statistics will be used as a test of this ground-breaking model. The purpose of the experiments
proposed is to validate the global cloud-resolving climate model via hurricane hindcasts. For this
purpose, we will perform hurricane verification studies for the 2008 Atlantic Season. Storms in 2008
lasted a total of 100 days; performing 5-day forecasts on each of the days would give a total of 500
forecast days for the season.

Report originally released as ANL/ALCF-ESP-13/1

5

Climate-Weather Modeling Studies Using a Prototype Global
Cloud-System Resolving Model

Research Team Members:

V. Balaji – Computational Scientist, Princeton University
Shian-Jiann Lin – Physical Scientist, GFDL
Christopher Kerr – Computational Scientist, GFDL

Executive Summary:

Clouds remain the largest source of uncertainty in our understanding of global
climate change. Different aspects of the planetary cloud field can provide positive
and negative feedback to the Earth’s energy balance, and clouds of course are
directly implicated in changes to the planetary distribution of precipitation. A
fundamental problem in our current understanding of the role of clouds in the
dynamics of climate are that current resolutions do not resolve the fundamental
length scales associated with clouds. We expect our understanding of the role of
clouds in climate to undergo a qualitative change as the resolutions of global
models begin to encompass clouds. At these resolutions (which roughly scale
with the tropopause height of 10km) non-hydrostatic dynamics become
significant and deep convective processes are resolved. We are poised at the
threshold of being able to run global scale simulations that include direct, non-
parameterized, simulations of deep convective clouds. The goal of this research
is to use the Argonne Leadership Computing Facility to explore the frontier of
weather prediction and climate modeling with the newly developed Geophysical
Fluid Dynamics (GFDL) global cloud-resolving model. A single unified
atmospheric modeling system with a cubed-sphere dynamical core and bulk
cloud micro-physics running at 3.5km resolutions was run with the goal of
capturing the climatology of clouds and severe storms in a warming world. The
ability to reproduce historical tropical storm statistics will be used as a test of this
ground-breaking model.

Project Summary:

We have completed several 3-months of experiments with the 3.5km resolution
global hydrostatic atmospheric model. The figures below show the preliminary
diagnostics from the experiment.

A significant amount of development has been undertaken to improve the
computational and I/O performance of HiRAM. Work has also continued on
improving the post-processing diagnostic packages for the high-resolution
experiments.

GFDL esp ALCF-2 Early Science Program Technical Reports

6

Computational Infrastructure:

The GFDL weather and climate models are built on the Flexible Modeling System
(FMS). Details of FMS can be found at: http://www.gfdl.noaa.gov/fms. FMS is
written primarily in FORTRAN 90 with approximately 0.75M lines of executable
code. The model also utilizes a high-level hybrid MPI/OpenMP model in all of the
component models (atmosphere, land …). The parallel I/O layer allows for both
single and multi-threaded I/O, as well as quilted I/O from a subset of MPI ranks.
Output data uses the netCDF4 library, including its parallel I/O, chucking and
deflation options.

Performance Studies:

Considerable progress has been made to improvements to the computational
FMS infrastructure. These improvements have included:

ñ Enabling the performance scaling of the FMS infrastructure. The results of
this work are shown for HiRAM and Held-Suarez in Figures 1 and 2

ñ Implementing a memory footprint that scales with increasing core counts
ñ Incorporating a high-level hybrid programming model in all component
 models
ñ Providing an I/O scheme that scales with increasing core counts

Understanding the performance characteristics of HiRAM is an important
component of the study. Through development of diagnostics tools, in
collaboration with IBM Watson Research, the results of the studies with the
diagnostic tools show that HiRAM at 3.5km resolution has the following
computational foot-print:

ñ HPM characteristics: 40% FPX-60% FXU. 10B/cycle (not bandwidth
 limited)
ñ Model timer counters: Atmosphere=75%, Physics=15%, land and
 coupler=10%. (70% compute and 30% communication)

We have also produced line and function-level timing data which we are using to
direct optimizations. The have identified additional regions for OpenMP threading
and elimination of data copies at statement-level and across subroutine
boundaries.

Improving the post-processing performance of the FMS infrastructure is a critical
component of the project. The model currently generates 250GB of history data
per model day. These history files are currently downloaded and post-processed
at GFDL. There are approximately 0.10M lines of post-processing scripts and
eventually these will need to be moved to a system closer to BG/Q.

GFDL esp ALCF-2 Early Science Program Technical Reports

7

The development activity are being expanded based on the success of this work
and this will enable the entire FMS software including the component ocean and
ice models to execute efficiently on BG/Q. We have also begun studies to:

ñ Extend the scalability of HiRAM beyond the 250,000 hardware threads
current used in production

ñ Improve single core performance of the code. The areas for study include
the implementation of: prefetch, transactional memory, and vectorization
in the code

ñ Exploit additional forms of higher-level parallelism in the codes including
improvements to our OpenMP implementation

ñ Examine the trade-offs between process and thread based parallelism.
ñ Possible implementation of partitioned global address space (PGAS) in

the codes
ñ Implement a parallel I/O scheme for the non-distributed arrays.

Figure 1: Shows the scaling of the global non-hydrostatic cloud-resolving model:
HiRAM at 3.5km resolution. The model is configured to execute on 8-MPI
Ranks/node and 8-OpenMP threads/rank. In production, HiRAM executes on
either 15,360 or 30,720 MPI ranks with 8-MPI Ranks/node and 8-OpenMP
threads/rank.

GFDL esp ALCF-2 Early Science Program Technical Reports

8

Figure 2: Shows the scaling of the Held-Suarez Test-Case with the Cubed-
Sphere Dynamical Core at 3.5km resolution. The model is configured to execute
on 8-MPI Ranks/node and 8-OpenMP threads/rank.

GFDL esp ALCF-2 Early Science Program Technical Reports

9

GFDL esp ALCF-2 Early Science Program Technical Reports

10

MatDesign esp ALCF-2 Early Science Program Technical Reports

4 Materials Design and Discovery: Catalysis and Energy
Storage

PI: Larry Curtiss (Argonne National Laboratory)

Project Summary

New materials may help solve global energy challenges

Our energy future hinges on the design and discovery of new materialslike materials to replace the
oils currently used to make plastics, and materials to power electric vehicles.

Scientists at Argonnes Center for Nanoscale Materials and the Material Science Division are
pairing the power of the Blue Gene/Q with newly available electronic structure codes to conduct
massively parallel quantum mechanical calculations for use in the design of breakthrough materials
that may have energy-related applications.

Materials reduce greenhouse gases, power electric vehicles

A team of researchers, led by Larry Curtiss with the Material Science Division and the Center
for Nanoscale Materials at Argonne, is focusing research efforts on catalytic materials and on
materials used for electric energy storage. Catalytic materials are used for bond-specific activation
for efficient chemical transformations. This research could yield new strategies for more energy-
efficient, environmentally friendly chemical synthesis to help reduce greenhouse gases, or in new
methods for replacing petrochemicals with inexpensive, abundant small alkanes.

Creating new materials for electrical energy storage, (specifically, for the interface between
electrolyte and electrode) could lead to safer, longer-range batteries for electric vehicles.

Finding better solutions, faster with the Blue Gene/Q

Using the extreme compute power of the Blue Gene/Q, researchers will employ high-accuracy
quantum mechanical calculations using density functional theory (DFT) and quantum monte carlo
(QMC). In preparation for the new architecture of the Blue Gene/Q, key computational kernels
will be re-written to employ OpenMP nested parallelism.

Report originally released as ANL/ALCF-ESP-13/2

11

Mira Early Science Program
Final Technical Report

Materials Design and Discovery:
Catalysis and Energy Storage

Anouar Benali and Nichols A. Romero
Leadership Computing Facility, Argonne National Laboratory

April 3, 2013

MatDesign esp ALCF-2 Early Science Program Technical Reports

12

Introduction

The investigation and design of new classes of materials for energy and catal-
ysis requires a multi-facetted approach to simulation. Multiple methods are
needed to study materials on the length scale 0.1 nm - 10 nm. For simula-
tions where the atomic (and electronic) degrees of freedom are relevant, the
methods of choice in the surface science, condensed matter physics, and ma-
terial science communities are classical molecular dynamics (CMD), Density
Functional Theory (DFT), and quantum Monte Carlo (QMC).

The original scope for this Early Science Program (ESP) project was to
perform fast-accurate DFT calculations on materials for energy and catalysis
using the GPAW[1, 2, 3] code on Blue Gene/Q. The types of calculations
included significantly reduced time-to-solution on systems sizes accessible
on Blue Gene/P (∼10, 0000 valence electrons), but also systems which were
were at least a factor of two larger (∼20, 000 valence electrons). GPAW is a
real-space DFT code using the projector augemented wave (PAW) method.
DFT calculations on Blue Gene/P were executed on over >100, 000 cores
using GPAW; thus it was consider a success on Mira’s predecessor system,
Intrepid.

One of the co-PIs (NAR), determined that the work necessary to allow
the GPAW code for these aformentioned types of calculations could not be
accomplish within the time frame of the ESP. This was not simply due to hu-
man time required to implement OpenMP parallelism, but also from intrinsic
algorithmic limitations in supporting libraries, most notably ScaLAPACK.
Additionally, the return-on-investment onO(N3) DFT code has become some
what tenable at best. NAR argues that what is really needed in prepara-
tion for exascale computing and to enable high-fidelity materials research is
robust reduced scaling, O(N) or O(N)log(N), DFT approaches.

Thus, in aggreement with the other co-PIs, the decision was made to purse
QMC as a complimentary method on Mira since it would be vaulable for the
scientific community and could easily leverage the massive parallelism that
would be provided by the Blue Gene/Q. We note that the two other atomic-
scale methods mentioned here, CMD and DFT, are being pursued by other
ESP projects on Mira. The remainder of this report will focus on our progress
on QMC.

MatDesign esp ALCF-2 Early Science Program Technical Reports

13

Beyond Density Function Theory

DFT provides qualitative accuracy for many well-behaved systems but lacks
quantitative accuracy for most materials. One example where DFT consis-
tently performs poorly is van der Waals dominated systems; additionally,
chemical accuracy, generally considered to be 1 kcal/mol (=4 kJ/mol or 1
meV) cannot be achieved. This accuracy can only be achieved by an accurate
description of the electronic correlations of the system and therefore making
it difficult to use mean field methods, such as DFT or Hartree Fock (HF).

Accurate many-body methods, such as Coupled Cluster (CC), provides
accurate estimates of the energies by solving the many body Schroedinger
equation, but becomes rapidly computationally intractable as the number
of electrons increases, scaling as poorly as N7. QMC, within the varia-
tional Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods are
”stochastic approaches for evaluating quantum mechanical expectation val-
ues with many-body Hamiltonians and wave functions. [..] The main attrac-
tion of these methods is that the computational cost scales as some reasonable
power (normally from N2 to N4) of the number of particles N. This scaling
makes it possible to deal with hundreds or even thousands of particles, al-
lowing applications to condensed matter.”[4]

We therefore solve the Schröedinger equation with the manybody Hamil-
tonian. QMC formalism is the usual Monte Carlo (MC) formalism in the
sense that it solves multi-dimensional integrals by sampling randomly the
space and allowing the system to evolve in the imaginary time using MC
steps. Only moves that lower the energy are accepted. The obtained total
energy comes at a cost of a variance and an error bar due to its stochastic
nature.

σ2 =
〈
E2

T

〉
− 〈ET 〉2, δ =

σ√
M

(1)

It becomes evident that to reduce the error bar, one should run the simulation
longer or simply increase the number of samples, which suits particularly well
large supercomputers systems.

A good sampling requires starting close to the right answer. In order to do
so, we use a trial wave function that is created from a Slater determinant of
single-particle orbitals (obtained from a previous DFT calculation) in com-
bination with Slater-Jastrow parameter that explicty incorporate electron
correlation effects.

MatDesign esp ALCF-2 Early Science Program Technical Reports

14

Splines Single-particle orbitals (SPO) are a set of functions in (R3), one
function per orbital that describes its quantum state. During simulation, a
walker (R3N) samples spatial regions for the many-body state at that point,
requiring an evaluation of all orbital functions. The Slater determinant of
single-particle orbitals depends on the choice of basis set (molecular orbitals,
plane waves etc...). For the class of materials we are interested in, the most
practical choice is the use of plane waves. The B-pline approximation in
QMC reports significant reduction of time of calculation while maintaining
plane wave level of precision. The mesh size in the X, Y, and Z dimensions
determines the accuracy of the representation. When a point in space is
evaluated, a minicube of coefficients (64 coefficients) surrounding that point
is required to interpolate its value.

Twists Generating a QMC trial wavefunction can be accomplished by gen-
erating a DFT wavefunction that contains all of the k-points necessary to
express the many-body wavefunction with the different boundary conditions
in the QMC simulation cell. Then the resulting QMC calculations will be
performed with all of these different boundary conditions. Practically speak-
ing, one needs to specify the boundary conditions for the QMC calculations
using a k-point grid of n×n×n twists. This also has the effect to change
the type of the wave function from real when no twists are used, to complex
when they are present.

Workflow

A common workflow for QMC consists on generating a trial Slater-Jastrow
wave function, running a VMC optimization and finally running a DMC to
reach the desired accuracy. VMC treats the square of the wave function
as the probability distribution on which to do Monte Carlo. This means
the form of the wave function limits the minimum energy you can reach in
VMC. DMC, uses a branching, birth/death process based on the imaginary-
time version of the Schröedinger equation to guide the random walkers in
their random walk. Its minimum energy is limited only by the nodal surface,
derived from the trial wave function, which prevents random walkers from
moving between different-signed areas of the configuration space.

MatDesign esp ALCF-2 Early Science Program Technical Reports

15

Figure 1: QMC workflow chart.

QMCPACK on MIRA

We use the QMCPACK[5, 6] simulation package for this project. The code
was developed starting 2002 by the Ceperley Group at UIUC. Since then,
the community of developers led by Dr. Jeongnim Kim (ORNL) has grown
and spread amongst different institutions and National Laboratories.

QMCPACK is a heavily templated C++ code using all aspects of object-
oriented coding, STL libraries and MPI and OpenMP for communication.
This should have made it ready for porting on BGQ, however, as we ex-
perienced with our early access, many C++ standard were not compatible
between different compilers and the use of OpenMP led to some serious prob-
lems (race conditions and thread unsafe regions) that had to be addressed
before going further.

Once we were certain that the code was producing the right answers we
proceeded to optimizing it.

Profiling We used HPM and GPROF as main profiling tools. Most of
the systems of importance to us use twists and therefore we focused on the
complex-valued wave functions which exercises the complex-valed code paths
in QMCPACK.
Running GPROF showed that 71% of the application time was spent in

MatDesign esp ALCF-2 Early Science Program Technical Reports

16

the spline evaluation of the wavefunction. This time was spread between
two functions, Eval-Z evaluating the spline and Eval-Z-VGH evaluating the
spline, the gradient and the hessian. (These functions exist also for the real-
valued type in two versions, a double precision and a single precision version).
Computationally, each function consists on 4 nested loops (4×4×4×N) where
4×4×4 corresponds to the number of coefficients in the minicube and N is
the number of orbitals in the system, as described in the splines section.
In order to optimize the code we modified these two types of algorithms (for
complex type and double/single precision type) using two general algorithms,
then adding a layer of QPX and finally prefetching when it was possible.

Algo M. Algorithm M. consists of fusing the 4×4×4 loops and unrolling
the inner loop with a stride of 8. For Mira, we used QPX instructions to
manually load and store data after using the fused multiply-add functions.
As a last step we added prefetching on the spline-only evaluation function to
improve memory management.

Algo B. Algorithm B. consists on reversing the order of the loops to N×4
and unrolling the other loops. The mathematical expression of the problem
is modified decreasing substantially the number of floating-point operations.
For Mira we managed to use a similar algorithm to replace most of the in-
structions by QPX functions but were not able to benefit from prefetching.

As said previously, according to the type of system one can study (solid,
nanocluster, molecules etc...) the use of twists will make the wavefunction
either complex or real. This will exert 2 different parts of the code, a complex-
valued type and a real-valued type (with a double precision and a single
precision version). We applied the same methodology to optimize the spline
evaluation functions and show the results in table-1. Results show that Algo.
M is more efficient for the simple evaluation of the spline, while Algo B. is
more efficient when spline, gradient and hessian are evaluated. The increased
latency in Algo B. is hidden by the very important decrease of the total
number of instructions (see table-2. However, Algo M doesn’t have a better
management of memory access and does not reduce as effectively the number
of instructions, but for a smaller function, it is far more efficient than Algo.
B.

When profiling the same problem with the new optimized algorithms we

MatDesign esp ALCF-2 Early Science Program Technical Reports

17

Speed up Eval-Z Eval-D Eval-S
Algo. B 0.38 0.81 0.39
Algo. M 2.48 0.91 1.02

Algo. (X)
with QPX 3.94 (M) 1.08 (M) 1.26 (M)

QPX +
Prefetch. 4.5 1.23 1.81

Speed up Eval-Z-VGH Eval-D-VGH Eval-S-VGH
Algo. B 1.59 0.93 1.62
Algo. M 2.15 1.01 0.95

Algo. (X)
with QPX 7.62 (B) 1.58 (B) 1.31 (B)

Table 1: QMCPACK speed up for three different types of wave functions
exerting the complex-valued part (Eval-Z, Eval-Z-VGH),the real part (double
precision) (Eval-D and Eval-D-VGH) and its single precision version (Eval-S
and Eval-S-VGH).

see that the percentage of peak, the memory management and the number of
instructions per cycle completed per core dropped significantly (see table-2).
However, the number of instructions has decreased significantly which hides
the latency in the memory management and most of all, the time spent on
the spline evaluation and the time to solution was reduced by a factor 2.67
(see Fig-2). We selected the most efficient algorithms and applied them to
QMCPACK. Results are shown in Fig-2.

Conclusion

Quantum Monte Carlo algorithms (due to their stochastic nature and the
independence between samples) can benefits greatly from massively parallel
supercomputers. The large number of cores on Mira can be leverage by
QMC to study very large systems at chemical accuracy in extremely short
time by using a very large number of samples, corresponding to a very large
number of cores. The use of QPX and prefetching improved substantially the
time to solution making the code even more efficient with a 2.67 speedup.
Working with QMCPACK on BGQ Mira allows us to study a larger spectrum

MatDesign esp ALCF-2 Early Science Program Technical Reports

18

Profiling Original Version Mira Optimized
Time spent on Spline evaluation 70.97 (%) 22.33 (%)

Percentage of Peak 6.55 % 5.33%
All XU Instructions (in Billion) 27,644 8,581

All AXU Instructions (in Billion) 22,786 4,896
FP Operations (in Billion) 43,043 13,017

Instructions/cycle completed/core 0.6138 0.4417
L1 d-cache hits 94.03 (%) 88.60 (%)
L1P buffer hits 5.36(%) 5.92 (%)
L2 cache hits 0.35 (%) 4.50 (%)

DDR hits 0.26 (%) 0.98 (%)

Table 2: Performance Comparison between Original version of QMCPACK
and Mira modified version of QMCPACK

Figure 2: QMCPACK Speed up using compared to the original version us-
ing our cross platform algorithm (NoQPX) and QPX for all three types of
wavefunctions.

of materials at the chemical accuracy which is a great achievement. Many
applications, from material design to biochemistry are being investigated and
should soon be submitted to high impact journals.

The work on QMCPACK, specially on Mira is far from being over. As
one can notice on this report, most of the efforts were focused on porting

MatDesign esp ALCF-2 Early Science Program Technical Reports

19

Figure 3: Pt solids and
Nanoclusters for Cataly-
sis

Figure 4: Ar, Kr and
Xe Solid (Simulation of
Van der Waals domi-
nated solids

Figure 5: Molecule of El-
lipticine with DNA frag-
ments

the code to BGQ, optimizing the main kernel using QPX and ”prefetching”.
However very little has been done in implementing nested open OpenMp
(hybrid paralellization) which in theory, could reduce the time to solution by
a factor 4. Hopefully this next step will be undertaken in the near future.

MatDesign esp ALCF-2 Early Science Program Technical Reports

20

Bibliography

[1] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid
implementation of the projector augmented wave method,” Phys. Rev.
B, vol. 71, p. 035109, Jan 2005.

[2] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Du lak, L. Fer-
righi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristof-
fersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-
Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero,
J. Stausholm-Möller, M. Strange, G. A. Tritsaris, M. Vanin, M. Wal-
ter, B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen, J. K.
Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W.
Jacobsen, “Electronic structure calculations with GPAW: a real-space im-
plementation of the projector augmented-wave method,” J. Phys.: Con-
dens. Matter, vol. 22, p. 253202, 2010.

[3] J. Enkovaara, N. A. Romero, S. Shende, and J. J. Mortensen, “GPAW
- massively parallel electronic structure calculations with Python-based
software,” Procedia Computer Science (2011), vol. 4, pp. 17–25, 2011.

[4] Needs, M. D. Towler, N. D. Drummond, and P. L. Ŕıos, “Continuum
variational and diffusion quantum monte carlo calculations,” Journal of
Physics: Condensed Matter, vol. 22, no. 2, p. 023201, 2010.

[5] J. Kim, K. Esler, J. McMinis, and D. M. Ceperley, “QMCPACK simula-
tion suite.” unpublished.

[6] J. Kim, K. Esler, J. McMinis, and D. M. Ceperley, “Quantum monte
carlo algorithms: making most of large-scale multi/many-core clusters,”
Conference Series, (Chattanooga, TN), Scientific Discovery through Ad-
vanced Computing (SciDac), J. of Physics, Jun 2010.

MatDesign esp ALCF-2 Early Science Program Technical Reports

21

MatDesign esp ALCF-2 Early Science Program Technical Reports

22

Autoignition esp ALCF-2 Early Science Program Technical Reports

5 Direct Numerical Simulation of Autoignition in a Jet in a
Cross-Flow

PI: Christos Frouzakis (ETH Zürich)

Project Summary

Lean combustion turbines provide excellent opportunities for environmentally friendly propulsion
and electricity generation, but are severely limited by the danger of autoignition of the fuel-air
mixture before its proper location. Further development of next-generation devices hinges upon
better understanding of autoignition in flows that are characterized by considerable fluctuations
of velocity, composition, and temperature. The aim of this project is to study the fundamen-
tal aspects of autoignition in a fuel-air mixing pattern directly applicable to mixing ducts in gas
turbines. The Nek5000-based combustion code will be used to perform very large-scale direct nu-
merical simulations of autoignition of a diluted hydrogen jet in a cross-flow of hot turbulent air
in a laboratory-scale configuration. Detailed description of chemistry and molecular transport will
be used to investigate the flow and scalar fields under cold and reactive conditions. It will also
be used to construct databases that will be explored for years by engineers and scientists work-
ing in engine development for the construction and validation of advanced combustion models for
engineering-type computational fluid dynamics codes.

Report originally released as ANL/ALCF-ESP-13/3

23

Direct Numerical Simulation of Autoignition in a
Jet in a Cross-Flow Configuration

Ammar Abdilghanie11, Christos E. Frouzakis22 and Paul F. Fischer33

1Leadership Computing Facility, Argonne National Laboratory, Argonne,
IL 60439

2Aerothermochemistry and Combustion Systems Laboratory, Swiss
Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland

3Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439

April 4, 2013

1aabdilghanie@alcf.anl.gov
2frouzakis@lav.mavt.ethz.ch
3fischer@mcs.anl.gov

Autoignition esp ALCF-2 Early Science Program Technical Reports

24

Abstract

Autoignition in turbulent flows is a challenging fundamental problem due to
the intricate coupling of different physical and chemical processes extending over
multiple flow and chemistry scales. At the same time, the improved understanding
and ability to predict autoignition in flows characterized by considerable fluctua-
tions of velocity, composition, and temperature is essential for the development of
novel low-emission concepts for power generation. The aim of this project is to
study the fundamental aspects of autoignition in a fuel-air mixing device directly
applicable to mixing ducts in gas turbines. The NEK5000-based code for low Mach
number reactive flows is used to perform very large scale direct numerical simu-
lations of autoignition of a diluted hydrogen jet ejected in a cross-flowing stream
of hot turbulent air in a laboratory-scale configuration. We report on our experi-
ence running NEK5000 on the new BGQ system at ALCF mira during the early
science period (ESP). First of all, the most efficient problem size per MPI-rank is
obtained through core-level efficiency metric measured from the target simulation.
Furthermore, the most efficient number of ranks is found through strong scaling ex-
periments. Finally, low-level insight into the observed parallel efficiency is enabled
through IBM’s HPC Toolkit libraries.

Autoignition esp ALCF-2 Early Science Program Technical Reports

25

Contents

1 Introduction 20
1.1 Overview of the Numerical Method 20

1.1.1 Summary of Numerical Simulations 22

2 Parallel Scaling and parallel efficiency metrics 23
2.1 Measurement of Parallel Efficiency 23

2.1.1 Core-level MPI Threading Efficiency 23
2.1.2 Strong Scaling Experiment 24

2.2 Profiling and Hardware Performance Monitoring 24
2.2.1 IBM HPC Toolkit . 25
2.2.2 Nek5000 Instrumentation 26
2.2.3 Sample MPI Profile . 26
2.2.4 Hardware Performance 27

3 Discussion of ESP Experience 29

Bibliography 30

Autoignition esp ALCF-2 Early Science Program Technical Reports

26

Chapter 1

Introduction

Understanding the conditions under which autoignition of reacting mixtures occurs
is of primary importance for the design and operation of modern lean premixed
(LP) and lean premixed prevaporized (LPP) combustion devices such as low-NOx

stationary gas turbines (Dobbeling et al., 2007) and propulsion devices such as sub-
sonic ramjets and supersonic scramjets (Micka and Driscoll, 2012). In particular,
the enhanced turbulent mixing between the fuel and oxidizer streams of the jet in
cross-flow (JICF) configuration makes it an essential component in the design of
premixing sections of modern high efficiency, low NOx combustors.

The main objective of this study is to investigate the sensitivity of the JICF dy-
namics to the cross-flow temperature. In particular we ask the following questions:
When and where do localized flame kernels form? Could the observed ignition
time be correlated to ignition-delay time in the corresponding homogeneous sys-
tem? Do these kernels develop into stable flame later on? How does the mixture
get prepared for ignition and what is the role of the vorticity and pressure in mix-
ing the jet (fuel) with the cross-flow (oxidizer) fluid? What is the local combustion
mode associated with the observed ignition scenarios?

1.1 Overview of the Numerical Method

A weak formulation of the compressible reactive Navier-Stokes for ideal gas mix-
tures at the low Mach number limit were solved, using a parallel spectral-element
code based on NEK5000 (Fischer et al., 2008). The spectral element method
is a high-order weighted residual technique that couples the rapid convergence
of global spectral methods with the geometric flexibility of finite element meth-
ods (Deville et al., 2002).

A high-order operator splitting technique is used to split the thermochemistry
(species and energy equations) from the hydrodynamic subsystem (continuity and
momentum equations) (Tomboulides et al., 1997). The latter is integrated in time
using a 3rd-order semi-implicit method, with explicit treatment of the nonlinear
terms and implicit treatment of the viscous and pressure terms, while the thermo-

Autoignition esp ALCF-2 Early Science Program Technical Reports

27

Figure 1.1: Snapshots of temperature and mass fractions of HO2, OH for the Tc f =

950 K case on a cross section through the symmetry plane.

chemistry subsystem is solved fully implicitly by CVODE, a scalable BDF-based
stiff ODE solver (Cohen and Hindmarsh, 1996). Detailed chemistry, thermody-
namic properties and mixture-averaged transport properties are evaluated using
Chemkin (Kee et al., 1986).

Tensor product factorization is the core computational kernel in NEK5000. It
is used to evaluate spectral element operators, interpolation, integration and differ-
entiation. It is cast in terms of a sequence of dense and non-square matrix products
(mxm). Optimizing the mxm kernel was performed on the BG/P using loop tiling
and architecture-specific assembly code (Kerkemeier, 2010). The code develop-
ments resulted in improved core throughput and cache utilization (through data
reuse) compared to highly optimized BLAS libraries. Finally, Kerkemeier (2010)
developed a chemistry calculation kernel for the computation of the production
rates, transport and thermodynamic property evaluation. All expensive computa-
tions were vectorized using the highly optimized math libraries MASS/MASSV
which allowed best floating point, load and store performance.

Autoignition esp ALCF-2 Early Science Program Technical Reports

28

1.1.1 Summary of Numerical Simulations

Exploratory numerical simulations on experimental computational grids as well as
production runs were performed during the early science period on Mira. The com-
putational grid is composed of NE = 1, 591, 752 spectral elements within which the
solution is interpolated using three-dimensional tensorial product of p = 6-th order
Lagrange polynomials.

Post processing of the solution was performed using NEK5000 on the two
datasets including computations of key species generation rates, mixture fraction,
scalar dissipation rate, Takeno flame index and vorticity components. Analysis
of the two large data sets was also mainly facilitated through visualizations with
VisIt on the ALCF’s GPU system (Eureka). Two crossflow stream temperatures
(Tc f =930 and 950 K) were simulated at a Reynolds number, based on the friction
velocity and the channel half-width, of Reτ = 180. Typical instantaneous snapshots
of the fully ignited case are shown in fig. 1.1.

The simulations performed up till now employed close to 345 million grid
points corresponding to 4.8 billion degrees of freedom (14 unknowns per grid
point). We are currently developing the computational mesh for a planned high
Reynolds number simulation (Reτ = 590). It is estimated that the total number of
elements will be close to 3 millions and the polynomial order will be at least 8.

Autoignition esp ALCF-2 Early Science Program Technical Reports

29

Chapter 2

Parallel Scaling and parallel
efficiency metrics

2.1 Measurement of Parallel Efficiency

Parallel code scaling focuses on one of two forms: strong scaling or weak scaling.
The goal of strong scaling is to reduce execution time for a fixed total problem size
by adding processors (and hence reducing problem size per worker/MPI rank). On
the other hand, ideal weak scaling behavior is to keep the execution time constant
by adding processors in proportion to an increasingly larger problem size (and
hence keeping problem size per worker fixed).

Parallel efficiency, η, for a problem run on N1 processes/MPI ranks is defined
relative to a reference run on N2 ranks as

ηp =
N1 t(N1)
N2 t(N2)

,

where t(N) is the execution time on N ranks.

In order to ensure core utilization we measure the MPI-threading efficiency
which we define as

ηt =
N1 t(N1)
N2 t(N2)

,

where N1 is the number of cores for the one MPI rank/thread per core configuration
and N2 = 2N1 in the two threads/core and N2 = 4N1 in the four threads/core
configurations. Note that a net speedup is obtained for threading efficiency of
more than 50% in the two threads/core configuration and more than 25% in the
four threads/core.

2.1.1 Core-level MPI Threading Efficiency

Instantiation of two and four MPI-ranks per core is enabled on Mira and hence full
core compute power utilization is assured through the use of more than one rank per

Autoignition esp ALCF-2 Early Science Program Technical Reports

30

Figure 2.1: MPI threading efficiency for autoignition simulation using NEK5000.
Note that the abscissa represents grid size per MPI rank.

core. However, this may lead to performance degradation for very large problem
size because of the resulting on-chip resource contention. We have conducted a
core-level parallel efficiency measurements on Mira for the target simulations using
different number of cores and either two or four ranks per code.

Figure 2.1 compares the MPI threading efficiency for two and four ranks per
core. It is clear that using two ranks per core is more efficient for same problem
size (i.e. grid points) per rank and that the optimum grid points per rank is 7,000-
10,000. This size ensures maximum utilization of the core’s compute-power while
minimizing on-chip resource contention among MPI threads.

2.1.2 Strong Scaling Experiment

A strong scaling is performed under the two MPI-ranks per core configuration for
an autoignition simulation with a total of ≈ 345 million grid points.. Figure 2.2
shows that an ideal efficiency of a 100% is mainated up to approximately 130,000
MPI-ranks (65,000 cores) and that up to 60% efficiency is sustainable using nearly
500,0000 ranks.

2.2 Profiling and Hardware Performance Monitoring

Performance monitoring is enabled through a mechanism for obtaining information
about the use of MPI routines (profiling) or wall clock time and hardware counters

Autoignition esp ALCF-2 Early Science Program Technical Reports

31

Figure 2.2: Parallel efficiency for autoignition simulation: strong scaling with ≈
345 Million gridpoints and two MPI ranks per core.

for a code as a whole or a segment that is usually bracketed with calls to initiate
and stop monitoring libraries.

2.2.1 IBM HPC Toolkit

IBMs’ HPC Toolkit provides a mechanism for tracking the use of MPI routines
during a programs execution. This is done through the use of a library which inter-
cepts calls to MPI routines, records information about the call, and then continues
with the MPI call. The primary types of information that are gathered are

• MPI Profile Data: A summary of MPI usage information typically consisting
of the number of times each MPI routine was called, how much time was
spent in each MPI routine, and the average size of a message for that routine.

• MPI Trace Data: A detailed time-history of every invocation of an MPI rou-
tine that the program made.

• Point-to-Point Communication Pattern: This information is derived from the
collected trace information and indicates the number of bytes sent between
ranks by point-to-point MPI routines.

IBM also provides a HPM Toolkit for hardware perfromance monitoring that
has

Autoignition esp ALCF-2 Early Science Program Technical Reports

32

• A utility hpmcount, which starts an application and provides at the end of
execution the wall clock time, hardware performance counters inforamation,
derived hardware metrics, and resource utilization statistics

• An instrumentation library libhpm, which provides instrumented programs
with a summary output containing the above information for each instru-
mented region in a program (resource utilization statistics is provided only
once, for the whole section of the program that is instrumented). This library
supports serial and parallel (MPI, threaded, and mixed mode) applications,
written in Fortran, C, and C++.

2.2.2 Nek5000 Instrumentation

In order to focus the analysis on the time stepper part of NEK5000, exclude restart-
file reading and recurring IO, the time stepping loop was bracketed by calls to the
respective libraries as follows:

call summary_start()

call hpm_start("nek_advance")

DO ISTEP=1,NSTEPS

TIME STEPPING LOOP

ENDDO

call hpm_stop("nek_advance")

call summary_stop()

It should be noted that the code needs to be compiled with the debugging flag ”-g”
enabled. Finally, the following link to IBM libraries needs to be appended to the
list of libraries (USER_FLAGS) used by NEK5000:

USR_LFLAGS="${USR_LFLAGS} -L/soft/perftools/hpctw -lmpihpm

-L/bgsys/drivers/ppcfloor/bgpm/lib -lbgpm"

2.2.3 Sample MPI Profile

A small section of a sample profile dumped by rank 0 is shown below.

Data for MPI rank 0 of 65536

Times and statistics from summary_start() to summary_stop().

MPI Routine #calls avg. bytes time(sec)

MPI_Isend 508287 915.7 2.083

MPI_Irecv 508287 916.1 0.416

MPI_Waitall 162759 0.0 8.845

MPI_Bcast 1 4.0 0.000

MPI_Barrier 81 0.0 0.002

Autoignition esp ALCF-2 Early Science Program Technical Reports

33

MPI_Allreduce 19296 2716.7 17.573

...etc.

total communication time = 28.919 seconds.

total elapsed time = 195.156 seconds.

heap memory used = 103.090 MBytes.

Although the MPI-time is dominated by synchronization (MPI_Allreduce
during global inner product evaluation for the linear system solve step for the ve-
locity, pressure and thermo-chemistry), it is still representing only about 14% of the
total execution time. The communication as well as total execution/elapsed time
for all MPI-ranks is plotted in figure 2.3. It can be seen that the communication
time as well the total elapsed time (and hence the computation time) is approxi-
mately uniform across all MPI-ranks, an indication of load balancing between the
MPI ranks.

