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Depth of focus: what is it
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Effect of the aperture (f-stop) on depth of field. A wider aperture will cause
shorter depth of field, meaning more blur or soft focus in the frame.

http://www.elementsofcinema.com/cinematography/depth-of-field.html



http://www.elementsofcinema.com/cinematography/depth-of-field.html

In-sample diffraction must be accounted for when t> DOF
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DOF = —— -L ~ 544, — (5.2 prefactor as in Tsai et al., 2016
0.612 A ry 52p )
Diffraction within unknown Existing phase retrieval 5 keV for 20 nm resolution
object is not accounted for solves phase at exiting plane DOF =8.7 um
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[1] E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, "X-ray ptychography with extended depth of field," Opt Express 24, 29089-20 (2016).




The forward model

1

L = JVOTp]Vk ‘ |f(x,0,k, Az, d)| - \/@Hz
6,k

Multislice propagation

(a) Near-field fullfield holography
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(b) Far-field ptychography

f(x) = y(z)

f(x) = y(=)

Fresnel (near-field) propagation
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[1] J. M. Cowley and A. F. Moodie, "The scattering of electrons by atoms and crystals. I. A new theoretical approach," Acta Cryst (1957). Q10, 609-
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Just something else...
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L = H m707 k7 szd - H + aslx + aglx +~TV(x
NngNkBXk: | £( ) = \/Yo.x sles)t + aglzsli + YTV (xs)

subject to z,, = 0 for z,, € © and z,, > 0 for z,, € O.

L1 norm «  Object sparsity (a) Near-field fullfield holography
*  Noise and artifact suppression HE*LH

Total variation ¢  Object gradient sparsity
* Noise and artifact suppression i

Non- *  Solution stabilization >
negativity *  Works as long as one avoids anomalous

dispersion at an absorption edge (b) Far-fi;lg ptychography
Finite support *  For fullfield holography only =
and shrink- * Initialized by thresholding conventional
wrap reconstruction results

*  Shrunk by taking out low-value voxels per

several iterations Q* -—)
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It’s all about gradient
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NoN, Ny, 4= Ve,

subject to x,, = 0 for z,, € © and z,, > 0 for x,, € O.

T = a.rg;nin{L(a:)}

Vel =7
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Automatic differentiation: more than machine learning

df _ flate)—flz—¢ x f(x) = yaly1 ()]

dz 2 y1(w) = sin(w)
y2(w) = exp(w)
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Automatic differentiation: more than machine learning
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Automatic differentiation: more than machine learning
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Automatic differentiation: more than machine learning

Divide projection data into minibatches to fit in memory

H 0 ROVO D ‘ Minibatch Minibatch Minibatch
1 2 3
. I Gradient Gradient I Gradient

gradient

' Averaged
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Automatic differentiation: more than machine learning

Divide projection data into minibatches to fit in memory

Minibatch Minibatch Minibatch
4 5 6
I Gradient l Gradient I Gradient

Averaged

gradient
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Automatic differentiation: more than machine learning

Corey Adams

Node 2 Node 3 ecccee
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Automatic differentiation: more than machine learning

Corey Adams

Node 3 XYY X
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Automatic differentiation: more than machine learning

Building/optimizing graph

and runnin, gcce nnnnnnnnnn
p FFTs 5‘,~ Aut d
TensorFlow » g
O MPI4py
Gradient For FFT-heavy applications on KNL nodes
calculation
Performance
tracing
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Test case 1: a designed sample

Pixel size (nm) 1
Energy (eV) 5000
Depth of focus (nm) 21.77
Largest sample thickness (nm) 200
Sample-detector distance (nm) 1000
Object grid size 2563
# of projections 500

# of diffraction spots in ptychography 23x23
TiO,
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Test case 1: a designed sample

Pixel size (nm)

Energy (eV)

Depth of focus (nm)

Largest sample thickness (nm)
Sample-detector distance (nm)
Object grid size

# of projections

# of diffraction spots in ptychography
Platform

Fullfield # of threads

Fullfield time

Ptychography # of threads

Ptychography time

True: simulated object

1
5000
21.77
200
1000
2563
500
23x23

Cooley

5h
20
459 h

360°: full-filed reconstruction with 360° projection data
180°: full-filed reconstruction with 180° projection data
Ptycho: ptychography reconstruction with 360° projection data
ER+FBP: reconstruction with conventional CDI and tomography

YZ-cross section  Proj. (front)
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ER+FBP

Proj. (top)
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Test case 2: a semi-experimental protein molecule

Human adhesin complex originally acquired using EM; data retrieved from EM databank.

Pixel size (nm) 0.67
Energy (eV) 800
Depth of focus (nm) 1.56
Largest sample thickness (nm) 30
Object grid size 643
Num. of projections 500

# of diffraction spots in ptychography 23%23




TeSt case 2: a Semi-experimental prOtein mOIGCUIeXZ-cross section 1 _XZ-cross section 2 XY-cross section
(a)

Pixel size (nm) 0.67 Fullfield platform Workstation

(0]
GPU 2
Energy (eV) 800 ( ) [ ‘:’
Fullfield # of thread 4
Depth of focus (nm) 1.56 uie orthreads
. Fullfield ti 0.15h
Largest sample thickness (nm) 30 wrield time
. N Ptychography platform Coole
Object grid size 643 yehography p y
Ptycho. # of thread 20 o
Num. of projections 500 yeho. # ot threads 2
Ptych hy i 1.45h =
# of diffraction spots in ptycho. 23x23 yehography fime z
Full-field reconstruction throws away halos, while ptychography
preserves it. 2
2
a
(a) True object (b) Full-field reconstruction (c) Ptychography reconstruction
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Future perspectives

Convolutional neural network
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O(N) Finite difference propagation
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