
Ensemble Jobs for Better Throughput

Paul Rich
Ray Loy

This information only applies to
ALCF Blue Gene/Q resources.

Use on other types of systems or at other sites

will likely require significant adjustments.

2

Overview

¤  Definitions
¤  Picking the right type of job
¤  Basic Script mode jobs
¤  Ensemble jobs

¥  Sub-block runjobs
¥  Multi-block jobs
¥  Hybrid multi-block + sub-block jobs

¤  Error checking in job scripts

3

Definitions and Disambiguation

¤  Block – A Blue Gene partition
¤  Cobalt Job - A job submitted to Cobalt via qsub. Shows up in qstat.

¥  Non-script job
¥  Script Job - A Cobalt job submitted with the --mode script option

¡  Can do many things a non-script job can't

¤  Blue Gene job - A task run on the compute nodes via runjob
¥  runjob is BG equivalent of mpirun or mpiexec

¤  Ensemble job – A Cobalt job with >1 simultaneous runjob
¤  Sub-block runjob – Runjob only uses part of a booted block. The

block can be shared with other sub-block runjobs
¤  Multi-block job - A Cobalt job that takes the overall block assigned

by the scheduler and separately boots smaller blocks within it.
Simultaneous runjobs may be run on these smaller blocks.

4

5

1024	
 2048	
 512	

4K	

Mul,-­‐block	
 job	
 (one	
 runjob	
 per	
 block)	

For	
 jobs	
 with	
 the	
 same	
 characteris0cs:	
 higher	
 job	
 size	
 =	
 faster	
 score	
 increase	
 	

Sub-­‐block	
 runjobs	

512	
 nodes	

4	
 x	
 128	
 nodes	

Minimum	

par,,on	
 size	

on	
 Mira	

Examples	
 of	
 mul,-­‐block	
 and	
 sub-­‐block	
 jobs	

Types of script jobs and the best tool for the job

¤  Basic Script Jobs
¥  Can run commands both before and after the runjob
¥  Can run a series of runjobs one after the other

¤  Ensemble Jobs
¥  You want to run multiple simultaneous tasks
¥  Single-block with sub-block runjobs

¡  All tasks are smaller than the smallest block size on the system
–  Mira=512, Cetus=128, Vesta=32

¥  Multi-block
¡  Boot smaller blocks within the overall Cobalt allocation
¡  Two possibilities

–  Run one runjob on each block
–  OR run multiple sub-block runjobs in each block

¥  Advanced: Either sub-block or multi-block can change runjob size
between tasks

¥  NOTE: None of these methods are MPMD runs

6

Choosing the Right Type of Submission

7

Simple	
 Script	
 Mul0-­‐block	

Ensemble	
 Script	

Sub-­‐block	
 	

Ensemble	
 Script	

Hybrid	

Mul0-­‐
block	
 +	

sub-­‐block	

Workload	
 to	
 Run	

Single	
 task	

or	
 series	
 of	

tasks?	

	
 Larger	
 than	

smallest	

Par00on?	

Ensemble	

fits	
 in	

smallest	

par00on?	

Yes	

No	
 No	

No	

No	

Yes	
 Yes	

Equivalent Cobalt jobs
¤  Non-script

¥  qsub –t 10 –n 32 --mode c16 –-proccount 512 a.out arg1 arg2

¤  Script
¥  qsub –t 10 –n 32 –-mode script job.sh
 #!bin/bash
 runjob –p 16 –np 512 --block $COBALT_PARTNAME : a.out arg1 arg2
¥  qsub job.sh

 #!bin/bash
 #COBALT –t 10 –n 32
 runjob –p 16 –np 512 --block $COBALT_PARTNAME : a.out arg1 arg2

¥  qsub job.sh
 #!bin/bash
 #COBALT –t 10 –n 32 --disable_preboot
 boot-block --block $COBALT_PARTNAME
 runjob –p 16 –np 512 --block $COBALT_PARTNAME : a.out arg1 arg2

8

Script job basics
¤  Script can be any executable for a front-end node (e.g. shellscript,

python, ...) if you submit with --mode script
¥  Shell scripts containing #COBALT are implicitly script mode

¤  The job script runs on a front-end node but the set of allocated compute
nodes is charged for the entire runtime.
¥  Avoid running long serial (non-runjob) commands e.g. compilation

¤  By default, the entire block allocated by Cobalt will be booted before
starting the script

¤  Cobalt sets: $COBALT_JOBID, $COBALT_PARTNAME, $COBALT_PARTSIZE, ...
¤  runjob starts execution on compute nodes

¥  Multiple runjobs may be run in series
¡  Advanced: check status of block in between runjobs

¤  Be careful about last command in a script
¥  “echo done” will cause exit status of 0 regardless of anything else!
¥  Very important if you’re using job dependencies

¤  The Cobalt job's .output/.error are the stdout/stderr from your job
script.
¥  Do not delete these files (or the .cobaltlog) – help us help you

9

Consecutive runjobs
#!bin/bash
#COBALT –t 10 –n 32

runjob –p 16 --np 512 --block $COBALT_PARTNAME : a.out arg1 arg2
status=$?

