Director’s Message ...1
About ALCF ...2

INTRODUCING MIRA
Introducing Mira...3
ALCF Contributes to Co-Design of Mira ..4
Science on Day One ..6

RESOURCES AND EXPERTISE
ALCF Computing Resources ..12
ALCF Expertise ..16

SCIENCE AT THE ALCF
Allocation Programs ..18
Science Director’s Message ..20
Science Highlights ..21
MIRA BRINGS COMPUTING AT ARGONNE INTO THE PETASCALE ERA

The Argonne Leadership Computing Facility (ALCF) had a great year, with Mira officially becoming part of Argonne’s leadership class computing resources available to the nation’s science and engineering community. Over the next 12 months, this petascale powerhouse will deliver billions of core hours for research.

And after more than four years of enabling great science, our stalwart Blue Gene/P system, Intrepid, continued to host a range of applications. Intrepid has delivered many world-changing breakthroughs, including those you will read about in the following pages, and helped advance many of the computational tools needed for the next generation of applications to take advantage of Mira’s incredible capabilities.

Examples include a University of Texas at Austin research team’s project aimed at designing new crystalline materials that have application ranging from drug design to hydrogen storage. The team used its Director’s Discretionary allocation to develop a highly accurate and efficient method for describing the structure and energetics of molecular crystals, and applied it to several case studies.

A returning team from University of Southern California used its INCITE allocation to run larger and more detailed simulations of the atomic mechanisms that control stress-induced corrosion within nuclear reactors—advancing the body of knowledge needed to understand the phenomenon, and ultimately, to develop new technologies to prevent it. On Mira, the team will attempt simulations that encompass several billion atoms for nanosecond timescales, and several million atoms for microseconds.

A Stanford University team used its ASCR Leadership Computing Challenge allocation to make a major discovery about crackle, the dominant (and deafening) component of jet noise. The team ran large eddy simulations to pinpoint the source of crackle in hot supersonic jet engines. Now new nozzle designs can be simulated using Mira to help meet the U.S. Navy’s near-term jet noise reduction goal.

Looking towards the future, an Early Science Program team led by Argonne physicists has already run the largest, most complex simulation of the large-scale structure of the universe ever undertaken—a 1.1-trillion-particle simulation run on half a million processor cores of Mira—to create the largest “man made” universe ever.

The ALCF has the experience and expertise to accelerate a wide range of discoveries on our leadership class systems. We look forward to witnessing how the next generation of science teams will push the limits of computing power yet again.
Introducing Mira

According to the TOP500 list, Mira ranked as the third fastest supercomputer in June and the fourth fastest in November. Mira achieved 8.1 petaflops on the LINPACK benchmark, using 786,532 processing cores on 48 racks.

On the Graph 500 list, Mira tied for first place in June and ranked second in November, achieving 10,461 GTEPS (giga traversed edges per second) with its latest score.

Blue Gene/Q systems held the top 10 spots on the Green500 in June and six of the top 10 spots in November. This biannual list ranks the top 500 supercomputers in the world by energy efficiency.

Introducing MIra

With the launch of Mira, a new 10-petaflops supercomputer, the ALCF will open the door for researchers and industry to analyze data more efficiently, design products more quickly, and address some of society’s biggest problems in ways that would otherwise be impossible.

Currently ranked as the fourth fastest computer in the world, Mira, an IBM Blue Gene/Q system, is capable of 10 quadrillion calculations per second. With this computing power, Mira can do in one day what it would take an average personal computer 20 years to achieve.

As supercomputers continue to improve, so do the results. Faster and more sophisticated computers mean better simulations and more accurate predictions. Mira will help researchers to tackle more complex problems, achieve faster times to solutions, and create more robust models of everything from jet engines to the human body.

Consisting of 48 racks, 786,432 processors, and 768 terabytes of memory, Mira is 20 times faster than Intrepid, its IBM Blue Gene/P predecessor at the ALCF. Mira was grown from the same DNA as Intrepid, but features many revolutionary advances.

As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.

In addition to being one of the fastest computers in the world, Mira is also among the most energy efficient. The supercomputer saves considerable energy through innovative chip designs and a unique water-cooling system.

By fitting more cores onto a single chip, Mira speeds the communication between cores and saves the energy lost when transporting data across long distances. Mira’s water-cooling system uses copper tubes to pipe cold water directly alongside the chips, saving power by eliminating an extra cooling step. Overall, the new system operates five times more efficiently than Intrepid, and roughly within the same footprint.

Beyond enabling scientific discoveries in a sustainable way, Mira itself is a stepping stone toward the next great goal of supercomputing: exascale speed, where computers will operate a thousand times faster than today’s top machines.
The future scientific breakthroughs enabled by Mira may not be its only legacy. Argonne National Laboratory worked closely with IBM Research and Lawrence Livermore National Laboratory to design and develop the hardware and software that make up Mira’s IBM Blue Gene/Q architecture. This successful co-design effort serves as a model for the development of new supercomputers, including future exascale systems.

From the outset of the co-design process in 2007, the intent was to design a supercomputer with low power requirements and very high scalability. This highly collaborative approach brought a wealth of expertise and perspectives to the table, resulting in many detailed discussions and analyses of the costs and benefits of various hardware and software configurations. The process involved weighing the tradeoffs of key architectural decisions such as the number of processors, the amount of memory cache, and the type of network topology.

Drawing on deep expertise with many applications, the Argonne team (made up of staff from the ALCF and the Mathematics and Computer Science Division) was able to convey the needs of its future users, and assess system features relevant to applications that would ultimately run on the machine. In the end, the co-design resulted in state-of-the-art hardware that was designed to meet key application needs, and, in turn, applications were tuned to take advantage of the Blue Gene/Q’s unique features. The ALCF’s Early Science Program confirmed that porting applications from the Blue Gene/P supercomputer to the Blue Gene/Q system often required little or no modification, and resulted in substantial performance increases over the same number of Blue Gene/P nodes.

The unique co-design partnership was formed as part of design and prototype R&D project jointly funded by IBM, the U.S. Department of Energy’s (DOE) Advanced Scientific Computing Research program within the Office of Science, and the Advanced Simulation and Computing program within DOE’s National Nuclear Security Administration. IBM’s two predecessor systems, the Blue Gene/P and Blue Gene/L, supercomputers, were also developed through co-design efforts with IBM and DOE. IBM was recognized with a National Medal of Technology and Innovation in 2009 for the development of its Blue Gene family of supercomputers.

From installation to operations

Mira 2012
The intent of ESP was to use the critical pre-production time period on Mira to prepare key applications for the architecture and scale of the new supercomputer and to solidify the necessary libraries and infrastructure. When the program launched in 2010, 16 projects were selected to participate and were awarded a combined two billion core-hours on Mira. In addition to their plans to deliver new science, the projects were chosen based on their state-of-the-art, petascale applications, which were especially well suited to exploit the unique characteristics of Blue Gene/Q architecture. The ESP projects formed a representative sample of the science domains present in the ALCF workload, including science to simulate advanced materials, explore the universe, model biological systems, and further the design of new, safe, and reliable sources of energy.

Long before the first pieces of Mira hardware began arriving at Argonne, ESP project teams, in collaboration with ALCF and IBM staff, started working to adapt their software to take full advantage of Mira’s Blue Gene/Q architecture. To aid efforts, the ALCF appointed a postdoctoral appointee to each team, provided modest allocations on Intrepid (Mira’s predecessor), and granted access to prototype systems.

The ESP projects helped to tease out bugs that leading-edge systems inevitably have and to characterize the behavior of new hardware and software features. Scientific applications use system features in different ways than standard benchmark suites or the tests provided by the computer designers. Using “real apps” has long been considered the ultimate approach for shaking out quirks in new high-performance computing systems.

ESP project participants, in collaboration with ALCF catalysts and performance engineers, did identify some early hardware and software issues. For example, ESP applications were able to dig into the software stack and pinpoint performance bottlenecks and bugs in the pre-release system software. IBM’s highly responsive and dedicated hardware and software engineers quickly addressed these issues, helping to prepare Mira for acceptance and operations.