Figure 2.3: Communication and elapsed time for MPI ranks collected with IBM’s
HPC Toolkit

2.2.4 Hardware Performance

Hardware performance metrics are written to hpm_summary.rank files. The file
lists information about the overall performance of the whole code as well as infor-
mation about the bracketed segment of the code (the time stepper in this case).

Table 2.1 shows that with the use of two MPI-ranks per core the floating point
operations per second per node has increased from 4.398 to 6.057 GFLOPS ensur-
ing higher utilization of the core compute-power. Finally, it can be seen that there

Autoignition esp ALCF-2 Early Science Program Technical Reports

34

is a trend of increasing access to both the L1P, L2 Cache and main memory with
increasing number of ranks per core. This is most likely the reason beyond perfor-
mance degradation for the four ranks per core configuration. Measurements from
a four ranks per core were not possible due to the overhead of the measurement li-
braries themselves, even with light-weight versions of the same libraries provided
by IBM.

Table 2.1: Summary of Hardware Performance Metrics Measured by hpm Library
1 Rank/Core 2 Ranks/Core

FPU% , FXU % 20.6-79.4 17.7-82.3
Inst/cycle/core 0.3586 0.5794
GFLOPS/node 4.398 6.057

% of max issue rate/core 35.9 47.7
L1 d-cache hit 96.4 95.5
L1P buffer hit 1.46 2.09
L2 Cache hit 1.85 2.0

DDR hit 0.32 0.4
DDR total traffic

(Bytes/cycle)
2.264 3.588

Autoignition esp ALCF-2 Early Science Program Technical Reports

35

Chapter 3

Discussion of ESP Experience

The highly-scalable low Mach number reactive flow solver based on NEK5000 is
used to simulate turbulent autoigniting flows in a laboratory scale jet-in-cross-flow
configuration. The code relies heavily on two highly optimized mxm and thermo-
chemistry PTTP kernels that were previously optimized on the BGP architecture
(Kerkemeier, 2010).

Scaling results on Mira showed that ideal parallel efficiency of 100% can be
sustained up to 130000 MPI ranks and up to 60% efficiency on nearly 500,0000
ranks and hence no further tuning is necessary for the current problem size.

We are currently evaluation different design strategies for the computational
grid that will be used for the high Reynolds number simulations. Further optimiza-
tion of grid-generation routines for the Algebraic Multigrid solver is necessary for
tackling the high Reynolds number grids and is the subject of ongoing investiga-
tion.

Autoignition esp ALCF-2 Early Science Program Technical Reports

36

Bibliography

Cohen, S. and Hindmarsh, A. (1996) CVODE, a stiff/nonstiff ODE solver in C.
Comp. Phys. 10(2), 138–143.

Deville, M., Fischer, P. and Mund, E. (2002) High-order methods for incompress-
ible fluid flow. Cambridge University Press.

Dobbeling, K., Hellat, J. and Koch, H. (2007) 25 years of BBC/ABB/Alstom lean
premix combustion technologies. Trans.-ASME J. Eng. Gas Turb. Power 129(1),
2.

Fischer, P., J.W., L. and Kerkemeier, S. (2008) nek5000 Web page.
http://nek5000.mcs.anl.gov.

Kee, R., Dixon-Lewis, G., Warnatz, J., Coltrin, M. and Miller, J. (1986) Technical
report sand86-8246. Sandia National Laboratories .

Kerkemeier, S. (2010) Direct numerical simulation of combustion on petascale
platforms. Ph.D. thesis, Swiss Federal Institute of Techonolgy Zurich (ETHZ),
Nr. 19162.

Micka, D. and Driscoll, J. (2012) Stratified jet flames in a heated air cross-flow
with autoignition. Combust. Flame 159(3), 1205–1214.

Tomboulides, A., Lee, J. and Orszag, S. (1997) Numerical simulation of low mach
number reactive flows. J. Sci. Comp. 12(2), 139–167.

Autoignition esp ALCF-2 Early Science Program Technical Reports

37

Autoignition esp ALCF-2 Early Science Program Technical Reports

38

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

6 High Accuracy Predictions of the Bulk Properties of Wa-
ter

PI: Mark Gordon (Iowa State University)

Project Summary

Among the ab initio methods, second-order perturbation theory (MP2) predicts highly accurate
structures and relative energies for water clusters. Researchers will carry out molecular dynamics
simulations of water at the MP2 level. However, full MP2 calculations of even modest-sized water
clusters are far too time-consuming for dynamical simulations, even on the next-generation Blue
Gene. Therefore, a key element of the current approach will be the use of MP2 in conjunction with
the Fragment Molecular Orbital (FMO) method. Compared with todays calculations, researchers
will determine the bulk properties at higher levels of accuracy using larger basis sets, larger embed-
ded clusters, and longer dynamics simulations, as permitted by the greater computational capacity
available with the Blue Gene. They will target the following bulk properties of water: structure,
density, refractive index, diffusion constant, free energy, heat capacity, dielectric constant, vapor-
ization enthalpy, isothermal compressibility, and thermal expansion coefficients. The final eight
properties are more difficult to obtain than the first two. While Blue Gene/P gives good estimates,
the greater capacity of the next-generation Blue Gene will be critical to establishing convergence
of these properties with respect to theory, basis set, cluster size, and simulation length. There have
been conflicting reports in the literature about the relevance of chain orring networks in water. The
high-accuracy simulations on the next-generation Blue Gene will help settle this argument about
the structure of liquid water.

Report originally released as ANL/ALCF-ESP-13/4

39

ESP	 Technical	 Report:	 February,	 2013	

High	 Accuracy	 Predictions	 of	 the	 Bulk	 Properties	 of	 Water	

Staff	 at	 ALCF	

Maricris Mayes (postdoctoral student)
Graham Fletcher (catalyst group member)
Yuri Alexeev (catalyst group member)

Executive	 Summary	

Water is the most important liquid to humanity and a deep understanding of its
behavior is of critical importance to national priority scientific issues such as
global warming. Despite this, accurate theory and modeling of water is lacking,
and the question of the detailed mechanism behind its bulk properties remains
one of the outstanding unsolved problems in science. While many simulation
studies of liquid water have been undertaken, resource and capability limitations
have forced the vast majority to be performed using empirical model potentials
with questionable reliability.

This project is the first to simulate water with high accuracy and high precision,
employing recently developed advanced techniques that allow first principles ab
initio quantum mechanical methods to harness hundreds of thousands of
processors and scale up to thousands of water molecules.

Overview	 of	 numerical	 methods	
	
A partial integro-differential equation based on Quantum Mechanics - called the
Schroedinger Equation - is solved for the electronic structure of a molecular
system in a basis of atom-centered functions. Dense linear algebra is involved.
Integration over all space is performed analytically, and this consumes the
majority of the execution time. Inter-atomic forces are derived from the electronic
structure and used to drive dynamical simulations that yield bulk property
predictions.

The project code is the General Atomic and Molecular Electronic Structure
System (GAMESS), maintained by the Gordon Group at Iowa State University.
We employ the Fragment Molecular Orbital (FMO) method in GAMESS together

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

40

with the Restricted Hartree-Fock (RHF) and Moeller-Plesset second order
perturbation theory (MP2) levels of theory.

What	 is	 enabled	 by	 Mira	 over	 Intrepid	

Following on from a 2010 INCITE award on Intrepid, this Early Science project on
Mira focusses on the bulk properties of water at higher levels of accuracy using
larger basis sets, larger embedded clusters, and longer dynamics simulations.
While benchmark tests were performed on Intrepid, the greater computational
capability available with Mira is critical to establishing convergence of the bulk
properties with respect to theory, basis set, cluster size, and simulation length.

Code	 Modifications,	 new	 algorithms:	 RATTLE	

This section describes new functionality - an implementation of the RATTLE
method - that has been coded especially for the current Early Science Project by
Yuri Alexeev of ALCF. This development stands to significantly reduce the cost of
the project, to one half or one quarter of its original cost. The motivation for and
impact of RATTLE are as follows.

Energy conservation is critical to any dynamical simulation carried out in a series
of discrete time steps. With current technology, energy conservation imposes a
maximum time step of around 0.3 femtoseconds. In addition, systems with large
numbers of hydrogen atoms (such as water) can waste many steps where the
trajectory is trapped within local minima corresponding to the vibrational modes
of all the hydrogens.

One way to guide the trajectory through the most important regions of phase
space, avoid local minima and, in so doing, permit larger steps, is to apply
constrained dynamics. Today, almost all classical molecular dynamics
simulations employ constraints, particularly where hydrogen atoms are involved.
The most popular methods include SHAKE, RATTLE, and SETTLE. RATTLE is
the most accurate because the constraints are applied to both distances and
velocities simultaneously. RATTLE is a Lagrange-multiplier-based method
developed especially for Velocity Verlet, a method for integrating Newton's
equations implemented in GAMESS.

Figure 1 shows an example of 2 water molecules 8 Angstroms apart at 0.5fs
intervals (time is plotted along the x-axis, and total energy along the y-axis),
already the curve with RATTLE (green) is smoother than without (red).

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

41

Figure 2, at 1.5fs intervals, shows that without RATTLE (red) the variation in
energy can be large and erratic, while with RATTLE (green) the energy is much
more stable. In this example, RATTLE allows 2-4x longer time steps to be taken,
and we expect similar improvements to be obtained with larger systems. With
longer time steps, proportionally fewer steps need to be taken, reducing the
overall cost of the simulations.

As it smooths out the trajectory, RATTLE also improves overall efficiency by
removing any abrupt shifts in molecule positions that may hinder solution of the
Schroedinger Equation for each water. Thus, RATTLE allows fewer, larger, more
efficient and reliable time steps to be taken.

Performance	 on	 Mira	

In this section, the performance on Mira is examined in three ways: first, a
comparison with BG/P, second, for increasing relevant problem sizes, and lastly
with BG/Q execution mode.

Figure 3 shows the speedup from BG/P to BG/Q of a calculation of the energy
and forces at the MP2 level for the benzoquinone molecule with a 6-31G* atomic
basis set. The relative improvement on a BG/Q node can be seen to rise
monotonically with the execution mode compared to the 'VN' mode on BG/P,
reaching a maximum speedup of x10.

The reasons for such a large
improvement are several. BG/Q
benefits not only from 4x more
processor cores per node, and a 2x
higher clock rate, but also from the
ability in its microkernel to multi-rank
the cores (not available on BG/P) in
c32 mode, giving two MPI ranks per

0"

2"

4"

6"

8"

10"

12"

c4" c8" c16" c32" c64"

P"
>Q

%S
pe

ed
up

%

BG/Q%execu0on%mode%

Figure%3.%GAMESS%speedup%from%BG/P(VN%mode)%to%BG/Q%
benzoquinone/MP2(forces)/6"31G*%

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

42

core. This is of great benefit to GAMESS, allowing its 'data-server' processes to
reside on the same core as the compute processes and, overall, utilize the cores
more efficiently. An additional higher execution mode, c64, with four MPI ranks
per core, gives the maximum speedup but the resultant amount of memory
available to processes is too small (being somewhat less than 250 megabytes
each) to be useful in the rest of the current project.

Figure 4 shows the scalability of FMO-MP2 calculations on 128 to 4096 waters
with a 6-31G* atomic basis set, in c16 mode. As with c64 mode, some of the
larger calculations cannot be accessed from c32 mode due to memory
limitations, and c16 allows the greatest range of problem sizes that is useful in
the current project to be examined for scalability. It can be seen how scalability
improves with problem size, being poorest for the smallest problem (128 waters)
and best for the largest problem (4096 waters). In quantum chemistry, where the
computational cost is approximately cubic with the problem size while the
communication overhead is quadratic, scalability usually improves with problem
size.

Figure 5 compares the scalability of the 1024 water calculation from Figure 4 for
two execution modes, c16 and c32. It can be seen that while c32 mode is always
faster, especially at the lowest node count, the two curves converge as the
number of nodes increases. While c32 mode is expected to be more efficient for
reasons described above, the convergence with c16 mode toward higher node
counts is most likely the result of increased I/O contention as the overall number
of ranks increases. We are pursuing the latter hypothesis in our investigation of
this phenomenon.

	

0"

2000"

4000"

6000"

8000"

10000"

12000"

w
al
l$c
lo
ck
$(
m
e$
/s
ec
on

ds
$

128$$$$$$$$256$$$$$$$$$$512$$$$$$$$1024$$$$$$$$$2048$$$$$$$4096$$$$$$$$$$$8192$

numberofnodes$$

Figure$4.$GAMESS$performance$on$Mira$
FMO2FMP2(forces)/augFccFpVDZ,$c16$mode$

256"waters"

512"waters"

1024"waters"

2048"waters"

4096"waters"

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

w
al
l$c
lo
ck
$(
m
e$
/s
ec
on

ds
$

128$$$$$$$$$$256$$$$$$$$$$512$$$$$$$$$$1024$$$$$$$$$2048$$$$$$$$$$4096$$$$$$$$$$8192$
numberofnodes$$

Figure$5.$GAMESS$performance$on$Mira$
1024$waters/FMO2GMP2(forces)/augGccGpVDZ$$

c16"

c32"

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

43

Bulk Properties esp ALCF-2 Early Science Program Technical Reports

44

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

7 Cosmic Structure Probes of the Dark Universe

PI: Salman Habib (Argonne National Laboratory)

Project Summary

Dark matter and dark energy are the dominant components of the Universe. Their ultimate nature,
however, remains mysterious, especially so of the dark energy. Ambitious ground and space-based
missions investigating different aspects of the Dark Universe constitute a national and international
investment measured in billions of dollars. The discovery potential of almost all of these missions
relies crucially on theoretical modeling of the large-scale structure of the Universe. As observational
error estimates for various cosmological statistics edge towards the one percent level, it is imperative
that simulation capability be developed to a point that the entire enterprise is no longer theory-
limited.

This project is a simulation framework powerful enough to discover signatures of new physics
from next- generation cosmological observations. Relevant questions include: (1) Beyond the cos-
mological constant, what are the detectable signatures of a dynamical equation of state for dark
energy? (2) How does modification of general relativity alter the nonlinear regime of structure for-
mation? As for dark matter and related questions: (1) What are the effects of plausible dark matter
candidates on the mass distribution? (2) What are the constraints on the neutrino sector from cos-
mological observations? In addition, the results of the simulations will be very useful for a range
of astrophysical investigations, primarily in the areas of galaxy formation and the formation and
evolution of galaxy groups and clusters. This is possible because the next generation, 10-petaflops
IBM Blue Gene system will provide, at last, the computational power to resolve galaxy-scale mass
concentrations in a simulated volume as large as state-of-the-art sky surveys. Researchers will
generate numerically a mock galaxy catalog that will allow the determination of the effects of new
physics on major cosmological observables.

Report originally released as ANL/ALCF-ESP-13/5

45

Porting and Tuning HACC on Mira

Hal Finkel

April 4, 2013

Abstract

The HACC (Hybrid/Hardware Accelerated Cosmology Code) frame-
work has achieved over 69% of the floating-point peak running on all of
Mira, and is now uniquely positioned to make significant contributions
to the science of large-scale structure formation. At the beginning of the
Early Science Project (ESP), HACC was attaining under 1% of the peak
FLOPS, and lacked the memory-management and file I/O capabilities
necessary for running at scale. This report describes the improvements
that transformed HACC from an average scientific code to one well-known
for its unmatched performance.

1 Introduction

Modern cosmology, and the study of large-scale structure formation in particu-
lar, is now a precision science, with both simulation and observation contributing
to our overall understanding of a vast quantity of observational data. As the
quantity and quality of observational data increases, corresponding increases
in our simulation ability are required. In order to tackle questions related to
the detailed behavior of dark matter and dark energy, the two dominate, yet
mysterious, components of the energy-density of the universe [2, 1], we must be
able to simulate the effect of small changes in theory parameters on observable
statistical quantities.

After the emission of what is now the Cosmic Microwave Background (CMB)
during recombination, the non-linear and long-range nature of the gravitational
force becomes increasingly important to the overall evolution of the matter in
the universe. At scales larger than that of galaxy clusters, no other forces make
a significant contribution1. As a result, we can accurately predict how the
matter will move and cluster at large scales using a “gravity-only” simulation.
Because of the huge dynamic range required almost everywhere in the simulation
volume, almost all structure-formation codes use a particle method whereby the
matter in the universe is decomposed into many point masses which are evolved
using a modified form of Newton’s equations. The HACC (Hybrid/Hardware

1Assuming that the effect of dark energy on the background evolution of the universe is
taken into account.

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

46

Accelerated Cosmology Code) framework provides an infrastructure for running
just these kinds of simulations and performing some of the analysis necessary
to compare the simulated universes to observational data.

Prior to the beginning of the Early Science Project (ESP), large simulations
had been run with HACC only on the Roadrunner machine at LANL. The
largest of these simulations used a few hundreds of billions of particles, and
made use of the PowerXCell 8i GPU-like processors in order to quickly compute
the short-range particle-particle force contributions [5]. HACC’s ability to run
on an massively-parallel CPU-only system like Mira was very limited, and initial
tested showed that it achieved under 1% of the peak FLOPS (floating-point
operations per second). In addition, its required one-file-per-rank I/O facility
would have been impractical for use at scale, and its poor memory management
would have precluded long runs. Over the course of the last two years, all
of these things have greatly improved. In fact, HACC was a 2012 finalist for
the IEEE/ACM Gordon Bell prize in scientific high-performance computing [4],
reporting 13.94 PFlops at 69.2% of peak and 90% parallel efficiency on 1,572,864
cores running on the BG/Q machine Sequoia at LLNL. To meet today’s science
requirements, we’ll need to run trillions of particles in several large simulations:
HACC is now ready for that challenge!

2 Long-Range Force

The total gravitational force on every particle from every other particle is split
into two parts: the long-range part and the short-range part. The long-range
force is computed on a grid using a FFT (Fast Fourier Transform)-based tech-
nique. Unfortunately, memory limits the size of the grid to a resolution near
the initial inter-particle spacing. As the universe evolves, and matter clusters
together under gravity, the relevant length scale for particle-particle interactions
in clustered regions falls well below the grid resolution. Adding this additional
short-range component is the responsibility of the architecture-specific short-
range force solver. Nevertheless, the long-range force solver, and specifically
the routines used to compute the distributed FFTs on which the solver relies,
determine the overall weak scaling of the code. As shown in Figure 1, the overall
weak scaling of the code is nearly perfect, across architectures, and specifically
on nearly all of Mira.

In order to achieve this scaling on tens of thousands of ranks, the algorithm
using to compute the FFTs was changed. Prior to the ESP, HACC used a slab-
decomposed FFT, meaning that the grid is decomposed in only one dimension.
Unfortunately, this limits the total number of ranks that can participate in the
FFT computation (because there can be only as many ranks as there are grid
points in the smallest dimension). Due mostly to work by Nicholas Frontiere,
this limitation was removed by implementing a distributed slab-decomposed
FFT. The slab decomposed FFT enables as many ranks to participate as there
are points on the smallest two-dimensional face. This difference is illustrated in
Figure 2. Once completed, this slab-decomposed FFT allowed HACC to easily

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

47

 0.01

 0.1

 1

 10

 100

 64 256 1024 4096 16384 65536

Ti
m

e
[n

se
c]

 p
er

 S
te

p
pe

r P
ar

tic
le

Number of Ranks

Weak Scaling of Poisson Solver

Roadrunner
BG/P
BG/Q

Ideal Scaling

Figure 1: Scaling of the long-range force solver.

scale to the largest-available machines.

Figure 2: A diagram showing slab (left) and pencil (right) data decompositions
[derived from diagrams in [6]].

It is worth mentioning that a significant reason that HACC’s inter-rank com-
munication needs are dominated by the FFT, and not by “ghost-region” particle
exchange, is because the exchange of particles between ranks happens relatively
infrequently. Not only is the short-range force computation subcycled (com-
puted multiple times per long-range force computation), but the ghost-region
exchanges do not even need to happen prior to every long-range computation.
Compared to the size of the universe, the velocities of matter in the universe
are relatively small, and the size of densely-clustered regions is limited. As a

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

48

result, we can make the ghost regions large enough to capture whatever large
structures might reside on neighboring ranks close to the inter-rank boundary,
and we can safely assume that they won’t move very far in between ghost-region
exchanges. To mitigate edge effects, we also don’t compute the short-range force
on particles near the outer boundary of the ghost region.

3 Short-Range Force and the RCB Tree

The short-range force is determined by taking the complete gravitational force
between any two particles, and subtracting that part of the force that will be
captured by the long-range force solver. This subtraction is determined by
performing numerical experiments, and then the resulting functional form is
created to fit the results of these experiments. Prior to the ESP, HACC used a
lookup table to compute the force from its fitting form. Now, HACC uses a 5th-
order polynomial fit to the effective short-range part of the force. Specifically,
this is:

fSR(s) = (s+ ε)−3/2 − fgrid(s) (1)

where s = r · r, fgrid(s) = poly[5](s), and ε is a short-distance cutoff.
While on Roadrunner (and on machines with GPUs) HACC can use a

statically-partitioned N2 algorithm to compute the local particle forces, such
a naive algorithm would be too slow for Mira’s CPUs. Instead, we must use a
short-range force computation scheme which effectively approximates the force
from farther-away particles on any given particle and only directly computes
the contributions from the closest particles. The standard way of accomplish-
ing this feat in an efficient way is to use a “tree” code. This means that some
spatial-partitioning tree is used along with a monopole approximation for forces
from particles in far-away tree nodes. Before the ESP, HACC has an octree-
based tree code, but that implementation was inefficient, both computationally
and in terms of memory overhead. Addressing these problems required a new
design, and I implemented what has been called in the physics literature a Re-
cursive Coordinate Bisection (RCB) tree2. Following the suggestion in [3], a
RCB tree recursively splits each spatial node on its longest side such that the
dividing plane intersects the center of mass of the particles in the node. As also
suggested in [3], when each node is partitioned, the particle data for that node
is also partitioned, and the particles are shuffled into the two subpartitions.
Finally, this splitting process stops when the nodes reach a certain maximum
number of particles. These implementation details, illustrated in Figure 3, have
important performance benefits: The center-of-mass splitting makes the com-
putation in each leaf node balanced by insuring that each leaf node has near
the maximum number of allowed particles. The partitioning insures that each
node’s particle data exhibits a high degree of cache locality. Finally, keeping
multiple particles in each leaf node gives us a tuning parameter allowing us to

2A computer scientist would, however, call it a KD-tree.

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

49

trade a fast but asymptotically expensive operation (the particle-particle inter-
actions, which scale as N2) for a slow but asymptotically favorable operation
(the tree walk, which has N logN scaling). An additional benefit to keeping
multiple particles in each leaf node is an increase in the accuracy of the com-
putation. As can be seen from Figure 4, even making aggressive use of the
monopole approximation still yields highly-accurate force computations in clus-
tered regions when many particles are contained in each leaf node. On Mira, we
normally run with a few hundred particles in each leaf node, and the resulting
error from the monopole approximation is quite small.

Level 0

Level 1

Level 2

Level 3

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

Figure 3: A diagram (from [3]) showing how the particles are recursively parti-
tioned into RCB-tree nodes.

Another critical aspect of the attaining good performance on Mira is how
multiple threads per rank are used to compute the short-range force on each
particle. At this point, two different schemes have been used in production. The
first scheme, which was used in the runs used for the Gordon Bell submission,
confines the threading to the force computation within each RCB-tree leaf node.
Within each leaf node, the particles are divided among the available threads, and
because all particles in a leaf node share the same interaction list, each thread
simply computes the force on its particles from those particles in the interaction
list. The downsides of this scheme are that the per-leaf-node concurrency is
limited by the number of particles per leaf node (which limits scaling), and that
the process of walking the tree to compose the interaction list is not threaded.
As a result, this scheme could scale to only 8 threads per rank. To overcome this

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

50

Figure 4: A plot of a force-computation test involving a sphere randomly filled
with particles showing the relative error from the monopole approximation. The
theta parameter controls the aggressiveness of the monopole approximation.

limitation, I implemented a second scheme. In this second scheme, a queue is
composed of all leaf nodes, and these leaf nodes are divided among all available
threads for processing (both the tree walk to form the interaction list and the
force computation itself). As there are many leaf nodes per rank, as shown in
Figure 5, this scheme can scale to 32 thread per rank on Mira. OpenMP was
used to implement both schemes.

4 The Short-Range Force Kernel

The BG/Q-specific short-range force kernel, implemented by Vitali Morozov,
uses QPX intrinsic functions, and a loop which is manually partially unrolled,
in order to quickly evaluate the force on some particle by other particles in the
interaction list. While the kernel appears to be a straightforward vectorization
of the loop over particles in the interaction list (see Figure 6 for an exerpt), the
form of the force computation (for example, the −3/2 exponent and the order
of the polynomial in Equation 1) were chosen to map well onto the available
instructions and the number of available registers.

Several other aspects of the force kernel implementation are worth noting:
First, as shown in Figure 7, all data loaded by the kernel in explicitly prefetched

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

51

Figure 5: A plot of the time taken by the short-range force computation vs. the
number of threads. The old threading scheme could not scale past 8 threads
per rank, while the new scheme can scale to 32 threads per rank (running one
rank per node).

into the L1 cache. On the BG/Q, even when the L1 prefetcher is prefetching a
stream of interest, the data is not put into the L1, but rather stays in a separate
L1P buffer, until accessed. Because the L1P access latency is much higher than
that associated with accessing data from the L1 cache, explicitly prefetching the
data into the L1 cache is critical. Second, we don’t need fully IEEE-compliant
values for the square root in Equation 1, and it can be computed using the
provided reciprocal square root estimate and one Newton-Raphson iteration for
refinement. Because the provided estimate is accurate to within one part in 214,
only one iteration is required to provide the single-precision result. Finally, as
branches are expensive, we use the provided “select” intrinsic in order to avoid
branching as part of the distance filtering in the force computation. These
intrinsics are shown in Figure 8. The force kernel itself runs as well over 80% of
the available peak FLOPS.

5 Memory management

Pushing the simulation limits of large-scale structure formation means running
simulations with as many particles as possible, and this implies that we’re con-

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

52

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 ...
4 b0 = vec sub(b0, a1);
5 c0 = vec sub(c0, a1);
6

7 b0 = vec mul(b0, b0);
8 c0 = vec mul(c0, c0);
9

10 b1 = vec ld(j, yy1);
11 c1 = vec ld(j+16, yy1);
12 ...
13 b1 = vec madd(b2, a15, a14);
14 c1 = vec madd(c2, a15, a14);
15

16 b1 = vec madd(b2, b1, a13);
17 c1 = vec madd(c2, c1, a13);
18

19 b1 = vec madd(b2, b1, a12);
20 c1 = vec madd(c2, c1, a12);
21 ...

Figure 6: An excerpt from the short-range force kernel showing some QPX
intrinsics and the basic form of the partially-unrolled loop. The polynomial
force evaluation makes use of many fused multiply-add instructions.

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 dcbt((void ∗)&xx1 [i+offset]);
4 dcbt((void ∗)&yy1 [i+offset]);
5 dcbt((void ∗)&zz1 [i+offset]);
6 dcbt((void ∗)&mass1[i+offset]);
7 ...

Figure 7: An excerpt from the short-range force kernel showing that all
interaction-list data is prefetched into the L1 cache.

stantly running as close as possible to the memory limit of the machine. As
a result, memory fragmentation 3 becomes a large problem. To make matters
worse, HACC is required to allocate and free different data structures during
different parts of each time step because there is not enough available memory
to hold all such structures at the same time. Furthermore, many of these data
structures, such as the RCB tree used for the short-range force calculation, have

3Memory fragmentation refers to the condition where small allocations dispersed through-
out the memory space leave no large contiguous chunks free even though the total amount of
free memory may be large.

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

53

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 ...
4 b1 = vec rsqrte(b0);
5 c1 = vec rsqrte(c0);
6 ...
7 b0 = vec sel(b1, a6, b2);
8 c0 = vec sel(c1, a6, c2);
9 ...

Figure 8: An excerpt from the short-range force kernel showing the reciprocal
square root estimate and “select” intrinsics.

sizes that change dynamically with each new time step. This, combined with
other allocations from the MPI implementation, message printing, file I/O, etc.
with lifetimes that might outlast a time-step phase, is a recipe for fatal memory
fragmentation problems. Indeed, our first at-scale runs on Mira were limited in
duration precisely because of this problem. To mitigate this problem I imple-
mented a specialized pool allocator called Bigchunk. As the name implies, this
allocator grabs a large chunk of memory, and then distributes it to various other
subsystems. During the first time step, Bigchunk acts only as a wrapper of the
system’s memory allocator, except that it keeps track of the total amount of
memory used during each phase of the time step. Before the second time step
begins, Bigchunk allocates an amount of memory equal to the maximum used
during any phase of the previous time step plus some safety factor. Subsequent
allocations are satisfied using memory from the big chunk, and all such memory
is internally marked as free after the completion of each time-step phase. This
en-mass deallocation design implies that the bigchunk allocator has minimal
overhead, and the time it takes to allocate memory from Bigchunk is very small
compared to the speed of the system allocator. Because the Bigchunk mem-
ory is not released back to the system, the memory fragmentation problem has
effectively been solved.

6 I/O

Prior to the ESP, the initial conditions for a HACC simulation were produced by
a stand-alone (parallel) program. This program would produce one input file per
rank, which was the only input mode supported by HACC at the time. While
the process of producing the initial conditions is fairly fast, the requirement
to write hundreds of thousands, or millions, of initial-conditions files, and then
read them in again would have been prohibitive. As a result, I integrated the
initializer into the HACC simulation code, and enhanced it to use the pencil-
decomposed FFT discussed above.

Once HACC could generate its own initial conditions, the next challenge

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

54

was making sure it could write out particle snapshots for analysis in a reason-
able amount of time (meaning under approximately 30 minutes). After initial
experiments using single-file MPI-I/O proved unable to meet our performance
requirements, in collaboration with Venkat Vishwanath, I designed and imple-
mented a new file I/O framework, called Generic I/O, capable of meeting our
needs. Several important features are:

• For small files, using collective MPI-I/O is necessary, but for large writes
using non-collective MPI-I/O or POSIX I/O is necessary. Using the
Generic I/O framework, we can choose between any of these three options.
On the largest scales, using POSIX I/O yields the best performance on
Mira.

• The total output file size is pre-calculated before the writes begin, and the
file extent is pre-allocated. This reduces locking contention on the parent
directory’s metadata.

• To avoid locking contention, we write one file per BG/Q I/O node. There
is one I/O node per 128 compute nodes on Mira.

• Each rank writes into a disjoint space (without any kind of data reorga-
nization).

• The file format is self-describing, and in addition to ASCII converters, I
created a plugin for the SQLite database engine to make querying data in
the files straightforward and flexible.

• 64-bit CRC (Cyclic Redundancy Check) “checksum” codes are stored cov-
ering all data and metadata, where each variable from each rank has its
own CRC code. This allows the data to be validated before it is used for
a simulations checkpoint restart or for analysis.

To the last point regarding CRC codes, although on-disk data corruption is
rare, and undetected corruption of data while traversing the network is perhaps
rarer still, it can still be a significant problem at scale. As a point of reference, a
relatively-small simulation recently run at NERSC created 100 checkpoint files,
each one TB is size. Among all of those files, in one file, one variable from one
rank was corrupted. This corruption was detected when the checkpoint was
read in, and the restart was aborted. Had we not protected the data with CRC
codes, we might have not noticed, until many CPU hours had been wasted,
that the simulation was partially invalid, and it might have been impossible to
later determine why. With the CRC-code protection, the user was immediately
alerted to the problem, and was able to restart from an earlier checkpoint. In
short, I recommend that all groups make sure that there data is protected by
CRC codes.

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

55

7 Conclusion

Putting together all of the pieces discussed here has resulted in an astound-
ing improvement of HACC’s performance and scalability. HACC is now well
positioned to make significant contributions to the science of large-scale struc-
ture formation. In addition, with additional processing, HACC’s large simulated
universes can be used as test beds for the analysis software used on real observa-
tional data. None of this would have been possible without the dedicated effort
of (in no particular order) Salman Habib, Vitali Morozov, Adrian Pope, Katrin
Heitmann, Venkat Vishwanath, Nicholas Frontiere, and many others. Working
with all of these people has been a great pleasure, and is a good example of how
multi-disciplinary collaborations can yield truly-significant results.

References

[1] Weinberg, D.H., M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G. Riess
and E. Rozo, arXiv:1201.2434 [astro-ph.CO].

[2] Frieman, J.A., M.S. Turner, and D. Huterer, Ann. Rev. Astron. & Astro-
phys. 46, 385 (2008).

[3] Gafton, E. and S. Rosswog, Mon. Not. R. Astron. Soc., to appear (2011),
arXiv:1108.0028v1

[4] Habib, S., et al., arXiv:1211.4864 [cs.DC].

[5] Habib, S., et al., J. Phys.: Conf. Ser. 180 012019 (2009).

[6] Scott, D. M. “Scaling Turbulence Applications to Thousands of Cores: a
dCSE Project” (2010)

DarkUniverse esp ALCF-2 Early Science Program Technical Reports

56

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

8 Accurate Numerical Simulations Of Chemical Phenomena
Involved in Energy Production and Storage with MAD-
NESS and MPQC

PI: Robert Harrison (Stony Brook University, Brookhaven National Laboratory)

Project Summary

Researchers propose to focus on the problems of catalysis and heavy element chemistry for fuel
reprocessing—both of which are of immediate interest to the Department of Energy (DOE), are
representative of a very broad class of problems in chemistry, and demand the enormous compu-
tational resources anticipated from the next generation of leadership computing facilities. Also
common to both is the need for accurate electronic structure calculations of heavy elements in
complex environments.

Catalysis: A catalyst greatly improves the efficiency of a desired chemical reaction, and catalytic
processes are directly involved in the synthesis of 20% of all industrial products. Within the DOE
mission, catalysts feature prominently in cleaner and more efficient energy production, exemplified
by the fuel cell and storage technologies. To date, catalysts have been designed largely using
trial and error, e.g., synthesizing and testing a potential new catalyst to determine if the reaction
is more efficient. This process is both expensive and time-consuming and rarely leads to novel
catalysts. Computational modeling and simulation can improve this process, supporting experiment
by improved analysis and interpretation of data, and ultimately, in partnership with experiment,
enabling the design of catalysts from first principles. Researchers will focus, in collaboration with
experimentalists at ORNL, on chemical processes on imperfect metal-oxide surfaces.

Heavy element chemistry for fuel reprocessing: In collaboration with experimentalists and theo-
rists, researchers will focus on two aspects of heavy element chemistry for fuel reprocessing: molec-
ular interfacial partitioning and ligand design. Critical to both are rapid, yet quantitative, models
for the interaction of heavy elements with novel organic ligands, and the interaction of both with
a multispecies solvent. Speed is essential for combinatorial design due to the evaluation of a huge
number of candidates, and also to enable ab initio dynamics for the inclusion of finite temperature
and entropy.

Report originally released as ANL/ALCF-ESP-13/6

57

Fast Linear Algebra Libraries in MADNESS: a
Numerical Framework for Quantum Chemistry

on Petascale Platforms

Álvaro Vázquez-Mayagoitia and Jeff R. Hammond

May 13, 2013

Abstract

In order to solve the electronic structure of large molecular systems
on petascale computers using MADNESS, a numerical tool kit, are
required fast and accurate implementations for linear algebra. MAD-
NESS uses multiresolution analysis and low separation rank which
translates high dimensional functions in tensor products using Legen-
dre polynomial. The multiple tensor products make to the singular
value decomposition and matrix multiplication the most intense oper-
ations in MADNESS. This work discusses the interfacing of Eigen3 as
a C++ substitute of LAPACK and introduces Elemental for the diag-
onalization of large matrices. Furthermore, the present paper shows
the performance these libraries on Blue Gene/ Q.