if [$status –ne 0] ; then
 echo "Error on first run, quitting"; exit 1
fi

runjob –p 8 --np 256 --block $COBALT_PARTNAME : a.out foo bar
status=$?

if [$status –ne 0] ; then
 echo "Error on second run"
fi
exit $status

 10

Sub-block runjobs

¤  Sub-block runjobs may be used within any script job
¥  e.g. a simple one-block job, or a multi-block job

¤  Recommended use is only within smallest hardware partition
¥  Mira=512, Cetus=128, Vesta=32
¥  Can run down to the single-node level
¥  Only supported for booted blocks of 512 nodes or smaller

¤  Use runjob --corner and --shape flags
¥  Shape gives the extents of a 5D patch e.g. "2x2x4x2x2" (=64 nodes)

¡  man runjob has a list of common shapes for small sub-block sizes
¡  Size must be a power of 2

¥  Corner is a hardware location
¡  A disjoint set of corners may be obtained by passing the block name and a

shape to /soft/cobalt/bgq_hardware_mapper/get-corners.py

11

Sub-block runjob example
#!/bin/bash
#COBALT –n 32 –t 10

SHAPE=1x2x2x2x2 # 16 nodes
CORNERS=`get-corners.py $COBALT_PARTNAME $SHAPE`

for C in CORNERS; do
 runjob –-block $COBALT_PARTNAME --corner $C –shape $SHAPE –p 1 --np 16 :
a.out >RUNJOB.$C.output 2>&1 &
 sleep 3
done

wait
exit 0 # Need to do more coding to collect runjob statuses

12

Sub-block runjob Caveats

¤  If a sub-block runjob exits abnormally, the block it was in may go
into an error state
¥  May not kill other current sub-block runjobs

¡  Other jobs only stay up if a software failure

¥  However, will prevent future jobs from starting
¥  When this happens, wait for sub-block runjobs to complete (or kill

them), then reboot block.

¤  Avoid
¥  Starting runjobs too quickly

¡  Must use a "sleep 3" after starting each one in background

¥  Overloading I/O nodes
¥  Too many runjobs in total

¡  Each runjob uses non-scalable resources that stress the system
¡  Maximum of 512 runjobs in all your running jobs

13

Multi-block Jobs
¤  The Cobalt job's allocated block either must start off unbooted or be

freed at the start of the job
¥  qsub option (or #COBALT) --disable_preboot

¤  Boot smaller “child” blocks of the main allocated block
¥  Cannot be smaller than the smallest bootable partition
¥  May be subject to torus wiring restrictions

¤  get-bootable-blocks will return all child blocks currently available to
boot in a main block
¥  Can constrain to particular sizes and geometries
¥  Booting one child may block others, they will no longer be available

¤  boot-block can boot, free, or reboot a partition
¥  After booting or rebooting, the block is ready for use
¥  nonzero exit status means a problem occurred

¤  Runjob works in the normal way, just using one child block per
invocation
¥  Advanced: you can also run a set of sub-block runjobs on each child

14

Example Multi-block Script
#!/bin/bash !
#COBALT –n 1024 –t 10 --disable_preboot!
!
BLOCKS=`get-bootable-blocks --size 512 $COBALT_PARTNAME` !
!
for BLOCK in $BLOCKS ; do !
 boot-block --block $BLOCK & !
done !
wait !
!
for BLOCK in $BLOCKS ; do !
 runjob --block $BLOCK : ./my_binary >RUNJOB.$BLOCK 2>&1 & !
 sleep 3 # Important !
done !
wait !
!
More code required to check for runjob success/fail !
exit 0 !
!
!
Based on http://trac.mcs.anl.gov/projects/cobalt/wiki/BGQUserComputeBlockControl!

15

Multi-block Caveats

¤  Some block sizes may have issues running next to each other
¥  Adjacent 4096- and 1024-node full-torus blocks (due to physical wiring)

¡  Use partial mesh versions of these blocks
¥  Incremental approach: after booting one block, repeat call to get-bootable-blocks

¤  Booting a block may fail
¥  File systems may fail to mount. Hardware may die during boot.
¥  boot-block will automatically re-try 3 times before giving up
¥  partlist will show an error as blocked(SoftwareFailure)

¡  Software errors can be cleared by rebooting
¤  Can mix block sizes and change sizes

¥  To change, free children then boot a new set
¥  If using persistent CNK ramdisk (/dev/persist), contents will be erased by a block

reboot.
¤  Once a block is booted, can run multiple runjobs on it
¤  Some blocks share I/O resources

¥  check ALCF system documentation
¤  Test your script on Cetus, if possible

¥  Adjust block sizes for test

16

Considerations for Mira
¤  Adjacent 1024 node and 4096 node blocks have potential torus

wiring conflicts
¥  Avoid by using blocks with partial mesh dimensions
¥  1024: MIR-XXXXX-YYYYY-1-1024 (same blocks used for the prod-short/

prod-long queues)
¥  4096: MIR-XXXXX-YYYYY-2-4096 (Not in any normal queues)

¤  Certain other size blocks may have alternate shapes defined
¥  You may have to use grep to filter the output of get-bootable-blocks

¤  If using mesh blocks to pack, all blocks of that size must be mesh
¥  Cannot mix torus and mesh due to wiring

¤  When packing different sizes, start with largest block and work
down in sizes
¥  This will result in the most efficient packing

¤  No more than 512 simultaneous runjob invocations
¥  More in series is fine, this is a limit for simultaneous runs
¥  This is based on a global Blue Gene control system limit

17

Hybrid Multi-block boot + Sub-block runjobs
#!/bin/bash !
#COBALT –n 1024 –t 10 --disable_preboot!