In addition to the 16 ESP science projects, a related project, “Enabling Petascale Science on BG/Q: Tools, Libraries, Programming Models, & Other System Software,” was specifically dedicated to developing, porting, and installing software on Mira. This collaborative effort resulted in 15 libraries, 12 performance tools, five programming models, and two vendor debuggers being immediately available on Mira. Having these software tools ready to go at the beginning of the system’s life will contribute to the success of all research projects on Mira.

Coarse-grained model of the viral capsid of human immunodeficiency virus type 1 (HIV-1) from the ESP project “multiscale molecular simulations at the petascale” (PI: Gregory Voth, The University of Chicago).

Image Credit: John Grime, The University of Chicago.
Dark universe

• Improved performance of the HACC code has resulted in faster time-to-solution.

• For the first time, these simulations delivered the required 1% error-bars to compare with state-of-the-art sky surveys.

• Completed a study of G-actin protein that was key to understanding how cells store and use energy through adenosine triphosphate.

• Protein changes proven to be in excellent agreement with experimental data.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Achieved 20% speedup of NAMD code (compared to Blue Gene/P).

• Achieved 2.5x per core (compared to Blue gene/p), making an accurate, but expensive technique more tenable for future use.

• Completed a study of G-actin protein that was key to understanding how cells store and use energy through adenosine triphosphate.

• Protein changes proven to be in excellent agreement with experimental data.

• Achieved 20% speedup of NAMD code (compared to Blue Gene/P).

IMPROVING CANCER DRUG DESIGN THROUGH QUANTUM CHEMISTRY

Larry Curtiss and Anouar Benali, Argonne National Laboratory

This project is pairing the power of Mira with newly available electronic structure codes to conduct massively parallel quantum mechanical calculations for use in the design of materials, including improving the effectiveness of ellipticine, a promising new drug for uterine cancer treatment.

ACCOMPLISHMENTS ON MIRA

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.

• Characterized the drug’s binding energies, providing critical input for improved modeling.

• Performed accurate noble gas simulations using quantum Monte Carlo (QMC) for the first time (prior to Mira, only experimental results were available).

• Proved that many molecules thought to be too complicated or too large for quantum chemistry can be tackled by QMC methods.

• Achieved 2.68x time-to-solution speedup with the QMCPACK code (compared to Blue Gene/P), resulting in faster time-to-solution.
A billion-atom reactive molecular dynamics simulation of nanobubble collapse in water near a ceramic surface under shock compression. The high pressure in the shock wave deforms the ceramic surface and also accelerates water molecules from the bubble’s periphery inward. These high velocity water molecules bunch up to form a nanojet, whose impact damages the ceramic surface. Created using Intrepid, these simulations reveal atomistic mechanisms of mechanically induced chemistry, which is the key to understanding the safety-threatening damage in nuclear reactors.

Image Credit: Joseph Insley, Argonne National Laboratory; Rajiv K. Kalia; Ken-ichi Nomura; Akhisar Nakano; Adarsh Shekhar; and Fuyao Wangtuo, University of Southern California.
ALCF COMPUTING RESOURCES

ALCF Blue Gene/Q Systems

MIRA. Mira, the ALCF’s Blue Gene/Q supercomputer, is equipped with 786,432 cores, 768 terabytes of memory, and has a peak performance of 10 petaflops. Mira’s 49,152 compute nodes have a PowerPC A2 1600 MHz processor containing 16 cores, each with four hardware threads, and 16 GB of DDR3 memory. A 17th core is available for the communication library. Mira’s 5D torus interconnect configuration, with 2 GB/s chip-to-chip links, connects the nodes, enabling highly efficient communication by reducing the average number of hops and latency between compute nodes. The Blue Gene/Q system also features a quad floating point unit (FPU) that can be used to execute scalar floating-point instructions, four-wide SIMD instructions, or two-wide complex arithmetic SIMD instructions. This quad FPU provides higher single thread performance for some applications.

VESTA. Vesta is the ALCF’s test and development platform, serving as a launching pad for researchers planning to use Mira. Vesta has the same architecture as Mira, but on a much smaller scale (two computer racks compared to Mira’s 48 racks). This system enables researchers to debug and scale up codes for the Blue Gene/Q architecture in preparation for Mira. Vesta has 16 1600 MHz PowerPC A2 cores, two racks, 2,048 nodes, 16 GB RAM per node, 5D torus interconnect, 32 I/O nodes, and a peak performance of 419 teraflops.

CETUS. The primary role of Cetus is to run small jobs in order to debug problems that occur on Mira. It shares the same software environment and file systems as Mira. Cetus has 16 1600 MHz PowerPC A2 cores, one rack, 1,024 nodes, 16 GB RAM per node, 5D torus interconnect, eight I/O nodes, and a peak performance of 210 teraflops.

TUKEY. Tukey is the analysis and visualization cluster for the ALCF’s Blue Gene/Q systems. Equipped with state-of-the-art graphics processing units (GPUs), Tukey converts computational data from Mira into high-resolution visual representations. The resulting images, videos, and animations help users to better analyze and understand the data generated by Mira. Tukey can also be used for statistical analysis, helping to pinpoint trends in the simulation data. Additionally, the system is capable of preprocessing efforts, such as meshing, to assist users preparing for Mira simulations. Tukey shares the Mira network and parallel file system, enabling direct access to Mira-generated results. Each Tukey node has two 2 GHz 8-core AMD Opteron CPUs, two NVIDIA Tesla M2070 GPUs, and 64 GB of RAM. The full system has 96 nodes, 1,536 cores, a QDR InfiniBand interconnect, 6 TB of RAM, 11 TB of GPU RAM, and a GPU peak performance (aggregate) over 99 teraflops (double precision).

DATA STORAGE. The ALCF’s data storage system is used to retain the data generated by simulations and visualizations. Disk storage provides intermediate-term storage for active projects, offering a means to access, analyze, and share simulation results. Tape storage is used to archive data from completed projects.

Disk Storage: The Blue Gene/Q data systems consist of 384 I/O nodes that connect to 16 storage area networks (SANs) that control 8,960 disk drives with a total capacity of 28.8 PB of raw storage and a maximum aggregate transfer speed of 240 GB/s. The ALCF uses the GPFS file system to access the storage.

Tape Storage: The ALCF’s Blue Gene/Q and Blue Gene/P supercomputers share two 10,000-slot libraries using LTO4 tape technology. The LTO tape drives have built-in hardware compression with compression ratios typically between 1.25:1 and 2:1, depending on the data, giving an effective capacity of 16-24 PB.

NETWORKING. Networking is the fabric that ties all of the ALCF’s computing systems together. The Blue Gene/Q systems have an internal proprietary network for communicating between nodes. InfiniBand enables communication between the I/O nodes and the storage system. Ethernet is used for external user access, and for maintenance and management of the systems.

The ALCF’s Blue Gene/Q systems connect to other research institutions using a total of 100 Gb/s of public network connectivity. Scientists can transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and Internet2.
INTREPID. Intrepid, the ALCF’s Blue Gene/P supercomputer, consists of 40 racks, 163,840 cores, 40,960 nodes, 80 terabytes of RAM, and has a peak performance of 557 teraflops. The system has a highly scalable 3D torus network, as well as a high-performance collective network that minimizes the bottlenecks common in simulations on large, parallel computers.

CHALLENGER. Challenger is the home for the production and development job submission queue. It is intended for small, short, interactive debugging and test runs. Challenger has 4,096 cores, 1,024 nodes, 2 GB RAM per node, and a peak performance of 13.9 teraflops.

EUREKA. Eureka is the ALCF’s visualization and data analytics solution for the Blue Gene/P systems. Researchers use Eureka, a large installation of NVIDIA Quadro Plex S4 external GPUs, to facilitate data analytics and visualizations. By using the NVIDIA visual computing system as the base graphics building block, Eureka enables breakthrough levels of productivity and capability in visualization and data analysis. Eureka has 100 dual quad-core servers, 200 Quadro FX5600 GPUs, more than 3.2 TB of RAM, and a peak performance of 100 teraflops (single precision).

GADZOOKS. Gadzooks is the Blue Gene/P test and development system for visualization. It has four compute nodes, each with two 2.0 GHz quad-core Xeon servers with 32 GB RAM, and eight NVIDIA Quadro FX5600 GPUs in two S4s.