1 Introduction

Quantum chemistry has influenced many fields in science by revealing the
structure of materials and molecules at atomic level, its most notable achieve-
ment is to predict accurately chemical and physical properties. The study of
materials at atomic level is a complicated task, even very sophisticated ex-
periments are challenged to reproduce observations at such level. In practice,
to obtain values from quantum chemistry methods with meaningful precision
requires a huge computational effort. Quantum mechanical methods as the
so-called Density Functional Theory (DFT), that approaches the electronic

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

58

exchange and correlation, in average reproduces atomization energies within
an error of 0.2 eV. Although the availability of large modern computers,
DFT currently might compute molecular systems with only few thousands
of electrons. [1]

On the other hand, along the last decades the theoretical chemistry has
changed drastically in part due to the new developments and approximations
to apply the quantum chemistry, and in part to the increment of calculation
power. Thus, the unprecedented availability of petascale computers for fun-
damental research has required new software development according with the
last architecture capacities, overall it has bee required software that exploits
the technology of multi-cores and multi-processors using large blocks of dis-
tributed memory, and new codes that can be reusable. Thus, the synergy of
modern quantum chemistry and supercomputing demands the production of
new generations of codes able to utilize efficiently large computer systems,
and desirably, be able to evolve at the same pace as the novel technologies
emerge.

The software Multiresolution Adaptive Numerical Environment for Scien-
tific Simulation (MADNESS) [2] is a general numerical framework for massive
parallel computations. MADNESS was designed to reduce the programming
effort offering a set of high level tools to solve many dimension integral-
differential equations and maximize the science productivity by letting to
the programmer to be focused in her or his application instead writing com-
plex low level instructions. MADNESS has been successfully used for several
applications in nuclear physics, chemistry, atomic physics, among other ar-
eas. MADNESS uses a multiresolution analysis (MRA) that relies on the low
separation rank (LSR) representation for functions and operators which lead
a generalization of one spatial dimension to higher dimensions and yields
algorithms that are too costly for practical applications. The current im-
plementation of MADNESS might operate with a large variety of kernels
and boundary conditions. For quantum chemistry MADNESS has an imple-
mentation to solve the electronic structure problem with the methods DFT,
[3, 4, 5] Hartree-Fock [6, 7] and MP2.[8] This software discretizes the orbital
functions within an orthogonal basis sets constructed with Legendre polyno-
mia which in conjunction with the LSR of the local potentials leads to solve
linearly the electronic structure at a given arbitrary precision. [9]

This report will summarize part of the effort made to port MADNESS
and make it efficient to the IBM Blue Gene/Q technology. The text will
discuss briefly the most computational costly parts of the MADNESS calcu-

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

59

lations related with linear algebra operations and the interface to external
algebra libraries in order to speedup the code. This text will avoid any deep
discussion of the formulation of the approaches used and/or the hybrid par-
allel model found MADNESS, nevertheless we will address to the readers for
further details in the correspondent references.

2 Methods

2.1 Numerical Methods Used

The MRA allows to represent a d-dimensional space in d-dimensional boxes,
each box with a basis set formed as a of tensor product of Legendre polyno-
mials. The LSR representation of a 3D function is written as follows

φ(x, y, z) ≈
r∑

k1,k2,k3

sk1,k2,k3ϕk1(x)ϕk2(y)ϕk3(z)

where ϕi(i) is a set of orthogonal and polynomial functions and the coef-
ficients sk1,k2,k3 are scalar and are adjusted in an adaptive separation rank r
to archive a threshold for the accuracy of ε that is given by the difference

||φ(x, y, z)−
r∑

k1,k2,k3

sk1,k2,k3ϕk1(x)ϕk2(y)ϕk3(z)||2 ≤ ε,

some elements of the rank r may need a refinement to reach faster the re-
quired accuracy. This technique is similar in speed as Fast Fourier Trans-
formation used in spectral algorithms on uniform grids. In the practice, the
LSR representation in wavelets give us to formulate our functions as a tensor
product

F = (((STD)Tk1D)Tk2D)k3 ,

the indexes k1, k2, k3 run over the number of subspaces in the rank used to
represent the original function. The matrices D and S are matrices with the
filter coefficients and scalar coefficients of the wavelets. We can anticipate
that small matrix-matrix operations are the most intense operations in our
calculations.

In quantum chemistry, the key equation to obtain the wavefunction of a
time-independent system, composed by electrons and ions, is the Schrödinger

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

60

equation ĤΨ = EΨ, where the electronic Hamiltonian Ĥ is the sum of
the kinetic and potential operators Ĥ = T̂ + V̂ . The numerical low-rank
representation of the wavefunctions allows to solve the Schrödinger equation
in an integral equation form as: [10, 11]

Ψ = −2 · Ĝµ(VΨ),

where µ2 = (−2 ∗E), and E is the total energy of system. The wavefunction
Ψ can be seen as the auxiliary Kohn-Sham wavefunction and can be applied
for DFT. The integral operator Ĝµ can be written as

(Ĝµ ∗ f)(x) =

∫
e−µ|x−x

′|

4π|x− x′|f(x′)dx′.

Finally the problem is reduced to find a Ψ that minimizes the energy E,
and this is solved iteratively since in this approach the energy is variational.

The application of the integral operator implies the convolution of the
real-space functions in the LSR representation. The deconvolution operation
is also computationally very demanding and requires the decomposition of
the coefficients sk1,k2,k3 of the tensor products in the low rank separation.
decomposes sk1,k2,k3 such as The decomposition of the coefficients sk1,k2,k3 is
the second most expensive operation and is performed using standard Single
Value Decomposition algorithms (SVD). Thus the most intensive operations
are applied to small matrices, this leads to implement very specific algorithms
for those cases.

Additionally, the wavefunctions in the methods DFT and Hartree-Fock
are chosen to be real wavefunctions. DFT and HF establishes a formalism
of separable particle functions that permits to write the wavefunction of
the system as a single Slater determinant Ψ = 1√

N !
|φ1(r1)...φN(rN)| . In

MADNESS, like in any other quantum chemistry code, to obtain the energies
of each electronic state needs to solve a problem of eigenvalues, this problem
is written as

(H̃ − εĨ)S̃ = 0.

The elements of matrix H̃ are the integrals of the independent particle Hamil-
tonian Hi,j =

∫
d~rφi(~r)

∗ĥφj(~r) and the elements of S̃ are the values of the
orbital overlap Si,j =

∫
d~rφi(~r)

∗φj(~r). The dimension of this problem is the
size of the basis set used, that is proportional to the number of electrons
in systems. For large calculations this is a potential computational bottle

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

61

neck to solve the whole wavefunction. The orbital functions φi(~r) initially
are built as a linear expansion of Gaussian functions, and for multiresolution
representation we chose a finite basis represented by wavelets.

In summary, MADNESS requires for high performance calculations 1)
a fast small matrix-matrix multiplication algorithm, 2) a reliable and fast
Single Value Decomposition and 3) a parallel eigen-solver for real Hermitian
matrices. MADNESS uses by default the external linear algebra subroutines
included in BLAS and LAPACK. In order to improve performance of the
code, we substituted BLAS/LAPACK with libraries that are more efficient
for the matrix dimensions used in MADNESS, which are generally smaller
than those for which BLAS/LAPACK are optimized. In the follow sections
we will discuss the results when MADNESS uses linear algebra libraries writ-
ten in C++.

3 Transition from BG/P to BG/Q

The Blue Gene /Q (BG/Q)architecture is a totally new technology for scien-
tific applications and its closest technology reference available is the previous
generation Blue Gene /P (BG/P). When we compare the performance be-
tween the two generations BG/Q and BG/P in most of cases we experience a
speedup of 3x-4x. In the Figure 1 is plotted the comparison between BG/Q
and BG/P with same number of nodes and calculation a cluster of 5 water
molecules. In a glance, for small calculations BG/Q is 4 times faster than a
BG/P with few nodes.

For large molecular systems, where the number of operations are more
intensive, BG/Q has a much better performance than BG/P; and this per-
formance grows directly proportional with the size of the problem, see Figure
2.

4 Lineal Algebra Libraries

4.1 Eigen3

The singular value decomposition for small square matrices are one of the
most intensive serial operations in MADNESS. We added the option to sub-
stitute LAPACK by the templated C++ library Eigen3 [12]. This library

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

62

Figure 1: Comparison BG/P vs BG/Q with same number of nodes and same
size of molecular system.

Figure 2: Performance comparison between BG/P and BG/Q when we
growth the size of the molecular system computing with 64 nodes.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

63

Program 4.1 Example of single value decomposition application using
Eigen3.
typedef Matrix<double,Dynamic,Dynamic> MatrixX;

MatrixX U, V, M;

Matrix<double, Dynamic, 1> Sigms;

// init M

// get U and V from M=U.Sigms.V using JacobiSVD decomposition

JacobiSVD <MatrixX> svd(M, ComputeThinU | ComputeThinV);

U = svd.matrixV();

V = svd.matrixU();

Sigms = svd.singularValues();

substitutes most of the operations found in LAPACK, providing several al-
gorithms to obtain the eigenvectors and eigenvalues of matrices. Each algo-
rithm could be as fast as the precision required and the size of the matrices
involved. Usually more precision means slower calculations. Eigen3 imple-
ments a special class to manipulate matrices and some operations for small
matrices are hard coded. Initially, the decomposition in the LRS require
small matrices operations Eigen was consider an excellent candidate to re-
place LAPACK in MADNESS.

An example of a small piece of code using Eigen3 to call a SVD calcula-
tion is shown in the Program 4.1. Notice that Eigen3 has its own class to
represent matrices, Matrix. The initialization of matrices from Eigen3 with
the matrices in MADNESS is made using pointers. MANDESS and Eigen3
matrix classes have in common objects to insert the directly the elements of
the matrices.

In the Figure 3 we show the timings in the decomposition of the real
matrix M as M = UΣV T (where U and V T are the right and left unitary
matrices respectively and Σ is a vector of eigenvalues) with a size (20,20) and
smaller using the libraries LAPACK and Eigen3. In this Figure we might
notice that Eigen3 is very competitive when computes with small matrices;
with sizes less than (16) is faster than LAPACK. Because the SVD procedure
is called millions of times, even small increases in performance have a large
impact on the overall runtime of the code.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

64

Figure 3: CPU time solving the SVD using Eigen3 and LAPACK in square
matrices dimension 20 and smaller.

In spite of the positive results in the performance of Eigen3 for small
matrices, its competitiveness is lost with larger matrices, as is shown in the
Figure 4 where for medium size and large matrices LAPACK is approxi-
mately twice the speed of Eigen3.

4.2 Elemental

In MADNESS in order to obtain orbital energies from the Kohn-Sham or
Hartree-Fock methods is necessary to solve a matrix problem of eigenvalues.
The dimension of the matrix in our case is the number of occupied orbitals.
We interfaced MADNESS matrices to Elemental to facilitate the operations
of large matrices and vectors. This is particularly relevant to diagonalize the
Hamiltonian matrix and also useful to project the initial Gaussian basis set
functions into the polynomial basis set via LRS. For small molecular sys-
tems with hundreds of electrons the matrix operations made with LAPACK
had negligible times, and single-node libraries where sufficient. Nevertheless,
when MADNESS calculates large molecules, with thousands of orbitals, the
use of a parallel eigen solver is mandatory, thus, we chose Elemental [13]
because it is a modern, object-oriented C++ library that fits with the rest
of MADNESS’ design and because its performance has been shown to be ex-
cellent on Blue Gene systems, i.e. it is faster than ScaLAPACK (this result
is not unique to Blue Gene, however).

Elemental maps the MPI processes used on 2D grid and distributes the

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

65

Figure 4: CPU time solving the SVD using Eigen3 and LAPACK in square
matrices with dimension between 30 to 200.

matrices data in blocks along that grid. The mathematical operations of the
matrices are performed in groups of elements in the grid, the time saved doing
this operations are reflected in operation of reduction and collection. Ele-
mental is based in the previous designs found in FLAME and PLAPACK,
projects held in the University of Texas, Austin. The snippet in the Pro-
gram 4.2 exemplify how we call the eigen solver in Elemental using C++.
The value blocksize should be chosen taking in account the size of the
matrix to manipulate and the number of processors. For large matrices in
BG/Q (size >3600) we found convenient to set blocksize=128.

The Figure 5 shows the performance of Elemental obtaining the eigen-
vectors and eigenvalues of real matrices with dimension of 3200 to 9000. The
speedup values in this plot refer to the timings obtained with 8 nodes of
BG/Q. For very large problems, when one passes form 8 to 16 processors
the speedup is bigger than the expected, 1.2x . A careful analysis of the
plot proves that Elemental is hard to saturate even with 128 processors. The
difference between LAPACK and Elemental is extremely large in a multipro-
cessor scheme, since the former is serial. serial code and the later a parallel
one. To exemplify the difference between the too libraries to solve the eigen
problem of a matrix with a size 3600 to LAPACK takes 753 seconds, while
Elemenetal takes 68.2 seconds when using 16 nodes.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

66

Program 4.2 Example of a solution of an eigenvalues problem kind AxBx
using Elemental.

const int blocksize = 128; //set block size for the data distribution.

SetBlocksize(blocksize);

Grid GG(MPI_COMM_WORLD); //set grid processors within the MPI rank

// ’int n’ is the size of the matrix

DistMatrix<T> B(n, n, GG), A(n, n, GG);

DistMatrix<double> X(n, n, GG); //eigenvectors

DistMatrix<double,VR,STAR> w(n, n, GG); //eigenvalues

// init matrices A and B

HermitianGenDefiniteEigType eigType = AXBX; //problem to solve Ax=wBx

UpperOrLower uplo = CharToUpperOrLower(’U’);

HermitianGenDefiniteEig(eigType, uplo, A, B, w, X); //get w and X

Figure 5: Parallel speedup of Elemental computing the eigenvalues and eigen-
vectors of matrices with different sizes in BG/Q.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

67

5 Conclusions

MADNESS as a mathematical framework for scientific computation on petas-
cale plataforms was optimized to speedup calculations replacing the most
intense subroutines from standard linear algebra packages BLAS/LAPACK
to Eigen3 and Elemental, which are more efficient and capable to exploit the
particular characteristics of the BG/Q architecture. Eigen3 in BG/Q has
better performance than LAPACK for small matrices, up to a size of 16.
Nevertheless Eigen3 has a bad performance with bigger matrices. Interfac-
ing of Elemental to MADNESS provides the capability to operate faster with
large and distributed matrices, in particular MADNESS was benefited of the
parallel eigensolver implemented in Elemental. In the near future we plan to
use more features of Elemental to improve MADNESS.

References

[1] W. Koch and M. C. Holthausen, A chemist’s guide to density functional
theory, vol. 2. Wiley-Vch Weinheim, 2001.

[2] Robert J. Harrison, et al., “Multiresolution ADaptive NumErical Scien-
tific Simulation (MADNESS),” 2010. http://code.google.com/p/m-a-d-
n-e-s-s/.

[3] R. J. Harrison, G. I. Fann, Z. Gan, T. Yanai, S. Sugiki, A. Beste,
and G. Beylkin, “Multiresolution computational chemistry,” Journal of
Physics: Conference Series, vol. 16, no. 1, p. 243, 2005.

[4] R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin, “Multiresolu-
tion quantum chemistry in multiwavelet bases,” in Computational Sci-
ence—ICCS 2003, pp. 103–110, Springer, 2003.

[5] R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, “Multires-
olution quantum chemistry: Basic theory and initial applications,” The
Journal of Chemical Physics, vol. 121, no. 23, pp. 11587–11598, 2004.

[6] T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, “Mul-
tiresolution quantum chemistry in multiwavelet bases: Hartree–Fock
exchange,” The Journal of Chemical Physics, vol. 121, no. 14, pp. 6680–
6688, 2004.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

68

[7] F. A. Bischoff and E. F. Valeev, “Low-order tensor approximations for
electronic wave functions: Hartree–fock method with guaranteed preci-
sion,” The Journal of Chemical Physics, vol. 134, p. 104104, 2011.

[8] F. A. Bischoff, R. J. Harrison, and E. F. Valeev, “Computing many-body
wave functions with guaranteed precision: The first-order møller-plesset
wave function for the ground state of helium atom,” The Journal of
Chemical Physics, vol. 137, p. 104103, 2012.

[9] G. I. Fann, R. J. Harrison, G. Beylkin, J. Jia, R. Hartman-Baker, W. A.
Shelton, and S. Sugiki, “MADNESS applied to density functional the-
ory in chemistry and nuclear physics,” Journal of Physics: Conference
Series, vol. 78, no. 1, p. 012018, 2007.

[10] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive solution of
partial differential equations in multiwavelet bases,” Journal of Compu-
tational Physics, vol. 182, no. 1, pp. 149 – 190, 2002.

[11] M. Kalos, “Monte Carlo calculations of the ground state of three-and
four-body nuclei,” Physical Review, vol. 128, no. 4, p. 1791, 1962.

[12] “Eigen3.” http://eigen.tuxfamily.org.

[13] “Elemental.” https://code.google.com/p/elemental/.

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

69

MADNESS MPQC esp ALCF-2 Early Science Program Technical Reports

70

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

9 Petascale, Adaptive CFD

PI: Kenneth Jansen (University of Colorado)

Project Summary

The aerodynamic simulations proposed will involve modeling of active flow control based on syn-
thetic jet actuation that has been shown experimentally to produce large-scale flow changes (e.g.,
re-attachment of separated flow or virtual aerodynamic shaping of lifting surfaces) from micro-scale
input (e.g., a 0.1 W piezoelectric disk resonating in a cavity alternately pushes/pulls out/in the
fluid through a small slit to create small-scale vortical structures that interact with, and thereby
dramatically alter, the cross flow). This is a process that has yet to be understood fundamentally.
Synthetic jet actuators offer the prospect of not only augmenting lift but also other forces and
moments in a dynamic and controlled fashion for a range of operating conditions. They have been
demonstrated to restore and maintain flow attachment and reduce vibrations in wind turbine blades
during dynamic pitch, thereby reducing unsteady loads on gearboxes that are currently the prime
failure point. In virtual-shape flight control surfaces for aerial vehicles (including commercial air-
planes), conventional control surfaces (e.g., flaps, rudder, etc.) can be augmented or even replaced
with active flow control, thus improving their lift-to-drag ratio and/or control power. This projects
numerical simulations will give a detailed view of the flow interactions at a Reynolds number and
simulation volume approaching engineering application scales for the first time. In these fluid flow
problems, anisotropic solution features (like strong boundary and shear layers) can only be located
and resolved through adaptivity of the computational mesh.

Report originally released as ANL/ALCF-ESP-13/7

71

ALCF ESP Technical Report

Petascale Adaptive CFD

PI: Kenneth E. Jansen, University of Colorado Boulder
ESP post-doc: Michel Rasquin, Argonne Leadership Computing Facility

March 2013

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

72

1 Description of science
The aerodynamic simulations of this project involve modeling of active flow control based on
synthetic jet actuation that has been shown experimentally to produce large-scale flow changes
(e.g., re-attachment of separated flow or virtual aerodynamic shaping of lifting surfaces) from
micro-scale input [1, 2, 3]. This micro-scale input consists for instance in 0.1 W piezoelectric
disk which resonate in a cavity alternately and pushes/pulls out/in the fluid through a small
slit to create small-scale vortical structures that interact with, and thereby dramatically alter,
the cross flow. This process has yet to be understood fundamentally. Synthetic jet actuators
offer the prospect of not only augmenting lift but also other forces and moments in a dynamic
and controlled fashion for a range of operating conditions. They have been demonstrated to
restore and maintain flow attachment and reduce vibrations in wind turbine blades during
dynamic pitch, thereby reducing unsteady loads on gearboxes that are currently the prime
failure point. In virtual-shape flight control surfaces for aerial vehicles (including commercial
airplanes), conventional control surfaces (e.g., flaps, rudder, etc.) can be augmented or even
replaced with active flow control, thus improving their lift-to-drag ratio and/or control power.
The goal of the numerical simulations proposed in this project is to provide a complementary
and detailed view of the flow interactions at a much higher Reynolds number, approaching
engineering application scales for the first time.

2 Overview of numerical methods

2.1 Implicit finite element flow solver PHASTA

Flow computations are performed using a CFD flow solver called PHASTA (“Parallel Hierarchic
Adaptive Stabilized Transient Analysis”). This code is based on fully-implicit, stabilized, semi-
discrete finite element method for the transient, incompressible Navier-Stokes partial differential
equation (PDE) governing fluid flows. In particular, we employ the streamline upwind/Petrov-
Galerkin (SUPG) stabilization method to discretize the governing equations [4, 6]. The sta-
bilized finite element formulation currently utilized has been shown to be robust, accurate
and stable on a variety of flow problems. In our CFD flow solver, the Navier-Stokes equa-
tions (conservation of mass, momentum and energy) plus any auxiliary equations (as needed
for turbulence models or level sets in two-phase flow) are discretized in space and time. The
discretization in space based on a stabilized finite element method leads to a weak form of
the governing equations, where the solution (and weight function) are first interpolated using
hierarchic, piecewise polynomials, and followed by the computation of integrals appearing in
the weak form using Gauss quadrature. Implicit integration in time is then performed using a
generalized-α method which is second-order accurate and provides precise control of the tem-
poral damping to reproduce Gears Method, Midpoint Rule, or any blend in between [5]. On a
given time step, the resulting non-linear algebraic equations are linearized to yield a system of
linear equations Ax = b which are solved using Krylov iterative procedures such as GMRES
(“Generalized Minimal RESidual” method).

2.1.1 Parallelization

Finite element methods are very well suited for use on parallel computers as substantial com-
putational effort is divided into two main tasks: 1) the calculation of element level integrals
leading to the linear system assembly and 2) the solution of the resulting system of algebraic
equations Ax = b. Both of these work types can be equally divided among the processors
by partitioning the aggregate mesh into equal load parts [12, 13]. So far, PHASTA is a pure
MPI based code and each process executes of copy of the analysis code to handle the compu-
tation work and interactions corresponding to its mesh part. Element-based mesh partitioning
is currently used for the domain decomposition approach and leads to a natural parallelization
for element-integration/equation-formation stage making it highly scalable. In element-based
partitioning, each element is uniquely assigned to a single part but in turn leads to shared

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

73

dofs or unknowns in the system of equations, which results from the duplicated vertices on
the inter-part boundaries. This element-based partitioning along with the control relationships
between multiple images of shared vertices is illustrated in Figure 1.

Figure 1: Element-based partitioning and the control relationships between multiple images of
duplicated and shared vertices. Solid dot on the middle and right figures denotes an owner
image whereas hollow ones indicate non-owners.

Collectively, all the processes have the same information as in the unpartitioned or serial
case but no one process holds or has knowledge of the entire tangent matrix, A, nor the
residual vector b. Thus, to be able to progress the computations in parallel and march in time,
interactions between shared dofs are completed via communications.

After numerical integration on local part (i.e. task 1 mentioned in the previous paragraph
for the system assembly), values in rows of b for shared dofs are individually incomplete on
each part (referred to as on-part value) because their contributions are distributed among
their images (in finite element methods this is due to the compact support of basis or shape
functions used). To obtain a complete value for a vector entry associated with a shared dof,
peer-to-peer communications related to shared dofs are required and are implemented in two
stages, as illustrated in Figure 2. First, data is accumulated at owner image vertices to obtain
complete values. Then, complete values are copied from owners to update their non-owner
images. Although one could elect to communicate the on-part entries of the tangent matrix
A to make them complete, our approach does not, limiting communications to vector entries
only (such as in b). This matrix update will be achieved implicitly during the resolution of the
linear system, as explained in the next paragraph.

(a) Non-owners send while owners re-
ceive and accumulate.

(b) Owners send whereas non-owners
receive and update.

Figure 2: Communication steps involved to obtain complete values for shared dofs.

The second task of our implicit solve involves finding the solution update vector x. Krylov
iterative solution techniques such as GMRES are currently used for that purpose. These tech-
niques employ repeated products of A with a series of vectors (say, p) to construct an orthonor-

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

74

mal basis of vectors used to approximate x. In this series, the outcome of any matrix-vector
product is another vector q (= Ap) which is used to derive the subsequent vector in the series.
The first vector in this series is derived from the residual vector b which contains complete
values at this point of the solve. Even though A contains only on-part values for shared dofs
and is incomplete, it is still possible to perform the basic kernel of (sparse) matrix-vector prod-
uct, i.e., q = Ap, provided vector p has been first updated in the same way as illustrated in
Figure 2 for vector b and contains complete values. Due to the distributive property of Ap
product, the resulting vector q will in turn contain on-part (incomplete) values. Therefore,
after a local Ap product, our two-pass communication strategy illustrated in Figure 2 must be
applied again to obtain complete values in q (provided p contained already complete values).
Before proceeding to the next product in the series, it is important to note that computation
of norms is required to perform orthonormalization. In this step, the norm of vector q, and
its dot-product with the previous vectors in the series, are computed. To compute a norm or
dot-product, first a local dot-product is computed (requiring no communication) but then, to
obtain a complete dot-product, a sum across all cores is needed. A collective communication
(of allreduce type) is used to carry out the global summation. To summarize task 2, successive
Ap products are carried out along with peer-to-peer communications to obtain complete values
and with global communications to perform the orthonormalization. This series of steps leads
to an orthonormal basis of vectors which is used to find an approximate update vector x and
marks the end of a non-linear iteration step.

2.2 Adaptive mesh control and mesh partitioning

In addition to the CFD flow solver PHASTA, adaptive meshing [8, 9, 11, 10] and mesh partition-
ing [7] techniques are other essential ingredients required to generate and partition significantly
large (in the order of 5 billion or more elements) 3D unstructured finite element meshes for the
target applications. Indeed, the application of reliable numerical simulations requires them to
be executed in an automated manner with explicit control of the approximations made. Since
there are no reliable a priori methods to control the approximation errors, adaptive methods
must be applied where the mesh resolution is determined in a local fashion based on the spatial
distribution of the solution and errors associated with its numerical approximation. Further-
more, the reliability and accuracy of simulations is also a strong function of the mesh quality
and configuration. In many physical problems of interest, especially in the field of fluid me-
chanics, solution features are most effectively resolved using mesh elements which are oriented
and configured in a certain manner. For example, in the case of viscous flows, use of boundary
layer meshes is central to the ability to effectively perform the flow simulations due to their
favorable attributes, i.e., high-aspect ratio, orthogonal, layered and graded elements near the
viscous walls. As shown in Section 5, while the quality of the mesh is essential for the relia-
bility and the quality of the solution, the quality of the mesh partition plays a key role in the
scalability of the flow solver.

3 Problem size

The usual productive runs on Intrepid concerned cases that included up to O(0.5 billion) finite
elements. On Mira, the new available resource allow us to consider typical problems that include
O(5 billion) finite elements, that is a factor 10 increase w.r.t. Intrepid. This factor will allow
us to increase the Reynolds number of our simulations and approach engineering application
scales for the first time.

4 Codes and packages involved in this project
The execution of the flow solver PHASTA and the adaptive meshing and mesh partitioning
procedures rely on the following third-party libraries and softwares: MPI, Zoltan, ParMETIS,
IPComMan, PIMA, FMDB, phParAdapt, ParMa, Simmetix, ACUSIM and Parasolid/Acis.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

75

5 Performance on Mira
The performance of PHASTA on MIRA is illustrated in Figure 3 and Table 1 with a strong
scaling study. These simulations associated with a flow control application are performed on a
3.3 billion finite element mesh. The number of MIRA nodes in this scaling study ranges from
2,048 to 32,768 (corresponding to respectively 16,384 and 524,288 cores) and the number of
MPI processes per core varies from 1 to 4. The simulation with 2,048 nodes (32,768 cores) and
1 MPI process per core is considered as the reference hereafter.

Figure 3: Strong scaling performance for PHASTA on MIRA for a 3.3 billion finite element
mesh.

First, a consistent scaling factor of 88.22% is observed on 32,768 nodes (524,288 cores) with
one MPI process per core w.r.t. to our reference. Increasing the number of MPI processes per
core to 2 or 4 leads to an additional significant improvement of the performance. Indeed, 16,384
nodes (262,144 cores) with one MPI process per core leads to a scaling factor of 92,92%, whereas
2 MPI processes per core leads to a scaling factor of 141,78%. On 2,048 nodes (32,768 cores),
4 MPI processes per core leads to a scaling factor of 193.73%, 2 MPI processes to 155.56% and
1 MPI process per core to 100% (reference case). Finally, MIRA appears to be about 11 times
faster than Intrepid on a node basis when 1 MPI process per core is considered on both MIRA
and Intrepid. When 2 MPI processes per core are considered on MIRA, the acceleration factor
per node rises up to about 18 (with still the standard 1 MPI process per core on Intrepid in
this comparison).

As mentioned in the previous section, the scaling of our flow solver strongly depends on the
quality of the mesh partitioning. Indeed, one important point to consider during the partitioning
of the mesh is that the computational load (in any part) during the system formation stage
(i.e., during formation of the tangent matrix A and residual vector b) depends on the number
of elements present in the part, whereas the system solution stage depends on the degrees-of-
freedom (dofs) or unknowns in the system of equations on that part, which is proportional to
the number of vertices. Typically, element balance (with sufficient load per part) results in
a reasonable dof balance as well. As long as the dof balance is preserved, the element-based
partitioning also maintains the scalability in the iterative linear solve step, as illustrated in

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

76

K Nodes K Cores MPI process
per core

K mesh parts Wall Clock
(s)

Scaling factor
(%)

Mira/Intrepid
node factor

= part/core = MPI process Ref: 2K
nodes BG/Q

with 1
mpi/core

Ref: 40K
nodes BG/P

with 1
mpi/core

2 (ref) 32 1 32 206.09 100.00 12.04
4 64 1 64 103.21 99.84 12.02
8 128 1 128 53.04 97.14 11.69
16 256 1 256 27.43 93.92 11.30
32 512 1 512 14.6 88.22 10.62

1 16 2 32 306.31 134.56 16.20
2 32 2 64 132.48 155.56 18.72
4 64 2 128 65.13 158.21 19.04
8 128 2 256 33.96 151.72 18.26
16 256 2 512 18.17 141.78 17.06

1 16 4 64 265.77 155.09 18.67
2 32 4 128 106.38 193.73 23.32

Table 1: Strong scaling results for PHASTA on MIRA with a 3.3 billion finite element mesh.

Figure 3 with the simulations performed with 1 MPI process per core.
For a mesh with fixed element topology (e.g. tetrahedra), balanced parts within a partition

imply that each part contains as close to the average number of mesh entities (both elements
and vertices) as possible. However, in situations where the number of mesh elements per part
is relatively small (in the order of few thousand), significant imbalance in dofs can result while
the element imbalance remains under control. Indeed, the balance of dofs is not explicitly
requested by pure element-base partitioners. This dofs imbalance increase is illustrated in
Table 2 and highlighted in particular with the mesh partitioned in 524,288 and 1,572,864 parts.
Furthermore, the percentage of shared dofs on part boundaries increases in situations where a
fixed-size problem is spread over more and more parts as is the case during this strong scaling
study and thus, eventually becomes detrimental to scaling. Finally, it is also common for pure
element-based partitioners to generate empty parts in such extreme conditions that flow solvers
typically cannot handle.

To illustrate further this dof imbalance as the the mesh is partitioned in more and more
parts with a pure element-base partitioner, the mesh entity distribution per part and associ-
ated histogram are presented in Figures 4 and 5 for respectively 524,288 and 1,572,864 parts.
Figures 4(a) and 4(c) show that most of the parts are well balanced in terms of element. The
element histogram also confirms that the node distribution is relatively smooth, as most parts
present a number of elements above the target average by only 5.30% at most. However, the
conclusion is different for the vertex distribution and histogram presented in Figures 4(b) and
4(d). Indeed, the node distribution is characterized by a number of heavily loaded parts (based
on mesh vertices) referred to as spikes, with a number of vertices significantly above above the
target average. These spikes are significant contributors to the degradation of the scaling of
the iterative linear solver. Moreover, the right tail of the node histogram shows that only a
few fraction of the parts are too heavily loaded w.r.t. the target average. This tendency is
emphasized in Figure 5, where the element-base partitioning of the mesh in 1,572,864 parts also
generates a few empty parts that solvers typically cannot handle. Solutions to remedy to these
problems are presented in Section 6 and are currently being implemented.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

77

Parts 32K 64K 128K
Elements Vertices Elements Vertices Elements Vertices

Total 3.3 billion 628,518,185 cst 658,364,797 cst 690,969,857
Target avg 101,344 19,181 50,672 10,046 25,336 5,272

Max in part 107,087 20,910 53,362 11,053 26,681 5,940
% imbalance 5.67 9.01 5.31 10.02 5.31 12.67
Min in part 56,203 10,790 28,427 5,824 11,993 2,610

Parts 256K 512K 1536K
Elements Vertices Elements Vertices Elements Vertices

Total cst 733,192,244 cst 787,886,775 cst 905,248,408
Target avg 12,668 2,797 6,334 1,503 2,111 576

Max in a part 13,340 3,267 6,670 1,829 2,231 875
% imbalance 5.30 16.80 5.30 21.69 5.68 51.91
Min in a part 5,251 1,170 867 289 0 0

Table 2: Element and vertex imbalance for a 3.3 billion finite element mesh

(a) Element distribution. (b) Vertex distribution.

(c) Element histogram. (d) Vertex histogram.

Figure 4: Mesh entity distribution per part (top) and histogram (bottom) for a 3.3 billion
element mesh partitioned in 524,288 parts with Zoltan and ParMetis. The blue line in the
distribution plots represents the target average number of entities per part.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

78

(a) Element distribution. (b) Vertex distribution.

(c) Element histogram. (d) Vertex histogram.

Figure 5: Mesh entity distribution per part (top) and histogram (bottom) for a 3.3 billion
element mesh partitioned in 1535K parts with Zoltan and ParMetis. The blue line in the
distribution plots represents the target average number of entities per part.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

79

6 New algorithms for Mira

6.1 Unstructured mesh partitioning at large scale

Two algorithms aiming at improving the quality of the mesh partitioning are being implemented
in a library called Parma, in coordination with the Scientific Computation Research Center at
the Rensselaer Polytechnic Institute (RPI). The first algorithm whose first version was presented
in [13] consists in migrating locally a small number of elements from heavily loaded parts to
relatively lightly loaded neighboring parts in order to reduce the vertex imbalance without
perturbing much of the element balance. The result of this algorithm is illustrated in Table 3
and Figures 6 and 7 with an extreme example that includes 180 million elements partitioned
in 131,072 parts.

Parts 128K (no Parma) 128K (with Parma)
Elements Vertices Elements Vertices

Total 180 million 54,043,396 cst 52,723,643
Target avg 1,378 412 1,378 402

Max in a part 1,455 564 1,604 462
% imbalance 5.59 36.89 16.40 14.93
Min in a part 0 0 1 4

Table 3: Element and vertex imbalance for a 180 million element mesh partitioned in 131,072
parts with Zoltan and ParMetis, and improved with Parma.

From this table and associated figures, one can observe that the vertex imbalance is sig-
nificantly improved from 36.89% to 14.93%. In this extreme example, the imbalance for both
vertices and elements reaches a similar level after this first operation. Migrating a few elements
locally from heavily loaded parts to lightly loaded neighboring parts not only reduces the vertex
imbalance but also usually decreases the total number of vertices on part boundaries which in
turn decreases the total inter part communication. As a first simple solution to fix empty parts,
one single element is also migrated from a neighboring part to an empty part.

However, this first algorithm fails at removing all the spikes in the vertex distribution, es-
pecially when heavy loaded parts are concentrated in the same region of the mesh. A second
algorithm referred to as heavy part splitting approach is currently investigated for that pur-
pose. This algorithm is applied after the smooth element migration described in the previous
paragraph and includes three steps. The first step consists in estimating the number of heavy
loaded parts in the mesh (both in terms of vertex and elements). The second step consists
in generating as many empty parts as needed by grouping lightly loaded parts together. The
empty parts potentially generated by the pure element-base partitioning are also recycled for
that purpose. Finally, the third step consists in splitting the heavy loaded parts in two or more
parts and migrating these new split parts to the empty parts. These heavy loaded parts are
split based on their geometry in such a way that the total number of new shared vertices is
minimized.

