- Performance Counter
Monitoring for the
Blue Gene/Q Architecture

Heike Jagode
Innovative Computing Laboratory
University of Tennessee, Knoxville

http://icl.eecs.utk.edu/papi/

ESP Code for “Q" Workshop
Argonne National Laboratory
April 30 — May 2, 2012

INNGVATIVE

COMPUTING LABORATORY
e UNIVERSITY of TENNESSEE OF

Overview

1. Introduction
2. PAPI overview
3. PAPI for BG/Q

* Processor Unit (PUnit) Component

* L2 Unit Component

« 1/0O Unit Component

* Network Component

« Compute Node Kernel Unit (CNKUnit) Component
4. Example: 3D-FFT on Q

Introduction

* Very little effort was put into HW performance monitoring
tools for the BG/Q predecessor BG/P

« HPC community was left behind with rather poor and
Incomplete methods

* To eliminate this limitation, for BG/Q we planned carefully
and collaborate closely with IBM’s Performance Group

Result:

« Added 5 new Components to PAPI to support HW
performance monitoring for the BG/Q network, the 1/0O
system, the Compute Node Kernel in addition to the
processing cores

PAPI

. that provides a consistent and efficient programming
interface for the performance counter hardware found in most major
MICroprocessors.

« Started as a Parallel Tools Consortium project in 1998

« Goal was to produce a specification for a portable interface to the hardware
performance counters.

« Countable events are defined in two ways:
» Platform-neutral Preset Events (e.g., PAPI_TOT _INS)
» Platform-dependent Native Events (e.g., L3_ CACHE_MISS)

» Preset Events can be derived from multiple Native Events
(e.g. PAPI_L1_TCM might be the sum of L1 Data Misses and L1
Instruction Misses on a given platform)

PAPI| Hardware Events

Preset Events
« Standard set of over 100 events for application performance tuning
» No standardization of the exact definition

« Mapped to either single or linear combinations of native events on
each platform

« Use papi_avail to see what preset events are available on a given
platform

Native Events
* Any event countable by the CPU
« Same interface as for preset events
« Use papi_native avail utility to see all available native events

Use papi event chooser utility to select a compatible set of events

Overview

* Processor Unit (PUnit) Component

* L2 Unit Component

« 1/0O Unit Component

* Network Component

« Compute Node Kernel Unit (CNKUnit) Component

PUnit Component

« Each of the 18 A2 CPU cores has a local UPC module

« Each of these modules provides 24 counters (14-bit) to
sample A2 events, L1 cache related events, floating

5 sub-modules 24 counters
 The sub~ > apie from the

)

PAPI interfaces with BGPM

P Unit Component

PUnit Events (Native | Presets)

« Currently, there are 269 native PUnit events available:

PUnit Event

| Description

PEVT_AXU_INSTR_COMMIT

A valid AXU (non-load/store) instruction is in EX6, past the last flush point.
- AXU uCode sub-operations are also counted by PEVT_XU_ COMMIT instead.

PEVT_AXU_CR_COMMIT

A valid AXU CR updater instruction is in EX6, past the last flush point.

PEVT_AXU_IDLE

No valid AXU instruction is in the EX6 stage.

PEVT_IU_IL1_MISS

A thread is waiting for a reload from the L2.

- Not when CI=1.

- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_MISS_CYC

Number of cycles a thread is waiting for a reload from the L2.

- Not when CI=1.

- Not when thread held off for a reload that another thread is waiting for.
- Still counts even if flush has occurred.

PEVT_IU_IL1_RELOADS_DROPPED

Number of times a reload from the L2 is dropped, per thread
- Not when ClI=1
- Does not count when not loading cache due to a back mvalidate to that address

PEVT_XU_BR_COMMIT CORE

Number of Branches committed

PEVT_XU_BR_MISPRED_COMMIT_CORE

Number of mispredicted Branches committed (does not include target address mispredicted)

PUnit Events (Native | Presets)

« Currently, there are 269 native PUnit events available:

« Qut of 107 possible predefined events, there are currently 41
events available of which 12 are derived events:

Name Code Avail | Deriv | Description (Note)
PAPI L1 ICM Ox 80000001 Yes No Level 1 instruction cache misses
PAPI_FXU_IDL | Ox80000011 Yes No Cycles integer units are idle
PAPI_TLE_ DM Ox 80000014 Yes Yes Data translation lookaside buffer misses
PAPI_TLEB_IM Ox 80000015 Yes No Instruction translation lookaside buffer misses
PAPI TLB_TL Ox 80000016 Yes Yes Total translation lookaside buffer misses
PAPI L1 1LDM Ox 80000017 Yes No Level 1 load misses
PAPI L1 STM Ox 80000018 Yes No Level 1 store misses
PAPI_BTAC M Ox8000001b Yes No Branch target address cache misses
PAPI_PRF_ DM Ox8000001¢ Yes No Data prefetch cache misses
PAPI_TLB_SD Ox8000001e Yes No Translation lookaside buffer shootdowns
PAPI_CSR_FAL | Ox8000001f Yes No Failed store conditional instructions
PAPI_CSR_SU Ox 80000020 Yes Yes Successful store conditional instructions
Yes No

PAPI_CSR_TOT

0x 80000021

Total store conditional instructions

L2 Unit Component

« Shared L2 cache is split into 16 separate slices

« Each of the 16 L2 memory slices has a L2 UPC module
that provides 6 counters (node-wide)

16 L2 UPC Modules per chip

B counters each

BGPM L2 Unit interfaces with UPC

PAPI interfaces with BGPM

L2 Unit Component

L2 Unit Native Events

« Currently, there are 32 L2 Unit events available:

L2Unit Event Description

PEVT_L2_HITS hits in L2, both load and store. Network Polling store operations from
core 17 on BG/Q pollute 1n this count during normal use

PEVT_L2_MISSES cacheline miss in L2 (both loads and stores

PEVT_LZ_PREFETCH | fetching cacheline ahead of L1P prefetch

« BG/Q processor has two DDR3 memory controllers, each

 interfacing with eight slices of the L2 cache to handle their cache
misses (one controllers for each half of the 16 cores on the chip)

« The counting hardware can either keep the counts from each
slice separate, or combine the counts from each slice into single
values (default)

/O Unit Component

 The Message, PCle, and DevBus module — which are
collectively referred to as I/O modules — provide together
43 counters (node-wide)

I/0 Modules

3 sub-modules 43 counters

BGPM |0 Unit interfaces with all 3 sub-modules

PARPI interfaces with BGPM
[0 Unit Component

/O Unit Native Events

« Currently, there are 44 1/O Unit events available

* The three I/O sub-modules are transparently identifiable
from the I/O Unit event names

I0Unit Event Description

PEVT_MU_PKT_INJ A new packet has been injected (Packet has been stored to ND FIFO

PEVT_MU_MSG_INJ A new message has been mjected (All packets of the message have been stored to ND FIFO
PEVT_MU_FIFO_PKT_RCV A new FIFO packet has been received (The packet has been stored to L2.

There is no pending switch request)

PEVT_PCIE_INB_RD_BYTES Inbound Read Bytes Request
PEVT_PCIE_INB_RDS Inbound Read Request
PEVT_PCIE_INB_RD_ CMPLT Inbound Read Completion

PEVT_DEB_PCIE_INE WRT_BYTES | PCle inbound write bytes written
PEVT_DB_PCIE_OUTB_RD_BYTES | PCle outbound read bytes requested
PEVT_DB_PCIE_OUTE_RDS PCle outbound read request

Network Unit Component

* The 5D-Torus network provides a local UPC network
module with 66 counters - each of the 11 links has six
64-bit counters

. iIch network
. Local UPC Network Module
link to a 6 counters per link Total of 66 counters

* Currently, all NETWOTK KEPEe attached anc 1S IS hard-
coded

BGPM NVWV Unit interfaces with UPC

- The B(odules
- PAPI Network Unit Comp@@ent interfaces with BGPM

PAPI interfaces with BGPM

NV Unit Component

Network Unit Native Events

« Currently, there are 31 Network Unit events available

NWUnit Event Description

PEVT_NW_USER_PP_SENT Number of 32 byte user point to point packet chunks sent.