Data Storage. The ALCF’s data storage system is used to retain the data generated by simulations and visualizations. Disk storage provides intermediate-term storage for active projects, offering a means to access, analyze, and share simulation results. Tape storage is used to archive data from completed projects.

Disk Storage: The Blue Gene/P data systems consist of 640 I/O nodes that connect to 16 SANs that control 7,680 disk drives with a total capacity of 76 PB of raw storage and a maximum aggregate transfer speed of 88 GB/s. The ALCF uses two parallel file systems — PVFS and GPFS — to access the storage.

Tape Storage: The ALCF’s Blue Gene/Q and Blue Gene/P supercomputers share two 10,000-slot libraries using LTO4 tape technology. The LTO tape drives have built-in hardware compression with compression ratios typically between 1.25:1 and 2:1, depending on the data, giving an effective capacity of 16-24 PB.

Networking. The ALCF’s Blue Gene/P systems connect to other research institutions using a total of 20 Gb/s of public network connectivity. This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESEN) and the Metropolitan Research and Education Network (MREN).
EXPERTISE AT THE ALCF

Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene systems in key ways.

Catalysts are computational scientists with domain expertise in areas such as chemistry, materials science, fusion, nuclear physics, plasma physics, computer science, engineering, and earth science. Catalysts work directly with project PIs to maximize discovery and reduce time-to-solution.

Performance Engineers help users achieve optimal performance on ALCF resources by working with them to port, tune, and parallelize scientific applications and other software. This includes assessing and improving the algorithms used by applications and the techniques used to implement those algorithms.

Data Analytics and Visualization Experts facilitate the use of tools and methods for high-performance post processing of large datasets, interactive data exploration, batch visualization, and production visualization.

Operations ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed.

User Services and Outreach provides frontline services and support to existing and potential ALCF users. The team also provides education and outreach to users, DOE, and the broader community.

Expert staff helps researchers maximize ALCF resources and achieve the best applications performance, accelerating key scientific discoveries and engineering breakthroughs for humanity.
ALLOCATION PROGRAMS

INCITE, DIRECTOR’S DISCRETIONARY, ALCC AND EARLY SCIENCE

The ALCF works closely with researchers from academia, industry, and national laboratories—as well as federal, state, and municipal agencies—to help them solve complex challenges, advance America’s scientific leadership, and prepare the nation for a better future.

Access to the ALCF’s computing resources is available for research primarily through DOE Office of Science allocation programs. Approximately 60 percent of ALCF resources are awarded to researchers with computationally intensive, large-scale research projects through DOE’s INCITE program. The DOE ASCR Leadership Computing Challenge (ALCC) program allocates 30 percent of ALCF resources. Researchers may also apply for time through the ALCF-managed Director’s Discretionary program, a smaller initiative (about 10 percent of resources) designed to prepare smaller projects for a future INCITE award.

Innovative & Novel Computational Impact on Theory and Experiment (INCITE) Program

The DOE’s INCITE program provides allocations to computationally intensive, large-scale research projects that aim to address “grand challenges” in science and engineering. The program conducts a two-part review of all proposals: a peer review by an international panel of experts and a computational-readiness review. The annual call for proposals is issued in April and the allocations are awarded in millions of core hours for one to three years.

ASCR Leadership Computing Challenge (ALCC) Program

The DOE’s ALCC program allocates resources to projects directly related to the DOE’s energy mission, national emergencies, or for broadening the community of researchers capable of using leadership computing resources. The DOE conducts a peer review of all proposals based on scientific and technical merit of the project, appropriateness of the proposed method or approach, competency and adequacy of personnel and proposed resources, and the reasonableness and appropriateness of the proposed allocation request. The yearlong allocation cycle runs from July 1 to June 30.

Director’s Discretionary Program

The Director’s Discretionary program provides “start up” awards to researchers working toward an INCITE or ALCC allocation so that they can achieve computational readiness. Projects must demonstrate a need for leadership-class resources. Awards may be made year round to industry, academia, laboratories, and others, and are usually between three and six months in duration. The size of the award varies based on the application and its readiness/ability to scale; awards are generally from the low tens of thousands to the low millions of hours.

Early Science Program (ESP)

Allocations through the ESP awarded researchers with pre-production hours (between system installation and full production) on Mira. This early science period provided projects a significant head start for adapting to the new machine and access to substantial computational time, while allowing them to pursue real scientific problems. During this shakedown period, users assisted in identifying the root causes of any system instabilities, and work with ALCF staff to help develop solutions. Two billion core-hours were allocated through ESP. Please visit alcf.anl.gov/programs for more information on how to get an allocation at the ALCF.
RUNNING INTREPID, PREPARING FOR MIRA

While 2012 will be remembered as the year we stood up Mira, it should also be remembered as another banner year for science at the ALCF. We delivered 1.2 billion core hours of compute time on Intrepid, our Blue Gene/P supercomputer. I’m pleased to report that about two-thirds of that time was consumed by “capability” jobs, i.e., ones that require at least 20 percent of the machine cores to run. We set targets for capability jobs to ensure that our supercomputers are being used by projects that require large-scale leadership computing systems. In 2012, we far exceeded our 40 percent capability usage target for INCITE projects with an impressive 63 percent of INCITE hours being run at capability.

The resulting science was also impressive, with ALCF research leading to more than 150 publications, many of which appeared in high-impact scientific journals. From improving the safety of hydrogen fuel to enabling the power grid to take better advantage of renewable energy sources, Intrepid supported 31 INCITE and 9 ALCC projects pursuing a wide variety of scientific and engineering breakthroughs in 2012. And this doesn’t count the 16 projects that began to tap Mira as part of our Early Science Program (ESP), which has proven to be a runaway success that could potentially serve as a model for other supercomputing facilities planning to launch new machines.

Running Intrepid at full bore while simultaneously preparing to launch Mira is no small feat. Our high-performance computing systems may be the engines that drive computational research at our facilities, but it’s our dynamic staff that empowers ALCF users to get the most of these machines. Our catalysts and performance engineers pulled double duty this year, working closely with researchers on Intrepid while also pushing ESP projects forward on Mira. Our User Services and Operations staff also played critical – though less visible – roles in enabling the computational research that is carried out on ALCF system.

In the following pages, we highlight 24 projects that used our facility in 2012. As we’ve done in the past, we selected a sampling of projects to represent a variety of scientific disciplines and allocation types (INCITE, ALCC, Director’s Discretionary, and ESP).
Science Highlights

PI: David Baker
INSTITUTION: University of Washington
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 33 Million Core-Hours
RESEARCH DOMAIN: Biological Sciences

Towards Breakthroughs in Protein Structure Calculation and Design

Computation has become an indispensable tool for conducting biomedical investigations. Protein structure prediction is key to understanding the function and interactions of biomolecules—the realm where foundational advances lie. Using ALCF resources, a team led by David Baker of the University of Washington has developed high-resolution protein structure prediction tools to build models of proteins with atomic-level accuracy and to computationally engineer both proteins and enzymes with new functions for applications ranging from basic research to therapeutics to bioremediation.

Contact: dabaker@u.washington.edu

PI: T. Andrew Binkowski
INSTITUTION: Argonne National Laboratory
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 10 Million Core-Hours
RESEARCH DOMAIN: Biological Sciences

Protein-Ligand Interaction Simulations and Analysis

At their most basic, disease-fighting pharmaceuticals consist of small molecules that bind to a protein pathogen and alter or disrupt the enzymes that permit it to grow. But drug design is time-consuming work, and moving a drug through the approval process can take years. Keeping pace with antibiotic-resistant strains is a challenge when proteins adapt more quickly than the pipeline can supply new drugs.

NDM-1, a gene found in many drug-resistant bacteria, presents just such a challenge. But a University of Chicago and Argonne National Laboratory research team led by Andrew Binkowski is using the power of supercomputers to analyze NDM-1 to determine why it makes bacteria so drug-resistant. Over the course of one month, Binkowski’s team studied nine compounds—a substantial speed-up over conventional experiments that would have taken months to obtain results.

Using supercomputers, scientists are gaining valuable insight into developing strategies to combat this public-health threat.