6.2 Live and interactive data co-visualization

Fully implicit finite element methods applied to Computational Fluid Dynamics have already
been demonstrated to scale very well up to hundred of thousands of processors, provided that
the load in terms of both element and vertex per processor is carefully balanced for respectively
the equations formation and iterative solve. This scalability of the flow solver is essential for
simulation of turbulent flows that requires the Navier-Stokes equations to be solved on highly
refined meshes over a considerable number of small time steps. However, it may take orders of
magnitude longer time to perform any reasonable assessment of the insight gained due to the

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

80

(a) Element distribution. (b) Vertex distribution.

(c) Element histogram. (d) Vertex histogram.

Figure 6: Mesh entity distribution and histogram among the mesh parts for a 180M element
mesh partitioned in 131,072 parts with Zoltan and ParMetis but without Parma. The blue line
in the distribution plots represents the target average number of entities per part.

time it takes to write the data, load the data into post processing software, and to analyze and
display insightful results. In coordination with the University of Colorado at Boulder, Kitware,
INC, the Rensselaer Polytechnic Institute and ALCF, we now consider a more strict definition of
“solution” whereby a live data analysis is able to provide continuous and reconfigurable insight
into massively parallel simulations, paving the way for interactive simulation and simulation
steering. Specifically, we demonstrated our co-visualization concept of either the full data or in
situ data extracts on 163,840 cores of the Blue Gene/P Intrepid system tightly linked through
a high-speed network to 100 visualization nodes of the Eureka system that share 800 cores and
200 GPUs, as illustrated in Figure 8. In particular, we used this technique to visualize vortical
structures that arise from the interaction of a cross flow with an array of synthetic jets on a
realistic wing with application to flow control. We plan to port this capability to Mira and
Tukey soon.

References

[1] M. Amitay, B.L. Smith, and A. Glezer, Aerodynamic Flow Control Using Synthetic Jet
Technology, AIAA Paper, 208, 1998

[2] A. Glezer and M. Amitay, Synthetic Jets, Annual Review of Fluid Mechanics, 34(1):503-529,
2002.

[3] O. Sahni, J. Wood, K.E. Jansen, and M. Amitay, Three-dimensional interactions between a
finite-span synthetic jet and a crossflow, Journal of Fluid Mechanics, 671:254-287, 2011.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

81

(a) Element distribution. (b) Vertex distribution.

(c) Element histogram. (d) Vertex histogram.

Figure 7: Mesh entity distribution and histogram among the mesh parts for a 180M element
mesh partitioned in 131,072 parts with Zoltan and ParMetis, and improved with Parma. The
blue line in the distribution plots represents the target average number of entities per part.

Home%Ins)tu)on%

ParaView
client

Laptop&

Home%Ins)tu)on%

PHASTA +
Coprocessors

Compute&resource& Vis&Cluster&

Supercompu)ng%Facility%

ParaView&
server&

VTK&sockets&

or&GLEAN& VNC&

Figure 8: Workflow for live co-visualization of data.

[4] C.H. Whiting and K.E. Jansen A stabilized finite element method for the incompressible
Navier-Stokes equations using a hierarchical basis, International Journal of Numerical Meth-
ods in Fluids, 35:93-116, 2001.

[5] K.E. Jansen, C.H. Whiting and G.M. Hulbert, A generalized-α method for integrating the
filtered Navier-Stokes equations with a stabilized finite element method, Computer Methods
in Applied Mechanics and Engineering, 190:305-319, 1999.

[6] A. K. Karanam, K. E. Jansen, and C. H. Whiting, Geometry based pre-processor for par-

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

82

allel fluid dynamic simulations using a hierarchical basis, Engineering with Computers,
24(1):1726, 2008.

[7] M. Zhou, O. Sahni, K.D. Devine, M.S. Shephard and K.E. Jansen, Controlling unstructured
mesh partitions for massively parallel simulations, SIAM Journal of Scientific Computing,
32:3201-3227, 2010

[8] J. Mueller, O. Sahni, X. Li, K.E. Jansen, M.S. Shephard, and C.A. Taylor, Anisotropic
adaptive finite element method for modeling blood flow, Computer Methods in Biomechanics
and Biomedical Engineering, 8(5):295-305, 2005.

[9] O. Sahni, K.E. Jansen, M.S. Shephard, C.A. Taylor, and M.W. Beall, Adaptive boundary
layer meshing for viscous flow simulations, Engineering with Computers, 24(3):267285, 2008.

[10] M.S. Shephard, K.E. Jansen, O. Sahni, and L.A. Diachin, Parallel adaptive simulations on
unstructured meshes, Journal of Physics: Conference Series, 78-012053:012053, 2007.

[11] O. Sahni, J. Mueller, K.E. Jansen, M.S. Shephard, and C.A. Taylor, Efficient anisotropic
adaptive discretization of cardiovascular system, Computer Methods in Applied Mechanics
and Engineering, 195(41-43):56345655, 2006.

[12] O. Sahni, M. Zhou, M.S. Shephard, and K.E. Jansen, Scalable implicit finite element
solver for massively parallel processing with demonstration to 160K cores, Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, 2009,
68:1-68:12.

[13] M. Zhou, O. Sahni, T. Xie, M.S. Shephard and K.E. Jansen, Unstructured mesh partition
improvement for implicit finite element at extreme scale, The Journal of Supercomputing,
1-11, 2012.

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

83

CFDAnisotropic esp ALCF-2 Early Science Program Technical Reports

84

GroundMotion esp ALCF-2 Early Science Program Technical Reports

10 Using Multi-scale Dynamic Rupture Models to Improve
Ground Motion Estimates

PI: Thomas Jordan (University of Southern California)

Project Summary

Researchers will use Southern California Earthquake Center (SCEC) dynamic rupture simulation
software to investigate high-frequency seismic energy generation. The relevant phenomena (fric-
tional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) con-
trolling rupture are strongly interacting and span many orders of magnitude in spatial scale, re-
quiring high-resolution simulations that couple disparate physical processes (e.g., elastodynamics,
thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational
challenge, natural faults are not planar but instead have roughness that can be approximated by
power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to
perform 3-D rupture simulations that couple these processes will provide guidance for construct-
ing appropriate source models for high-frequency ground motion simulations. SCECs CyberShake
system can calculate physics-based (3-D waveform modeling-based) probabilistic seismic hazard
analysis (PSHA) curves for California.

On the next-generation Blue Gene, researchers, will calculate a 1Hz PSHA hazard map for
California using improved rupture models from our multi-scale dynamic rupture simulations. They
will calculate this high-resolution probabilistic seismic hazard map using the technique developed
on the SCEC CyberShake project. This calculation will be done after integration of an improved
pseudo-dynamic rupture generator into CyberShake system and production of a new and improved
UCERF2.0-based Extended Rupture Forecast (ERF). The calculation will provide numerous im-
portant seismic hazard results, including a state-wide extended earthquake rupture forecast with
rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario
events, and more than 5,000 physics-based seismic hazard curves for California.

Report originally released as ANL/ALCF-ESP-13/8

85

Using Multi-scale Dynamic Rupture Models to Improve
Ground Motion Estimates

PI: Thomas Jordan
ESP Postdoc: Geoffrey Ely

Science Overview

This project uses dynamic rupture simulations to investigate high-frequency seismic
energy generation. The relevant phenomena (frictional breakdown, shear heating,
effective normal-stress fluctuations, material damage, etc.) controlling rupture are
strongly interacting and span many orders of magnitude in spatial scale, requiring high-
resolution simulations that couple disparate physical processes (e.g., elastodynamics,
thermal weakening, pore-fluid transport, and heat conduction). Compounding the
computational challenge, we know that natural faults are not planar, but instead
have roughness that can be approximated by power laws potentially leading to large,
multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations
that couple these processes will provide guidance for constructing appropriate source
models for high-frequency ground motion simulations. The improved rupture models
from our multi-scale dynamic rupture simulations will be used to conduct physics-
based (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for
California. These calculation will provide numerous important seismic hazard results,
including a state-wide extended earthquake rupture forecast with rupture variations for
all significant events, a synthetic seismogram catalog for thousands of scenario events
and more than 5000 physics-based seismic hazard curves for California.

Numerical Method

We simulates spontaneous rupture within a 3D isotropic viscoelastic solid. Wave motions
are computed on a logically rectangular hexahedral mesh, using the generalized finite
difference method of support operators. Stiffness and viscous hourglass corrections are
employed to suppress suppress zero-energy grid oscillation modes. The fault surface is
modeled by coupled double nodes, where the strength of the coupling is determined
by a linear slip-weakening friction law. External boundaries may be reflective or
absorbing, where absorbing boundaries are handled using the method of perfectly
matched layers (PML). The hexahedral mesh can accommodate non-planar ruptures
and surface topography. Details are described in Ely et al. (2008, 2009).

GroundMotion esp ALCF-2 Early Science Program Technical Reports

86

Code

The numerical Method is implemented in the Support Operator Rupture Dynamics
code (SORD). SORD is a component of the open-source Computational Seismology
Tools (Coseis) which includes other requirements for performing earthquake simulations
such as mesh generation, velocity model specification, and visualization. The SORD
numerical engine is implemented in Fortran 95, with multi-threaded numerical kernels
using OpenMP, domain decomposition using MPI, and parallel I/O using MPI-IO. SORD
jobs are configured and launched through the Coseis Python Interface.

Porting to Blue Gene

Prior to ALCF Mira, SORD was first ported to ALCF Intrepid. The Fortran numerical
engine required very little modification to run. Substantial effort was required for the
supporting utility codes however. Many of these tools required a custom Python install
with multiple package dependencies running on the compute nodes; a cumbersome and
poorly performing arrangement for Blue Gene. This was improved by reorganized the
codes into a two-step process where initial Python-based data processing is performed
on the login nodes, with any heavy processing performed by compiled codes on the
compute nodes. Additional modifications were needed to the Coseis work-flow tools
to adjust to the ACLF Cobalt scheduling environment. Cobalt is a significant departure
from prior systems used to run Coseis, such as LoadLeveler, PBS, and SGE. Although
the initial porting process required substantial effort, the outcome is highly satisfactory:
cleaner, portable, and better performing code.

Performance Tuning

Tests show very good scalability for the MPI domain decomposition scheme on Blue
Gene/Q (Fig. 1). However, the initial port achieved only four percent of peak FLOPS
performance on Blue Gene/Q. Profiling with Walkup’s HPM library revealed memory
bandwidth bottlenecks cause by multiple stencil kernel operations sweeping through
arrays larger than cache memory. We implemented a cache titling scheme to make better
reuse of arrays in cache. We also added OpenMP multi-threading for the kernels. The
optimizations achieve a 2.5 times per-core speedup. Taken with the increase core count
and bus speed for BG/Q, gives a total of 20 times per-node speedup over the initial
BG/P port. QPX-vectorized versions of the computational kernels have been tested, but
not integrated into the production code yet.

GroundMotion esp ALCF-2 Early Science Program Technical Reports

87

0

4

8

12

16

1 4 16 64 256 1024 4096 16384 65536

Runtime/step (s)

Cores

TACC Ranger (8M elements per core)
ALCF Intrepid (1M elements per core)
ALCF Vesta (1M elements per core)

7TFlops

4TFlops

10TFlops

Figure 1: Weak scaling benchmark for SORD in pure MPI mode (no multi-threading).
ALCF Intrepid (Blue Gene/P) and Vesta (BG/Q) demonstrate near ideal weak scaling,
with BG/Q clock speak increase giving a factor of two speedup relative to BG/P.

GroundMotion esp ALCF-2 Early Science Program Technical Reports

88

	

1	 2	 4	 8	 16	
Ideal	 1.00	 2.00	 4.00	 8.00	 16.00	
Obtained	 1.00	 1.99	 3.96	 7.78	 13.50	

1.00	

2.00	

4.00	

8.00	

16.00	
Sp
ee
du
p	

Threads	 #	

Ideal	

Obtained	

Figure 2: SORD OpenMP strong scaling benchmark for single node Blue Gene/Q.

References

Ely, G. P., S. M. Day, and J.-B. Minster (2008), A support-operator method for visco-
elastic wave modeling in 3D heterogeneous media, Geophys. J. Int., 172(1), 331–344,
doi:10.1111/j.1365-246X.2007.03633.x.

Ely, G. P., S. M. Day, and J.-B. Minster (2009), A support-operator method for
3D rupture dynamics, Geophys. J. Int., 177(3), 1140–1150, doi:10.1111/j.1365-
246X.2009.04117.x.

GroundMotion esp ALCF-2 Early Science Program Technical Reports

89

GroundMotion esp ALCF-2 Early Science Program Technical Reports

90

HSCD esp ALCF-2 Early Science Program Technical Reports

11 High-Speed Combustion and Detonation (HSCD)

PI: Alexei Khokhlov (University of Chicago)

Project Summary

This project will gain insight into the physical mechanisms of the burning and detonation of
hydrogen-oxygen mixtures. It will produce simulations to be used for the design of safe systems
for future use of hydrogen fuel. The goal of the project is to create first-principles, petascale direct
numerical simulation tools for understanding and predicting high-speed combustion and detona-
tion (HSCD) phenomena in reactive gases. Researchers want to use first-principles simulations for
fundamental understanding of the complex multi-scale physics of the transitory regimes of rapid
flame acceleration and deflagration-to-detonation transition (DDT). The next-generation IBM Blue
Gene system will enable them to perform first-principles simulations of DDT in a stoichiometric
2H2 +O2 mixture initially at atmospheric pressure in a 100×2.5×2.5 cm square tube. This is sim-
ilar to a typical setup of the DDT experiments that measure run distances to detonation in reactive
gases. Run distance is a critical parameter used for characterizing sensitivity of a reactive mixture
to DDT, and it is used for assessing detonation hazard and designing severe accident mitigation
strategies. In the experiments, burning is initiated by igniting a laminar flame in a quiescent gas
near the closed end of the tube. As the flame expands, the turbulent boundary layer that forms
near the tube walls increases the burning rate, and the flame accelerates rapidly. Secondary shocks
and pressure waves generated inside the flame brush add to flame acceleration. Eventually this
leads to a localized explosion and the onset of a detonation wave.

Report originally released as ANL/ALCF-ESP-13/9

91

ALCF ESP Technical Report

High Speed Combustion and Detonation (HSCD)

Alexei Khokhlov, University of Chicago

April 2013

HSCD esp ALCF-2 Early Science Program Technical Reports

92

High-level description of science

The goal of the project is to carry out first-principles three-dimensional direct numerical simulations
for understanding and predicting high-speed combustion and deflagration-to-detonation transition
(DDT) in hydrogen-oxygen gaseous mixtures. DDT and the resulting detonation waves in hydro-
gen may have especially catastrophic consequences in a variety of industrial and energy producing
settings, including the production, transportation and use of hydrogen fuel, and safety on nuclear
reactors where hydrogen can be accumulated in cooling pipe systems due to radiolysis of water.
We want to use first-principles simulations for fundamental understanding of the physics of the
strong, non-linear, multi-scale coupling of the constituent combustion processes leading to DDT,
and eventually for predicting the onset of detonation in DDT experiments and engineering devices.

To date, we carried out a series of first-principles reactive compressible Navier-Stokes fluid
dynamic simulations of reflected shock bifurcation in 2H2 + O2 and in CO2 in square tubes and
simulations of weak and strong ignition and detonation behind reflected shocks using 8-species
reaction kinetics network including H, H2, O, O2, OH, H2O, HO2, and H2O2, multi-species
mass diffusion, heat conduction, viscosity, and equation of state relevant to DDT in hydrogen-
oxygen mixtures. The theoretical explanation of weak ignition has been an outstanding problem of
combustion theory for decades. Three-dimensional first-principle simulations of the process have
not been previously performed. They provided new insights into the bifurcation process and the
successful simulation of weak ignition is a major accomplishment of the project. The simulations
reproduced the two main characteristics of weak ignition - a change in the location of auto-igniting
hot spots and the decrease of ignition time compared to one-dimensional predictions. Ignition time
delays obtained in our simulations are consistent with experimental data for 2H2 + O2 in both
strong and weak ignition regimes.

Code description and numerical methods

First-principles high-speed combustion and detonation (HSCD) problems, DDT in particular, are
described by compressible, reactive flow Navier-Stokes (NS) equations of fluid dynamics and must
include treatment of shocks. The HSCD code is a distributed memory parallel adaptive mesh re-
finement (AMR) reactive flow NS code augmented with the equation of state (EOS), microscopic
transport, and chemical kinetics suitable for hydrogen combustion. Euler fluxes are calculated us-
ing a second-order accurate, Godunov-type, conservative scheme with a Riemann solver. Viscous,
mass diffusion, and heat fluxes are calculated using second-order central differencing.

A distinct feature of the code is a dynamic cell-by-cell AMR based on a parallel fully threaded
tree (FTT) structure. In ordinary trees pointers are directed from parents to children. In FTT, the
pointers are inverted and directed from groups of children to parents and parent’s siblings. This
arrangement eliminates expensive tree searches which are notoriously difficult to parallelize and it
allows all operations, including mesh refinement and de-refinement, to be performed in parallel.

Architecturally, the code consists of three separate layers: (1) the FTT library which provides
general services related to all parallel aspects of the code’s execution; (2) the reactive Navier-
Stokes AMR code, ALLA, which rides on top of FTT and is responsible for numerical integration
and AMR; (3) problem-specific algorithms such as material properties routines (equation of state,
kinetics, microscopic transport) and problem initialization routines called from ALLA.

HSCD esp ALCF-2 Early Science Program Technical Reports

93

The FTT library contains a parallel implementation of a multi-level adaptive computational
mesh. To a user, FTT provides a shared view of the mesh with added global services such as I/O,
automatic and on-demand load balance, data synchronization across MPI processors, functions for
mesh refinement, and iterators for global parallel operations of the mesh. A space-filling curve
approach is used in FTT for domain decomposition.

Computations in ALLA are organized as a set of global computational steps, with each step
followed by communication work which synchronizes data across the domain decomposition bound-
aries. Application algorithms are programmed in terms of work-functions which are passed to and
executed by the global parallel iterator. The code is parallelized using a hybrid OpenMP/MPI
strategy. On each MPI rank the iterator parses the mesh and passes small chunks of cells to a
work-function until the entire mesh is processed. The loop over the cells in a chunk is performed
inside the work-functions themselves. These loops are parallelized using OpenMP.

The mesh can be refined around shocks, discontinuities and in regions containing large gradi-
ents of physical variables such as chemical variables, temperature, vorticity, and so on. AMR is
performed every fourth time step after which the cells are rebalanced across the processors using a
heuristic to estimate the amount of work required by the cells and to maintain data locality.

The FTT library automatically synchronizes the data in ghost cells after global operations.
ALLA algorithms may use cells located at different levels of refinement, and may carry interpola-
tions of physical variables and mesh refinement error indicators between the levels. If parent cells
and their children are located on different MPI ranks, the interpolations would require frequent
synchronization of ghost cells, and thus additional frequent communication between the MPI ranks.
To minimize the amount of communication, the load-balancing heuristic guarantees that after load
balancing, children and their parents between the minimum and maximum levels of refinement will
be located on the same MPI ranks.

Size/scale of problem possible before Mira, and actually run on Mira

Using an INCITE allocation on BG/P, we were able to simulate and reproduce a process of weak
ignition behind a reflected shock in 2H2 −O2 in a 5× 5 cm cross-section and 1.6 meter long pipe -
something that has not been possible in the past. This work advances us a step closer towards our
ultimate goal of understanding and first-principles prediction of DDT. DDT simulations with the
same physics in a 5× 5× 160 cm tube geometry are being carried out using the current, third-year
INCITE allocation and the ESP resources on a new Mira BG/Q supercomputer.

HSCD code has been successfully run on up to 131K cores of BG/P in the OpenMP/MPI
mode. Production runs on Intrepid were using up to 64K cores in OpenMP/MPI mode and current
production run job sizes on Mira are using 16 racks (1/3 of the full machine).

Modifications in preparation for Mira

The code uses now MPI, OpenMP, VisIt and Silo libraries. In 2012, ALCF staff rewrote the
rebalance algorithm to reduce inefficiencies that appear at large scale. The staff also helped port
and tune the code on Blue Gene/Q improving the OpenMP implementation and optimized library

HSCD esp ALCF-2 Early Science Program Technical Reports

94

use. Algorithmic improvements during the period of the INCITE project running contemporarily
to the ESP project include: speedup of the I/O by a factor more than 100 (from costing 100
computational steps to less than one time step), optimization and speedup of the FTT AMR
library, and implementation of Silo output for VisIt which solved problems with surface rendering
in 3D.

Performance on Mira

There is no thoughtful performance analysis on Mira hitherto other than the comparison of results
from time counters and other variables available directly from the code output. However, from these
preliminary performance results on the BG/Q Vesta system we know that calculations on BG/Q
are ' 2.5 times faster per core and ' 9 times faster per node than on BG/P. Figure 1 summarizes
strong scaling of the code. The left panel compares code performance on BG/P Intrepid and BG/Q
Vesta using a reflected shock tube problem. On both machines, the calculations are dominated by
hydrodynamics (including Euler, Navier-Stokes, and chemical reaction terms).

Figure 1: Strong scalability of HSCD code on BG/P Intrepid in MPI/OpenMP mode with 4 threads per
rank (black symbols) and on BG/Q Vesta in MPI/OpenMP mode with 16 threads per rank and 4 ranks
per node (open symbols). Squares - physics, triangles - AMR and load balance, circles - total. Time ts is a
wall-clock time of one time step. Nrank - number of MPI ranks. Left BG/P - BG/Q comparison. Data was
averaged over 20 steps when the mesh reached ' 6× 108 computational cells in size. Right - data for a weak
ignition case for the last hundred time steps of the simulation. Dashed line indicates ideal scaling.

Measurement and performance evaluation

Darshan was used in previous years to acquire data about I/O performance, however, tools like
Tuning and Analysis Utilities (TAU), Rice HPCToolkit, IBM HPCT library or even gprof or mpiP

HSCD esp ALCF-2 Early Science Program Technical Reports

95

have not been used, at least, in recent versions of the code and on the BG/Q Mira system. Nev-
ertheless, last comparisons of the cost of I/O on Mira at production run sizes (e.g. 16 racks on
Mira) show an increase from 1% to 20% of the computational cost of I/O and a set of actions are
in progress to get more performance data of the HSCD code. Some of these initiatives are:

• I/O initiative: optimize I/O using BG/Q personality and pSet info in order to take advan-
tage of the compute to I/O node ratio (128:1 on Mira/Cetus). Work done in collaboration
with Venkatram Vishwanath (MCS/ALCF staff, Performance Team).

• MPI vs PAMI of one-sided communication section: the use of PAMI calls instead of
MPI for the section of the code that uses one-sided communications is under review. Work
done in collaboration with Jeff Hammond (ALCF staff, Performance Team).

• Visualization improvement: the visualization subroutines and process will be reviewed
by one member of the Visualization Team to tune them. The installation on Tukey of the
software needed to visualize HSCD data (VisIt and Silo) have been requested. At the time
of this report, we are aware of Silo installation on Tukey and VisIt should be available when
Mira goes into production (on April 9th, 2013). Work done in collaboration with Joseph
Insley (ALCF staff, Visualization Team).

• Memory data: add information about memory consumption on the code output. For
commodity systems: mallinfo (C function); for BG/Q: usage of Kernel GetMemory Size.
Work done in collaboration with Marta Garćıa (ALCF staff, Catalyst Team).

Earliest Technical Stories

This ESP project was selected as one of the public relations (PR) stories to go out in ALCF website
(and ALCF Newsbytes — March 2013) about what goes on at ALCF. The full article ’High-Speed
Combustion and Detonation Project Scaling Up for Mira’ can be found at:

http://www.alcf.anl.gov/articles/high-speed-combustion-and-detonation-project-scaling-mira

HSCD esp ALCF-2 Early Science Program Technical Reports

96

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

12 Petascale Simulations of Turbulent Nuclear Combustion

PI: Donald Lamb (University of Chicago)

Project Summary

Type Ia (thermonuclear-powered) supernovae are important in understanding the origin of the
elements and are a critical tool in cosmology. These explosions produce a significant fraction of
the heavy elements in the universe, and are therefore important in understanding the origin of the
elements of which planets and life on Earth are made. Observations using Type Ia supernovae
as standard candles revealed that the expansion of the universe is accelerating, which led to the
discovery of dark energy. Understanding dark energy ranks among the most compelling problems
in all of physical science. Type Ia supernovae are one of the most promising tools for determining
the properties of dark energy. This is the purpose of the simulations that the Flash Center will do
as an early science user on the next-generation Blue Gene system. To be specific, the Center will
use the FLASH code to carry out large-scale, 3-D simulations of two key physical processes in Type
Ia supernovae that are not fully understood: (1) buoyancy-driven turbulent nuclear combustion,
and (2) the transition from nuclear burning in the flamelet regime to distributed nuclear burning.
The simulations will be the largest ever done. The number of grid points in them will exceed by
a factor > 20 those in the simulations the Center has done to date on the ALCFs Blue Gene/P
computer, Intrepid.

Report originally released as ANL/ALCF-ESP-13/10

97

Petascale Simulations of Turbulent Nuclear Combustion

Christopher Daley

April 10, 2013

Contents

1 Science objectives 2

2 The FLASH code 2

3 Code changes 3

3.1 Architectural . 3

3.2 Working around broken OpenMP features . 4

3.3 Creating a custom build for correctness . 4

3.4 Monitoring memory usage . 5

3.5 Working around a memory leak . 5

3.6 Adding selective profiling to FLASH evolution . 10

4 Optimizations 10

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

98

4.1 RTFlame . 11

4.2 DDT . 13

5 Performance 15

1 Science objectives

Type Ia (thermonuclear-powered) supernovae are important in understanding the origin of elements and are
a critical tool in cosmology. The Flash Center is carrying out large-scale, 3D simulations of two key physical
processes in Type Ia supernovae, leading to a better understanding of these explosions.

The two key physical situations for which we are carrying out large-scale 3D simulations are: (1) an
initially planar flame in a rectilinear domain with constant gravity and nearly constant density in which
turbulence due to the buoyancy of the hot ash drives the burning (which we refer to as RTFlame simula-
tions); and (2) an initially spherical or perturbed spherical flame “bubble” inside of a star in which decaying
homogeneous isotropic turbulence drives the burning (which we refer to as DDT simulations). Comparison
of the results for these two different physical situations will elucidate the ways in which buoyancy-driven tur-
bulent nuclear combustion differs from turbulent nuclear combustion in a homogeneous, isotropic turbulent
background and within a stellar environment.

Application of these results will help improve cosmological distances measured using type Ia supernovae
which will ultimately shed light on the nature of Dark Energy. Understanding dark energy ranks among the
most compelling problems in all of physical science.

2 The FLASH code

FLASH is a multiphysics, finite-volume Eulerian code containing capabilities suitable for problems in as-
trophysics, cosmology, high energy density physics and incompressible fluid dynamics. Key capabilities in
the early science simulations are Adaptive Mesh Refinement (AMR) which increases resolution in physically
important regions of the computational domain, high-order compressible hydrodynamic solvers in direction-
ally split and unsplit formulations which are able to treat non-ideal equations of state (EOS), a multipole
self-gravity solver, a flame model and a nuclear energy release model. The code is written in Fortran 90
and C and is parallelized with MPI and more recently OpenMP. It makes use of parallel I/O capabilities
provided by either HDF5 or Parallel-netcdf libraries.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

99

The AMR capability is an important feature which can improve time to solution by orders of magnitude
compared to a fixed resolution uniform grid and also allows larger problems to be tackled which would not
otherwise fit in memory. At the current time, production FLASH simulations use the Paramesh package [1] to
provide a block-structured, oct-tree adaptive grid. All blocks/patches in Paramesh contain the same number
of cells consisting of internal cells and additional guard cells which store the solution from neighboring blocks.
The explicit solvers in FLASH update the solution in the internal cells of “leaf” blocks and then pass control
to Paramesh to exchange guard cells and correct fluxes. A leaf block is a block at the finest resolution in each
region of the computational domain. Massive parallelism is possible because different blocks are assigned to
different MPI tasks.

3 Code changes

We made various code changes so that FLASH early science applications would work well on Mira, the
BG/Q platform at the Argonne Leadership Computing Facility (ALCF). The major change of adding hybrid
MPI/OpenMP parallelism was part of a longer-term plan and preparation began well in advance of being
given access to a BG/Q platform (Section 3.1). Other changes were unplanned and happened after we
were given access to BG/Q, but are equally important and necessary to ensure a successful early science
program. These include changes for correctness such as altering the source code to avoid issues with the
threadprivate OpenMP directive on BG/Q (Section 3.2) and creating an unusual FLASH Makefile to
obtain expected results (Section 3.3). It also includes changes to improve resource usage such as adding
wrapper functions to monitor memory usage (Section 3.4), reducing the amount of communication in a
Paramesh initialization subroutine to minimize memory leaks happening in the messaging layer on Mira
(Section 3.5) and adding wrapper functions to selectively profile the important parts of FLASH (Section
3.6). The unplanned changes were only possible because of the long early-access period granted by the Early
Science Program (ESP).

3.1 Architectural

The FLASH computer code has until recently been a MPI-only code. The MPI-only approach works well on
BG/P, where we can run efficiently with 1 MPI rank per core (Virtual Node mode) after making a dedicated
effort to reduce the memory footprint of FLASH simulations below 512 MB per MPI rank. In contrast, the
approach of 1 MPI rank per core is generally a poor choice on BG/Q which has 4 hardware threads per core.
On BG/Q it is highly desirable to place multiple MPI ranks or software threads per core to hide memory
latency and pipeline stalls. We chose to multithread the FLASH ESP applications. This is a sensible choice
because the new capabilities in the FLASH ESP simulations add to the memory footprint, making it even
more challenging to fit in 512 MB per MPI rank and so effectively ruling out even 2 MPI ranks per core on
BG/Q.

We have added OpenMP directives to code modules in the FLASH ESP applications including the

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

100

hydrodynamics solver, turbulence model, flame model, EOS, and multipole solver. The directives exist at
both a coarse-grained and fine-grained granularity in the source code. In the coarse-grained case OpenMP
threads update the solution in different Paramesh blocks and in the fine-grained case OpenMP threads
update the solution in different cells from the same Paramesh block. The coarse-grained approach is hereafter
referred to as thread block list and the fine-grained approach is hereafter referred to as thread within block.
In general it is simple to assign independent work to the different threads because of stencil-based or point-
wise kernels in the code modules. The one exception is the multipole solver where we needed to create a
new moment array for each thread to avoid conflicts during frequent multipole moment updates.

3.2 Working around broken OpenMP features

We encountered problems with the threadprivate OpenMP directive on BG/Q which did not occur on
BG/P or x86 architectures with various Fortran compilers. We found that our applications would segfault
after accessing threadprivate data, but we could never reproduce the issue in a small standalone test
problem to submit a simple bug report. Our solution was to remove threadprivate directives from FLASH
by either rewriting code or removing redundant multithreading. The code that required slight rewrites were
the Helmholtz EOS and the Multipole solver. In both cases the code frequently read/wrote threadprivate

module data in the style of old Fortran codes using common block data. The rewrite involved moving this
module data to the stack or heap and, where necessary, passing this data through subroutine argument lists.
Although it took a little bit of time, these code changes benefit FLASH because it is now possible to use
nested OpenMP parallel regions for the first time, e.g. simultaneous use of thread block list and thread
within block FLASH multithreaded strategies. Nested parallelism wouldn’t have worked in the older version
of FLASH because of the rules regarding the persistence of threadprivate data [2].

3.3 Creating a custom build for correctness

The biggest issue we had is that we did not get correct FLASH solutions with driver versions before V1R1M2
on Vesta, the test and development BG/Q at ALCF. We found unphysical features in the time history of
mass, y-momentum and z-momentum integral quantities. Integral quantities represent the overall state of
the simulation and are calculated once per time step by summing over all cells in the computational domain.
We found the issues only happened when compiling all FLASH source files with either the OpenMP compiler
option or aggressive compiler optimization. The following figures show mass and directional momentum as
a function of time in 3 RTFlame test cases run on Vesta BG/Q and Intrepid BG/P. The applications are
setup with either the split or unsplit hydrodynamics solver and the parameters which are varied are the
flame speed and effective resolution.

Figure 1 shows results from an RTFlame test problem setup with the split hydrodynamics solver and run
with a flame speed of 12km/s and an effective resolution of 5123. The figure includes results from 3 different
FLASH builds on Vesta: an MPI-only build, a regular multithreaded build and a selective multithreaded
build in which only the files containing OpenMP directives are compiled with the OpenMP compilation flag.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

101

It is clear that there are numerical issues when using a regular multithreaded build of FLASH with either 1
OpenMP thread or 4 OpenMP threads. It is especially concerning that the numerical issues are different in
the 1 OpenMP thread and 4 OpenMP threads case because the threads update the solution in independent
cells. Figure 2 shows results from an unsplit hydrodynamics build of FLASH but the same test problem.
Once again results are bad for a standard multithreaded build of FLASH, but they are also bad for a selective
multithreaded build of FLASH with the -qhot compilation option. Finally, Figure 3 shows the same issues
from a different RTFlame test with flame speed 9km/s and effective resolution 2563 run to a much later
time.

In Figure 1 the standard multithreaded experiments are compiled with -qsmp=omp:noauto -g -O3

-qnohot -qrealsize=8 -qnosave -c -qthreaded in this order. We specify the -qsmp option first be-
cause -qsmp (without the noopt sub-option) instructs the compiler to optimize as well as parallelize, where,
the default optimization is equivalent to -O2 -qhot in the absence of other optimization options [3]. In our
case the explicit -O3 -qnohot at the end of the compilation line should override the implicit optimizations
and make the standard multithreaded FLASH build equivalent to the selective multithreaded build. It is
therefore puzzling that results depend on the choice of multithreaded FLASH build.

The Vesta results are in good agreement with the Intrepid results when using the selective multithreaded
build with -qnohot optimization and so we build FLASH in this way for the production early science runs.
Recent testing has shown that these issues no longer exist, meaning it is now safe to use -qsmp=omp:noauto

and -qhot on all source files. Note that the original issues cannot be reproduced when using the newer
V1R1M2 driver but the same May 2012 compiler version.

3.4 Monitoring memory usage

We added wrapper functions around mallinfo [4] and Kernel GetMemorySize [5] to monitor FLASH mem-
ory usage. This was necessary because the original memory monitoring code in FLASH did not work on
BG/Q because of issues with rusage [6] on BG/Q. The new memory monitoring code has already allowed
us to drill down to a small portion of code in Paramesh which causes a memory leak to happen somewhere
in the messaging layer on BG/Q only, see Section 3.5.