Includes packets originating or passing through the current node
PEVT_NW_USER_DYN_PP_SENT | Number of 32 byte user dynamic point to point packet chunks sent.
Includes packets originating or passing through the current node
PEVT_NW_USER_ESC_PP_SENT | Number of 32 byte user escape point to point packet chunks sent.
Includes packets originating or passing through the current node

CNK Unit Component

« CNKis the lightweight Compute Node Kernel that runs
on all the 16 compute cores

« BGPM offers a “virtual” CNK Unit that has software

counters collected by the kernel
(kernel counter values are read via a system call)

« Currently, there are 29 CNK Unit events available

CNKUnit Event Description

PEVT_CNKHWT_SYSCALL External Input Interrupt
PEVT_CNKHWT_CRITICAL | Critical Input Interrupt
PEVT _CNKHWT_FIT Fixed Interval Timer Interrupt

Overflow and Multiplexing

Overflow:

* Only the local UPC module, L2 and I/O UPC hardware
support performance monitor interrupts when a
programmed counter overflows

* For that reason, only the PUnit, L2Unit, and [/OUnit
provide overflow support in BGPM and PAPI

Multiplexing:
« PAPI supports multiplexing for the BG/Q platform

« The BGPM PUnit does not directly implement
multiplexing of event sets; but, it does indirectly support
multiplexing by supporting a multiplexed event set type

Overview

4. Example: 3D-FFT on Q

BG/Q network

BG/L+P:

Compute nodes organized as a

3D-torus

MAIN FEATURE: Tt

every node is connected to ’\E/\\)

its six neighbour nodes through \\,\AEAQ\)

bidirectional links P>L =S~

Lyt g

P~ l

To maintain application performance, \a\ o

correct mapping of MPI tasks onto the \%

torus network is a critical factor J

BG/Q network

BG/Q:

Compute nodes organized as a e i = il
SD-torus Egj@% Egj@ﬁ Egﬁ:%
MAIN FEATURE: %E %E %E

every node is connected to

its ten neighbour nodes through s aletcag s
bidirectional links E§§§F E§§§F E’gﬁzﬁ
t

7

To maintain application performance, | r
correct mapping of MPI tasks onto tE%ﬁti E
torus network is a critical factor E ’

7

i

;

7
i
"
[TL]-
;

[11

g
i
S

3D FFT on BG/Q

* Why multi-dimensional FFT ?

« Computation performed in three single stages:

4.,.€C X,v,2€7 Vx, 0<x<L
Vy, 0Ssy< M
Vz,0<z< N

Vs

L-1 N-1M-1
= A exp —277:1ﬂ exp —272:1E exp —277:1%
e M N L

x=0 z=0 y:O

Vv

Ist 1D FT along y

- _/

2nd 1D FT along z

J

o

3rd 1D FT along x

2D Decomposition

MPI tasks organized in 2D virtual processor grid using
MPI Cartesian grid topology construct

Proc0 _

Proc 1 ,'

Proc 2 £
Proc 3

ALL ALL

Proc 4 -)
Proc5 -~ to to
Procé SoCCCEnE)) L
Proc 7 IIIIIIII” ALL AL
SEEEEEEE WITHIN BETWEEN Ry A
Proc 8 EACH sub-groups e
Proc 9 sub-group e
Proc 10 to get data over EEmm:
Proc 11 to get data over x-dimension AREEan
z-dimension locally IIII*T."...
Proc 12 locally AEsass
Proc 13 S C o= mm EEEEss
Proc 14,;;,;;;;!" SEEEs=
AEEEaE

Proc 15 llllllllii
EEE y

L] X z EEEEEN
N z y y
perform 1D-FFT perform 1D-FFT perform 1D-FFT

y along y-dimension Z along z-dimension X along x-dimension

(a) (b) (c)

Slide 22

Example: Low Level API

#include “papi.h”
#define NUM EVENTS 2
char events[NUM EVENTS] = { “PEVT NW USER PP SENT”,
“PEVT NW USER DYN PP SENT” };
int EventSet = PAPI NULL;
long long values[NUM EVENTS] ;

/* Initialize the Library */
retval = PAPI library init (PAPI_VER CURRENT) ;
/* convert native events to PAPI code */
for(h = 0; h < NUM _EVENTS; h++)
retval = PAPI event name to code(EventName[h], &events[h]);
/* Allocate space for the new EventSet and do setup */
retval = PAPI create eventset (&EventSet) ;
/* Add Flops and total cycles to the eventset */
retval = PAPI add events (EventSet, events, NUM EVENTS) ;