Contact: abinkowski@anl.gov

Advanced docking simulations of existing antibiotics (shown in stick form) provide insight on the antibiotic resistance of the NDM-1 enzyme (gray).

Image Credit: T. Andrew Binkowski, Argonne National Laboratory/ The University of Chicago

The crystal structure and design model for a self-assembling cage designed using Rosetta. Such self-assembling nanomaterials could become the basis for a next generation of vaccines and drug delivery vehicles.

Image Credit: Neil King, University of Washington
Science Highlights

PI: Dario Alfè
INSTITUTION: University College London
ALLOCATION PROGRAM: DD 2012
ALLOCATION HOURS: 1 Million Core-Hours
RESEARCH DOMAIN: Chemistry

Water Systems from Highly Accurate Quantum Monte Carlo Calculations

Essential to life on earth, water is one of the most familiar substances still not fully understood by modern science. Using the highly accurate electronic structure theory method Quantum Monte Carlo (QMC), University College London researchers led by Dario Alfè are leveraging ALCF resources to model liquid water with unprecedented accuracy. Their efforts will yield fundamental insights applicable in aqueous chemistry across scientific disciplines.

Alfè’s team recently coupled QMC with density functional theory (DFT)-based molecular dynamics within their CASIno program, allowing them to calculate the accurate QMC energy of a system on a dynamical trajectory generated using the less expensive DFT calculations. This constitutes the team’s first step toward the challenging goal of simulating liquid water with QMC, a material notoriously difficult to account for with DFT. QMC will yield highly accurate results for all the occurring interactions, including the ubiquitous hydrogen bonds.

Contact: d.alfé@ucl.ac.uk

Potential Energy Surfaces for Simulating Complex Chemical Processes

Large-scale electronic structure theory provides potential energy surfaces and force fields for simulating complex chemical processes. These processes are important for technology and biological chemistry. A research team led by Donald Truhlar and Osanna Tishchenko of the University of Minnesota uses ALCF resources to obtain accurate energies and stationary points for systems whose electronic structure has high multi-reference character. The researchers employ multi-reference perturbation theory and multi-configuration quasi-degenerate perturbation theory to study three classes of reactive systems in the gas phase and materials.

The computer-intensive part of this research consists of electronic structure calculations required for structural characterization and rate-constant and dynamics calculations. The main software packages for this project are the GAMESS, POLYRATE, and GPAW codes. Computational parallelism is exploited both in the electronic structure and dynamics steps.

The team’s work promises to build greater understanding of charge transfer and polarity in molecular electronics; help develop clean, efficient fuels; and advance the science of atmospheric chemistry.

Contact: truhlar@umn.edu, tishc002@umn.edu

Metallofullerene

A metallofullerene molecule. Sixty carbon atoms combine to form a soccer ball shape, or buckyball. Inside the ball is a single atom of calcium (purple). An electron can transfer to and from the calcium atom to the outer ring structure of the ball.

Image Credit: Osanna Tishchenko and Donald Truhlar, University of Minnesota.
Fault-Oblivious Exascale (FOX) Computing Environment

As computer speed and power continue to increase, exascale systems—machines with 100 million cores—will someday become the norm. A research team led by Maya Gokhale of the Lawrence Livermore National Laboratory is using ALCF resources to study the potential issues facing these systems. Using a Fault-Oblivious model, researchers are studying fault management by building a software stack and (since exascale machines do not yet exist) using Argonne’s petascale systems to test it.

The team is exploring fault isolation and recovery across the entire stack from the operating system, through the runtime, up into the application. The core of this approach is based on a fault-tolerant distributed data store, and a task management system built on top of that. This research is expected to create new applications environments and results from software and library development that can be used to guide the development of future exascale systems.

Contact: gokhale2@llnl.gov

Heuristic Static Load-Balancing Algorithm

In petascale supercomputing, load balancing has become critically important. According to Amdahl’s law, the scalable component of the total wall time shrinks as the numbers of processors increase, while the load imbalance—along with the constant sequential component—acts to retard scalability. Improved load balancing can be a simple, effective way to boost the scalability and performance of parallel algorithms.

Load balancing is especially important for large systems when the number of tasks is less than or equal to the number of nodes, and/or the tasks have uneven sizes. A research team led by Yuri Alexeev of Argonne National Laboratory is using ALCF resources to develop a heuristic static load-balancing algorithm (HSLB). On 163,840 cores of the IBM Blue Gene/P, the team achieved a parallel efficiency of 80% for computing energy of the 17,767 atoms protein-ligand bio-system by using the Fragment Molecular Orbital (FMO) method implemented in the quantum chemistry package, GAMESS. HSLB has been also successfully applied in the climate-modeling package, CESM.

Contact: yuri@alcf.anl.gov
Scalable System Software for Performance and Productivity

System software is a critical component of any computing system and forms the infrastructure on which all applications depend. Using ALCF resources, a research team led by Ewing Lusk is improving and extending the capabilities of existing system software to allow applications to benefit from current leadership-class systems. As hardware complexity skyrockets in leadership-class systems, it is not easy for applications to take complete advantage of the available system resources and to avoid bottlenecks. This INCITE project aims to improve the performance and productivity of key system software components on these platforms. The research team is studying four classes of system software, using the IBM Blue Gene/P platform to understand and solve problems that occur at scale. Through rigorous experimentation, analysis, and design cycles, the team is improving the capabilities not only of systems being deployed in the near term, but of all systems pushing scalability limits in the near future.

Contact: lusk@mcs.anl.gov

Climate-Science Computational Development Team: The Climate End Station II

Climate-science modeling data helps energy policymakers evaluate and implement changes in national and international policies that affect the global economy. A team led by Warren Washington of the National Center for Atmospheric Research (NCAR) helps coordinate some of the high-performance computing needed to address the world’s most significant climate challenges. The team, comprising scientists from many U.S. Department of Energy (DOE) laboratories and NCAR, conducts simulations that address predictive capability and reduce scientific uncertainties. Simulation data is provided to the world’s climate change community through the DOE’s Earth System Grid.

The DOE program primarily credited with providing high-resolution model components is Climate Science for a Sustainable Energy Future (CSSE), coordinated among several DOE laboratories. Together with the Community Earth System Model (CESM) program, their experiments require the thousands of computational cores offered through INCITE.

Scientists design, test, validate, and install important physical model components into the CESM and CSSE efforts. These components improve the simulations’ fidelity and accuracy and are used to perform ensemble simulations for statistically significant projections of potential climate changes worldwide.

Contact: wmw@ucar.edu
CyberShake 3.0: Physics-Based Probabilistic Seismic Hazard Analysis

A team led by Thomas Jordan of the Southern California Earthquake Center (SCCEC) at the University of Southern California is using INCITE to calculate a physics-based probabilistic seismic hazard map for California. Dubbed “CyberShake 3.0,” this first-ever 3D wave propagation computational approach shows the seismic hazard implications of the most advanced earthquake forecasts of the U.S. Geological Survey, which produces the nation’s official seismic hazard forecasts.

CyberShake 3.0 improves on existing models by better capturing the impact of rupture directivity and sedimentary basin structures on earthquake peak ground motions. In addition, CyberShake introduces never-before-available seismic hazard data products including an extended earthquake rupture forecast and shaking duration forecasts. CyberShake 3.0 represents a pioneering effort to use high-performance computing to improve the broadest-impact seismic hazard data products.

While CyberShake research focuses on the well-studied, seismically vulnerable region of California, the technique is applicable to any seismically active region in the world.

Contact: tjordan@usc.edu

Large Eddy Simulations of Contrail-to-Cirrus Transition

Contrails are ice clouds that form by condensed water-vapor exhaust from aircraft engines. When contrails spread to form cirrus clouds, they can persist for hours, extending over several square kilometers. These “contrail cirrus,” which artificially increase cloudiness and become almost indistinguishable from natural cirrus, are among the most uncertain contributors to Earth’s radiative forcing. And as demand for air travel grows, contrail cirrus represents increasing concern for scientists and policymakers.

Robert Paoli from CERFACS leads a research team studying the contrail-to-cirrus transition through simulations with the atmospheric solver Meso-NH. Using ALCF resources, they identified the key processes that determine the dynamical and microphysical characteristics of the contrail as a function of age. Their simulations—the largest ever performed in this area to date—found that ambient turbulence controls the initial contrail evolution whereas radiative transfer is the main driver later. Radiative transfer produces regions of local cooling and heating inside the cloud, tending to redistribute ice along a single vertical layer and forming the characteristic puffy structures of natural cirrus.