3.5 Working around a memory leak

Early runs on Mira revealed an unexpected memory growth during FLASH initialization. We found similar
heap memory growth in measurements from both mallinfo and Kernel GetMemorySize on Mira BG/Q, but
surprisingly no significant memory growth on Intrepid BG/P. The memory growth happens after running a
Paramesh subroutine named find surrblks which finds the surrounding block neighbors of every Paramesh
block in the domain. It works by passing block metadata around a ring of all MPI ranks in MPI Comm world

using MPI Sendrecv replace so that each MPI rank can construct a local view of its nearest neighbors in

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

102

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 0 0.0001 0.0002 0.0003 0.0004 0.0005

m
as

s

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(a) mass

-1.6e+29

-1.4e+29

-1.2e+29

-1e+29

-8e+28

-6e+28

-4e+28

-2e+28

 0

 0 0.0001 0.0002 0.0003 0.0004 0.0005

x-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(b) x-momentum

-2e+22

-1.5e+22

-1e+22

-5e+21

 0

 5e+21

 1e+22

 0 0.0001 0.0002 0.0003 0.0004 0.0005

y-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(c) y-momentum

-1e+22

-8e+21

-6e+21

-4e+21

-2e+21

 0

 2e+21

 4e+21

 6e+21

 0 0.0001 0.0002 0.0003 0.0004 0.0005

z-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(d) z-momentum

Figure 1: Integrated quantities from a split hydrodynamics RTFlame test problem with flame speed 12km/s
and effective resolution 5123.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

103

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 0 5e-05 0.0001 0.00015 0.0002 0.00025

m
as

s

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(a) mass

-8e+28

-7e+28

-6e+28

-5e+28

-4e+28

-3e+28

-2e+28

-1e+28

 0

 0 5e-05 0.0001 0.00015 0.0002 0.00025

x-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(b) x-momentum

-1.2e+21

-1e+21

-8e+20

-6e+20

-4e+20

-2e+20

 0

 2e+20

 4e+20

 0 5e-05 0.0001 0.00015 0.0002 0.00025

y-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(c) y-momentum

-5e+20

 0

 5e+20

 1e+21

 1.5e+21

 2e+21

 2.5e+21

 3e+21

 0 5e-05 0.0001 0.00015 0.0002 0.00025

z-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(d) z-momentum

Figure 2: Integrated quantities from an unsplit hydrodynamics RTFlame test problem with flame speed
12km/s and effective resolution 5123. All Vesta experiments in this figure are run with 4 OpenMP threads.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

104

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 0 0.002 0.004 0.006 0.008 0.01 0.012

m
as

s

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(a) mass

-2e+32

 0

 2e+32

 4e+32

 6e+32

 8e+32

 1e+33

 1.2e+33

 1.4e+33

 1.6e+33

 0 0.002 0.004 0.006 0.008 0.01 0.012

x-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(b) x-momentum

-1e+22

 0

 1e+22

 2e+22

 3e+22

 4e+22

 5e+22

 6e+22

 7e+22

 8e+22

 0 0.002 0.004 0.006 0.008 0.01 0.012

y-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(c) y-momentum

-4e+23

-3.5e+23

-3e+23

-2.5e+23

-2e+23

-1.5e+23

-1e+23

-5e+22

 0

 5e+22

 0 0.002 0.004 0.006 0.008 0.01 0.012

z-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(d) z-momentum

Figure 3: Integrated quantities from an unsplit hydrodynamics RTFlame test problem with flame speed
9km/s and effective resolution 2563. All Vesta experiments in this figure are run with 4 OpenMP threads.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

105

the global tree. In the past we used this subroutine during initialization and whenever the grid changed
during evolution. It is obviously non-scalable. We implemented a scalable method of updating the local
view which enabled larger simulations on Intrepid BG/P [7], but the method only works during evolution
because it depends on the initial surrounding block neighbors of the top-level blocks. This means there is
still a one-time cost at initialization.

We decided to test an optimized version of this subroutine in which the block metadata is circulated in a
reduced MPI communicator consisting of only those MPI ranks that own Paramesh blocks. This idea is only
applicable at initialization since it depends on there being many more MPI ranks than Paramesh blocks.
Figure 4a shows heap memory growth for the MPI rank with the maximum memory usage after executing
the find surrblks subroutine, where, heap memory is obtained from mallinfo (m.hblkhd + m.uordblks)

[8]. We run the FLASH applications in MPI-only mode with 4 MPI ranks per node on BG/P and 16 MPI
ranks per node on BG/Q for both the original and optimized version of the code. It is clear that significant
memory growth only happens for the original version of the code on BG/Q. Unfortunately, measurements on
Mira in February 2013 show that optimized version of the code memory is now also affected by the memory
growth issue, although the optimized version does leak approximately 70 MB less than the original version.
Figure 4b compares measurements taken in September 2012 with those in February 2013.

(a) (b)

Figure 4: The increase in memory usage after running the original and optimized find surrblks subroutine.
(a) shows results from Intrepid BG/P and Mira BG/Q in September 2012, and (b) shows results from Mira
BG/Q in September 2012 and February 2013.

We ran a 4096 node FLASH experiment with the mtrace memory debugger [9] monitoring all memory
allocations that happen during the find surrblks subroutine on MPI rank 64958. This MPI rank is chosen
because it had the maximum memory usage after executing the find surrblks subroutine. The memory
leaks detected by mtrace are shown in Figure 5. These leaks are not in FLASH.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

106

Memory not freed:

Address Size Caller

0x0000001f80acc020 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f80ada840 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f80ae9060 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f83a2c740 0x30 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f83a2c780 0xc8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f83a2c860 0xc8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f83a2ccc0 0x30 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab21e80 0xd00 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab25d40 0x28 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab29c20 0x28 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2d380 0xc0 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2d9e0 0x8 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2da00 0x20 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2da40 0x8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2da60 0x8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2da80 0x1374 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2ee00 0x798 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2f640 0x180 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab37780 0x2000 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:188

0x0000001f8ab397a0 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f8ab4a3e0 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

..................

253 more leaks of 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

Figure 5: Memory leaks detected by mtrace after running the find surrblks subroutine on 4096 nodes of
Mira BG/Q in September 2012.

3.6 Adding selective profiling to FLASH evolution

The performance of FLASH on BG/Q is studied using IBM’s High Performance Computing Toolkit (HPCT)
which provides statement level profiling through vprof, hardware counter summary information and MPI
performance data. We use the HPCT API to selectively profile FLASH evolution only, i.e. we exclude
initialization, which is important for short performance studies. The initialization is always going to be
slightly expensive because the initial adaptive mesh needs to be generated from a small number of root
blocks which exist on a subset of MPI ranks. We optimized the most expensive part of initialization, see
Section 3.5, however, for short performance studies consisting of a small number of time steps the impact
of initialization can skew results. Profilers like vprof do not provide call-path profiling and so certain
subroutines in the call stack of FLASH initialization appear to be more expensive than they actually are.
The selective profiling feature allows us to run shorter performance studies and identify expensive parts of
FLASH evolution.

4 Optimizations

The early science preparation time has allowed us to increase the level of OpenMP coverage in FLASH and
make the multithreading in FLASH truly production ready. In addition to the multithreading we have found
opportunities to improve the serial, MPI and parallel I/O performance in FLASH. These improvements were
made incrementally during the early science preparation period for both RTFlame and DDT applications.
The optimizations for the RTFlame application, which are also usable by the DDT application, are discussed
in Section 4.1 and the DDT application specific optimizations are discussed in Section 4.2.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

107

4.1 RTFlame

Since it is interesting to see the performance impact of each incremental change, we take the current mul-
tithreaded FLASH code and revert all serial and MPI optimizations. We successively apply the ESP opti-
mizations and then profile each transient version of the code. The baseline measurement is obtained from
a FLASH binary compiled with -O3 -qnohot. These non-aggressive compilation flags were used by Vitali
Morozov when he successfully ported FLASH to an early access BG/Q machine. The effect that each opti-
mization has on time to solution is shown in Figure 6 and the description of the optimizations follow. In the
figure blue bars indicate optimizations which are currently being used in the early science production runs
and red bars indicate optimizations which are not being used. The optimizations that are in-use reduce time
to solution by 32.6% in this test problem which is approximately a 1.5x performance improvement.

Figure 6: Time to complete 50 steps of an RTFlame test problem on Vesta BG/Q after applying each new
optimization. The simulations were run with 16 MPI ranks per node, 4 threads per MPI rank and used the
thread within block multithreading strategy.

Linking against the MASS library - libmass (1)
The baseline vprof profile shows a large number of counts in symbols log and ieee754 log which are
glibc log functions. An extremely simple optimization is to use the accelerated log functions in the IBM
Mathematical Acceleration Subsystem (MASS) library instead of those in glibc. The calls are inserted auto-
matically when compiling with aggressive optimization [3], however, aggressive flags, such as -qhot, originally
led to incorrect FLASH answers as described in Section 3.3. Linking against libmass.a explicitly allows us
to use the accelerated math functions without needing to compile FLASH with aggressive optimization.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

108

Modifying the Math expressions in EOS - eosmath (2)
The next change is a contribution from Vitali Morozov which consists of faster math computations in
the Helmholtz EOS. He replaced the expression x4=plasg**(0.25e0) with x4=sqrt(sqrt(plasg)) and
inv lami=s1**(1.0e0/3.0e0) with inv lami=sqrt3(s1), where sqrt3 is a fast cube root function which
implements Halley’s method [10].

Changing the array layout in the unsplit hydrodynamics solver - UHD arrays (3)
The earlier vprof profiles show that a large amount of time is spent calling subroutines in the FLASH
subroutine hy uhd getRiemannState. This is understood and happens because the compiler must add code
to copy non-contiguous array slices into temporary contiguous arrays for the purpose of the subroutine
call. The optimization involves reordering several arrays so that the i, j, k indices are the slowest varying
dimensions. A snapshot of the vprof profiles for the original and optimized code is shown in Figure 7. On
the far left of the figure is the source line number, next to that is the number of clock ticks, where each tick
corresponds to 0.01 seconds of CPU time, and on the right is the actual source.

Improving the table lookup locality in EOS - EOS lookup (4)
The vprof profiles indicate that interpolation of table lookup data in Helmholtz EOS is expensive. This
is partly because the lookup quantities exist in separate arrays which hurts the locality. We show just the
bicubic hermite polynomial function for electron positron number densities in the before and after vprof

fragments in Figure 8. In the original code, eos xf is the electron positron number density and eos xfd,
eos xft, eos xfdt are various derivatives of this number density. Performance improvement is possible
by placing all electron positron number density quantities next to each other in a derived datatype named
eos tbl which has fields xf, xft, xfd and xfdt. Note that there are many more fields in this derived
datatype which are there to improve the access locality in other Helmholtz EOS functions.

Reducing the number of guard cell fills - Gcell fill (5)
The next optimization involves reducing the number of MPI synchronization points needed to keep guard
cells (ghost cells) updated. Frequent guard cell exchanges happen because FLASH applications consist of
multiple physics units called in sequence which update solution data according Strang operator splitting [11].
It is essential that the different physics units access current guard cell data to correctly update the solution
data and so the safe convention adopted in FLASH is that any unit which accesses guard cells is responsible
for making a call to the mesh package to update guard cells. This approach works well and avoids many bugs,
but has the side-effect that guard cells can be exchanged too often. In the case of the RTFlame application
there are guard cell exchanges in Hydrodynamics, Flame and Lagrangian Tracer Particles units as well as
a simulation specific analysis routine. This results in too many guard cell exchanges because there are no
writes to mesh data when updating Lagrangian tracer particles or performing simulation specific analysis.
Since the guard cells are still valid we can safely remove two guard cell exchange synchronization points.

Compiling with aggressive optimization - qhot (6)
The performance can be improved by using more aggressive compiler optimization, however, this originally
resulted in incorrect FLASH answers as discussed in Section 3.3.

Reordering the Paramesh data arrays - reorder (7)
The core grid data structure in Paramesh can be reordered so that the fastest varying dimension is no longer

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

109

688 ! ! Le f t and r i g h t Riemann s t a t e recons truc t ions
689 1003 ca l l hy uhd dataReconstOnestep&
690 (blockID , blkLimitsGC , i , j , k , dt , del ,&
.
709 s i g (1 :NDIM, 1 :HYVARINUMMAX, i , j , k) , &
710 lambda (1 :NDIM, i , j , k , 1 :HYWAVENUM) , &
711 l e i g (1 :NDIM, i , j , k , 1 :HYWAVENUM, 1 :HY VARINUM) ,&
712 r e i g (1 :NDIM, i , j , k , 1 :HY VARINUM, 1 :HYWAVENUM))
. . .

1039 ! ! ============ x−d i rec t i on ===
1040 ! YZ cross d e r i v a t i v e s for X s t a t e s
1041 838 ca l l upwindTransverseFlux&
1042 (hy transOrder , s i g (DIR Z , : , i , j −2: j +2,k) , lambda (DIR Y , i , j , k , :) , l e i g (DIR Y , i , j , k , : , :) ,&
1043 r e i g (DIR Y , i , j , k , : , :) , TransFluxYZ (:))
1044
1045 ! ZY cross d e r i v a t i v e s for X s t a t e s
1046 728 ca l l upwindTransverseFlux&
1047 (hy transOrder , s i g (DIR Y , : , i , j , k−2:k+2) , lambda (DIR Z , i , j , k , :) , l e i g (DIR Z , i , j , k , : , :) ,&
1048 r e i g (DIR Z , i , j , k , : , :) , TransFluxZY (:))

(a) Original code

688 ! ! Le f t and r i g h t Riemann s t a t e recons truc t ions
689 72 ca l l hy uhd dataReconstOnestep&
690 (blockID , blkLimitsGC , i , j , k , dt , del ,&
.
709 s i g (1 , 1 , i , j , k) , &
710 lambda (1 ,1 , i , j , k) , &
711 l e i g (1 , 1 , 1 , i , j , k) ,&
712 r e i g (1 , 1 , 1 , i , j , k))
. . .

1039 ! ! ============ x−d i rec t i on ===
1040 ! YZ cross d e r i v a t i v e s for X s t a t e s
1041 157 ca l l upwindTransverseFlux&
1042 (hy transOrder , s i g (: , DIR Z , i , j −2: j +2,k) , lambda (1 ,DIR Y , i , j , k) , l e i g (1 ,1 ,DIR Y , i , j , k) ,&
1043 r e i g (1 ,1 ,DIR Y , i , j , k) , TransFluxYZ (:))
1044
1045 ! ZY cross d e r i v a t i v e s for X s t a t e s
1046 174 ca l l upwindTransverseFlux&
1047 (hy transOrder , s i g (: , DIR Y , i , j , k−2:k+2) , lambda (1 ,DIR Z , i , j , k) , l e i g (1 ,1 ,DIR Z , i , j , k) ,&
1048 r e i g (1 ,1 ,DIR Z , i , j , k) , TransFluxZY (:))

(b) Optimized code

Figure 7: vprof profiles showing the impact of changing the array layout in the unsplit hydrodynamics
solver.

the mesh variable. This change is too experimental to be used in the FLASH early science campaign.

4.2 DDT

The test DDT simulation originally took over 2 hours to initialize on 8192 MPI ranks on Mira BG/Q.
We found that a significant amount of this time was spent reading turbulence field data from a small
HDF5 file. This is extremely puzzling because the application code made use of HDF5 parallel I/O and
requested collective I/O data transfers. We analyzed core files from a run that exceeded available wall-

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

110

360 h3x (i , j , w0t , w1t ,w0mt ,w1mt ,w0d ,w1d ,w0md,w1md) = &
361 (e o s x f (i , j) ∗w0d + eo s x f (i +1, j) ∗w0md &
362 + eos x fd (i , j) ∗w1d + eos x fd (i +1, j) ∗w1md) ∗w0t &
363 + (e o s x f (i , j +1) ∗w0d + eo s x f (i +1, j +1) ∗w0md &
364 + eos x fd (i , j +1) ∗w1d + eos x fd (i +1, j +1) ∗w1md) ∗w0mt &
365 + (e o s x f t (i , j) ∗w0d + eo s x f t (i +1, j) ∗w0md &
366 + eo s x f d t (i , j) ∗w1d + eo s x f d t (i +1, j) ∗w1md) ∗w1t &
367 + (e o s x f t (i , j +1) ∗w0d + eo s x f t (i +1, j +1) ∗w0md &
368 + eo s x f d t (i , j +1)∗w1d + eo s x f d t (i +1, j +1) ∗w1md) ∗w1mt

630 ! ! e l ec t ron + posi tron number d en s i t i e s
631 290 xne f e r = h3x (ia t , jat , &
632 s i 0 t , s i 1 t , si0mt , si1mt , &
633 si0d , s i1d , si0md , si1md)

(a) Original code

356 h3x (i , j , w0t , w1t ,w0mt ,w1mt ,w0d ,w1d ,w0md,w1md) = &
357 (e o s t b l (i , j) % xf ∗w0d + eo s t b l (i +1, j) % xf ∗w0md &
358 + e o s t b l (i , j) % xfd ∗w1d + eo s t b l (i +1, j) % xfd ∗w1md) ∗w0t &
359 + (e o s t b l (i , j +1) % xf ∗w0d + eo s t b l (i +1, j +1) % xf ∗w0md &
360 + e o s t b l (i , j +1) % xfd ∗w1d + eo s t b l (i +1, j +1) % xfd ∗w1md) ∗w0mt &
361 + (e o s t b l (i , j) % x f t ∗w0d + eo s t b l (i +1, j) % x f t ∗w0md &
362 + e o s t b l (i , j) % xfdt ∗w1d + eo s t b l (i +1, j) % xfdt ∗w1md) ∗w1t &
363 + (e o s t b l (i , j +1) % x f t ∗w0d + eo s t b l (i +1, j +1) % x f t ∗w0md &
364 + e o s t b l (i , j +1) % xfdt ∗w1d + eo s t b l (i +1, j +1) % xfdt ∗w1md) ∗w1mt

588 ! ! e l ec t ron + posi tron number d en s i t i e s
589 82 xne f e r = h3x (ia t , jat , &
590 s i 0 t , s i 1 t , si0mt , si1mt , &
591 si0d , s i1d , si0md , si1md)

(b) Optimized code

Figure 8: vprof profiles showing the impact of storing EOS lookup data in a derived datatype.

time and found that some MPI ranks were in the call-stack of the function MPI File read at at job end-
time. This is an independent MPI-IO function! We created wrapper functions around the HDF5 API
functions H5Pget mpio actual io mode (HDF5 >= 1.8.8) and H5Pget mpio no collective cause (HDF5
>= 1.8.10) to help understand the I/O data transfer. The functions returned H5D MPIO NO COLLECTIVE and
H5D MPIO DATATYPE CONVERSION indicating that a datatype conversion prevented a collective data transfer.
This conversion happens because the HDF5 dataset contained little-endian data (H5T IEEE F64LE) but Blue
Genes are big-endian machines. Converting the HDF5 dataset in the file to big-endian (H5T IEEE F64BE)
fixed the performance issue. Figure 9 shows how the read time is affected by the endianness of the HDF5
data and the requested data transfer mode. The results clearly show that a collective I/O transfer with
big-endian data is approximately 2 orders of magnitude faster than an independent I/O transfer. It is also
clear that the failed collective I/O transfer with little-endian data gives nearly identical performance to an
independent I/O transfer. For reference, a similar issue happens when converting from single-precision in
memory to double-precision in file [12].

A large portion of time was also spent generating the initial positions for the Lagrangian tracer particles.
We traced the slow-down to frequent calls to the random number Fortran function, where we found many
initial calls followed by a number of additional calls proportional to the MPI rank in order to give different
random numbers on each MPI rank. We fixed the performance issue by removing all the unnecessary initial
random number calls which is valid because the only requirement in this application is that the initial density

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

111

Figure 9: Time to read the turbulence field file on 64, 128, 256 and 512 nodes of Vesta BG/Q. The simulations
are run with 16 MPI ranks per node in MPI-only configuration.

of particles is proportional to the gas density. We did not encounter the performance issue on other platforms
because those runs used fewer MPI ranks and presumably the random number function was faster. In a brief
test we found a single call to random number takes approximately 30ns on a x86 64 platform with gcc-4.4.4

and approximately 4µs on both BG/P with xlf-11.1 and BG/Q with xlf-14.1. The 2 orders of magnitude
performance difference and greater number of MPI ranks explains why this workload was much slower on
Blue Gene platforms. Note that this issue was never seen in RTFlame simulations because, here, particles
are distributed regularly throughout the computational domain.

5 Performance

A crucial first step is to determine the most efficient way to run our applications of interest on the BG/Q
architecture. This is quite a large search space because there are many variables such as the number of MPI
ranks and OpenMP threads per node and the chosen FLASH multithreaded strategy. Figure 10 shows how
the number of MPI ranks per node and OpenMP threads per MPI rank affect the time to solution in a fixed
RTFlame problem on 128 nodes of Vesta BG/Q. The chosen RTFlame test problem makes use of AMR and
provides an effective resolution of 2563 grid points. All data points are from runs using the thread within
block multithreaded strategy because this was actually faster (evidence for this will be shown later). The
figure shows that it is faster to run FLASH applications on BG/Q in hybrid MPI+OpenMP mode than it is

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

112

in MPI-only mode. There are two data points of particular interest in this figure at 32 MPI ranks per node
with 2 OpenMP threads per MPI rank and 16 MPI ranks per node with 4 OpenMP threads per MPI rank.
The 32 MPI ranks per node with 2 OpenMP threads per MPI rank is the FLASH configuration which gives
the fastest time to solution, however, this is not an ideal configuration because it is tricky to fit the FLASH
early science applications in 512 MB per MPI rank. The 16 MPI ranks per node with 4 OpenMP threads
per MPI rank gives the best compromise between time to solution and memory usage. This configuration
is being used for FLASH early science production runs and is used for all performance experiments in the
remainder of this document.

Figure 10: Time to complete 30 steps of a fixed RTFlame test problem on 128 nodes of Vesta BG/Q. The
simulations were run with various numbers of MPI ranks and OpenMP threads and used the thread within
block multithreading strategy.

The biggest memory consumer in these applications is the new unsplit hydrodynamics solver which
requires approximately 2 - 2.5 times the memory of the old split hydrodynamics solver. This is not an
inefficient implementation, rather it is the need to save information for all directions. There would be no
issue with fitting in 32 MPI ranks per node if using the less accurate split hydrodynamics solver. Moving to 16
MPI ranks per node mode provides 1 GB per MPI rank and makes running FLASH much more comfortable.
Many data buffers can be sized larger to accommodate rapid adaptive mesh refinement in regions of the
domain and also congregation of many tracer particles on some MPI ranks.

Figure 11 shows how the FLASH multithreading strategy affects the strong scaling of the RTFlame
test problem used in Figure 10. The problem initially has 21,462 blocks and 18,786 leaf blocks and is run
on 512, 1024, 2048 and 4096 MPI ranks giving approximately 37, 18, 9 and 5 leaf blocks per MPI rank
respectively. We do not provide a 8192 MPI rank data point because the load balancing rules in Paramesh

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

113

cause 0 leaf blocks, and therefore zero work, to be placed on some of these MPI ranks even though the
average is approximately 2 leaf blocks per MPI rank. The figure shows that there is speedup with number
of MPI ranks for both threading strategies. The speedup is not ideal and a contributing factor to this is
that the grid management calls to exchange guard cells and correct fluxes are serialized. There is better
speedup for the finer-grained thread within block strategy. All performance experiments in the remainder
of this document use the thread within block strategy.

Figure 11: Relative speedup of a fixed RTFlame test problem on Vesta BG/Q. The simulations were run
on different numbers of nodes with both FLASH multithreaded strategies but were always run with 16 MPI
ranks per node and 4 OpenMP threads per MPI rank.

Figure 12 shows the strong scaling in RTFlame test problems of 2563, 5123, 10243 and 20483 effective
resolution. The high resolution runs are of particular interest because previous production campaigns on
BG/P studied configurations having 2563 and 5123 effective resolution. The largest FLASH run in this fig-
ure uses 32,768 nodes and 524,288 MPI ranks with 4 OpenMP threads per MPI rank. The strong scaling is
generally good and fits with expectation: performance gets worse when there is less work per MPI rank and
also when the resolution increases. The circled data points are from runs with the environment variable set-
tings PAMI ALLREDUCE REUSE STORAGE=N, PAMI ALLTOALL PREMALLOC=N, PAMI ALLTOALLV PREMALLOC=N and
PAMI ALLTOALLW PREMALLOC=N to reduce the memory overhead. These settings may affect the performance
but were necessary to make FLASH run despite an apparent leak of approximately 250 MB from the messag-
ing layer (see Section 3.5). Figure 13 shows weak scaling of the same data. For reference, our early science
production runs are using approximately 18 leaf blocks per MPI rank.

The performance advantage of running early science applications on BG/Q compared to BG/P can be
summarized by a node-to-node ratio which is given by the expression (Tp/Tq) × (Np/Nq), where T is run-

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

114

Figure 12: Strong scaling of RTFlame on Mira BG/Q for problems having 2563, 5123, 10243 and 20483

effective resolution. The simulations were run with 16 MPI ranks per node, 4 OpenMP threads per MPI
rank and used the thread within block multithreading strategy.

time, N is the number of nodes, and q and p are subscripts indicating BG/Q and BG/P respectively. We run
the fully-optimized early science applications in their most efficient configuration on both platforms, which
is MPI-only in Virtual Node mode on BG/P and Hybrid MPI+OpenMP on BG/Q, and record FLASH
evolution time as the application run-time. We obtain performance advantages of 8.9x (RTFlame) and 7.9x
(DDT) which compares well with the ALCF target of 8x to 10x. Note that the FLASH performance advantage
is actually slightly higher than shown because it is unrealistic to use the most efficient FLASH configuration
on BG/P (i.e. Virtual Node mode) due to the memory footprint of the early science simulations.

Finally, we show HPCT performance counter information from an RTFlame test problem on 128 nodes of
Vesta BG/Q in Figure 14. The FLASH application includes all optimizations up to “qhot(6)” (see Section 4.1)
and counts were collected during FLASH evolution only. The performance data shows that the integer/load-
/store/branch instructions dominate over floating point instructions (FXU=74.05% vs FPU=25.95%). The
average weighted GFLOPS per node is 5.5 GFLOPS out of a possible 204.8 GFLOPS which means that this
FLASH application is achieving 2.7% of peak floating point performance. This is quite low, however, there
are many properties of FLASH applications which contribute to such a low fraction of peak performance:
AMR introduces long-range communication and lots of control and integer code to focus floating point com-
putation where it is needed, table lookups in EOS avoid heavy floating point calculations to improve time to
solution, and tracer particles add to the total communication without increasing floating point work. The
instructions completed per cycle per core is good (0.545) and there are a high percentage of hits in the L1
data cache (92.86% on node 0). Overall this FLASH application is using the BG/Q cores relatively efficiently.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

115

Figure 13: Weak scaling of RTFlame on Mira BG/Q. The number of leaf blocks per MPI rank is kept
approximately constant in problems having 2563, 5123, 10243 and 20483 effective resolution. The simulations
were run with 16 MPI ranks per node, 4 OpenMP threads per MPI rank and used the thread within block
multithreading strategy.

Acknowledgments

Thanks to Vitali Morozov for all his help throughout the project. He ported the FLASH RTFlame simulation
to BG/Q, provided support for the HPCT libraries, and helped with debugging and performance optimization
of FLASH. Thanks to Dean Townsley for providing FLASH RTFlame and DDT simulations and for answering
any questions about these simulations. Thanks also to George Jordan for explaining Flash Center science
objectives and Anshu Dubey for advising about the layout of this report. The software used in this work
was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This
research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

116

FLASH evolution , c a l l count = 1 , avg c y c l e s = 364213522553 , max cy c l e s = 364213557651 :
−− Counter va lues f o r p r o c e s s e s in t h i s r epo r t i ng group −−−−

min−value min−rank max−value max−rank avg−value l a b e l
3 .415637 e+09 209 4.935353 e+09 1822 4.462556 e+09 Committed Load Misses
5 .638317 e+10 209 6.779761 e+10 1601 6.160317 e+10 Committed Cacheable Loads
2.744730 e+09 209 4.035232 e+09 1822 3.599715 e+09 L1p miss
1 .409032 e+11 209 1.583207 e+11 1712 1.469828 e+11 Al l XU In s t r u c t i o n Completions
3.923771 e+10 209 6.047476 e+10 1822 5.151986 e+10 Al l AXU In s t r u c t i o n Completions
5.949847 e+10 209 9.316478 e+10 1822 7.853280 e+10 FP Operat ions Group 1

Histogram of f l o a t i n g−point operat ion counts :
f l op−bin #ranks

5.949847 e+10 1
6.190321 e+10 0
6.430794 e+10 0
6.671268 e+10 74
6.911742 e+10 29
7.152215 e+10 13
7.392689 e+10 5
7.633163 e+10 1046
7.873636 e+10 240
8.114110 e+10 116
8.354584 e+10 354
8.595057 e+10 85
8.835531 e+10 56
9.076005 e+10 13
9.316478 e+10 16

Derived metr i c s f o r code block ”FLASH evolution” averaged over p roce s s (es) in the r epo r t i ng group
In s t r u c t i o n mix : FPU = 25.95 %, FXU = 74.05 %
In s t r u c t i o n s per cy c l e completed per core = 0.5450
Per cent o f max i s s u e ra t e per core = 40.36 %
Total weighted GFlops = 706.553228

(a) Summary counts over all nodes

FLASH evolution , c a l l count = 1 , avg c y c l e s = 364210026210 , max cy c l e s = 364213555879 :
−− Counter va lues summed over p r o c e s s e s on t h i s node −−−−

0 71127700508 Committed Load Misses
0 996543943304 Committed Cacheable Loads
0 57759693733 L1p miss
0 2370956187483 Al l XU In s t r u c t i o n Completions
0 827216441627 Al l AXU In s t r u c t i o n Completions
0 1261426933713 FP Operat ions Group 1

−− L2 counter s (shared f o r the node) −−−−−−−−−−−−−−−−−
100 569692088884 L2 Hits
100 7121203216 L2 Misses
100 8169110557 L2 l i n e s loaded from main memory
100 6253069690 L2 l i n e s s to r ed to main memory

Derived metr i c s f o r code block ”FLASH evolution” averaged over p roce s s (es) on node <0 ,0 ,0 ,0 ,0> :
I n s t r u c t i o n mix : FPU = 25.87 %, FXU = 74.13 %
In s t r u c t i o n s per cy c l e completed per core = 0.5488
Per cent o f max i s s u e ra t e per core = 40.69 %
Total weighted GFlops f o r t h i s node = 5.541
Loads that h i t in L1 d−cache = 92.86 %

L1P bu f f e r = 1.34 %
L2 cache = 5.08 %
DDR = 0.71 %

DDR t r a f f i c f o r the node : ld = 2 .871 , s t = 2 .198 , t o t a l = 5.069 (Bytes/ cy c l e)

(b) Counts on node 0

Figure 14: Performance counter data from an RTFlame test problem on 128 nodes of Vesta BG/Q. The
simulation was run with 16 MPI ranks per node, 4 OpenMP threads per MPI rank and used the thread
within block multithreaded strategy. Counts were only collected during FLASH evolution.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

117

References

[1] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer. PARAMESH: A parallel
adaptive mesh refinement community toolkit. Computer Physics Communications, 126:330–354, April
2000.

[2] OpenMP Architecture Review Board. OpenMP application program interface version 3.1. http://www.
openmp.org/mp-documents/OpenMP3.1.pdf, July 2011.

[3] IBM. IBM XL Fortran for Blue Gene/Q, V14.1. Optimization and Programming Guide. IBM, 2012.

[4] Statistics for memory allocation with malloc. http://www.gnu.org/software/libc/manual/html_

node/Statistics-of-Malloc.html, February 2013.

[5] V. Morozov. Blue Gene/Q Tuning Early Experience. http://www.alcf.anl.gov/sites/www.alcf.

anl.gov/files/morozov-bgqtuning-early.pdf, March 2012. Slides presented at the ESP March
Workshop ”Code for Q”, Argonne National Laboratory.

[6] The GNU C library. Resource usage. http://www.gnu.org/software/libc/manual/html_node/

Resource-Usage.html, February 2013.

[7] A. Dubey, A.C. Calder, C. Daley, R.T. Fisher, C. Graziani, G.C. Jordan, D.Q. Lamb, L.B. Reid, D.M.
Townsley, and K. Weide. Pragmatic optimizations for better scientific utilization of large supercomput-
ers. International Journal of High Performance Computing Applications, to appear. Published online
21 November 2012 http://hpc.sagepub.com/content/early/2012/11/20/1094342012464404.

[8] Determining memory use. https://www.alcf.anl.gov/resource-guides/determining-memory-use,
February 2013.

[9] Allocation debugging. How to install the tracing functionality. http://www.gnu.org/software/libc/
manual/html_node/Tracing-malloc.html#Tracing-malloc, February 2013.

[10] L. Killough. Optimizing Single-Node Performance on BlueGene. http://press.mcs.anl.gov/

gswjanuary12/files/2012/01/Optimizing-Single-Node-Performance-on-BlueGene.pdf, January
2012. Slides presented at the ALCF Winter Workshop, Argonne National Laboratory.

[11] The Flash Center for Computational Science at the University of Chicago. FLASH Users Guide. Version
4.0., September 2012.

[12] R. Latham, C. Daley, W.K. Liao, K. Gao, R. Ross, A. Dubey, and A. Choudhary. A case study
for scientific I/O: improving the FLASH astrophysics code. Computational Science and Discovery,
5(1):015001, 2012.

TurbNuclComb esp ALCF-2 Early Science Program Technical Reports

118

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

13 Lattice Quantum Chromodynamics

PI: Robert Mackenzie (Fermilab), for the USQCD consortium.

Project Summary

Lattice quantum chromodynamics (LQCD) calculations are required to relate the experimentally
observed properties of the strongly interacting particles to QCD, the fundamental theory of quarks
and gluons. This research aims to produce the high-precision lattice QCD calculations that are
urgently needed in the analysis of crucial experiments in high energy and nuclear physics that have
recently been completed or are in progress. The broad aims of the calculations are to determine
some of the basic parameters of the standard model of sub-atomic physics; to compute the masses,
decay properties, and internal structure of strongly interacting particles; to obtain a quantitative
understanding of the behavior of strongly interacting matter under extreme conditions of tempera-
ture and density; and to begin the study of strongly interacting theories that may be necessary to
describe nature at the shortest distances.

Researchers will use the next-generation Blue Gene to generate gauge configurations that are
representative samples of the systems being studied. These configurations will immediately be made
available to all members of the U.S. Lattice Quantum Chromodynamics collaboration (USQCD),
who will use them to perform a wide range of calculations. Members of USQCD are currently gen-
erating gauge configurations with three different formulations of lattice quarks, anisotropic clover,
domain wall (DWF), and highly improved staggered quarks (HISQ), each of which has important
advantages for different aspects of our work. Researchers expect to be using these formulations
at the time of the Early Science Program. The next-generation Blue Gene will enable them to
generate configurations that would support calculations of the spectrum, decay properties and in-
ternal structure of strongly interacting particles, and tests of the standard model, of unprecedented
precision.

Report originally released as ANL/ALCF-ESP-13/11

119

SPI, mapping, site ordering, and QPX in Lattice QCD code

on Mira

Heechang Na and James Osborn
Argonne Leadership Computing Facility, ANL

April 10, 2013

1 Introduction

Lattice QCD is a numerical method to simulate QCD (Quantum Chromodynamics) in-
cluding non-perturbative effects. Among other methods, lattice QCD is the only successful
non-perturbative method that can be systematically improved from first principles. Lattice
QCD plays an important role in High Energy Particle Physics (flavor physics, spectroscopy,
and beyond the Standard Model physics) and Nuclear Physics (nucleon/nuclear spectrum
& structure, quark-gluon plasma, and the QCD equation of state). Moreover, recently
there are active developments in applying lattice gauge theory to quantum field theory in
general, for example the theoretical description of graphene or cold atom systems.

We define the QCD action on a finite and discrete ‘lattice’ like grid, so that we can compute
the path integral (partition function) on a computer. A current lattice size is 963×192, and
the corresponding number of degrees of freedom for the path integral is about 6×108. Thus,
it requires enormous computing resources. In this report, we describe our overall efforts
to improve lattice QCD software on Mira, which include a new communication library
using the Message Unit (MU) SPI (System Programming Interface), better node mapping
strategy, lattice site reordering, and using the quad floating point (QPX) intrinsics.