SHAPE=2x2x2x2x2 # 32 nodes
BLOCKS=`get-bootable-blocks --size 512 $COBALT_PARTNAME` !
!
for B in $BLOCKS ; do !
 boot-block --block $B & !
done !
wait !
!
for B in $BLOCKS ; do !
 CORNERS=`get-corners.py $COBALT_PARTNAME $SHAPE`
 for C in CORNERS; do
 runjob –-block $B --corner $C –shape $SHAPE –p 1 –np 32 : a.out >LOG.$B.$C.output 2>&1 &
 sleep 3
done !
wait !
!
More code required to check for runjob success/fail !
exit 0 !
!

18

Handling Errors
¤  Check Exit Statuses

¥  Non-zero means something went wrong
¥  Check boot-block, runjob

¤  Blocks may encounter errors that cause a boot to fail but are
recoverable.
¥  Try to boot the block again
¥  Recommend no more than 3 retries. At that point there is likely a hardware

problem
¥  Contact support@alcf.anl.gov if you see problems booting a particular block

¤  If runjob exits with a nonzero status the block may have had a
“software failure”
¥  Check partlist for the block, if the status is “hardware offline

(SoftwareFailure)” you can reboot the block to clear the error.
¡  boot-block --reboot $BLOCK_NAME

¥  If the block states "hardware offline" with a different error, the block is not
recoverable due to an actual hardware failure.

19

Questions?

20

21

Nodes A B C D E
 128 2 2 4 4 2
 256 4 2 4 4 2
 512 4 4 4 4 2
 1024 4 4 4 8 2

2048 4/8 4 4/8 4/8 2

Cetus	

hKp://www.alcf.anl.gov/user-­‐guides/machine-­‐par00ons	
 	

Nodes A B C D E

 512 4 4 4 4 2

 1024 4 4 4 8 2

 2048 4 4 4 16 2

 4096 4/8 4 8/4 16 2

 8192 4 4 16 16 2

 12288 8 4 12 16 2

 16384 4/8 8/4 16 16 2

 24576 4 12 16 16 2

 32768 8 8 16 16 2

 49152 8 12 16 16 2

Vesta	

Par,,on	
 dimensions	
 on	
 BG/Q	
 systems	

Mira	

Nodes A B C D E
 32 2 2 2 2 2
 64 2 2 4 2 2
 128 2 2 4 4 2
 256 4 2 4 4 2
 512 4 4 4 4 2
 1024 4 4 4/8 8/4 2
 2048 4 4 8 8 2 Command:	
 partlist	

22

Mira	

512	
 nodes	
 =	
 minimum	
 par,,on	
 size	
 on	
 Mira	

128	
 nodes	
 =	
 minimum	
 par,,on	
 size	
 on	
 Cetus	

48	
 racks	

32	
 nodes	
 =	
 minimum	
 par,,on	
 size	
 on	
 Vesta	

Cetus	

4	
 racks	

Vesta	

2	
 racks	

Minimum	
 par,,on	
 sizes	
 on	
 BG/Q	
 machines	

Error checking – background processes

a handy bash function
. /soft/cobalt/examples/ensemble/script/wait-all

pids=""
for B in $BLOCKS ; do
 boot-block –block $B &
 pids+=" $!"
done
wait-all "boot" $pids # bash function from above
[$? –ne 0] && exit 1 # quit if any of the boots fail

Can use the same method for any backgrounded commands
E.g. runjob

23

Example: array of runjob args
rootdir=`pwd`

dir[0]=$rootdir/subdir_a
dir[1]=$rootdir/subdir_b
...
cmd[0]="-p 1 --np 16 : a.out"
cmd[1]="-p 16 --np 256 : b.out"
...

i=0
for B in $BLOCKS ; do
 cd ${dir[$i]}
 runjob –-block $B ${cmd[$i]} >LOG.output 2>LOG.error &
 sleep 3
 ((i++))
done
wait

24

Advanced: Block Translation
¤  /soft/cobalt/bgq_hardware_mapper contains basic helper scripts
¤  hardware2coord -- take a hardware location and translate to ABCDE
¤  coord2hardware -- take an ABCDE location and translate to a

hardware location
¤  get-corners.py experimental -- given a block name and a shape,

generate every valid --corner argument for that shape on that
block.
¥  Must be used on a block of 512 nodes or smaller

25