Contact: paoli@cerfacs.fr
Advanced Reactor Thermal Hydraulic Modeling

Clean, safe nuclear power is essential for the world’s growing energy needs. A team led by Paul Fischer and Aleksandr Obabko of Argonne National Laboratory uses ALCF resources to perform highly accurate computations that allow them to analyze, model, simulate, and predict complex thermo-fluid phenomena. The team carried out large-scale numerical simulations of turbulent thermal transport in critical reactor components. Researchers analyzed mixing induced by wire-wrap spacers for 7-, 19-, 37-, and 217-pin subassemblies and spacer-grid mixing for a 5x5 subassembly. The latter analysis was submitted as part of a NEA/OECD benchmark study that ranked in the top submissions for mean and rms velocity predictions. In another NEA/OECD benchmark problem, the team ranked first in prediction of thermal striping—alternating hot and cold patches—induced when streams of different temperatures mix at a T-junction.

Their current computations are some of the largest to date with the spectral element code Nek5000, and involve several hundred million grid points on unstructured meshes. The team’s findings are expected to inform the design of next-generation nuclear reactors capable of providing sustainable energy with a low carbon footprint.

Contact: fischer@mcs.anl.gov

PI: Paul F. Fischer
INSTITUTION: Argonne National Laboratory
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 25 Million Core-Hours
RESEARCH DOMAIN: Energy Technologies

Simulating Regional Climate at Convection Permitting Resolution

Using ALCF resources, a team led by Greg Holland of the National Center for Atmospheric Research (NCAR) is working to create next-generation climate modeling systems that may ultimately aid in national planning for extreme weather events. The team has completed the longest, highest-resolution run of the Nested Regional Climate Model (NRCM), a state-of-the-art climate modeling code.

The study examines the advantages of convection-permitting resolution on climate timescales with an emphasis on high-impact weather and climate. In a breakthrough for climate simulations, this project has run NRCM at a horizontal resolution of 4 kilometers for a large domain extending over North America and the Atlantic Ocean basin.

Analysis is now underway on phenomena with high sensitivity to model resolution, including water-snowpack assessments and such high-impact events as winter storms and hurricanes. The research promises to advance understanding of Earth’s climate for national emergency preparedness and will broaden the community of researchers capable of using leadership computing resources.

Contact: gholland@ucar.edu

PI: Greg Holland
INSTITUTION: National Center for Atmospheric Research
ALLOCATION PROGRAM: ALCC 2011-2012
ALLOCATION HOURS: 13 Million Core-Hours
RESEARCH DOMAIN: Earth Science
Optimization of Complex Energy System Under Uncertainty

The federal mandate to increase the use of renewable energy has resulted in a significant challenge for the U.S. power grid. Unlike fossil-fuel generation systems, the available amount of renewable energy at any given time is uncertain. As a result, a system relying on renewable energy runs the risk of not meeting consumer demand at peak times.

A team of scientists led by Mihai Anitescu of Argonne National Laboratory is using high-performance computing to explore optimization under uncertainty as the paradigm for managing uncertainty in the renewable energy supply. Their goal is to reduce reserve requirements and stabilize electricity markets in the next-generation power grid. The team uses stochastic programming formulations of the decision process that schedules supply and matches demand.

To date, the team has demonstrated that, at least on some configurations, even 20% wind penetration—the federal mandate for the year 2030—can be accommodated without significant reserve increase by using stochastic optimization, a result that would not be achievable with traditional formulations.

Contact: anitescu@mcs.anl.gov

Adaptive Detached Eddy Simulation of a Vertical Tail with Active Flow Control

With fuel being the airline industry’s single largest expense, fuel economy is a top priority. A key to reducing fuel consumption is reducing the weight of the aircraft. A research team led by Kenneth Jansen of the University of Colorado is conducting flow control studies for innovations in lighter designs involving the wings and vertical tail of the aircraft.

To take off or land, aircraft rely on mechanical wing flaps to provide additional lift. The flaps serve no in-flight purpose and their weight reduces the plane’s fuel efficiency. Researchers are performing a series of simulations of active flow control using high-frequency jets known as “synthetic jets” with smaller, lighter mechanical flaps.

Using the synthetic jets, the team is also conducting simulations of active flow control on the vertical tail of the aircraft. Researchers hypothesize that such design modifications could reduce fuel use by 0.5%, resulting in annual savings of $300 million.

Contact: jansenke@colorado.edu
Prediction of Multiscale, Multiphysics Turbulent Flow Phenomena Using Unstructured Large Eddy Simulation

Engine exhaust noise—particularly during take-off and landing approaches—represents a major obstacle to the widespread use of high-speed aircraft. Supersonic jets, for example, raise noise pollution levels in airport communities and can ultimately lead to hearing loss for crew on aircraft carrier decks. A team led by Parviz Moin of Stanford University’s Center for Turbulence Research is using the power of supercomputers at the ALCF to study supersonic jet noise.

For reasons as yet not completely understood, serrated engine exhaust nozzles are known to reduce noise, and in particular eliminate “crackle,” an especially noxious component of the noise. Such serrations, called chevrons, are featured on Boeing’s new 787 aircraft. The research team is performing simulations to determine how and why the chevrons work. This comprehensive study relies on one-of-a-kind large eddy simulations of supersonic jet noise involving complex nozzle geometries.

This project is supported by the U.S. Air Force Office of Scientific Research and the U.S. Naval Air Systems Command.

Contact: moin@stanford.edu

Image Credit:
Joseph Nichols, Center for Turbulence Research.

Petascale Thermal-Hydraulic Simulations in Support of CESAR

The Center for Exascale Simulation for Advanced Reactors (CESAR) aims to develop a coupled next-generation nuclear reactor core simulation tool for exascale computing platforms. CESAR helps fulfill the mission of the Advanced Scientific Computing Research program: to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the U.S. Department of Energy.

A team led by Elia Merzari of Argonne National Laboratory is using ALCF resources to create extreme-fidelity physics models that will enable new reactor design analysis in existing and next-generation reactors on exascale computing platforms.

The team’s simulations address the limitations of current methods as well as potential scaling to larger machines. Data from one simulation is expected to provide insight into the challenges of exascale simulations. Data from another simulation—a full high-fidelity large eddy simulation of a 37-rod bundle—will be used to examine rod-bundle flows at a level never achieved before, helping to determine computational cost in the exascale limit.

Contact: emerzari@anl.gov

Image Credit:
Elia Merzari, Argonne National Laboratory.
Dynamics of Conformational Transition in Thermo-Sensitive Polymers and Hydrogels

Understanding the conformational changes in isolated linear polymer chains and their macromolecular architectures is a fundamental problem in polymer science. External stimuli and alterations in environmental variables can bring about these changes. Thermo-sensitive polymers such as poly(n-isopropylacrylamide) (PNIPAM) represent an important class of materials that undergoes coil-to-globule transition across the lower critical solution temperature (LCST), which is around 305 degrees Kelvin.

A team led by Subramanian Sankaranarayanan at Argonne National Laboratory’s Center for Nanoscale Materials is using ALCF resources to study conformational transitions in thermo-sensitive oligomers and their macroscopic architectures such as polymer brushes and polymer gels. Coil-to-globule transitions are of importance in a number of practical applications, including drug delivery, medical diagnostics, tissue engineering, electrophoresis, separation, and enhanced oil recovery. For example, tuning the LCST of PNIPAM close to human body temperature via copolymerization can enable development of a controlled drug delivery system. The team’s work will extend to macromolecular architectures such as polymer brushes and gels of PNIPAM.

Contact: skrssank@anl.gov

Petascale Simulations of Stress Corrosion Cracking

Corrosion is a complex technological and economic problem that imposes an annual cost of about 3% of the U.S. gross domestic product. Stress-induced corrosion limits the performance and lifetime of materials used in energy and nuclear technologies. A research team led by Priya Vashishta and Aiichiro Nakano of the University of Southern California is using the high-performance computing capabilities of the ALCF to study this corrosion in nickel-based alloys in advanced nuclear reactors and in glass containers of nuclear waste.