/* Start the counters */
retval = PAPI start (EventSet);

do work(); /* What we want to monitor: MPI Alltoall(..) */

/*Stop counters and store results in values */
retval = PAPI stop (EventSet, values);

PAPI measurements

e 32 nodes: s o s s s)
0 0 0 0 1

« 512 MPI tasks, 2D virtual processor grid: { 8, 64 }

« “PEVT_NW _ USER PP_SENT”: # of 32B user p2p packet chunks sent. Includes packets
originating or passing through the current node.

1,000,000 5D Torus network counter "PEVT_NW_USER_PP_SENT" for 1. All-to-All comm (default)

100,000

10,000

1,000
10
® problem size 64
problem size 128
problem size 256

1
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
node ID

counts
o

=
o

PAPI measurements

e 32 nodes: s o s s s)
0 0 @] 0 1

« 512 MPI tasks, 2D virtual processor grid: { 8, 64 }

« “PEVT_NW _ USER PP_SENT”: # of 32B user p2p packet chunks sent. Includes packets
originating or passing through the current node.

5D Torus netw il - [-~ J comm (default)
rnk A |B_[c D JE [T _

1,000,000

100,000

O O O O
10,000 “ 0 O 1 0 0
. 1 0 0O O
S 1,000
S 1 1 O O
100 0 0 0 0
0 1 0 0 M problem size 64
10 problem size 128
1 D D D problem size 256
' 0 1 2 3 4 5 6 7 ll ll D D 22 23 24 25 26 27 28 29 30 31

node ID

- Results

1. All-to-All
1
et default
° 01 ked = |cEgmmesscaseccasmsconres s
Q e=f===custom
= S S Sy D (D |
o 0.01
£
=
0.001 |[=========mmmmee g oo
0.0001 | : — mo
64 128 256 512 1024
problem size (power 3) m 0

0
Comm | 8% | 4x | 8.4x | 54x | 36 e
£
EZH o

448 QN

0O 0O 0O oo o o o
0O 0O 0O oo o o o
0O 0O 0O oo o o o
0O 0O 0O 0o oo o o

S N X S
- Results

0O 0O 0O 0o oo o o
0O 0O 0O o oo o o

1. All-to-All
1
el default

° 0.1 -1
3
£ 001
[}
£
F=

0.001

2. All-to-All
0.0001 ' . [, [, , '
64 128 256 512 10| 1
problem size (power 3) st o fault

e custom

mmmm:
3057 | 9% [22% | 12% | 6% | SRS i

0.0001 ' T v T a r M T "
64 128 256 512 1024

time in sec

problem size (power 3)

Summary

« Performance analysis tools for parallel applications running on
large scale systems rely on HW perf counters to gather perf
relevant data from the system

PAPI’s 5 new components for BG/Q
« Enable HW perf counter monitoring for
* Processing unit
« 5D Torus
* |/O system
« Compute Node Kernel

Very Early Access Validation Example:

 3D-FFT kernel — instrumented with PAPI — for comm evaluation

« 5D torus network counters detect tons of inter-node
communications that were redundant

PAPI on VEAS / CETUS

* Installedin [soft/perftools/papi

 Ultilities in bin directory
« papi_avail , papi_native avail , efc.
* Run on compute node using qsub — e.g.,
gsub -n 1 --mode cl -t 10 papi avail

« Examplesin /homel/jagode/public
* cd /home/jagode/public
* cp —r papi <your choice>
e cd papi/src/ctests
 Run on compute node using qsub — e.g.,
gsub -n 1 --mode cl -t 10 first

Acknowledgement

'eneral availability of PAPI for BG/Q — that can be utilized
Simmediately* by end users — is due to a cooperative effort of
several parties.

A special acknowledgment
goes to the IBM performance team, especially
Roy Musselman
Kris Davis

for the careful planning long before the BG/Q release as well
as the close partnership and joint effort.

INNGVATIVE

COMPUTING LABORATORY
mie UNIVERSITY of TENNESSEE OF

