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DEFINITIONS

= Block/Partition — A set of BlueGene nodes and interconnect resources
= Cobalt Job — A job submitted via qsub and controlled via Cobalt commands

= Backend Job — A job as run via the platform’s execution command
— This includes mpirun, runjob and aprun.

» Ensemble Job — A Cobalt job running multiple backend jobs
= Subblock Job — A BlueGene job running on a subset of a BlueGene block

= Multi-block job - A Cobalt job that runs multiple smaller blocks inside of a larger
BlueGene block allocated to the job by Cobalt
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BLUE GENE Q — MIRA, CETUS AND VESTA




THE BEST TOOL FOR THE JOB

= Basic Script Jobs
— You have a task to run and some minor staging that you wish to have occur
automatically
— You need to prompt the system to take extra actions after your run
— You have a small series of short tasks that can run on the same hardware,
and want to minimize boot time

= Ensemble Jobs
— You want to run multiple simultaneous tasks on smaller blocks within a larger
allocation
— You want to change block size between tasks
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THE BEST TOOL FOR THE JOB

= Subblock Jobs
— Runjob feature provided by IBM
— You have a number of small tasks to run
— All tasks are smaller than the smallest block size on the system
— More advanced topic

= None of these are MPMD

» Ensemble Jobs and Subblock Jobs are not either-or
— Advanced topic covered at Ensemble Job videoconference
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CHOOSING THE RIGHT TYPE OF SUBMISSION
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SETTING UP SCRIPT JOBS

= Submit with --mode script on your gsub line
= Script can be anything executable on a front end node
= Allocated block will be booted before the start of the script

= Use Cobalt-provided variables when possible: $COBALT_JOBID,
$COBALT_PARTNAME, $COBALT PARTSIZE, etc.

= Invoke runjob from your script. You may run multiple tasks on the same block
multiple times in series

» You may have to use the boot-block --reboot command between runs if:
— patrtlist shows your block as having a “SoftwareFailure”
— Your program exited with a non-zero exit status

» |[f using BG_PERSISTMEMSIZE, remember that contents will not persist past
reboots.
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EXAMPLES OF ENSEMBLE JOBS
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For jobs with the same characteristics: higher job size = faster score increase

Sub-block runjobs

4 x 128 nodes
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SUBBLOCK ENSEMBLE JOBS

= Subblock jobs may be used within any script job
= Requires the use of the --corner and --shape flags to runjob

= Corner must be a hardware location

— Can obtain this from a coordinate from /soft/cobalt/bgq hardware mapper/
coord2hardware

— Use the first 5-tuple of the block name for the origin
— Groups of corners may be obtained by passing the block name and shape
to /soft/cobalt/bgq _hardware mapper/get-corners.py

» Shape are the lengths of each dimension
— man runjob has a list of common shapes for valid subblock sizes
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SUBBLOCK ENSEMBLE JOBS

= Must target booted blocks of 512 nodes or smaller
— Can run down to the single-node level

= Recommended that these be use on the smallest block size for a machine
— Mira = 512, Cetus = 128, Vesta = 32

= A compute block going into error does not kill previously running jobs
— Will prevent future jobs from starting

= Watch out for overloading IO nodes
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SUBBLOCK ENSEMBLE JOBS

= |f a sub-block runjob exits abnormally, the block it was in may go into an error
state
— May not kill other current sub-block runjobs
» Other jobs only stay up if a software failure
— Will prevent subsequent jobs from starting on that block
— Clear error by rebooting block

= Avoid
— Starting runjobs too quickly
* Must use a "sleep 3" after starting each one in background
— Too many runjobs in total
« Each runjob uses non-scalable resources that stress the system
« Maximum of 512 runjobs in all your running jobs
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MULTI-BLOCK JOBS
= The Cobalt job's allocated block either must start off unbooted or be freed at the

start of the job
— qgsub option (or #COBALT) --disable_preboot

= Boot smaller “child” blocks of the main allocated block
— Cannot be smaller than the smallest bootable partition
— May be subject to torus wiring restrictions
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MULTI-BLOCK JOBS

= get-bootable-blocks will return all child blocks currently available to boot in a
main block
— Can constrain to particular sizes and geometries
— Booting one child may block others, they will no longer be available

= boot-block can boot, free, or reboot a partition
— After booting or rebooting, the block is ready for use
— nonzero exit status means a problem occurred

= Runjob works in the normal way, just using one child block per invocation
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MULTI-BLOCK JOBS

» Some block sizes may have issues running next to each other
— Use partial mesh 1024 and 4096 node blocks
— Incremental approach: after booting one block, repeat call to get-bootable-
blocks

» Booting a block may fail
— boot-block will automatically re-try 3 times before giving up
— Software errors can be cleared by rebooting
— partlist will show an error as blocked(SoftwareFailure)

= Can mix block sizes and change sizes
— To change, free children then boot a new set
— If using persistent CNK ramdisk (/dev/persist), contents will be erased

= Some blocks share |/O resources

— check ALCF system documentation
15 Argonne &
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GENERAL ADVICE FOR MIRA

= Using Partial-mesh 1024 node and 4096 node blocks
— 1024: MIR-XXXXX-YYYYY-1-1024

— 4096: MIR-XXXXX-YYYYY-2-4096 (Not in normal queues)

= |f using mesh blocks to pack, all blocks of that size must be mesh.