The team is performing molecular dynamics and quantum mechanical simulations to understand the atomistic mechanisms that control stress corrosion cracking. These simulations allow the team to investigate how even a small amount of sulfur impurity in nickel-based alloys and water in silicate glass can initiate material damage resulting in fracture. Their findings promise to advance the understanding of the complex electrochemical processes that lead to stress corrosion cracking and, ultimately, the development of new technologies to prevent it.

Contact: priyav@usc.edu, anakano@usc.edu
PI: Giulia Galli
INSTITUTION: University of California, Davis
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 25 Million Core-Hours
RESEARCH DOMAIN: Materials Science

Vibrational Spectroscopy of Liquid Mixtures and Solid-Liquid Interfaces

Aqueous solutions of simple salts are of great interest in electrochemistry and atmospheric chemistry. A research team led by Giulia Galli at the University of California, Davis uses first-principles molecular dynamics (MD) simulations to predict the properties of simple aqueous solutions and interpret spectroscopic data. The team is using the Qbox code and a bisection technique developed by François Gygi to compute the Hartree-Fock exchange energy, greatly increasing the efficiency of ab initio simulations with hybrid functionals.

The bisection method allows for an unbiased localization of orbitals in domains of varying size and a truncation of orbitals that preserves accuracy in a controlled manner. The method targets large-scale parallel computers and relies on a parallel Jacobi algorithm for simultaneous diagonalization and a systolic algorithm for the computation of exchange integrals. Scalability on up to 16k cores of the ALCF Mira platform was demonstrated for a system of 256 water molecules. The method is particularly well adapted to study inhomogeneous systems such as solid-liquid interfaces and solvated nanoparticles, in which molecular orbitals do not exhibit simple localization patterns.

Work is in progress to simulate realistic models of solid-liquid interfaces relevant to atomic-scale phenomena in photo-electrochemical cells and batteries.

Contact: gagalli@ucdavis.edu

PI: James R. Chelikowsky
INSTITUTION: The University of Texas at Austin
ALLOCATION PROGRAM: ALCC 2011-2012
ALLOCATION HOURS: 12 Million Core-Hours
RESEARCH DOMAIN: Materials Science

Toward Crystal Engineering from First Principles

Crystal engineering is a bottom-up approach to designing new crystalline materials from molecular building blocks with vast and far-reaching applications, from drug design to hydrogen storage. Researchers James Chelikowsky and Noa Marom of The University of Texas at Austin, in collaboration with Alexandre Tkatchenko from the Fritz Haber Institute of the Max Planck Society in Berlin are using ALCF resources to study the intermolecular dispersion interactions that govern structure and properties of molecular crystals. The team's goal is to enable computational crystal engineering from first principles. To this end, density functional theory (DFT) is employed in conjunction with a newly developed methods for describing many-body dispersion (MBD) interactions.

The research focuses primarily on demonstrating the capability of the DFT+MBD approach for a series of case studies reflecting the wide variety of applications of crystal engineering from biological systems, such as amino acids and antimalarial drugs, to technological applications, such as organic semiconductors for organic electronics and dye-sensitized TiO2 clusters for solar cells. The systems being studied comprise several hundred atoms, pushing the size limits of fully quantum mechanical calculations. Potential energy surface (PES) exploration for such systems requires massively parallel computing. Accounting for MBD interactions is crucial for locating the PES minima for molecular crystals. In the figure this is illustrated for PES projections on to the α-β plane of the γ-glycine crystal.

Contact: jrc@ices.utexas.edu

This partial image shows the potential energy surface projected on to the α-β plane of the γ-glycine crystal (illustrated on the top right) calculated using DFT without any dispersion method (top left), with the TS dispersion method (bottom left), and with the MBD dispersion method (bottom right). Only the latter is in agreement with experiment.

Image Credit: James Chelikowsky and Noa Marom, The University of Texas at Austin; Viktor Aziz, Sergey Levchenko, Anthony M. Reilly, and Alexandre Tkatchenko, Fritz Haber Institute; Robert A. DiStasio Jr., Princeton University; Leslie Leiserowitz, Weizmann Institute of Science.
Lattice QCD

Quantum chromodynamics (QCD) research plays a key role in the ongoing efforts of scientists to develop a unified theory of the fundamental forces of nature. While scientists understand the behavior of such atomic particles as protons and neutrons, less is known about the interactions of quarks and gluons, the subatomic particles that comprise them.

Using the capabilities of the ALCF’s Blue Gene/P supercomputer, the United States Quantum Chromodynamics (USQCD) Collaboration carries out extensive calculations on lattice gauge theory, the theory that describes how quarks and gluons help form atomic nuclei. Paul Mackenzie of the Fermi National Accelerator Laboratory leads the USQCD team.

The USQCD efforts lie at the heart of the U.S. Department of Energy’s large experimental programs in high energy and nuclear physics.

Contact: mackenzie@fnal.gov

PI: Paul Mackenzie
INSTITUTION: Fermi National Accelerator Laboratory
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 96 Million Core-Hours
ALCF: 50 Million; OLCF: 46 Million
RESEARCH DOMAIN: Physics

Petascale Simulations of Inhomogeneous Alfvén Turbulence in the Solar Wind

The origin of the solar wind and the heating of the solar corona are two of the most compelling problems in heliospheric physics. In-situ and remote observations suggest that Alfvén waves (AWs) and AW turbulence play a key role in solving both problems. A research team led by Jean Perez of the University of New Hampshire is using ALCF resources to address these issues and arrive at new theoretical understandings.

Scientists are conducting the first direct numerical simulations of AW turbulence in the extended solar atmosphere that account for the inhomogeneities in the density, flow speed, and background magnetic field within a narrow magnetic flux tube extending from roughly one solar radius to eleven solar radii. They are comparing their numerical simulations with remote observations. Researchers are using the Inhomogeneous Reduced Magnetohydrodynamics Code developed by Perez and extensively tested and benchmarked on the IBM Blue Gene/P.

This study is of added interest to the space physics community, given preparations underway for NASA’s Solar Probe Plus mission with its planned 2018 launch date.

Contact: jeanc.perez@unh.edu

PI: Jean C. Perez
INSTITUTION: University of New Hampshire
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 10 Million Core-Hours
ALLOCATION PROGRAM: INCITE 2012
RESEARCH DOMAIN: Physics
PI: Denise Hinkel
INSTITUTION: Lawrence Livermore National Laboratory
ALLOCATION PROGRAM: INCITE 2012
ALLOCATION HOURS: 63 Million Core-Hours
RESEARCH DOMAIN: Physics

Petascale Simulation of Magnetorotational Core-Collapse Supernovae

Core-collapse supernovae are the luminous explosions that herald the death of massive stars. While its importance in galactic evolution cannot be underestimated, the core-collapse supernova mechanism is not fully understood and remains one of the most important challenges for modern computational astrophysics.

A research team led by Denise Hinkel of Lawrence Livermore National Laboratory is using ALCF resources to perform simulations that provide the details of the coupling process in these ignition targets. The team’s state-of-the-art simulations quantify how overlapping beam quads impact backscatter. These simulations show that overlapping quads can share a reflected light wave, enhancing reflectivity. In a recent simulation, the team saw SBS and SRS backscatter with competition for the incident laser light between them.

Contact: hinkel1@llnl.gov

Volume rendering of the highest entropy plumes in a 3D core-collapse supernova simulation. The edge of the nascent neutron star is shown as the faint blue sphere near the center. Entropy, a measure of the thermodynamic disorder, shows the buoyant convective plumes and turbulence that play a critical part in the core-collapse supernova mechanism. The surface of the outgoing shock wave is also shown in faint gray.

Image Credit: Denise Hinkel, Bruce Langdon, Steven Langer, Charles Still, and Edward Williams, Lawrence Livermore National Laboratory

Simulations of Laser-Plasma Interactions in Targets for the National Ignition Facility and Beyond

Providing for the world’s energy demands is one of the most urgent and difficult challenges facing society. Scientists have been working to achieve self-sustaining nuclear fusion and energy gain in the laboratory for more than a half-century. Inertial fusion energy provides an attractive solution to the demands for safe, secure, and environmentally sustainable energy. To this end, the National Ignition Facility is using the world’s most powerful laser to achieve ignition, bringing the goal of fusion energy closer to realization. A key aspect of laser driven fusion is coupling the laser energy to the ignition target. A team of scientists led by Denise Hinkel of Lawrence Livermore National Laboratory is using ALCF resources to perform simulations that provide the details of the coupling process in these ignition targets.