2 Message Unit (MU) SPI

We apply a Hybrid Monte Carlo method to compute the QCD path integral. At every step
in the Monte Carlo evolution, we must solve a large sparse linear system. The application
of the sparse matrix requires communications at the boundary to the nearest neighbors,
and all nodes need to communicate at the same time with the same manner. Because the
problem size per node is relatively small, the latency is more important than it typically

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

120

is for other applications. We found that building a new communication library using the
MU SPI would improve the communication time.

The MU SPI [1] is the lowest communication layer; it is lower than MPI or PAMI. It
allows one to control the MU hardware directly. The MU SPI provides point-to-point and
collective communications with memory fifo, direct put, and remote get methods for each.
For our ‘qspi’ communication library, we utilize the point-to-point communications with
the direct put.

A node on Mira has 16+1 groups with 4 subgroups per group. Since the seventeenth group
is not used by a normal user, there are 64 useable subgroups per node. Each subgroup has
8 injection FIFOs and 8 reception FIFOs. In other words, there are 32 injection / reception
FIFOs per group or 512 injection / reception FIFOs per node.

Mira has a 5D torus network, so that each node can access 10 optical cables with 1.8
GB/sec useable bandwidth. Therefore, 10 FIFOs per rank would be optimal in order to
use all cables simultaneously. However, for c64 mode, one rank can have a maxim of 8
FIFOs. Furthermore, if one needs to use MPI with the MU SPI, one should reserve at
least 1 FIFO for MPI. In this case, one should consider about the optimal running mode
and optimal distribution of the resources.

The qspi communication library API consists of:

• void qspi_init(void);

Allocate FIFOs and base address tables.

• void qspi_set_send(int dest, void *buf, size_t size,
qspi_msg_t send_msg);

• void qspi_set_recv(int src, void *buf, size_t size,
qspi_msg_t recv_msg);

qspi set send and qspi set recv prepare the handle variables declared as qspi msg t
type. dest and src are rank of the destination and source node, *buf is the address
of the send or receive buffer, and size is the size of the messages.

• void qspi_prepare(qspi_msg_t msgs[], int num);

Exchange the handles between senders and receivers using MPI, and sets the descrip-
tors.

• void qspi_start(qspi_msg_t msg);

Inject the descriptors.

• void qspi_wait(qspi_msg_t msg);

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

121

The process will wait until the receiver counter reaches zero.

• void qspi_finalize(void);

As one might notice, MPI Init() should be called after qspi init() for qspi prepare.
One important communication pattern in lattice QCD is repeatedly sending and receiving
with the same data structure. Therefore, once the communication is prepared, we can use
it over and over again. Using MPI for qspi prepare does not affect the overall com-
munication time. We also note that there is no global barrier in qspi, so one would use
MPI Barrier.

We measure the communication time with qspi and MPI with several different settings.
First, we had a ping-pong test between a set of two nearest neighbors in c1 mode. The
results are shown in Fig. 1. As one can see, there is a good speedup for the latency: about
0.6 micro-seconds latency for qspi while MPI gives about 3 micro-seconds latency. As the
data size increases the communication time is saturated to the bandwidth limit, so there
is almost no speedup for message sizes larger than around 100 KB.

1 10 100 1000 10000 1e+05 1e+06 1e+07

data size [bytes]

0.1

1

10

100

1000

10000

ti
m

e
[m

ic
ro

 s
ec

]

bandwidth limit
MPI
qspi

1 10 100 1000 10000 1e+05 1e+06 1e+07

data size [bytes]

1

2

3

4

5

6

7

8

9

10

sp
ee

d
 u

p
 [

M
P

I/
q

sp
i]

Figure 1: Single ping-pong benchmarks between qspi and MPI with c1 mode. The com-
munication time vs. data size (left figure) and speedup comparing to MPI (right figure)
are shown. The red line on the left figure represents the 1.8 GB/sec bandwidth limit.

Next, we tested with a more realistic situation that all ranks are sending and receiving
messages to all 5 directions (5D halo exchange test) at the same time. The results are
shown in Fig. 2. Latency is about 2.3 micro-seconds for qspi and 19 micro-seconds for
MPI. The latency slows even for qspi, since there are much more communications needed,
however the speedup comparing to MPI is much larger than for the single ping-pong tests.
The speedup is around 9 to 20 times faster, while it was around 6 times faster for the single
ping-pong tests.

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

122

1 10 100 1000 10000 1e+05 1e+06 1e+07

data size [bytes]

0.1

1

10

100

1000

10000

ti
m

e
[m

ic
ro

 s
ec

]

bandwidth limit
MPI
qspi

1 10 100 1000 10000 1e+05 1e+06 1e+07

data size [bytes]

3

6

9

12

15

18

21

sp
ee

d
 u

p
 [

M
P

I/
q

sp
i]

5D halo exchange

simple pingpong

Figure 2: 5D halo exchange benchmarks between qspi and MPI with c1 mode. The com-
munication time vs. data size (left figure) and speedup comparing to MPI (right figure)
are shown. The red line on the left figure represents the 1.8 GB/sec bandwidth limit.

We ran the 5D halo exchange tests with c64 mode as well, and the results are shown in
Fig. 3. In this case, one interesting question would be what an optimal number of FIFOs
is. For the tests in Fig. 3, we assigned 4 FIFOs for each qspi process. We tested with 2 or
6 FIFOs as well, but we did not find any significant difference between the tests. This is
because that the competition to get on the optical cable is higher than the competition to
get a free FIFO. In c64 mode, there are 64 processes in a node trying to access 10 optical
cables.

3 Mapping

Reducing the surface volume at the boundaries and the number of communication hops for
each message are desirable, and one can get improvement with an optimal node mapping
strategy. An example is shown in Fig. 4. In the figure, each orange dot represents a
rank, and each blue box corresponds to a node. In the example, we assumed that we have
4 ranks per node. Lattice sites are allocated to each ranks, so that each rank needs to
communicate to the nearest neighbors. As one can see, it has a smaller surface volume and
smaller number of external hops with the mapping shown in the right figure of Fig. 4.

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

123

1 10 100 1000 10000 1e+05 1e+06 1e+07

data size [bytes]

0.1

1

10

100

1000

10000

ti
m

e
[m

ic
ro

 s
ec

]
bandwidth limit x 64
MPI
qspi

Figure 3: 5D halo exchange benchmarks between qspi and MPI with c64 mode. The
communication time vs. data size (left figure) and speedup comparing to MPI (right
figure) are shown. The red line represents the 1.8 GB/sec bandwidth limit divided over
the 64 ranks per node.

Figure 4: An example of a node mapping strategy in a 2D array with 4 ranks per node.

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

124

4 Site ordering

Lattice QCD calculations are typically based on a 4 dimensional lattice, and proper site
ordering within a node can reduce the number of memory fragmentations in communica-
tions. An example of a 2D lattice site ordering strategy is shown in Fig. 5. The numbers in
the figure indicate the order of data in memory. Normal site ordering is shown on the left
figure. As one can see, the chunk of data at the boundary (inside of the blue rectangles)
to be sent to left or right are not contiguous. However, with a better site ordering as on
the right figure in Fig. 5, one can make all messages contiguous except the message to be
sent to left.

Figure 5: An example of site ordering strategy on a 2D lattice.

5 QPX in QLA

We added a few QPX routines using XLC intrinsics in QLA. QLA is a linear algebra library
in the USQCD SciDAC modules [2]. One of most important calculations in lattice QCD is
to multiply an array of 3× 3 complex matrixes by an array of pointers to length 3 vectors,
for example with an array size of N :

for i=0 to N-1
r[i] += M[i] * (*v[i])

where r[i] and *v[i] are the i-th vectors, and M[i] is the i-th 3 × 3 matrix. We
combine two matrix-vector multiplications in order to preserve alignment of the arrays
when loading them into QPX registers. Since the subelements are complex numbers, when
the two subelements are coupled as in Fig. 6, each bunch will fit into a QPX register. This

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

125

requires only 9 QPX instructions per array element, which should be 4 times faster ideally
than without QPX.

Figure 6: 3 × 3 matrix multiply by length 3 vector in QPX. All elements are complex
numbers. In the right figure, each block with two complex numbers fits into a QPX
register.

6 Overall performance and summary

We tested actual lattice QCD code with the improvements. We used the HISQ solver in
the USQCD SciDAC modules [2] with a 124 lattice size per node on 128 BG/Q nodes. The
HISQ solver is developed by the MILC collaboration [3]. The results are shown in Tab. 1.
In these tests, we only use the site ordering with the qspi code. The first line of the table
shows the result without any improvements. The next three lines represent results with
only one improvement applied each. As one can see, all the improvements, QPX, qspi, and
mapping, are equally improving the performance. One might notice that even we turned
on the two of the improvements, the speedup is not so impressive (the next three lines).
However, when we turn on all the three improvements with the site ordering, we obtain
2.3 times speedup as the last line of the table shows.

In this report, we presented several improvements in lattice QCD code on Mira and its
impact. We developed a new communication library (qspi) using the MU SPI. With qspi,
we got up to around 20 times faster latency than that with normal MPI in our 5D halo
exchange tests. The optimal node mapping strategy helps to reduce the surface volume
at the boundaries and the number of communication hops. In addition, we reduce the
number of memory fragmentations in the communications by applying the optimal site
ordering. Moreover, from using QPX in QLA, we gain significant speedup. With all the

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

126

Table 1: Overall benchmark results.
QPX qspi Mapping mode Gflops/node

c32 11.7√
c64 12.9√
c32 13.8√
c32 13.5√ √
c32 17.6√ √
c32 16.7√ √
c64 18.1√ √ √
c32 26.7

improvements, we acquire 2.3 times speedup comparing to that without any improvements
on BG/Q.

References

[1] Header files in /bgsys/drivers/ppcfloor/spi/include/mu and a html document
/bgsys/drivers/ppcfloor/spi/doc/html/index.html in the BG/Q systems in ALCF.

[2] http://usqcd.jlab.org/usqcd-software/

[3] http://physics.indiana.edu/∼sg/milc.html

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

127

LatticeQCD esp ALCF-2 Early Science Program Technical Reports

128

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

14 Petascale Direct Numerical Simulations of Turbulent Chan-
nel Flow

PI: Robert Moser (University of Texas)

Project Summary

Researchers propose to use the petascale computing power of the next-generation Blue Gene system
to perform direct numerical simulations (DNS) of high Reynolds number turbulent wall-bounded
flow in a channel. This DNS is aimed at developing a nearly complete understanding of the phe-
nomena dominating wall-bounded turbulence, which is central to the energy losses inherent in
transportation. The impact of such a development will likely be profound. Approximately 28%
of U.S. energy consumption is expended on transportation. This energy expenditure is due to the
interaction between solid surfaces (of vehicles or pipes) and the fluid flowing past them, leading to
drag and the dissipation of energy by turbulence. Since much of the drag in these flows is due to
turbulent skin friction, much of this energy consumption results from wall-bounded turbulent shear
layers.

The central emphasis of this research is on reaching a sufficiently high Reynolds number to
explore the physics that arise in the overlap region. The overlap region is where the viscous near-
wall turbulence interacts with the outer-layer turbulences. This interaction is key to understanding
high Reynolds number turbulent wall layers. To investigate this interaction, it is necessary that
the Reynolds number be sufficiently high so that there is a substantial disparity in scale between
the inner and outer layers. The results can then be extrapolated to arbitrary Reynolds numbers.
This simulation will be performed using the supercomputing software that the proposing team has
developed and benchmarked on Blue Gene/P and will further optimize for performance on the
next-generation Blue Gene.

Report originally released as ANL/ALCF-ESP-13/12

129

Argonne Early Science Technical Report

MyoungKyu Lee, Nicholas Malaya, Robert D. Moser

Project: Petascale Direct Numerical Simulations of Turbulent Channel Flow
Catalyst: Ramesh Balakrishnan

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

130

1 Executive Summary

This project is focused on utilizing the Petascale computing power of Mira to
perform direct numerical simulations (DNS) of high Reynolds number turbulent
wall-bounded flow in a channel. This DNS is aimed at developing a nearly
complete understanding of the phenomena dominating wall-bounded turbulence,
which is central to the energy losses inherent in transportation. The impact of
such a development will likely be profound. Approximately 28% of US energy
consumption is expended on transportation. This energy expenditure is due to
the interaction between solid surfaces (of vehicles or pipes) and the fluid flowing
past them, leading to drag and the dissipation of energy by turbulence. Since
much of the drag in these flows is due to turbulent skin friction, much of this
energy consumption is caused by wall-bounded turbulent shear layers.

Engineering developments to reduce drag and energy consumption are greatly
impeded by the lack of accurate models of the turbulence phenomena involved.
DNS at the Reynolds numbers proposed here and the subsequent analysis of the
resulting data can provide the insights needed to develop such models, as well
as new concepts for manipulating wall-bounded turbulence.

The central emphasis of this research is on reaching a sufficiently high
Reynolds number to explore the physics that arise in the overlap region. The
overlap region is where the viscous near-wall turbulence interacts with the outer-
layer turbulences. This interaction is key to understanding high Reynolds num-
ber turbulent wall layers. To investigate this interaction, it is necessary that
the Reynolds number be sufficiently high so that there is a substantial disparity
in scale between the inner and outer layers. The results can then be extrapo-
lated to arbitrary Reynolds numbers. Analysis of recent DNS of channel flow at
Reτ = 1000 and 2000 indicated that Reτ ≈ 4000 on a 12288× 1024× 9216 grid
might yield sufficient scale separation. Due to the substantial power of Mira,
as well as software performance increases attained during this Early Science
Project, the channel will be run at Reτ ≈ 5000 on a 15360×1536×11520 mesh.
Given the mesh size, this is the largest scientific DNS ever conducted.

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

131

Figure 1: Diagram of the Channel DNS Geometry

2 Numerical Method

∂ui
∂t

= − ∂P
∂xi

+Hi + ν
∂2ui
∂xj∂xj

(1)

The incompressible 3D Navier-Stokes equations (1) are solved using the for-
mulation of Kim, Moin and Moser. Their technique involves integrating evolu-
tion equations for the wall-normal vorticity ωy and the Laplacian of the vertical
velocity ∇2v. Periodic boundary conditions are imposed in the streamwise and
spanwise directions, while in the wall normal direction, no slip conditions are
imposed at the walls. Fig. 1 details the system geometry. A semi-implicit, third-
order Runge–Kutta/Crank–Nicholson scheme is used for the time discretization
(Spalart et al 1991) The flow is driven by a uniform pressure gradient which
is adjusted continuously to maintain a constant mass flux. In space, a Fourier
spectral representation is used in the streamwise and spanwise directions. A
B-spline collocation representation is used in the wall-normal direction to ac-
commodate the non-uniform grid requirements while providing spectral-like res-
olution (Kwok 2001). The B-spline breakpoints (yi) are stretched across the
interval [-1,1] per

yi = sin

(
απ

2

(−1 + 2i)

n− 1

)
/ sin(

απ

2
). (2)

Here, α is a stretching parameter (set to 0.97 to provide an appropriate near-
wall resolution), and n is the number of breakpoints. The collocation-based
differential operators are formed using the Greville abscissae, also called the
Marsden–Schoenberg points, implied by these breakpoints.

The code is written in Fortran2003 and uses hybrid MPI/OpenMP paral-
lelism. Fourier transforms are performed one direction at a time, using FFTW3.
In addition, we utilize the new FFTW3.3 MPI API to accomplish the distributed
memory transposes necessary at each step. Hand-made libraries are used for
linear algebra, and B-splines of arbitrary order are generated with the GNU Sci-
entific Library which uses the recursive relationship of de Boor. This code has

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

132

been ported and run on various large-scale machines on various architectures
(TACC’s Lonestar, Blue Waters, NCSA’s Kraken, ALCF’s Intrepid and Mira),
and scales well on each system.

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

133

3 Technical Results

Analysis of recent DNS of channel flow at Reτ = 1000 and 2000 indicated that
Reτ ≈ 4000 on a 12288×1024×9216 grid might yield sufficient scale separation.
Due to the substantial power of Mira, as well as software performance increases
attained during this Early Science Project, the channel will be run at Reτ ≈
5000 on a 15360× 1536× 11520 mesh.

3.1 Spin-up

To increase the rate at which the large scale run reaches a statistically station-
ary state, we performed “spin-up” runs to step our simulation through higher
resolution grids, until all essential scales are resolved. These spin-up runs are
summarized in Table 1.

Table 1: Parameters of channel DNS spin-up runs. Nx and Nz are numbers
of Fourier modes, and Ny is number of collocation points. ∆x+ and ∆z+ res-
olutions are in terms of Fourier modes; ∆y+wall and ∆y+CL are the breakpoint
spacings at the wall and centerline, respectively. T is the time span used to
compute statistics. Ub is the bulk velocity, and Lx and h are the domain length
in the streamwise direction and the channel half-height, respectively.

Name Nx Nz Ny ∆x+ ∆z+ ∆y+wall ∆y+CL TUb/Lx
Coarsest 4096 3092 1024 30.68 15.24 0.104 14.91 ≈ 0.88
Coarse 8192 4096 1536 15.34 11.50 0.068 9.94 ≈ 0.53
Target 15360 11520 1536 8.18 4.09 0.068 9.94 ≈ 10

3.2 Scaling

The code performs extremely well at scale. The communication benchmarks
shown in Fig. 2 have been performed on as large as 32 racks. For our chosen
problem size (8 racks), the parallel efficiency for a strong scaling problem is very
nearly ideal, but even larger problem sizes have performed extremely well on
Mira’s interconnect.

Finally, benchmarks for a timestep of the entire codebase is shown in Fig. 3.
The codebase demonstrates excellent strong scaling across a large portion of the
entire machine (32 racks). A more detailed discussion of these results will be
presented at MiraCon2013.

3.3 I/O

In order to attain portable, high throughput I/O with rich metadata support,
we use HDF5 for our restart needs. We have found that I/O is such a common
task in turbulence simuations, and therefore have developed a higher level API
for common restart requirements. This library, entitled , ExaScale IO (ESIO),

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

134

2 4 8 16 32
No of Racks

1

10

100

E
la

p
se

d
 T

im
e

(s
ec

)

1 MPI task / node
16 MPI tasks / node
Ideal

Figure 2: Strong scaling of the communication for the full problem size.

provides simple, high throughput input and output of structured data sets using
parallel HDF5. ESIO is designed to support reading and writing turbulence
simulation restart files but it may be useful in other contexts. The library is
written in C99 and may be used by C89 or C++ applications. A Fortran API
built atop the F2003 standard ISO C BINDING is also available.

For our DNS runs on Mira, ESIO is writing 1.8 TB in 444 seconds, at
full scale (8 racks). This is a resonable write speed of approximately 4 GB/s,
especially given the expected contention of at eight racks (1024 nodes×16 tasks∗
8 racks = 131, 072 writers) for the file system.

A restart must be written at least every 1000 steps, or about every three
hours of simulation time. There will be at least of 250 restart files saved over
the entire simulation. We allocated (as a safety factor) for the time required to
read/write restart files to be approximately 5-10% of the total execution time,
and in this case it is much less than this.

Nevertheless, we have observed far higher I/O write speeds in testing (peaks
of 40 GB/s). As a result, we expect that significantly higher throughput can be
attained, and expect to collaborate with ALCF Staff on this at MiraCon2013.

In addition, in late December and early January, during the porting of
ESIO to Mira, we found several compiler compatibility issues between the
ISO C BINDING standards and what was provided by IBM. Working with the
ALCF staff identified a probable cause of this internal compiler error, namely
that inappropriate fortran compiler scoping was at fault. In particular, an iden-
tically named (although different call pattern) function interface ’impl’ using
the iso c bindings is producing the ICE. A workaround was demonstrated on a
small piece of example code, by which renaming ’impl’ to a unique string for

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

135

2 4 8 16 32
No of Racks

1

10

100

E
la

ps
ed

 T
im

e
(s

ec
)

Hybrid (MPI + OpenMP)
MPI Only
Ideal

Figure 3: Strong scaling of a full timestep on Mira

every subfunction appeared to avoid the ICE. Thus, production runs were ca-
pable of utilizing this workaround, while simultaneously, on January 10th, 2013
PMR 57031,122,000 ”XLF ICE on esio.F90” was submitted and confirmed by
IBM.

3.4 Future Work

Future work will focus on automating job submission to maximize the time
the application spends running. Additional work will focus on developing post-
processing for the statistical quantities of interest. These can be developed
in parallel with full production runs, and are not anticipated to delay the full
project.

Estimating the convergence of statistics from the resulting simulation is crit-
ical to building confidence in the correctness of the codebase as well as the out-
puts of the simulation. However, turbulent velocity fields are correlated in time,
so typical statistical sample estimates that rely on independent trials are biased.
For this reason, we have developed methods that calculate the “effective sample
size” of the statistics. This will be implemented in the codebase and provide
an automated estimate of the remaining required runtime. The results of this
work, accomplished using ALCF resources, will be the subject of an upcoming
Physics of Fluids publication.

This project will transition to an INCITE2013 allocation in April. The
process is expected to be continuous, with full scale production runs continuing

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

136

unabated.

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

137

0.01 0.1 1 10 100 1000 10000
y+

0

10

20

30

U
+

Mean Velocity

Log Law

Figure 4: Mean velocity profile for Reτ ≈ 5000

4 Preliminary Scientific Results

Given the mesh size, this simulation is significantly larger than the 40963 ho-
mogeneous turbulence simulation (by a factor of ≈ 1.76). As a result, this sim-
ulation will be, to our knowledge, the highest resolution DNS ever conducted
for scientific purposes.

However, the large scale simulation has not yet come to steady state. There-
fore, the the simulation is not yet producing valuable statistical data. As a
result, all observations about the field are extremely preliminary.

The mean velocity profile can be seen in Figure 4. This plot demonstrates
that the velocity profile does appear to be demonstrating logarithmic scaling
with distance from the wall, as anticipated by theory. This is an early verifica-
tion that the field is behaving as expected.

Given the wall-normal resolution, this simulation will provide an unsurpassed
estimate for the Von Karman constant. Fig. 5 demonstrates a profile that
appears to be flattening in the logarithmic region. While preliminary, the value
appears to be converging upon a value of 1/.41. In statistically steady state, we
have every reason to believe that this is the most precise calculation of the Von
Karman constant ever conducted, either experimentally or via simulation.

4.1 Future Work

During the production runs, statistical estimators of various quantities of in-
terest will be provided at http://turbulence.ices.utexas.edu/. This will
already be of great value to the turbulence community. Furthermore, it must

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

138

0.01 0.1 1 10 100 1000 10000
y+

0

1

2

3

4

5

6

y
+

 (
d
U

+
 /

 d
y
+

)

Diagnostic Function

1/.41

Figure 5: Karman constant estimate

be stressed that even after the completion of production runs, a great body of
scientific work remains to be done. Once the simulations have been performed,
the fields they generated can be used like an experimental facility to “mea-
sure” most any diagnostic quantity of interest. Scientific advances will come
from repeated analysis of the simulation data to answer new questions and test
hypotheses, by a number of researchers over a period of years. The most com-
plete sequence of cases is for turbulent channels in the friction-Reynolds-number
range Reτ = 180− 2000, which now constitute the standard reference data set
in the field and receive about 30-40 citations per year. As we supplementing
these data with Reτ = 5000, we expect this will establish a reference data set
that will remain useful for the turbulence research community for many years.

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

139

5 Work with ALCF Staff

During the course of this Early Science Project, we have worked with several
members of the ALCF staff. Of particular note, we have dealt with Ramesh
Balakrishnan extensively for both technical consulting on the codebase as well
programmatic work. We also appreciate the help of Jeff Hammond for his
assistance with the ICE Bug detailed in section 3.3, and Kevin Harms for work
related to disk space quotas and I/O in general.

TurbChannelFlow esp ALCF-2 Early Science Program Technical Reports

140

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

15 Ab-initio Reaction Calculations for Carbon-12

PI: Steven Pieper (Argonne National Laboratory)

Project Summary

Researchers will calculate several fundamental properties of the 12C nucleus: the imaginary-time
response, the one-body density matrix, and transition matrix elements between isospin- 0 and -1
states. These are needed to be able to reliably compute neutrino-12C scattering, which is needed for
neutrino detector calibrations; quasi-elastic electron scattering, which is currently being measured
at Jefferson Lab (JLab); and the results of older reactions on 12C.

In the past 15 years, researchers have developed Greens function Monte Carlo as a powerful
and accurate method for computing properties of light nuclei using realistic two- and three-nucleon
potentials. This will be the basis of all the calculations. Understanding the propagation of charges
and currents in the nucleus is critical to a real understanding of the physics of nucleonic matter.
Electron scattering experiments in the quasi- elastic regime, where the dominant process is knocking
a single nucleon out of the nucleus, are under way at Jefferson Lab for a range of nuclei. The
separation into longitudinal and transverse response allows one to study the propagation of charges
and currents, respectively, in the nucleus. The nontrivial changes as one goes from the nucleon
and deuteron to larger nuclei like carbon require one to consider processes well beyond simple, one-
nucleon knockout. Researchers will compute the transition density matrices on a two-dimensional
grid of the magnitudes of the initial and final positions. A partial wave expansion of the angle
between the two vectors will be made.

Report originally released as ANL/ALCF-ESP-13/13

141

ESP technical report

Alessandro Lovato

ALCF and Physics division, Argonne National Laboratory∗

Steven C. Pieper

Physics division, Argonne National Laboratory

(Dated: April 10, 2013)

∗ lovato@alcf.anl.gov

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

142

I. DESCRIPTION OF SCIENCE

The electroweak response is a fundamental ingredient to describe the neutrino - 12Carbon

scattering, recently measured by the MiniBooNE collaboration to calibrate the detector aimed

at studying neutrino oscillations. As a first step towards its calculation, we have computed

the sum rules for the electromagnetic response of 12C. The cross section of the process

e+12 C→ e′ +X . (1)

can be written in Born approximation as [1]

d2σ

dΩe′dEe′
= −α

2

q4
Ee′

Ee
LµνW

µν , (2)

where α ' 1/137 is the fine structure constant, dΩe′ is the differential solid angle specified by

ke′ and q = ke − ke′ is the four momentum transfer of the process. The leptonic tensor Lµν is

fully determined by the measured kinematical variables of the electron, while all information on

target structure, which is largely dictated by nuclear interactions, is enclosed in the hadronic

tensor

W µν =
∑

X

〈Ψ0|Jµ|ΨX〉〈ΨX |Jν |Ψ0〉δ(4)(p0 + q − pX) . (3)

The sum over the final states includes an integral over pX , the spatial momentum of the final

hadronic state, while p0 is the initial four-momentum of the nucleus.

In the nonrelativistic approach, the hadronic tensor can be written in terms of the longitu-

dinal and transverse response functions, with respect to the direction of the three-momentum

transfer q. For instance, taking q along the z-axis, the transverse response is defined by [2]

Rxx+yy(q, ω) =
∑

X

δ(ω + E0 − EX)
[
〈Ψ0|jx(q, ω)|ΨX〉〈ΨX |jx(q, ω)|Ψ0〉+

〈Ψ0|jy(q, ω)|ΨX〉〈ΨX |jy(q, ω)|Ψ0〉
]

(4)

while the longitudinal is given by

R00(q, ω) =
∑

X

δ(ω + E0 − EX)〈Ψ0|ρ(q, ω)|ΨX〉〈ΨX |ρ(q, ω)|Ψ0〉 (5)

The sum rules are obtained integrating the response functions over the energy transfer and

using the completeness relation of the states |X〉. For Rxx+yy and R00 one has

Sxx+yy(q) ≡
∫
dωRxx+yy(q, ω) = 〈Ψ0|jx(q, ωel)jx(q, ωel) + jy(q, ωel)j

y(q, ωel)|Ψ0〉

S00(q) ≡
∫
dωR00(q, ω) = 〈Ψ0|ρ(q, ωel)ρ(q, ωel)|Ψ0〉 , (6)

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

143

where the energy transfer dependence of the current and density operators is determined at

the the quasi-elastic peak: ωel =
√
|q|2 +m2 −m. Hence, the sum rules of the response can

be evaluated by computing the expectation values of the electromagnetic currents and density

on the ground state of 12C.

II. NUMERICAL METHODS

The calculation of the sum rules requires the knowledge of the nuclear ground state wave-

function of 12C. Solving the many-body Schroedinger equation

ĤΨ0(x1 . . . xA) = E0Ψ0(x1 . . . xA) , (7)

where the generalized coordinate xi ≡ {ri, si, ti} represents both the position and the spin-

isospin variables of the i-th nucleon, is made particularly difficult by the complexity of the

interaction. The nuclear potential is indeed spin-isospin dependent and contains strong tensor

terms; thus Eq. (7) consists in 2A
(
A
Z

)
complex coupled second order partial differential equa-

tions in 3A variables. For the actual case of 12C, there are 270,336 coupled equations in 36

variables.

Standard methods for solving partial differential equations are not feasible in this context.

Green Function Monte Carlo (GFMC) algorithms use projection techniques to enhance the

true ground-state component of a starting trial wave function ΨT

Ψ0(x1 . . . xA) = lim
τ→∞

e−(Ĥ−E0)τΨT (x1 . . . xA) . (8)

In the actual calculation, the imaginary time evaluation is done a sequence of imaginary time

steps, each one consisting in a 3A dimensional integral, evaluated within the Monte Carlo

approach.

In GFMC all the spin-isospin configurations are considered and the wave-function is a vector

of 2A
(
A
Z

)
complex numbers. For example the eight spin configurations of the 3H nucleus are

represented by [3]

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

144

|Ψ3H〉 =

a ↑↑↑

a ↑↑↓

a ↑↓↑

a ↑↓↓

a ↓↑↑

a ↓↑↓

a ↓↓↑

a ↓↓↓

(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = 〈↑↑↓ |Ψ3H〉 . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H〉 =

a ↑↑↑

a ↑↑↓

2a ↓↑↑ − a ↑↓↑
2a ↓↑↓ − a ↑↓↓
2a ↑↓↑ − a ↓↑↑
2a ↑↓↓ − a ↓↑↓

a ↓↓↑

a ↓↓↓

(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

145

efficiency, the old version of the code did several Monte Carlo samples, say at least 10, per

processor. However, a typical 12C calculation involves around 15,000 samples while leadership

class computers have many 10,000’s of processors, making the old algorithm quite inefficient.

Fortunately, for nuclei as large as 10B and 12C, the calculation of the energy and of the

response is complex enough to allow for splitting one sample over many processors. To this

extent, the general purpose Automatic Dynamic Load Balancing (ADLB) library [4], was

developed on Intrepid and implemented in the code.

Both the direct calculation of the response with the Ψ1+,T=1 state and the evaluation of the

sum rules would have not been possible on Intrepid, due to the limited amount of RAM per

node (2GB). On the other hand, Mira, with 16 GB of RAM per node enables us to perform

such a large calculations.

We were pleased to find that the version of ADLB developed for Intrepid works very well

on Mira; no modification was required. The conversion to Mira consisted primarily of timing

the OpenMP (OMP) sections of the GFMC code to work well up to 64 threads and developing

the new subroutines for the response and for the sum rules.

IV. THE CODE

The scheme of ADLB, illustrated in Fig. 1, shows that the nodes are organized in servers

and slaves; in standard GFMC calculations approximately 3% of the nodes are ADLB servers.

A shared work queue, managed by the servers, is accessed by the slaves that either put work

units, denoted as “work packages” in it or get those work package out to work on them. Once

a work package has been processed by a slave, a “response package” may be sent to the slave

that put the work package in the queue.

ADLB is a general purpose library, which hides communication and memory management

from the application, providing a simple programming interface. Besides the initialization and

termination functions, the truly essential function calls of the ADLB application programmer

interface (API) are the ADLB_Put, ADLB_Reserve and ADLB_Get_reserved. To better illustrate

these three function calls, it is worth showing the explicit case of the sum rules subroutines.

The expectation value of Eq. (6) has to be evaluated for momentum transfer directed along

x, y and z axis. In each of these cases, ∼ 20 values of the discretized momentum transfer

magnitude are considered; hence for each configuration ∼ 60 independent expectation values

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

146

have to be computed. Since the evaluation of the sum rules of the 12C for a single value of q

takes of about 100 seconds (with 32 OMP threads), we decided to split the calculation in such

a way that each ADLB slave calculates the sum rules for a single value of q.

Figure 1. Automatic Dynamic Load Balancing work flow.

• subroutine o_em_wk

Let us concentrate on a particular ADLB energy slave, managing a single configuration.

It enters o_em_wk and immediately puts into the work pool the part of work package

independent on q

call ADLB_Begin_batch_put (rwp%cfl,respon_wp_len_common,ierr)

where rwp%cfl indicates the beginning of the work package, respon_wp_len_common

denotes its size and ierr will get a return code.

Afterwards, the q dependent parts of the work packages are placed in the work pool for

each of the ∼ 60 cases.

call ADLB_PUT(rwp%qh,respon_wp_len_var,-1,myid, adlbwp_respon,i_prior,ierr)

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

147

The size of the q dependent part of the work package is specified by rwp%qh,respon_wp_len_var,

while myid identifies the energy slave from which the work package originates.

As a matter of fact, the work packages can be processed either by the same ADLB energy

slave which put them in the work pool or by another one. However, only the slave that

sent the work package can retrieve the corresponding response package by means of the

following call

call get_adlb_respon_work_ans (ierr, node)

which is iterated until all the response packages have been collected.

• get_adlb_respon_work_ans

To retrieve a unit of work, the energy slave uses this subroutine to call ADLB_reserve

call ADLB_reserve ((/ adlbwp_respon_ans, adlbwp_respon, -1 /), &

& i_wrk_type, i_prior, i_handle, i_len, i_answer, ierr)

specifying that it is looking either for a work package or for a response package. If

either one is present, ADLB will find it and send back a handle (i_handle) , a global

identifier (i_wrk_type) along with the size of the reserved work unit (i_len) and the

origin identifier (i_answer). The priority of the answer is set much larger than the

priority of the work packages, so that they will be preferentially returned.

If an answer has been found by ADLB, it is retrieved by

call ADLB_GET_RESERVED_TIMED (rap, i_handle, qtime, ierr)

where rap denotes the response answer package and the energy slave returns into the

subroutine o_em_wk.

If a work package is instead found by ADLB_reserve, the energy slave processes it. It

has to be remarked that other ADLB slaves than the energy ones can process a work

package. For this purpose an entry appears in the subroutine

entry process_adlb_respon_work (ii_prior,ii_handle,ii_len,ii_answer,ierr)

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

148

Analogously to what happens for the answer package, ADLB_GET_RESERVED_TIMED is

called

call ADLB_GET_RESERVED_TIMED (rwp, i_handle, qtime, ierr)

with rwp appearing as a first argument instead of rap.

Using the retrieved work package, the actual calculation of the sum rule is performed for

a single value of q

call o_em_wk_q(rwp%iptb,rwp%if2,rwp%actf,rwp%q,rwp%qh,rwp%weight, &

& rwp%rpart0,rwp%cfl,cfdl,rwp%cfr,cfdr,rap%fxtt_q,rap%fxll_q, &

& iqq,iqh,.false.)

If the work package answer is addressed to a different ADLB slave from the one that

made the computation, myid .ne. i_answer, then the answer needs to be put in the

work pool

call ADLB_PUT (rap, respon_ans_len, i_answer, myid, adlbwp_respon_ans,&

& i_prior+1000, ierr)

Otherwise, the answer package is not put in the pool and the energy slave returns in the

subroutine o_em_wk.

• master_get_work

The main program continuously calls the subroutine master_get_work to look for work

packages. These can be of any type (except answers). The appropriate subroutine is

called to process the work and then master_get_work is used on each slave, again.

V. TUNING THE CODE AND PERFORMANCE ON MIRA

The conversion of the GFMC code from Intrepid to Mira did not show particular difficulties.

The ADLB performance turned out to be even better on Mira than on Intrepid without

modifications. Moreover, OpenMP scales well with the number of threads.