» Certain other size blocks may have alternate shapes defined
— May need to filter output of get bootable blocks

» When packing, work from largest size to smallest

= No more than 512 simultaneous runjob invocations
— More in series is fine

— Limitation of control system resources
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CRAY - THETA




SCRIPTING FOR THETA

= All jobs on Theta are either “script” mode jobs or interactive jobs
= Nodes are not normally rebooted between jobs

= Aprun blocks until job completion
— Background for simultaneous runs

= Cobalt provides the overall allocation of nodes for a run
— $COBALT_PARTLIST provides a list of nodes.
— Same list format as used for “--attrs location” as well as Cray commands

= Aprun provides subsetting
— See documentation on “-I”, “-n” and “-N" flags
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SCRIPTING FOR THETA: LIMITATIONS

= When running simultaneous apruns, a maximum of 1000 per cobalt job
— System limit to prevent front-end resource starvation

» When starting multiple apruns, include a short sleep (<1 second)
* You may end up on any “mom” node for your run

= Apruns may be backgrounded but must not be paused (SIGSTOP)
— Disrupts communication to the aprun front-end and will kill the aprun

= Memory mode changes (Coming Soon)
— Jobs may request memory modes by the “mcdram” and “numa” attributes
— If this causes a mode switch at startup, can take up to 45 minutes to
complete
— Mode changes are not currently permitted during a job
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GENERAL SCRIPT ADVICE

= Scripts may be any file executable on a front-end node
— Shell scripts and python are common

» The job is charged for the set of allocated compute resources for the entire
runtime.

— Do not run expensive operations like compiles if you can help it.
» Check Exit and Block Statuses between runs.
» Do not delete Cobalt-generated files as a part of the script.

» This includes the .cobaltlog, and .error files.
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ERROR HANDLING

= Always check exit statuses
— Non-zero usually indicates a failure
— Some codes do not follow this convention!

= Overall script exit status if usually the last command that completes
— Save important status/statuses and use in an explicit exit
— Masked exit statuses will impact job dependencies

= Consider using the ‘-e’ flag if using a shell script.
» When possible test script mechanics on a debug queue/resource
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USEFUL RESOURCES

= Example scripts may be found on ALCF systems at:
— [soft/cobalt/examples

= Cobalt Manpages may be found on all ALCF systems and on:
— https://trac.mcs.anl.qgov/projects/cobalt/wiki/CommandReference

= Advanced Bash Scripting reference:
— http://www.tldp.org/LDP/abs/html/
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QUESTIONS?
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PARTITION DIMENSIONS: MIRA
N B B BN

2
;gj: 4 j j 12 2 Command: partlist
4096 4/8 4 8/4 16 2
8192 4 4 16 16 2
12288 8 4 12 16 2
10364 He ] e 16 e 2 http://www.alcf.anl.gov/user-guides/machine-partitions
24576 4 12 16 16 2
32768 8 8 16 16 2
49152 8 12 16 16 2
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PARTITION DIMENSIONS: CETUS AND VESTA

Cetus Vesta
128 2 2 2
256 4 2 4 4 2 64 2 2 4 2 2
512 4 4 4 4 2 128 5 5 4 4 5
1024 4 4 4 8 2
256 4 2 4 4 2
2048 4/8 4 4/8 4/8 2
512 4 4 4 4 2
Command: partlist 1024 4 4 48 84 2
http://www.alcf.anl.gov/user-quides/machine-partitions 2048 4 4 8 8 2
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MINIMUM BGQ PARTITION SIZES

512 nodes = minimum partition size on
Mira
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128 nodes = minimum partition size on Cetus
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32 nodes = minimum partition size on Vesta
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ERROR CHECKING: EXAMPLE

# Bash function for waiting for exit statuses
. Isoft/cobalt/examples/ensemble/script/wait-all

pids=
for B in $BLOCKS ; do
boot-block —block $B &

pids+=" $!"
done
wait-all "boot" $pids # bash function from above
[ $? —ne 0 ] && exit 1 # quit if any of the boots falil

# Can use the same method for any backgrounded commands
# E.g. runjob

27
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ARRAY OF ARGUMENTS: EXAMPLE

rootdir="pwd"
dir[0]=$rootdir/subdir_a
dir[1]=$rootdir/subdir_b

cmd[0]="-p 1 --np 16 : a.out"
cmd[1]="-p 16 --np 256 : b.out"

i=0
for B in $BLOCKS ; do
cd ${dir[3i]}
runjob —block $B ${cmd[$i]} >LOG.output 2>LOG.error &
sleep 3
((i++))
done

wait
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BLOCK NAME TRANSLATION

= /soft/cobalt/bgq hardware mapper contains basic helper scripts
= hardware2coord -- take a hardware location and translate to ABCDE
= coord2hardware -- take an ABCDE location and translate to a hardware location

» get-corners.py experimental -- given a block name and a shape, generate every
valid --corner argument for that shape on that block.
— Must be used on a block of 512 nodes or smaller
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