Recent findings show substantial differences in the behavior of 2D and 3D buoyant plumes, suggesting that 3D characteristics are necessary for realistic simulations. These groundbreaking studies may profoundly expand our understanding of stellar death and the creation of heavy elements throughout the universe.

Contact: hinkel1@llnl.gov

Laser input to a pF3d simulation of two NIF laser quads propagating through an ignition target. Here, power transferred from other quads of laser beams is distributed uniformly across the laser beams. Two quads overlap in the simulated region. This enhances reflectivity through a shared reflected light wave.

Image Credit: Denise Hinkel, Bruce Langdon, Steven Langer, Charles Still, and Edward Williams, Lawrence Livermore National Laboratory
Zoom-in of the matter density field showing the complexity of cosmological structure formation as resolved in a 68-billion-particle simulation carried out on Mira through the ALCF’s Early Science Program. The simulation is based around the new HACC (Hardware-Hybrid Accelerated Cosmology Code) framework aimed at exploiting emerging supercomputer architectures such as the Blue Gene/Q.

Image Credit: Hal Finkel, Salman Habib, Katrin Heitmann, Mark Herediti, Joseph Insley, Kalyan Kumaran, Vitas Marazici, Michael E. Papka, Tom Peikert, Adrian Papo, Thomas Uram, Venkatesh Vaidyanath, and Tim Williams, Argonne National Laboratory; Zarija Lukic, Lawrence Berkeley National Laboratory; David Daniel, Patricia Fasel, and Nicholas Frontiere, Los Alamos National Laboratory.
Researchers who use ALCF resources are major contributors to numerous publications that document their breakthrough science and engineering. The referred journal articles and conference proceedings represent research ventures undertaken at the ALCF through programs supported by the U.S. Department of Energy and Argonne National Laboratory.

This list contains 150 publications in descending order of their undertakes. Researchers who use ALCF resources are major contributors to numerous publications that document their breakthrough science and engineering. The referred journal articles and conference proceedings represent research ventures undertaken at the ALCF through programs supported by the U.S. Department of Energy and Argonne National Laboratory.

2012 ALCF PUBLICATIONS

Publications

publications

The paper references a wide range of scientific studies and publications across various fields, including physics, chemistry, and biology, covering topics such as protein folding, nucleon mixing, supernova calculations, and the impact of Asian carbon aerosols on future US warming. The references are formatted in a standard academic citation style, typical of scientific journals and proceedings.

2012 ALCF PROJECTS

2012 INCITE PROJECTS

Biological Sciences

Protein-Ligand Interaction Simulations and Analysis T. Andrew Binkowski, Argonne National Laboratory Allocation: 10 Million Core-Hours

McClatchey, Robert, RSMAS, University of Miami Allocation: 20 Million Core-Hours

Bioinformatics & Systems Biology Mihai Anitescu, Argonne National Laboratory Allocation: 45 Million Core-Hours

Chemistry

Towards Breakthroughs in Protein Structure Calculation and Design David Baker, University of Washington Allocation: 33 Million Core-Hours

Multiscale Blood Flow Simulations George Karniadakis, Brown University Allocation: 72 Million Core-Hours

ALCF: 50 Million; OLCF: 23 Million

Energy Technologies

Optimization of Complex Energy Systems Under Uncertainty Mihai Anitescu, Argonne National Laboratory Allocation: 10 Million Core-Hours

Advanced Reactor Thermal Hydraulic Modeling Paul Fischer, Argonne National Laboratory Allocation: 25 Million Core-Hours

Atmospheric Aerosol and Radiation Processes Helen Colón, Argonne National Laboratory Allocation: 20 Million Core-Hours

Engineering

Direct Simulation of Fully Resolved Vaporizing Droplets in a Turbulent Flow Said Eighbashi, University of California—Irvine Allocation: 10 Million Core-Hours

Algorithms for Advanced Reactor Thermal Hydraulics Paul Fischer, Argonne National Laboratory Allocation: 25 Million Core-Hours

Adaptive Detached Eddy Simulation of a Vertical Tail with Active Flow Control Kenneth Jansen, University of Colorado—Boulder Allocation: 40 Million Core-Hours

Turbulent Multi-Material Mixing in the Richtmyer-Meshkov Instability Sanyo Lele, Stanford University Allocation: 20 Million Core-Hours

Earth Science

CyberShake 3.0: Physics-Based Probabilistic Seismic Hazard Analysis Thomas Jordan, Southern California Earthquake Center Allocation: 40 Million Core-Hours

ALCF: 2 Million; OLCF: 38 Million

Large Eddy Simulations of Contract to Cirrus Transition Roberto Pasola, CESFACS Allocation: 20 Million Core-Hours

Climate-Science Computational Development Team: The Climate End Station II Warren Washington, National Center for Atmospheric Research Allocation: 86 Million Core-Hours

ALCF: 30 Million; OLCF: 56 Million

Allocation: 20 Million Core-Hours

Allocation: 50 Million Core-Hours

Allocation: 25 Million Core-Hours

Allocation: 40 Million Core-Hours

Allocation: 45 Million Core-Hours

Allocation: 40 Million Core-Hours

Allocation: 10 Million Core-Hours

Allocation: 5 Million Core-Hours

Allocation: 10 Million Core-Hours

Allocation: 10 Million Core-Hours

Allocation: 20 Million Core-Hours

Allocation: 30 Million Core-Hours
Materials Science
Vibrational Spectroscopy of Liquid Mixtures and Solid-Liquid Interfaces
Gilda Galli, University of California—Davis
Allocation: 25 Million Core-Hours

High-Fidelity Simulation of Complex Suspension Flow for Practical Rheometry
William George, National Institute of Standards
Allocation: 22 Million Core-Hours

Probing the Non-Scalable Nano Regime in Catalytic Nanoparticles with Electronic Structure Calculations
Jeffrey Greer, Argonne National Laboratory
Allocation: 10 Million Core-Hours

Petascale Simulations of Stress Corrosion Cracking
Priya Vashista, University of Southern California
Allocation: 45 Million Core-Hours

Multiscale Modeling of Energy Storage Materials
Gregory Voth, The University of Chicago
Allocation: 25 Million Core-Hours

Physics
Simulations of Laser-Plasma Interactions in Targets for the National Ignition Facility and Beyond
Denise Hinnel, Lawrence Livermore National Laboratory
Allocation: 63 Million Core-Hours

Toward Exascale Computing of Type Ia and Ib, c Supernovae: VE&V of Current Models
Donald Lamb, The University of Chicago
Allocation: 40 Million Core-Hours

Lattice QCD
Paul Mackenzie, Fermi National Accelerator Laboratory
Allocation: 96 Million Core-Hours
ALCF: 50 Million; OLCF: 46 Million

Petascale Simulations of Inhomogeneous Alfvén Turbulence in the Solar Wind
Joan Perez, University of New Hampshire
Allocation: 10 Million Core-Hours

Nuclear Structure and Nuclear Reactions
James Vary, Iowa State University
Allocation: 18 Million Core-Hours

2012 ALCC PROJECTS

Computer Science
HPC Colony: Adaptive System Software for Improved Resiliency and Performance
Terry Jones, Oak Ridge National Laboratory
Allocation: 3 Million Core-Hours

Energy Technologies
Validation Work for Helium Nuclear Reactor Calculations
Michael Smith, Argonne National Laboratory
Allocation: 30 Million Core-Hours

Engineering
Petascale Thermal-Hydraulic Simulations in Support of CESAR
Elia Merzari, Argonne National Laboratory
Allocation: 30 Million Core-Hours

Materials Science
Dynamics of Conformational Transition in Thermo-Sensitive Polymers and Hydrogels
Subramanian Santhanam, Argonne National Laboratory
Allocation: 50 Million Core-Hours