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

149

Figure 2. OMP strong scaling performance for 12C GFMC calculation with 2048 configurations, 1024

MPI ranks: total wall time comparison.

A. OpenMP (OMP) strong scaling

First of all let us analyze the OMP scaling of the total wall time required to do a GFMC

calculation for 2048 configurations of the 12C ground state using 1024 MPI ranks, displayed

in Figure 2. The different colours indicate the different number of ranks per node and hence

the total number of nodes. As expected, the single rank per node case exhibits the best OMP

scaling, as there are no threads associated with different ranks competing for memory on the

same node. Due to the competition among the threads belonging to the same rank, the scaling

saturates at about 20 threads, remaining fairly above the ideal case, represented by the dashed

curve, where the wall time decreases as 1/(#OMP threads).

Since in every node there are at most 64 threads, keeping fixed the number of MPI ranks

and increasing the number of threads results in a larger node usage. Thus, a more meaningful

scaling test consists in studying the number of configurations processed by a single node with

different combinations of ranks per node and threads per rank, keeping in mind that the

product of these two quantities cannot exceed 64. The results of Fig. 3 show that, with the

new driver installed in February 2013, the most efficient configuration is 8 ranks per node, 8

threads per rank. In this case a performance of 6.4 GFLOPS per node (about 3.1% of the

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

150

Figure 3. OMP strong scaling performance for 12C GFMC calculation with 2048 configurations, 1024

MPI ranks: number of configurations per node per minute.

peak) is achieved. Is should be noticed that with the former version of the driver using more

than 6 threads per rank resulted in worse performances. Finally, the limit of 8 ranks per node

is dictated by memory requirements.

An analogous analysis, shown in Fig. 4 has been performed for the sum rules calculation

with 32 MPI ranks. Due to the large size of the wave function derivative, not more than 1 rank

per node can be used in the calculation; however if the derivatives are disregarded, 4 ranks

per node can be used.

Because of large loops over the spin and isospin indices of the wave functions, OMP keeps

improving up to 64 threads, although very slowly beyond 32 threads. However, as for the

energy, while the minimum total wall time consumption is obtained with 1 rank per node and

64 threads per rank, the highest efficiency of about 12 GFLOPS per node is achieved with 4

ranks per node and 16 threads per rank.

B. ADLB weak scaling

The ADLB library was not significantly exercised in the results shown in the former section,

as the number of MPI ranks was limited to 1024. By looking at Fig. 5, in which the total wall

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

151

Figure 4. OMP strong scaling performance for sum rule calculation with 2 values of momentum

transfer. The total wall time (left panel) and the case/node per hour (right panel) for 32 MPI ranks

are shown.

Figure 5. ADLB weak scaling performance for energy calculation with 2 configurations per rank:

total walltime

time used for computing 2 configurations per MPI rank is plotted against the number of MPI

ranks, it is possible to appreciate the improvements brought about by ADLB. A good scaling,

fairly close to the ideal case of a straight and horizontal line, is shown up to 260,000 ranks,

524,688 cores, 1,572,864 threads. As for the OMP scaling, it is worth analyzing the scaling of

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

152

the configurations per node per minute, displayed in Fig. 5. Despite the smallest total wall

time being consumed by using 4 ranks per node and 12 threads per rank, the most efficient

configuration is the one with 8 ranks per node and 6 threads per rank.

Finally, it is interesting to notice that a Mira node is almost ten times faster than an Intrepid

one.

Figure 6. ADLB weak scaling performance for energy calculation with 2 configurations per rank:

number of configurations per node per minute

VI. FIRST SUM RULE RESULTS

In Fig. 7 we show the preliminary results for the sum rule of the transverse electromag-

netic response of 12C, obtained neglecting the derivatives of the wave functions. It has been

obtained by averaging over ∼ 1000 configuration for each of the 5 imaginary time values,

τ = 0.8, 0.18, 0.28, 0.40, 0, 48, after the constrained path has been released.

The two-body currents have a prominent effect, relatively much larger than the difference

between GFMC and VMC calculations, that at this level of accuracy, provide compatible

results.

Many more configurations are needed for quantities defined in terms of differences between

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

153

Figure 7. 12C transverse sum rule for the electromagnetic transverse response.

large Monte Carlo estimates, such as the longitudinal Coulomb sum rule

SL(q) =
1

6[Ge
p(q

2)]2

[
〈Ψ0|ρ(q, ωel)ρ(q, ωel)|Ψ0〉 − 〈Ψ0|ρ(q, ωel)|Ψ0〉2] (12)

where Ge
p(q

2) is the proton electric form factor. We currently are in the production phase, and

will soon have the necessary statistical significance, hopefully allowing us to predict the data

of a recent Jefferson Lab experiment which is nearing publications.

This is not yet the end of the story: the subroutines for the sum rules of the weak response

have been presently developed by the Los Alamos group and already tested in VMC calculations

of small nuclei. We plan to implement them in the GFMC code and tune them for Mira in the

very next months.

[1] Omar Benhar, Donal Day, and Ingo Sick. Inclusive quasielastic electron-nucleus scattering. Rev.

Mod. Phys., 80:189–224, Jan 2008.

[2] G. Shen, L.E. Marcucci, J. Carlson, S. Gandolfi, and R. Schiavilla. Inclusive neutrino scattering

off deuteron from threshold to GeV energies. Phys.Rev., C86:035503, 2012.

[3] Steven Pieper. Monte carlo calculations of nuclei. In Jesùs Navarro and Artur Polls, editors,

Microscopic Quantum Many-Body Theories and Their Applications, volume 510 of Lecture Notes

in Physics, pages 337–357. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0104530.

[4] Ralph M. Butler Ewing L. Lusk, Steven C. Pieper. More scalability, less pain: A simple pro-

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

154

gramming model and its implementation for extreme computing. http://www.cs.mtsu.edu/

~rbutler/adlb/.

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

155

AbInitioC12 esp ALCF-2 Early Science Program Technical Reports

156

NAMD esp ALCF-2 Early Science Program Technical Reports

16 NAMD - The Engine for Large-Scale Classical MD Sim-
ulations of Biomolecular Systems Based on a Polarizable
Force Field

PI: Benoit Roux (University of Chicago, Argonne National Laboratory)

Project Summary

Biology, at the atomic and molecular level, is governed by complex interactions involving a large
number of key constituents, including water, ions, proteins, nucleic acids, and lipid membranes. The
goal of this project is to develop new technologies to simulate virtual models of biomolecular systems
with an unprecedented accuracy. Large-scale molecular dynamics (MD) simulations based on atomic
models play an increasingly important role in the life sciences. Success with MD simulations of large-
scale biomolecular systems hinges on the accuracy of the potential function and the efficiency of
the dynamic propagation algorithm for adequate sampling of motions.

This project is focused on the program NAMD, currently one of the most optimal and efficient
programs to carry out classical simulations of biomolecular systems. To enhance the sampling
efficiency beyond that of brute-force MD simulations, researchers propose to implement several
advanced strategies based on multiple copies such as replica-exchange MD (REMD) and/or Hamil-
tonian tempering (H-REMD). Because the quality and accuracy of the potential function (force
field) is critical for meaningful MD simulations, the researchers will implement a new force field
that incorporates the effect of induced polarization. They will carry out simulations covering a wide
range of canonical and non-canonical DNA and RNA molecules for which a wealth of experimental
data is available. In the case of the structures determined via X-ray crystallography, simulations
will be performed in solution as well as in the crystal environment allowing for the impact of crystal
contacts on the simulated structure and dynamics. The researchers will examine the performance of
the new force field for a suite of key problems where induced polarization is anticipated to be crit-
ical. Work will include calculation of pKa shifts in selected proteins, redox potentials, cooperative
binding of Ca2+ to the EF-hands in calbindin D9k, and interfacial potentials of lipid monolayers
and bilayers.

Report originally released as ANL/ALCF-ESP-13/14

157

NAMD - The Engine for Large-Scale Classical MD Simulations
of Biomolecular Systems Based on a Polarizable Force Field

PI: Benoit Roux
ESP Postdoc: Yun (Lyna) Luo
Catalyst: Wei Jiang

ALCF Early Science Program Technical Report – April 2013

Large-scale Molecular dynamics (MD) simulation based on atomic models provide a
powerful tool to understand the structure-dynamics-function relationships of important
biological systems. Recent advances in computing power, especially in supercomputer,
make MD simulation more and more popular in modern scientific community. However,
the power of classical MD simulation has been limited mainly by the accuracy of the
potential energy function and the efficiency of the dynamic algorithm enabling the
adequate configurational sampling. This Early Science Project is aimed to make MD
simulation method go beyond current limit using the leadership supercomputer Blue
Gene/Q Mira. To address the issue of potential energy accuracy, classical Drude
oscillator is developed to take into account the electronic polarizability in molecular
systems. In order to develop and test the Drude polarizable force field for biomolecules,
extensive MD simulations of typical polypeptides, lipids are needed. This requires
efficient dynamic sampling algorithm that allows fast sampling. The sampling issue can
be addressed by using advanced strategies based on multiple copies in order to enhance
the sampling efficiency of brute-force MD. One such method is called replica-exchange
MD (REMD).

In the replica-exchange MD (REMD) approach, several copies of the molecular system
are simulated concurrently under slightly different conditions, e.g., different temperatures
or Hamiltonians. Attempts are periodically made to exchange parameters between
different replicas using a Metropolis Monte Carlo acceptance criterion, thus insuring
Boltzmann-weighted statistics. Such multiple copy algorithms (MCAs) have been shown
that enhance the sampling and free energy convergence.

NAMD is currently one of the most optimal and efficient programs to carry out classical
MD simulations of biomolecular systems. NAMD is built on top of charm++ that obtains
adaptive overlap of communication and computation. However the previous
implementation of REMD on NAMD is driven by external job script, which can only be
used on small clusters. This limits the use of REMD algorithm on the leadership
supercomputer platform. The real power of REMD relies on the use large number of
replicas (up to thousands of replicas), and high frequency of exchange (>1 ps-1). Such
requirement is beyond the reach of small computer clusters. It has become essential to
develop extremely scalable MPI level REMD scheme to make full use of leadership
supercomputers evolving toward multi-millions of cores.

The standard Charm++ was enhanced to support parallel/parallel simulations with
multiple copies within a single program execution. The implementation of multiple

NAMD esp ALCF-2 Early Science Program Technical Reports

158

copies is completely at the MPI level. In the MPI machine layer of Charm++,
MPI_Comm_split function splits the default MPI_COMM_WORLD into multiple local
sub-communicators, each of which runs an independent Charm++ and NAMD instance.
A secondary set of MPI communicators, each spanning like ranks within the local
(sub)communicators, allows exchanges between the independent NAMD instances. This
exchange communication is implemented through new APIs in both Charm++ converse
layer and the NAMD Tcl scripting interface to provide a user-friendly interface. The
breakthrough of such implementation is shown in three aspects: Scalability, Generality
and Flexibility, Easy Post Processing.

I. Scalability on Blue Gene/Q Mira

MPI parallel/parallel multiple copy algorithm in NAMD is much more efficient than the
old Tcl server and socket connections driving a separate NAMD process for every
replica. Because NAMD program does not need to be restarted after each exchange, and
the communication overhead is minimized by swapping parameters (temperature, lambda
or biasing potential in ColVars) instead of coordinates (as in CHARMM), there is almost
no performance lost even with large number of replicas and high exchange frequencies.

Pthread is implemented in charm++ so NAMD runs well in SMP mode on BG/Q Mira.
The machine layer of charm++ interfaces with PAMI. QPX is implemented in the
pairwise force/energy calculation of NAMD with xlc compiler intrinsic functions.
Multithreaded mpi-smp version Charm++ 6.4.0 is built for running REMD

Figure 1 gives benchmarks for a multiple copies run with 1024 replicas. The calculation
was carried out on BG/Q Mira using NAMD 2.9 with Charm++ 6.4.0 enhanced to
support extremely scalable MCAs simulations. The REMD simulation scales up to 32
racks on BG/Q (i.e., 195 atoms/core) using16 MPI ranks per node and 2 working threads
and 1 communication thread per rank.

NAMD esp ALCF-2 Early Science Program Technical Reports

159

II. Generality and Flexibility

To apply REMD and its variant, one usually needs to change the source code of some
molecular dynamics (MD) simulation packages, which may not be so easy for general
users. Here, we tested that a variant of REMD algorithms (T-REMD, FEP/REMD,
US/REMD and REXAMD) could be performed by a standard NAMD2.9 package
without touching the source code. Through the Tcl script user can define which parameter
(temperature, lambda or biasing potential in ColVars) to exchange and which acceptance
criterion to apply. Both NVT and NPT ensemble can be applied to REMD. All of the
topology is contained in the user-defined replica_neighbors Tcl proc. User can define a
list of exchange neighbors for a given replica and define any exchange pattern on any
topology. Thus it works for any-dimensional sampling in any-shaped regions.

III. Easy Post Processing

Replica exchanges and energies are recorded in the .history files and the biasing potential
applied in US/REMD is recorded in colvars.traj files. sortreplicas, found in the namd2
binary directory, is a program to un-shuffle replica trajectories to place the same
temperature or order parameter frames in the same file.

NAMD esp ALCF-2 Early Science Program Technical Reports

160

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

17 Global Simulation of PlasmaMicroturbulence at the Petascale
& Beyond

PI: William Tang (Princeton Plasma Physics Laboratory, Princeton University)

Project Summary

As the current global energy economy focuses on alternatives to fossil fuels, there is increasing
interest in nuclear fusion, the power source of the sun and other stars, as an attractive possibility
for meeting the worlds growing energy needs. Properly understanding turbulent transport losses,
which demands the application of computational resources at the extreme scale, is of the utmost
importance for the design and operation of future fusion devices, such as the multi-billion dollar
international burning plasma experiment known as ITER a top priority investment in the Depart-
ment of Energys Office of Science. This Early Science project will achieve significantly improved
understanding of the influence of plasma size on confinement properties in advanced tokamak sys-
tems such as ITER. This will demand a systematic analysis of the underlying nonlinear turbulence
characteristics in magnetically confined tokamak plasmas that span the range from current scale
experiments, which exhibit an unfavorable “Bohm-like” scaling with plasma size to the ITER scale
plasma that is expected to exhibit a more favorable “gyro-Bohm” scaling of confinement. The “sci-
entific discovery” aspect of such studies is that while the simulation results can be validated against
present-day tokamaks, there are no existing devices today that are even one-third of the radial
dimension of ITER. Accordingly, the role of high physics fidelity predictive simulations takes on an
even more important roleespecially since the expected improvement in confinement for ITER-sized
devices cannot be experimentally validated until after it is constructed and operational. In dealing
with this challenge, researchers will deploy GTC-P and GTS, which are highly scalable particle-in-
cell gyrokinetic codes used for simulating microturbulence-driven transport in tokamaks.

Report originally released as ANL/ALCF-ESP-13/15

161

Optimizing the GTC Code for Blue Gene/Q

ALCF-2 Early Science Program Technical Report

William Tang,1, 2 Stephane Ethier,1 Bei Wang,2 Timothy Williams,3

Khaled Ibrahim,4 Kamesh Madduri,5, 4 Samuel Williams,4 and Leonid Oliker4

1Princeton Plasma Physics Laboratory
2Princeton University

3Argonne Leadership Computing Facility, ANL
4Lawrence Berkeley National Laboratory

5The Pennsylvania State University

I. SCIENCE

Figure 1 shows, schematically, the tokamak device, whose intent is to magnetically confine
a high-temperature plasma and produce energy through nuclear fusion. The confined plasma,
shown in pink, is toroidal in shape. For several decades now, scientists have been studying and
improving these devices, working toward a successful fusion ignition—creating a burning plasma—
and sustaining it to generate more power than it took to create it. The next big experimental step
will be the International Thermonuclear Experimental Reactor, a twenty billion dollar burning
plasma device under construction in France, involving the partnership of seven governments.1 The
human in Figure 2 illustrates the scale of ITER.

The magnetic field in the tokamak confines the plasma—ions, electrons, and their heat and
momentum. Various kinds of instabilities in the plasma work against that confinement. Turbulent
fluctuations can cause transport of particles and energy across the magnetic field lines, toward
the outside of the plasma, where it is lost. Loss of plasma and energy, of course, works against
confinement and successful fusion. This microturbulence is something the fusion community needs
to understand and control.

In past and present tokamaks, measurements have shown that the transport of energy and parti-
cles caused by microturbulence depends on the size of the tokamak—larger means more transport.
This is Bohm scaling2. However, theoretical arguments predict that beyond a certain size, which
ITER will be beyond, the size dependence goes away, leading to relatively smaller turbulent losses
and thus better confinement. This is GyroBohm scaling3. The key target of this ESP project is to
simulate microturbulent transport for devices of different sizes up through ITER size, and validate
and understand GyroBohm scaling.

II. NUMERICAL METHOD

To study low-frequency microturbulence for magnetically confined plasmas, we start from the
Vlasov equation in six-dimensional phase space for each particle species. In the gyrokinetic
approach4, by removing the high frequency motion of the particles that is not important to turbu-
lent transport, we reduce the six-dimensional equation to a five-dimensional Vlasov equation:

dfα
dt

=
∂fα
∂t

+
dR

dt
· ∂fα
∂R

+
dv‖
dt

∂fα
∂v‖

= 0, (1)

where fα(R, v‖, µ) is the five-dimensional phase space distribution function for species α in the
gyrocenter coordinates R and v‖ is the velocity parallel to the magnetic field.

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

162

FIG. 1: Tokamak. (Source: EFDA-JET)

FIG. 2: ITER. Human figure toward lower right corner indicates scale. (Image credit: c© ITER
Organization, http://www.iter.org/)

Since plasmas are charged, we must also solve the relevant electromagnetic field equations. In
the electrostatic gyrokinetic regime we’re studying, the full Maxwell equations reduces to a single
gyrokinetic Poisson equation.

In this project, we solve gyrokinetic Vlasov-Poisson system of equations using the Particle-In-
Cell (PIC) approach.4 Put simply, the ions are represented by a set of particles having the shape of

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

163

charged rings perpendicular to the magnetic field, having radius equal to the ion gyroradius. The
electric field is represented on a grid, through which the particles move continuously. The field
is interpolated from the grid to each of four points on the gyro-orbit, which then is averaged to
get the force that moves the particles (the particle push). Given the position of the particles, the
electric charge of each particle is deposited onto a charge density array defined on the grid (one
particle contributes to a small neighborhood of grid points around each of the 4 gyro-orbit points
on the ring. Given the charge density on the grid, the nonlinear gyrokinetic Poisson equation is
solved using a custom solver. The gradient of this potential field gives the electric field, which is
then used to push the particles again, and so on. Figure 3 illustrates the process for a time step. In
the work discussed here, the electrons in the plasma are treated as adiabatic, meaning they follow
a simple Boltzmann response function (i.e., not treated as particles).

FIG. 3: Timestep elements for self-consistent evolution of plasma particles and electrostatic field. Push:
interpolate electric field to positions of 4 gyro-orbit points of particles, use these to compute force and
move particles. Shift: Send and receive particles that move between separate subdomains in the parallel
decomposition of particles and fields. Charge: for 4 points on gyro-orbit of each particle, accumulate
fractional charge density onto a neighborhood of grid points. Smooth: Smooth charge density and potential
with a filter on the grid. Poisson: Solve gyrokinetic Poisson equation to get potential on the grid.

The grid geometry we use approximates the toroidal cross section as circular. Grid lines the long
way around the torus follow magnetic field lines, which wind around helically. Figure 4 illustrates
the coordinates, geometry, and several particles. The particles are rings with the 4 gyro-orbit
points indicated, along with the neighborhood of grid points used to accumulate the charge density
from or interpolate the force (electric field) from those 4 points. Not shown is the interpolation
along the zeta direction. Psi is the radial coordinate, theta is the poloidal angle, and zeta is the
toroidal coordinate.

III. CODES

The implementations we discuss here derive from the Gyrokinetic Toroidal Code (GTC)5. The
variants we use and compare are two implementations of GTC-P, an electrostatic code with a
circular cross section. Most newer tokamaks, and ITER, have D-shaped plasma cross sections, but

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

164

FIG. 4: An illustration of the 3D toroidal grid (top), a cross section (lower left), and the 4-point gyrokinetic
averaging scheme employed in the charge deposition and push steps (lower right).

the effects of that geometry are not necessary to the basic physics we’re investigating. When the
ESP project started, until recently, we used a Fortran implementation, which we’ll call GTC-P
Fortran. More recently, we have moved to a new, from-scratch implementation in C, called GTC-P
C.

IV. PARALLELIZATION

The original GTC code used 3 levels of parallelization:

1. One-dimensional domain decomposition in the toroidal (zeta) direction. Because of the
physics of the plasma in the regime of interest, and because of the efficiency of the magnetic-
field-line-following grid, we need only 64 grid zones toroidally, even for the largest problems
we run. This limits parallelism in this dimension to 64; the MPI ranks are divided into a
maximum of 64 subsets, one per toroidal subdomain.

2. Particle decomposition. Within each toroidal subdomain, the particles in that domain are
distributed among the MPI ranks. Each rank maintains its own copy of the whole sub grid
for the subdomain—all the poloidal and radial grid points, usually on two poloidal planes

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

165

bounding one toroidal grid zone. For the charge deposition from particle gyro-orbit points
to the grid, it is necessary to use an MPI Allreduce to sum up the contributions from all
the MPI ranks’ local grid copies.

3. Thread parallelism. For particle and grid operations within local toroidal subdomains, we
use OpenMP to parallelize relevant loops over both particles and grid points.

More recently, we added an additional level of MPI parallelism: radial decomposition. Radial
domain decomposition begins by partitioning a poloidal plane to non-overlapping domains with
equal area. Assuming particle density is uniform, this partitioning divides all particles in one
toroidal section equally across multiple processes. Next, the non-overlapping domain is extended
to line up with the mesh boundary in the radial direction (shown as valid grid in Figure 5). Finally,
the valid grid is extended on each side with ghost cells accounting for charge deposition with 4-point
approximation (shown as local grid in Figure 5). In general, 3 to 8 ghost cells are sufficient. The
2D domain decomposition is implemented with MPI using two different communicators: a toroidal
communicator and a radial communicator. The particles move between domains with nearest-
neighbor communication in a circular fashion. Since the number of particles moving in the radial
dimension is much smaller than the particles moving in the toroidal dimension, radial partitioning
results in minimal communication. Within radial subdomains, we still allow partitioning of particles
among more than one MPI rank.

max. gyroradius

valid grid

local grid

4 pts of charge
deposition of a particle

theta

psi

FIG. 5: A geometric radial partitioning with extended ghost zones. The valid region contains guiding centers
for the MPI rank owning the radial subdomain. The full local region includes a number of ghost zones based
on the maximum gyroradius of the particles (constant, typically 8, and the same for all radial subdomains).

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

166

V. KERNELS

Figure 3 shows 6 basic kernels in GTC-P, which can be grouped into 4 groups:

Charge Deposit charge from the 4 gyro-orbit points for each particle onto a neighborhood of grid
points (neighborhoods are up to 32 grid points for each gyro-orbit point). This scatter-add
operation must be managed when multiple ranks and/or threads are updating the same grid
zones—either through using locks or using separate local copies of the grid, which then must
be summed across ranks and/or threads.

Poisson/Field/Smooth Solve the gyrokinetic Poisson equation, compute the electric field, and
smooth the charge density and potential fields. These are all grid-only operations. Because
of the physics modeled (Debye shielding term much smaller than ion polarization term), it is
sufficient to solve only independent 2D Poisson equations, one for each poloidal-radial plane.

Push Gather the force at each gyro-orbit point for each particle and use it to compute the force
and advance the particle’s phase space coordinates. The gather operation is the inverse of
the scatter-add operation in the charge kernel. Here, we’re only reading from grid arrays,
so there is no locking or synchronization needed.

Shift As particles (that is, their gyro-orbit centers) move through space, they will cross subdomain
boundaries into regions owned by other MPI ranks. they must be buffered and sent to the
appropriate neighboring rank.

VI. OPTIMIZATIONS

Since the beginning of the Early Science Program, we have worked on two basic types of
optimization of GTC-P in preparation for running on Mira:

1. Generic optimizations in single-core computations, parallel decomposition and message pass-
ing, and OpenMP threading.

2. IBM Blue Gene/Q specific optimizations

Here we will briefly touch on the generic optimizations, then discuss the BG/Q-specific opti-
mizations. The full set of optimizations have been made only in the C version, GTC-P C, though
any of them could also have been made to GTC-P Fortran. We discuss the performance impact of
the optimizations in section VII.

A. Generic Optimizations

GTC-P Fortran used arrays of structures for particle data (each element stores all data quan-
tities carried by a particle, including extras to handle two time levels in time integration). One
optimization in GTC-P C is to change this to structures of arrays, to improve data locality of
access when streaming through all the particles. This optimization benefits SIMD architectures in
generally, including BG/Q and also GPGPU machines.6–8

As discussed in section III, GTC-P Fortran required each MPI rank to store a complete copy of
the 2D radial-poloidal grid. The radial decomposition discussed there means that storage can be

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

167

reduced as needed for optimal performance on a given architecture by tuning the radial decompo-
sition.

To increase data locality and improve cache hits on grid accesses for the charge and push
kernels, we periodically sort particles into radial bins. This tends to improve cache reuse for data
loaded from the grid arrays. The binning algorithm is multithreaded.6 Locality can further be
improved by accounting for the 4 gyro-orbit points associated with each particle (charged ring).
We bin the coordinates of the gyro-orbit points radially, using a preliminary pass through the
particles to store the 4 points. The second pass through all these binned points only touches field
grid points in a band of narrow width radially; compared to a gyro-radius-wide band of points if
you are going through all 4 points for a single particle. In this way, data locality and cache reuse
is improved. We use this two-level binning for the charge kernel; it doesn’t improve performance
on present-day machines in the push kernel.

We have also used loop-fusion to improve computational intensity. We fused OpenMP loops
where possible to minimize thread creation overhead. We flattened 2D and 3D grid arrays to 1D
arrays. Additionally, we pre-allocated memory buffers that are used for temporary storage in every
time step.

Grid-based subroutines in GTC-P included nested loops with psi is the outer loop and theta
is the inner. Near the center radially, the number of theta grid points changes significantly (as a
percentage) with each increasing radial grid level. To mitigate load imbalance in multithreading
these loop nests, we flattened the nest into a single loop over all grid points. Finally, GTC-P Fortran
used version 2.3.3 of the PETSc library9–11, which is not multithreaded, to solve the gyrokinetic
Poisson equation; we replaced this with a multithreaded, hand-coded solver in GTC-P C. (N.B.:
Newer versions of PETSc have added thread support.)

B. Blue Gene/Q Specific Optimizations

Many of the generic optimizations discussed previously led to improvement in GTC-P perfor-
mance on Mira. The general goal was scaling up to much higher levels of concurrency, which is
what we got with Mira, both in total number of cores (∼ 750 million)and in total number of threads
(4 hardware threads per core).

One BG/Q optimization that is important when running on large numbers of nodes is the
mapping of MPI ranks onto the physical nodes and cores on the machine. IBM defines a naming
convention for the communication dimensions in the torus: ”ABCDET” means that MPI ranks
are mapper to the system in a particular order: Each letter is associated with a dimension in the
5D torus (with ”T” being an index across the MPI ranks (processes) in a single node).12 The last
dimension (T in this example) is fastest varying, so, if running with one MPI rank per node:

• MPI rank 0 is assigned to coordinates 〈0, 0, 0, 0, 0, 0〉

• MPI rank 1 is assigned to coordinates 〈0, 0, 0, 0, 1, 0〉

• MPI rank 2 is assigned to coordinates 〈0, 0, 0, 0, 2, 0〉

•

The second-to-last dimension (E in this example) is the next-fastest varying, and so on. The high-
est value for each dimension depends on the number of nodes in the partition you’re using within
the machine. For anything 512 nodes or larger, you have your own isolated partition on BG/Q,
generally itself a torus. The optimized GTC-P C code uses a two-dimensional topology for point
to point communication, where the first dimension (toroidal dimension) has fixed dimensionality

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

168

64. On a BG/Q system with 5D torus network, we can thus group two or three torus dimensions
together to match 64 for an optimized placement layout by setting the environment variable RUN-
JOB MAPPING. Table I shows some examples of configurations and groupings when we run the
application with one process per node. This explicit process mapping leads up to a 45% communi-
cation improvement for particle shift in the toroidal dimension using 8 racks (8192 nodes) of Mira.

Configuration Torus Shape Grouping

256 nodes (1/4 rack) 4 2 4 4 2 ABCE×D×T

512 nodes (1/2 rack) 4 4 4 4 2 ABC×DE×T (default)

1024 nodes (1 rack) 4 4 4 8 2 ABC×DE×T (default)

2048 nodes (2 racks) 4 4 4 16 2 ABC×DE×T (default)

4096 nodes (4 racks) 4 4 8 16 2 ACE×BD×T

8192 nodes (8 racks) 4 4 16 16 2 AC×BDE×T

TABLE I: Process Mapping on BG/Q. Not shown in the torus shape are the on-node“T” dimensions, whose
maximal value depends on the chosen number of MPI ranks per node.

As BG/Q is a highly multithreaded architecture (up to 64 OpenMP threads per MPI rank), effi-
cient use of OpenMP is essential for attaining high performance. Some of the generic optimizations
in section VI A, especially those for grid-based calculations, improved the OpenMP performance
and scalability. It is very important to be aware of environment variables controlling thread behav-
ior on BG/Q. The settings BG SMP FAST WAKEUP=YES and OMP WAIT POLICY=active
make threads use an atomic-based spin barrier instead of a slower sleep-based approach. For some
of the grid-based routines, these settings resulted in a 10× speedup when using 64 threads per MPI
rank.

VII. PERFORMANCE

Here we present some performance measurements on a set of different problem sizes. These
are the four problem sizes used to study the Bohm-to-GyroBohm scaling transition discussed in
section I. The parameters are shown in Table II; the number of particles is based on the micell
parameter, which is the number of particles per grid cell. Grid sizes A and B correspond to the
majority of existing tokamaks in the world, C corresponds to the JET tokamak, the largest device
currently in operation [10], and D corresponds to to ITER.

Grid Size A B C D

mpsi 90 180 360 720

mthetamax 640 1280 2560 5120

mgrid (grid points per plane) 32449 128893 513785 2051567

chargei grid (MB) 0.5 1.97 7.84 31.30

evector grid (MB) 1.49 5.90 23.52 93.91

Total particles micell=100 (GB) 0.29 1.16 4.64 18.56

TABLE II: The GTC numerical settings for different plasma sizes. The grid and particle memory requirement
are for one toroidal domain only. A simulation typically consists of 64 toroidal domains. mpsi and mthetamax
are the number of grid points in the radial (psi) and poloidal (theta) coordinates.

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

169

A. Strong Scaling

First, we consider strong scaling—running a fixed problem size on an increasing sequence of
compute nodes. We denote the problem as D100. The problem size is D (ITER size), and we use the
typical production setting of 100 particles per cell. (This is typical when running adelta-f simulation,
where the particles represent only the difference of the phase space distribution with respect to a
constant Maxwellian background distribution.) In the toroidal direction, we use ntoroidal=64 grid
cells. This is distributed among 64 sets of MPI ranks, so each toroidal subdomain has two poloidal
planes having 2 million grid points each. This global simulation is 130 million grid points and 13
billion particles.

For the first strong scaling test, we increase the number of radial partitions from 32 to 512. We
run on Mira with 4 MPI ranks per node and 16 OpenMP threads per rank; the simulations scale
from 512 to 8192 nodes (8192 to 131,072 cores). Table III shows the results. The GTC-P C code
uses the optimizations detailed in section VI, which combine to give a substantial improvement in
overall runtime (∼ 2× on 32768 nodes) and a substantial improvement in parallel efficiency. Note
that these runs did not use particle decomposition; this allows strong scaling up to even larger
node counts.

MPI Radial GTC-P Parallel GTC-P Parallel Speedup

Ranks Partitions Fortran Efficiency C Efficiency

2048 32 9.282 1.0 5.275 1.0 1.76

4096 64 4.685 0.99 2.651 0.99 1.76

8192 128 2.536 0.92 1.373 0.96 1.85

16384 256 1.453 0.80 0.726 0.91 2.00

32768 512 0.873 0.60 0.414 0.80 2.21

TABLE III: Wall-clock time (sec) for one time step with strong scaling in radial domain decomposi-
tion for D100 using GTC-P Fortran and GTC-P C. In all experiments, we use 4 processes/node and 16
threads/process. GTC-P C attains a 2× speedup due to our optimizations.

For the second strong scaling test, we consider scaling with respect to the number of OpenMP
threads per MPI rank. Table IV shows the results. We hold the number of MPI ranks (processes)
constant at 32768. As we increase from 2048 nodes to 32768 nodes by doubling, the amount of
available hardware thread concurrency doubles, since we’re reducing freeing up more cores. With
perfect thread scaling, the run times would halve each step. For the D100 problem, the parallel
efficiency at the largest number of nodes has dropped to 59%.

D100: 13 Billion particles, 32768 total processes, with 400556 particles per process

Nodes Processes×Threads Charge Push Shift t Shift r Binning Poisson Field Smooth Total Eff.

2048 16×4 0.6691 0.4569 0.3073 0.0326 0.0602 0.0197 0.0050 0.0069 1.558 1.0

4096 8×8 0.3397 0.2313 0.1536 0.0169 0.0340 0.0078 0.0027 0.0047 0.791 0.99

8192 4×16 0.1822 0.1178 0.0779 0.0094 0.0167 0.0044 0.0021 0.0039 0.414 0.94

16384 2×32 0.1110 0.0591 0.0722 0.0063 0.0087 0.0033 0.0022 0.0039 0.267 0.73

32768 1×64 0.0709 0.0298 0.0487 0.0050 0.0039 0.0022 0.0018 0.0035 0.166 0.59

TABLE IV: Strong scaling of threads per process for D100 using GTC-P C on Mira. The time is the
wall-clock time (sec) for one time step. We use 64-way toroidal and 512-way radial partitioning.

For the third strong scaling test, we look at how the optimizations made in GTC-P C improve
fine-grained parallelism with respect to GTC-P Fortran. Table V breaks down the relative perfor-

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

170

mance improvement by numerical kernel. The problem and set of runs are the same as in Table
IV. The biggest speedups are in the grid-based kernels, because of the loop flattening and other
optimizations in section VI. The speedups in charge and push are mainly because of binning,
and avoiding synchronization in charge. Both the Fortran and C codes employ the private grid
replication strategy on a per thread basis for charge deposition. However, GTC-P Fortran uses a
critical section to merge charges from all copies private of threads. This serial portion of
the code can be easily avoided by carefully reorganizing the summation order.

Nodes 2048 4096 8192 16384 32768

Thread/Process 4 8 16 32 64

charge 1.14× 2.06× 1.95× 3.52× 8.80×
push 1.71× 1.71× 1.69× 1.72× 1.70×
shift 1.37× 2.05× 2.23× 2.23× 2.85×

poisson 6.84× 12.05× 13.57× 13.55× 16.45×
field 41.02× 35.74× 28.43× 20.32× 20.11×

smooth 28.87× 23.87× 21.72× 16.46× 16.40×
overall speedup 1.43× 1.78× 2.11× 2.87× 5.56×

TABLE V: Speedup (GTC-P C vs GTC-P Fortran) on D100 problem by kernels with different threads per
process. The total processes (32768), the number of particles in each process (400556) and the number of
radial partitions (512) are fixed. Shift includes shift t, shift r and binning in Table IV.

B. Weak Scaling

Next, we consider weak scaling—running a sequence of problem size on an increasing sequence of
compute nodes, keeping the amount of work per node constant. We use the four problem sizes used
to study the Bohm-to-GyroBohm scaling transition discussed in section I. We use 100 particles
per cell, one MPI rank per node, and 64 threads per rank.

The parallelism in GTC is denoted as three parameters: the number of toroidal partitions
(ntoroidal), the number of radial partitions (nradiald), and the number of particle partitions in
one spatial subdomain (npe radiald=npartdom/nradiald, where npartdom is the total number of
particle partitions in one toroidal partition). Table VI shows the settings for the weak scaling
study. Figure 6 shows the results, comparing GTC-P Fortran and GTC-P C. Some efficiency loss
is still seen for GTC-P C, but keep in mind that here we are using 2/3 of Mira: 524,288 cores.

Problem Size Nodes ntoroidal npartdom nradiald npe radialid

A 512 64 8 1 8

B 2048 64 32 1 32

C 8192 64 128 1 128

D 32768 64 512 1 512

TABLE VI: Parameters for weak scaling study

Acknowledgments

Dr. Wang was supported by the NSF OCI-1128080/G8 Initiative: G8 Research Councils Initiative on
Multilateral Research Funding. Authors from Princeton Plasma Physics Laboratory were by the DOE

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

171

 0

 0.2

 0.4

 0.6

 0.8

 1

 512 2048 8192 32768

w
al

l c
lo

ck
 ti

m
e

pe
r s

te
p

nodes

GTC-P Fortran
GTC-P C

A	 	 B	 	 C	 D	

FIG. 6: Weak scaling from A to D size plasmas using GTC-P Fortran and GTC-P C on Mira.

contract DE-AC02-09CH11466. Authors from Lawrence Berkeley National Laboratory were supported by
the DOE Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231.
Dr. T. Williams was supported by the DOE contract number DE-AC02-06CH11357. This research used
resources of the Argonne Leadership Computing Facility, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-06CH11357. This research used resources of the
National Energy Research Scientific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

1 Y. Shimomura, R. Aymar, V. Chuyanov, M. Huguet, R. Parker, and ITER Joint Central Team. Iter
overview. Nuclear Fusion, 39(9Y):1295, 1999.

2 Andrew Guthrie and Raymond Kornelious Wakerling. The characteristics of electrical discharges in
magnetic fields, volume 5. McGraw-Hill, 1949.

3 G. Manfredi and M. Ottaviani. Gyro-Bohm Scaling of Ion Thermal Transport from Global Numerical
Simulations of Ion-Temperature-Gradient-Driven Turbulence. Physical Review Letters, 79(21):4190–4193,
November 1997.

4 W.W Lee. Gyrokinetic particle simulation model. Journal of Computational Physics, 72(1):243–269,
September 1987.

5 Z. Lin. Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations. Science,
281(5384):1835–1837, September 1998.

6 Kamesh Madduri, Eun-Jin Im, Khaled Z. Ibrahim, Samuel Williams, Stphane Ethier, and Leonid Oliker.
Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms. Parallel Comput-
ing, 37(9):501 – 520, 2011.

7 Kamesh Madduri, Khaled Z. Ibrahim, Samuel Williams, Eun-Jin Im, Stephane Ethier, John Shalf, and
Leonid Oliker. Gyrokinetic toroidal simulations on leading multi- and manycore hpc systems. In Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 23:1–23:12, New York, NY, USA, 2011. ACM.

8 Kamesh Madduri, Samuel Williams, Stéphane Ethier, Leonid Oliker, John Shalf, Erich Strohmaier,
and Katherine Yelicky. Memory-efficient optimization of Gyrokinetic particle-to-grid interpolation for
multicore processors. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis - SC ’09, SC ’09, pages 48:1–48:12, New York, New York, USA, November 2009.

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

172

ACM Press.
9 Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.

Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2012.
http://www.mcs.anl.gov/petsc.

10 Satish Balay, Jed Brown, , Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

11 Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.
Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press,
1997.

12 IBM Redbooks — IBM System Blue Gene Solution: Blue Gene/Q Application Development - Update,
April 2013.

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

173

PlasmaMicroturb esp ALCF-2 Early Science Program Technical Reports

174

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

18 Multiscale Molecular Simulations at the Petascale

PI: Gregory Voth (University of Chicago)

Project Summary

Project results will directly impact the understanding of cellular-scale biological processes via cou-
pling of multiscale computer simulation methodology with petascale computational algorithms and
hardware. When combined with leading-edge experimental research, the project will provide key
scientific advances relevant to human health and the understanding of the biological world.

Researchers will apply multiscale bio-simulation methodology to three scientific problems: (1)
Simulation of key steps of the HIV viral replication cycle. The human immunodeficiency virus
type 1 (HIV-1) begins assembly with multimerization of the Gag polyprotein near the plasma
membrane of infected cells. There has been debate over exactly how many Gags are in the immature
virion. The researchers will use their methodology to construct coarse-grained (CG) models directly
from structural biology experiments and physics-based interaction modeling. (2) Simulation of the
Ribosome. Protein biosynthesis is a core life process in cells, which is mainly achieved by ribosomes.
Since the ribosomes are targets for drugs such as antibiotics, a deep understanding of the mechanism
of protein synthesis can aid in drug discovery. (3) Simulation of microtubules. Microtubules are
one of the key components of the cytoskeleton, involved in trafficking, structural support, and
cytokinesis. Microtubules are polymers assembled from alpha/beta tubulin dimers in the form of
tubes with a diameter of 25 nm and variable lengths. Because of their size and the long timescale
dynamics of these assemblies, these large and important protein assemblies inherently require a
petascale multiscale simulation approach.

Report originally released as ANL/ALCF-ESP-13/16

175

Parallelization of Reactive Force Field Model for Blue Gene/Q

Adrian W. Lange,1 Gard Nelson,2 Christopher Knight,3 and Gregory A. Voth2, 4

1Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, USA
2Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

3Computing, Environment, and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
4James Franck Institute, Institute for Biophysical Dynamics,

and Computation Institute, University of Chicago, Chicago, IL 60637, USA
(Dated: April 12, 2013)

Our efforts in developing a highly parallel implementation of the reactive force field model, the
Multi-state Empirical Valence Bond (MS-EVB) method, are discussed. We have introduced multi-
threading, a state decomposition parallelism, and replica exchange capabilities. Example calcula-
tions are presented to demonstrate the improved productivity and scalability of the new code on
the Blue Gene/Q supercomputer, Mira. We show that we are now able to successfully scale to half
of Mira and have the potential to scale even further.

I. INTRODUCTION

Modeling the dynamics of complex biological molecu-
lar systems, such as proteins solvated in water, is a cru-
cial facet of understanding how life works at the level
of atomic detail and also understanding how we might
be able to develop biotechnology for energy production
and/or medical purposes. The vast number of atoms
present in biological systems, though, prohibits the appli-
cation of highly accurate quantum mechanical electronic
structure methods, because the computational cost of
these methods scales exponentially with respect to the
system size (i.e., the number of electron basis functions).
In order to study the dynamics of such molecular systems
with atomic detail, one instead opts to employ a classical
molecular mechanics force field whose energy and forces
can be computed at orders of magnitude faster than elec-
tronic structure. A typical molecular mechanics force
field developed specifically for biological molecules ap-
proximate chemical bonds as harmonic springs between
two atoms. While this approximation works reasonably
well for most molecular systems near equilibrium, it is
unable to account for the realistic quantum mechanical
nature of chemical bonds, which can break and form dy-
namically.

The Multi-state Empirical Valence Bond (MS-EVB)
method1,2 is one way to incorporate chemical reactiv-
ity into an otherwise non-reactive force field, enabling
the study of chemical reaction dynamics in complex bi-
ological systems without suffering the expense of elec-
tronic structure calculations. In short, MS-EVB makes
the ansatz that a reactive molecular system can be de-
composed into a set of diabatic states, each representing
one of several possible chemical bonding topologies, akin
to the “resonance structures” familiar to most chemists.
These diabatic states form a basis set, and the total sys-
tem is then a linear combination of the states, written
as

|Ψ〉 =
∑

I

cI |ψI〉 , (1.1)

where |ψI〉 is a diabatic state with coefficient cI . MS-

EVB then constructs a model Hamiltonian matrix, H.
The diagonal elements, HII , are simply the total energy
of each state. The off-diagonal elements, HIJ , are a cou-
pling energy between two states that serve as a reac-
tant and a product state (see Ref. 2 for more detail).
Finally, the Hamiltonian is diagonalized according to a
Schrödinger-like equation,

Hc = Ec (1.2)

to yield a set of eigenvalue energies, E, and eigenvec-
tors, c, containing the coefficients cI . The minimum
eigenvalue energy is selected as the final MS-EVB energy,
and forces on each atom are computed via the Hellman-
Feynman theorem. The MS-EVB approach can thus be
viewed as a coarse-graining (or, a multi-scale) approach
to quantum chemistry electronic structure, which allows
us to access larger molecular systems sizes and longer
time scales.

MS-EVB is a straightforward framework, yet it is a
challenge to implement effectively in a code capable of
taking advantage of modern supercomputers with thou-
sands of core processors. In the remainder of this work,
we discuss how we have tackled this challenge with sev-
eral advances in our MS-EVB code, Rapid Approach
to Proton Transport and Other Reactions (RAPTOR).3

Specifically, we discuss the parallelization of RAPTOR
tailored for running on the IBM Blue Gene/Q (BGQ)
supercomputer, Mira, housed at the Argonne Leadership
Computing Facility.

Throughout this work, we focus primarily on an exam-
ple application of MS-EVB for proton transport through
a transmembrane protein, Cytochrome c Oxidase (CcO).
Cco serves as a representative system of interest, al-
though the RAPTOR code is generalizable to a variety
of other reactions and molecular systems as well. Our
model CcO system consists of 159,519 atoms treated with
the CHARMM22 force field for protein molecules and
the CHARMM36 force field for the lipid molecules. Wa-
ter molecules are treated with the SPC/Fw force field,
in accord with the MS-EVB3 model,2 which is used to
model the proton transfer reactivity. We use a cutoff

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

176

of 10 Å (smoothly attenuated to zero with a switching
function beginning at 8 Å) for van der Waals and short-
range Coulomb pairwise interactions. Molecular dynam-
ics (MD) simulations are carried out at constant volume
and temperature with a Nose-Hoover thermostat. MD is
propagated with Velocity-Verlet integration with 1 fem-
tosecond time step intervals.

All calculations presented below are performed on the
BGQ architecture supercomputers—each compute node
containing 16 core processors and each core containing a
quad floating point unit (FPU)—at the Argonne Lead-
ership Computing Facility. Codes have been compiled
with the IBM XL compilers with level -O3 optimizations.
Performance of the codes is measured as productivity in
terms of MD time steps per wall second.

II. RAPTOR IMPLEMENTATION

A. Interface to LAMMPS

The RAPTOR code is an optionally installed user
package interface to the LAMMPS,4 a widely used and
freely available, open-source parallel molecular dynamics
code written in C++. LAMMPS is parallelized mainly
through a domain decomposition scheme, wherein a given
unit cell, simulated with periodic boundary conditions
(PBC), is divided in Cartesian space into many smaller
domains, each of which is treated separately on an in-
dividual rank with Message Passing Interface (MPI).
Intra-domain interactions are thereby computed entirely
in parallel, and inter-domain interactions are handled
with minimal MPI communications with neighboring do-
mains.

The domain decomposition scheme in LAMMPS is
very effective and scalable for the bonded interactions
(e.g., bonds, angles, dihedrals) and short-range non-
bonded interactions (e.g., van der Waals interactions)
of a force field. Because the magnitude of short-range
non-bonded interactions approaches zero rapidly, an in-
teractions cutoff radius can be used. However, for a
fixed size system, one cannot divide the unit cell into
domains of size smaller than the cutoff radius without
errors and/or loss of parallel efficiency, placing a limit on
how many MPI ranks can be used with domain decom-
position scheme alone. In addition, pairwise Coulomb
interactions usually cannot be approximated with a cut-
off because 1/r does not approach zero fast enough to
ignore without possibly introducing severe errors.

The Particle-Particle Particle-Mesh5 (PPPM) ap-
proach (available in LAMMPS) is therefore used in our
calculations to divide the work into a short-range part,
handled in conjunction with the pairwise van der Waals
interactions via domain decomposition, and a long-range
part, handled with a Fast Fourier Transform (FFT) per-
formed as parallel calls to the FFTW library. The long-
range electrostatics computation (i.e., the k-space com-
putation), despite being O(NlogN) scaling, is unfortu-

nately not nearly as efficiently parallel as the domain de-
composition (for the relatively small three dimensional
grids used in our calculations) because it involves a sub-
stantial amount of MPI communication in order to broad-
cast the electrostatics from the PPPM mesh globally to
all processors, an all-to-all style communication. More-
over, each PPPM evaluation requires 4 3D-FFTs, one
forward and three reverse. For MS-EVB calculations,
this is compounded further by the fact that the MS-EVB
model requires electrostatic energies in the off-diagonal
coupling matrix elements, adding to the amount of k-
space work. Indeed, at large counts of MPI ranks, the
k-space computation can dominate the wall time in MS-
EVB calculations with RAPTOR.3,6 For this reason, pre-
vious work in our research group3 had been devoted to
developing a partitioning scheme in which the real-space
bonded and non-bonded short-range interactions are per-
formed on one partition of MPI ranks and the k-space
computation is performed concurrently on another par-
tition. Thereby, one could assign fewer MPI ranks to the
k-space work to hide some of its poorly scaling commu-
nication, resulting in improved parallel efficiency and a
modest overall speedup at a large number of processors.

To demonstrate this, we compare results of productiv-
ity for the Cco model using only the MPI domain decom-
position in LAMMPS and also the k-space partitioning
scheme (MPI/split) in Figure 1. At 64 nodes (1024 MPI
ranks), the domain decomposition has reached the limit
where further spatial division competes with the size of
the cutoffs, hitting the intrinsic domain limit mentioned
above.

As one can infer from Figure 1, RAPTOR does not
scale very well with only the domain decomposition or the
k-space partitioning scheme, dropping below 50% paral-
lel efficiency at just 16 nodes, a far cry from the 49,152
nodes on Mira. The k-space partitioning improves the
scalability slightly, but, again it cannot scale further due
to the domain decomposition limit. Therefore, we are
compelled to develop new parallelism approaches to im-
prove scalability.

B. Multithreading with OpenMP and QPX SIMD

LAMMPS has recently added the ability (through an
optional user package) to take advantage of shared mem-
ory multithreading parallelism via the OpenMP API. It
does so with a so-called “force decomposition” scheme,
where, for example, the pairwise additive N2 force loop is
distributed across threads. Similar loop-level parallelism
is implemented for bonded interactions and parts of the
PPPM k-space calculation, such as interpolating charges
to the mesh. Note that the OpenMP force decomposition
is in addition to the usual MPI domain decomposition in
LAMMPS.

This multithreaded code, however, was implemented
for the general purpose parts of LAMMPS, of which
RAPTOR only uses for its diagonal matrix elements in

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

177

4 8 16 32 64
No. BG/Q Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

D
 s

te
ps

 /
se

c
MPI
MPI/split

FIG. 1: Strong scaling of RAPTOR code with the CcO model
comparing domain decomposition only (MPI) and k-space
partitioning (MPI/split) schemes. Runs are carried out in
c16 mode (i.e. with 16 MPI ranks per node). The Cco sys-
tem contains 15 MS-EVB states on average.

the model Hamiltonian. So it was our task to merge this
existing OpenMP code with RAPTOR and also rewrite a
number of portions of RAPTOR that would benefit from
such force decomposition multithreading. For instance,
this involved multithreading certain pairwise loops for
off-diagonal coupling matrix elements as well as rewriting
parts of the LAMMPS PPPM interface with RAPTOR.
In the process of this re-coding, we also introduced a
handful of basic serial optimizations (e.g., loop unrolling
or conditional hoisting) that the compilers were unable to
recognize in complex loop structures, amounting to a 15%
speedup even with running only a single thread. In the
PPPM interface of RAPTOR, we were also able to share
a few of the FFT calls across thread partitions, providing
some additional concurrency. The OpenMP multithread-
ing was further combined with the k-space partitioning
scheme, code which has also been introduced to the gen-
eral release of LAMMPS now.

In addition to OpenMP multithreading, we explored
the special BGQ-specific QPX vector intrinsics API to
take advantage of the possibility of SIMD parallelism
on BGQ. For our purposes, we were introduced QPX
into the short-range non-bonded pairwise loops as well
as parts of the PPPM code specific to RAPTOR. Since
these loops have a number of branching conditional state-
ments, it was not straightforward to take full advantage
of QPX. We ultimately found that a “buffer/flush” ap-
proach was most successful. In this approach, we use
a set of vector4double buffers to temporarily store in-
formation needed to complete a pairwise interaction (or
other quantity). The bulk of the floating point oper-
ations in the loop are delayed until we have filled the
buffers, and then the buffers are flushed by computing
four pair interactions simultaneously with QPX vector
intrinsic functions. We note that the usual LAMMPS
pairwise loop uses a lookup table for the short-range

Coulomb interaction, which otherwise involves a some-
what expensive polynomial expansion to approximate the
error function. The lookup table is typically faster than
the explicit evaluation of the polynomial, but a lookup
table is not amenable to QPX vectorization. Thus, we
applied QPX to the polynomial expansion and omitted
the lookup table. Compared to no QPX vector intrin-
sics and without the lookup table, our buffer/flush code
exhibits a ∼ 50% speedup for the non-bonded force ker-
nel. Compared to no QPX and with the lookup table,
though, we observe a ∼30% speedup for the non-bonded
force kernel. While this is clearly shy of the theoretical
speedup of QPX, we nonetheless have found it a welcome
enhancement.

Putting all of the above together, we show in Fig-
ure 2 the improvements to scaling that are realized with
OpenMP and QPX. The BGQ is capable of hyperthread-
ing the quad FPU with OpenMP threads, but this may
not always prove beneficial since it may prevent the use
of QPX SIMD or possibly increase cache misses due to
less memory per MPI rank. We examine this in Figure 2
with two different modes, c4o16 being 4 MPI ranks per
node with 16 threads per rank (hyperthreaded mode),
and c1o16 being 1 MPI rank per node with 16 thread
per rank. It is quite clear that multithreading provides
a significant speedup compared to the MPI domain de-
composition or k-space partitioning for the same number
of nodes. It also pushes the domain decomposition limit
to greater node counts since threads reduce the number
of MPI ranks per node. Notice that the c1o16 mode
(the non-hyperthreaded mode) exhibits lower productiv-
ity than c4o16 mode (the hyperthreaded mode) at low
node counts, but because c1o16 mode has better paral-
lel efficiency, c1o16 scales further and eventually is more
productive as node count increases. This appears to be
the result of a combination of causes. One is the ability to
use QPX in c1o16 mode both in the FFTs (automatically
vectorized by compiler) and our special non-bonded force
kernels. Another appears to be that the MPI communica-
tion is appreciably faster in c1o16 mode (as compared to
c4o16 mode), likely because there is no intra-node com-
munication in c1o16, making the MPI ranks closer in the
communication network.

C. State Decomposition

Multithreading has certainly improved RAPTOR’s
parallelism, yet there has still been one aspect of RAP-
TOR that has been treated serially up to this point: the
matrix elements in the model Hamiltonian are evaluated
one at a time. In our model Cco example, there are on
average 15 states in the MS-EVB Hamiltonian, and each
state’s energy and forces can be computed independently
of the others. This glaringly obvious source of parallelism
had gone untapped until now when we introduced our
new “state decomposition” parallel scheme.

We accomplish the state decomposition in a manner

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

178

4 8 16 32 64 128 256 512 1024
No. BG/Q Nodes

1.0

2.0

3.0

4.0

5.0

6.0

7.0
M

D
 s

te
ps

 /
se

c
MPI
MPI/split
MPI/OMP c4o16
MPI/OMP/split c4o16
MPI/OMP c1o16
MPI/OMP/split c1o16

FIG. 2: Strong scaling of RAPTOR code with the CcO model
with OpenMP multithreading and QPX (data labeled with
OMP). Results from Figure 1 are included for comparison.
The mode is listed for each OMP run. c4o16 = 4 MPI ranks
per node and 16 threads per MPI rank (hyperthreaded mode).
c1o16 = 1 MPI rank per node and 16 threads per MPI rank.
MPI/OMP/split combines the OpenMP threading with the
k-space partitioning scheme. Each line of data is extended to
the domain decomposition limit.

analogous to the k-space partitioning scheme, but instead
of dividing by real-space and k-space work for all MS-
EVB states, we divide the work by individual MS-EVB
state. This allows us to have not just two partitions (as in
k-space partitioning) but as many partitions as we have
MS-EVB states, distributing the work of both real-space
and k-space across more processors. In practice, though,
because the number of MS-EVB states is dynamic during
the course of an MD simulation, we find that it is most
efficient to use slightly fewer state partitions than there
are MS-EVB states in order to avoid workless partitions.

The state decomposition scheme in RAPTOR is car-
ried out by running LAMMPS in partitioned mode,
which simply uses MPI Split to create a new MPI sub-
communicator for each partition. All partitions share the
same coordinates and velocities so that they all end up
with the same set of MS-EVB states after completing the
MS-EVB state search algorithm.2 Once the states have
been determined, each partition decides which state(s)
to work on with a simple static load balance and then
computes the work. Thus, each partition stores in mem-
ory only a subset of the entire set of MS-EVB state en-
ergies and forces. With the energies and couplings in
hand, the partitions perform an MPI Allreduce of the
MS-EVB Hamiltonian [a modest communication of data
size O(N2

states) with Nstates usually less than 20], which is
subsequently diagonalized by each partition to yield the
minimum eigenvalue energy (i.e., the MS-EVB energy)
and its corresponding eigenvector coefficients. Each par-
tition computes the MS-EVB force on atoms according

to the Hellman-Feynman theorem:

Fi = −
states∑

I,J

cIcJ
∂HIJ

∂xi
, (2.1)

where Fi is the force on the i-th atom with respect to
the xi Cartesian coordinate, and cI is the I-th coeffi-
cient from the minimum energy eigenvector. Since each
partition has only stored in memory those matrix ele-
ments (∂HIJ/∂xi) that it has worked on, another MPI
all-reduce communication is necessary, which, in order
to take advantage of MPI collective communications, is
performed within an MPI communication group contain-
ing the same spatial domains of different partitions. The
time step can then be propagated as usual on each par-
tition, updating coordinates and velocities for the next
iteration.

We present the productivity of the state decomposition
scheme in Figure 3. Note that the state decomposition
is a layer of parallelism on top of the MPI domain de-
composition and OpenMP multithreading. We observe
an appreciable speedup as we add more state partitions,
with 8 partitions scaling best for the CcO model, which
has on average 15 MS-EVB states in the MD run. At
low node counts, however, state partitioning is not as
productive as the other schemes. This is not especially
surprising since adding more state partitions reduces the
number of ranks in the domain decomposition, a tradeoff
in computational speed. Nonetheless, the state decom-
position exhibits better parallel efficiency and eventually
is more productive as the node count is increased.

The new state decomposition and multithreading has
certainly improved the scalability and productivity of
RAPTOR by a great deal. Before, RAPTOR could
hardly scale to 32 BGQ nodes, but now we are capable
of scaling to multiple BGQ racks (1 rack = 1,024 nodes)
with acceptable parallel efficiency.

III. REPLICA EXCHANGE UMBRELLA
SAMPLING

In addition to the advances made in parallelizing RAP-
TOR for single trajectory MD simulations, we also have
implemented a novel ensemble-run (replica exchange um-
brella sampling) interface to perform enhanced sampling
ensemble MD simulations.

A. Background

Umbrella sampling is a commonly used technique to
compute the free energy along a chosen path. The path is
usually referred to as a “collective variable” (CV) because
it often involves a combination of atom coordinates, such
as the distance or angles between groups of atoms. The
CV is then divided into multiple “windows”, and each
window is given an artificial restraint (i.e., a bias) to

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

179

4 8 16 32 64 128 256 512
1024

2056
4096

8192

No. BG/Q Nodes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
M

D
 s

te
ps

 /
se

c
MPI
MPI/split
MPI/OMP c4o16
MPI/OMP/split c4o16
MPI/OMP c1o16
MPI/OMP/split c1o16
MPI/OMP/state2 c1o16
MPI/OMP/state4 c1o16
MPI/OMP/state8 c1o16

FIG. 3: Strong scaling of RAPTOR code with the CcO model
with state decomposition. Results from Figure 1 and Figure 2
are included for comparison. The mode is listed for each OMP
run. c4o16 = 4 MPI ranks per node and 16 threads per MPI
rank (hyperthreaded mode). c1o16 = 1 MPI rank per node
and 16 threads per MPI rank. The number of state partitions
is listed, where “state2” is 2 state partitions, for example.
Note that the data for MPI/OMP c1o16 is the equivalent of
using one state partition. Each line of data is extended to the
domain decomposition limit.

be applied to the molecular system of interest in order
to keep the system near that window in the CV space.
By doing so, one ensures good sampling of each window
along the CV, which might otherwise not be the case
if parts of the CV are energetically unfavorable. After
sampling the windows, usually with MD runs, one uses
statistics of the biased energy to compute a relative free
energy value at each window, amounting to a free energy
surface along the CV.

The umbrella sampling approach described above can
be performed by running each window independently in
separate calculations. However, it is now well-known that
independent runs like this can produce artifacts and/or
poorly converged free energy surfaces if the MD runs
are not long enough and/or neighboring windows do not
have substantial overlap in CV space. One solution to
overcome this issue is to perform a loosely-coupled en-
semble simulation, where all windows are run simultane-
ously in one big single calculation. At certain points in
time, the ensemble simulation is halted, and one attempts
to swap umbrella sampling restraints between neighbor-
ing windows. Swaps are accepted or rejected according
to the canonical Metropolis Monte Carlo criteria to sat-
isfy detailed balance. This approach is known as replica
exchange umbrella sampling (REUS), and it has been
shown to reduce artifacts and speed convergence in um-
brella sampling.7 The swapping of windows increases the
sampling overlap between neighboring windows, and it
helps to prevent the system from becoming “stuck” in
metastable energy wells. REUS requires more computa-
tional power to run all the windows simultaneously, but

it actually reduces the time to solution of a converged
free energy surface as compared to completely uncoupled
umbrella sampling windows, thereby actually requiring
less overall CPU time.

B. LAMMPS Ensembles Implementation

In our work, we are interested in computing free energy
surfaces of proton transport, and we want to use REUS
enhanced sampling to speed the process. In the CcO
model, we have identified a CV for proton uptake along
a certain channel of the protein that leads to a catalytic
complex buried within the interior of the protein. Details
of this proton uptake channel will not concern us here
and can be found elsewhere in the literature. For the
purpose of the current work, we instead want to focus on
the computational aspect.

Prior to this report, we were only able to perform the
conventional uncoupled umbrella sampling with RAP-
TOR. We have now developed an implementation of
REUS for RAPTOR, which is part of a development code
by the name of LAMMPS Ensembles (LE). LE works by
using MPI Split to create a set of MPI subcommunica-
tors in which each subcommunicator creates its own in-
stance of the LAMMPS program class. Each LAMMPS
instance runs MD of its own replica of the molecular sys-
tem within its subcommunicator. At a specified time in-
terval, the ensemble of replicas must synchronize in order
to attempt swaps according to the REUS algorithm.

We have modified LE to perform REUS with RAP-
TOR. LE is yet another layer of parallelism on top of
the previously described domain decomposition, state de-
composition, and multithreading. A challenge unique to
MS-EVB in REUS, though, is that there can exist a sub-
stantial load imbalance between replicas. Every replica
contains the same molecular system but with different
coordinates, and since the number of MS-EVB states de-
pends on the spatial configuration of water molecules in
our simulations, every replica has a different amount of
work to compute. Fewer states means less work and will
complete a fixed number of time steps in less wall time
than a replica with more states. The issue is that REUS
must synchronize the ensemble runs to attempt swap-
ping, and this must be done after completing a prede-
termined number of MD steps. Those replicas with few
states will, therefore, wait in an MPI Barrier until the
replica with the most number of states completes, an ob-
vious waste of time.

To address this the load imbalance issue, we have in-
troduced a dynamic load balance algorithm to REUS.
In this scheme, we assign one of the LE replica subcom-
municators to act as a listener. After completing the
predetermined number of MD steps, each replica sends
a message to the listener to inform the listener of being
finished. The listener continues to receive messages until
all replicas have reported in, at which time the listener
broadcasts a signal to all other replicas that swapping

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

180

may proceed. In the meantime, while the non-listener
replicas are waiting for the signal from the listener, the
replicas asynchronously continue to take more MD steps,
checking back for the signal after every few MD steps.
The listener replica also continues to run similarly dur-
ing this time. The result is that the ensemble continues
to produce MD sampling while concurrently waiting to
synchronize for the swapping. Ultimately, the replicas
with fewer states produce several more MD steps than
those with more states. But, because of the swapping
in REUS, the “fast” replicas traverse the windows such
that no individual window is over-sampled compared to
others, which could be the case in conventional umbrella
sampling.

In Figure 4, we present a weak scaling plot of using
the REUS code with RAPTOR. The molecular system
is still the usual CcO model from before, and we com-
pare running REUS with different numbers of replicas
using the usual synchronous static load balance versus
using our asynchronous dynamic load balance, described
above. Each replica in these data runs the CcO model
system on 128 nodes in c1o16 mode using 2 states in
the state decomposition scheme. Swaps are attempted
after 200 MD steps (i.e., 200 femtoseconds). In the asyn-
chronous dynamic load balance scheme, this is the num-
ber of steps a replica takes before sending a message to
the listener replica. The full REUS run involves reported
here involve 20,000 MD steps, but because replicas con-
tinue to run while waiting in the asynchronous scheme,
the total number of MD steps in the end may differ. So,
as the measure of performance, we present the mean pro-
ductivity of the replicas in the ensemble,

Mean productivity =
1

tNrep

replicas∑

i

Ni,step . (3.1)

where Ni,steps is the number of MD steps taken by replica
i, t is the wall time, and Nrep is the number of replicas
in the ensemble. Also, the standard deviation in the to-
tal number of MD steps taken is reported for the asyn-
chronous scheme.

Figure 4 shows the REUS algorithm has fairly good
weak scaling properties, having not dropped below half of
parallel efficiency after increasing the number of replicas
by 16 times both in the synchronous and asynchronous al-
gorithms. However, the asynchronous algorithm is more
productive by nearly as much as 3 MD steps/second on
average at 64 replicas, a result of the improved load bal-
ance. Furthermore, the asynchronous algorithm does not
make certain replicas over-sample any window too much,
as the standard deviation of MD steps taken suggests.

Finally, we present strong scaling data for an REUS
run encompassing the full CV of our CcO system in Ta-
ble I. The CV is divided in total into 96 windows (i.e.,
96 replicas) running in c1o16 mode with 2 states in the
state decomposition scheme and using the asynchronous
dynamic load balance algorithm for REUS. Note that
24576 nodes represents half of Mira. We observe that

4 8 16 32 64
No. Replicas

4.0

5.0

6.0

7.0

8.0

9.0

M
ea

n
M

D
st

ep
s

/ s
ec

512 1024 2048 4096 8192
No. BG/Q nodes

0

100

200

300

400

St
d.

 D
ev

. N
o.

 M
D

st
ep

s

Synchronous
Asynchronous

FIG. 4: Weak scaling of REUS with RAPTOR comparing the
usual synchronous static load balance and the asynchronous
dynamic load balance. Replicas are run on 128 nodes in c1o16
mode using 2 states in the state decomposition scheme.

TABLE I: Strong scaling of REUS with RAPTOR. 96 repli-
cas run in c1o16 mode with 2 states in state decomposition
scheme using asynchronous dynamic load balance algorithm.

No. BGQ Replica mean Parallel Ensemble
nodes MD steps/seca efficiencyb MD steps/secc

3072 2.49 1.00 239.0
6144 4.33 0.85 415.7
12288 7.08 0.67 679.7
24576 10.43 0.50 1001.3
a Eq. (3.1).
b Relative to 3072 nodes.
c Eq. (3.2).

our code performs quite well in strong scaling, remaining
above 50% parallel efficiency in all cases. In addition to
the mean productivity, we present the ensemble produc-
tivity,

Ensemble productivity =
1

t

replicas∑

i

Ni,step , (3.2)

which provides a measure of how much useful sampling
data is being produced per second with the single cal-
culation. That is, at 24,576 nodes (or 393,216 core pro-
cessors), our REUS run is producing, on average, just
over 1 picosecond total of reactive MD every wall sec-
ond, a truly astounding achievement possible only on a
leadership scale supercomputer like Mira.

IV. CONCLUSION

We have provided an overview of our efforts in trans-
forming the originally poorly scaling RAPTOR code into
one which can harness up to half of Mira (24 racks)

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

181

with appreciable parallel efficiency. This has been ac-
complished by introducing multithreading via OpenMP,
developing a new state decomposition parallel algorithm,
and creating a novel implementation of replica exchange
umbrella sampling with the LAMMPS Ensembles code.
Our new highly scalable RAPTOR code is currently be-
ing used on Mira to compute free energy surfaces of pro-
ton transport in complex biological systems at a unprece-
dented rate. We expect to report the results of these
calculations in future work.

V. ACKNOWLEDGEMENTS

This work has been supported through the Early Sci-
ence Project at the Argonne National Laboratory Lead-

ership Computing Facility. A. W. Lange would like to
extend a special thanks to Jeff Hammond at the Argonne
Leadership Computing Facility as well as to Luke Westby
at the University of Notre Dame for providing the devel-
opment code for LAMMPS Ensembles, which has served
as the foundation of our REUS code.

1 U. W. Schmitt and G. A. Voth. The computer simulation
of proton transport in water. J. Chem. Phys., 111(9361),
1999.

2 Y. Wu, H. Chen, F. Wang, F. Paesani, and G. A. Voth.
An improved multistate empirical valence bond model for
aqueous proton solvation and transport. J. Phys. Chem. B,
112:467–482, 2008.

3 Y. Peng, C. Knight, P. Blood, L. Crosby, and G. A. Voth.
Extending parallel scalability of lammps and multiscale re-
active molecular dynamics. Technical report, 2012.

4 S. Plimpton. Fast parallel algorithms for short-range molec-
ular dynamics. J. Comp. Phys., 117:1–19, 1995.

5 R. W. Hockney and J. W. Eastwood. Computer Simulation
Using Particles. Taylor and Francis Group, New York, 1988.

6 T. Yamashita, Y. Peng, C. Knight, and G. A. Voth. Com-
putationally efficient multiconfigurational reactive molecu-
lar dynamics. J. Chem. Theory and Comput., 8:4863–4875,
2012.

7 W. Jiang, Y. Luo, L. Maragliano, and B. Roux. Calcu-
lation of free energy landscape in multi-dimensions with
hamiltonian-exchange umbrella sampling on petascale su-
percomputer. J. Chem. Theory and Comput., 8:4672–4680,
2012.

MultiscaleMolSim esp ALCF-2 Early Science Program Technical Reports

182

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

	ANLWrapper_ALCF2_TechReports_BundlePre-1
	bundle-1
	The Early Science Program
	These Technical Reports

	Acknowledgements
	Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model
	Materials Design and Discovery: Catalysis and Energy Storage
	Direct Numerical Simulation of Autoignition in a Jet in a Cross-Flow
	High Accuracy Predictions of the Bulk Properties of Water
	Cosmic Structure Probes of the Dark Universe
	Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPQC
	Petascale, Adaptive CFD
	Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates
	High-Speed Combustion and Detonation (HSCD)
	Petascale Simulations of Turbulent Nuclear Combustion
	Lattice Quantum Chromodynamics
	Petascale Direct Numerical Simulations of Turbulent Channel Flow
	Ab-initio Reaction Calculations for Carbon-12
	NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular Systems Based on a Polarizable Force Field
	Global Simulation of Plasma Microturbulence at the Petascale & Beyond
	Multiscale Molecular Simulations at the Petascale

	blankPage-1
	ANLWrapper_espTechReportPost-1