Liquid-Solid Interfaces in Electrocatalysis from First Principles
Jeffrey Greener, Argonne National Laboratory
Allocation: 20 Million Core-Hours

ALCC: Exploring the Nature of the Lightest Massive Particles in the Universe
Karin Heitmann, Argonne National Laboratory
Allocation: 4 Million Core-Hours

2012 EARLY SCIENCE PROGRAM PROJECTS

Biological Science
Multiscale Molecular Simulations at the Petascale
Gregory Voth, The University of Chicago
Allocation: 150 Million Core-Hours

Chemistry
Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPOC
Robert Hanson, Oak Ridge National Laboratory
Allocation: 150 Million Core-Hours

Earth Science
Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model
Venkateshan Balaji, Geophysical Fluid Dynamics Laboratory
Allocation: 150 Million Core-Hours

Energy Technologies
Materials Design and Discovery: Catalysis and Energy Storage
Larry Curtiss, Argonne National Laboratory
Allocation: 50 Million Core-Hours

Petascale Direct Numerical Simulations of Turbulent Channel Flow
Robert Moses, University of Texas
Allocation: 60 Million Core-Hours

Engineering
Direct Numerical Simulation of Autignition in a Jet in a Cross-Flows
Allocation: 150 Million Core-Hours

Petascale, Adaptive CFD
Kenneth Jameson, University of Colorado-Boulder
Allocation: 150 Million Core-Hours

Physics
Ab Initio Reaction Calculations for Carbon-12
Steven P. Pieper, Argonne National Laboratory
Allocation: 50 Million Core-Hours

Cosmic Structure Probes of the Dark Universe
Salman Habib, Los Alamos National Laboratory
Allocation: 150 Million Core-Hours

Global Simulation of Plasma Microturbulence at the Petascale & Beyond
William Tang, Princeton Plasma Physics Laboratory
Allocation: 50 Million Core-Hours

LatticeQCD - Early Science
Paul Mackenzie, Fermilab
Allocation: 150 Million Core-Hours

Petascale Simulations of Turbulent Nuclear Combustion
Don Lamb, The University of Chicago
Allocation: 150 Million Core-Hours

2012 DIRECTOR’S DISCRETIONARY PROJECTS

Biological Science
Multi-Scale Simulations of Deformable Blood Vessels
Lepold Gimberg, Brown University
Allocation: 50 Million Core-Hours

High-Performance Neuron Simulations on the Blue Gene/Q
Michael Hines, Yale University
Allocation: 1 Million Core-Hours
Chemistry
Water Systems from Highly Accurate Quantum Monte Carlo Calculations
Dario Alfè, University College London
Allocation: 1 Million Core-Hours

Multi-Scale Modeling of Catalytic Interfaces Based on 2D Sub-Nano Surface-Deposited Clusters
Anastasios N. Alexandrou, University of California, Los Angeles
Allocation: 1 Million Core-Hours

Port ACES II and SIAL
Erik Deumens, University of Florida
Allocation: 500,000 Core-Hours

Machine Learning for the Exploration of Chemical Compound Space
O. Anatoile von Lilienfeld, Argonne National Laboratory
Allocation: 1 Million Core-Hours

Computer Science
Parallel Run-Time Systems
Jeff Hammond, Argonne National Laboratory
Allocation: 4 Million Core-Hours

Charm++ and Its Applications
LaxmiRaj V. Kale, University of Illinois at Urbana-Champaign
Allocation: 1.5 Million Core-Hours

Parallel Boost Graph Library
Andrew Lumsdaine, Indiana University
Allocation: 100,000 Core-Hours

SciDAC Scalable Data Management Analysis and Visualization
Michael E. Pape, Argonne National Laboratory
Allocation: 900,000 Core-Hours

Visualization and Analysis Research and Development for Argonne Leadership Computing Facility
Michael E. Pape, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Distributed File Systems for Exascale Computing
Ioan Racu, Illinois Institute of Technology
Allocation: 350,000 Core-Hours

I/O Forwarding Scalability Layer
Rob Ross, Argonne National Laboratory
Allocation: 1.5 Million Core-Hours

Parallel Performance Evaluation Using the TAU Performance System
Sameer Shende, Paratech, Inc.
Allocation: 100,000 Core-Hours

Energy Technologies
Molecular Modeling of Nanoscale Transport Pertinent to Energy Conversion and Storage
Soumik Banerjee, Washington State University
Allocation: 250,000 Core-Hours

Oxygen-Sensitivity Problem of Hydrogenases
Martin Stiebritz, ETH Zurich
Allocation: 1 Million Core-Hours

Physics
3D Simulations of Magnetorotational Core-Collapse Supernovae
Sean Couch, The University of Chicago
Allocation: 5 Million Core-Hours

Electromagnetics
Misun Min, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Nuclear Energy
Modeling of Defects in Materials for Energy Applications
John J. Lew and Marius Stan, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Materials Science
Quantum Monte Carlo Methods for Solids and Liquids
Dario Alfè, University College London
Allocation: 500,000 Core-Hours

SPaSM Molecular Dynamics Simulations of Material Dynamics
Timothy C. Germann, Los Alamos National Laboratory
Allocation: 500,000 Core-Hours

First-Principle Investigations of Oxygen Defects in Metal-Oxide-Metal Heterostructures
Ole Heinonen, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Modeling Oil Properties with Molecular Dynamics
Detlef Hohl, Shell International E&P, Inc.
Allocation: 150,000 Core-Hours

Wavelet Basis Set in Density Functional Theory Methods for Photoelectric Materials
Alvaro Vazquez-Mayagoitia, Argonne National Laboratory
Allocation: 900,000 Core-Hours

TotalView Debugger on Blue Gene/P
Peter Thompson, TotalView Technologies
Allocation: 250,000 Core-Hours

Earth Science
Dynamic Downscaling of Climate Models
V. Rao Kotamarthi, Argonne National Laboratory
Allocation: 1.25 Million Core-Hours

Large Eddy Simulations of Atmospheric Convection
David Romps, Lawrence Berkeley National Laboratory
Allocation: 700,000 Core-Hours

Sensitivity and Uncertainty of Precipitation of the GFDL High-Resolution Model
Laura Zamboni, Argonne National Laboratory
Allocation: 100,000 Core-Hours

Environment
NEK5000
Paul Fischer, Argonne National Laboratory
Allocation: 1 Million Core-Hours

First-Principles Calculation of Laser-Induced Ultrafast Magnetism
Guoping Zhang, Indiana State University
Allocation: 1.5 Million Core-Hours

TotalView Debugger on Blue Gene/P
Peter Thompson, TotalView Technologies
Allocation: 250,000 Core-Hours

Energy Technologies
Molecular Modeling of Nanoscale Transport Pertinent to Energy Conversion and Storage
Soumik Banerjee, Washington State University
Allocation: 250,000 Core-Hours

Oxygen-Sensitivity Problem of Hydrogenases
Martin Stiebritz, ETH Zurich
Allocation: 1 Million Core-Hours

Physics
3D Simulations of Magnetorotational Core-Collapse Supernovae
Sean Couch, The University of Chicago
Allocation: 5 Million Core-Hours

Electromagnetics
Misun Min, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Nuclear Energy
Modeling of Defects in Materials for Energy Applications
John J. Lew and Marius Stan, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Materials Science
Quantum Monte Carlo Methods for Solids and Liquids
Dario Alfè, University College London
Allocation: 500,000 Core-Hours

SPaSM Molecular Dynamics Simulations of Material Dynamics
Timothy C. Germann, Los Alamos National Laboratory
Allocation: 500,000 Core-Hours

First-Principle Investigations of Oxygen Defects in Metal-Oxide-Metal Heterostructures
Ole Heinonen, Argonne National Laboratory
Allocation: 500,000 Core-Hours

Modeling Oil Properties with Molecular Dynamics
Detlef Hohl, Shell International E&P, Inc.
Allocation: 150,000 Core-Hours

Wavelet Basis Set in Density Functional Theory Methods for Photoelectric Materials
Alvaro Vazquez-Mayagoitia, Argonne National Laboratory
Allocation: 900,000 Core-Hours

TotalView Debugger on Blue Gene/P
Peter Thompson, TotalView Technologies
Allocation: 250,000 Core-Hours