
Suggested line of text (optional):

WE START WITH YES.

COBALT ENSEMBLE JOBS

erhtjhtyhy

PAUL RICH
Argonne Leadership Computing Facility

May 3, 2017

OVERVIEW

§ Definitions
§ BlueGene/Q

–  Picking The Strategy
–  Basic Script Mode Jobs
–  Subblock Jobs
–  Multi-block Jobs

§ Theta
§ General Advice

2

DEFINITIONS

§ Block/Partition – A set of BlueGene nodes and interconnect resources
§ Cobalt Job – A job submitted via qsub and controlled via Cobalt commands
§ Backend Job – A job as run via the platform’s execution command

–  This includes mpirun, runjob and aprun.
§ Ensemble Job – A Cobalt job running multiple backend jobs
§ Subblock Job – A BlueGene job running on a subset of a BlueGene block
§ Multi-block job - A Cobalt job that runs multiple smaller blocks inside of a larger

BlueGene block allocated to the job by Cobalt

3

BLUE GENE Q – MIRA, CETUS AND VESTA

THE BEST TOOL FOR THE JOB
§ Basic Script Jobs

–  You have a task to run and some minor staging that you wish to have occur
automatically

–  You need to prompt the system to take extra actions after your run
–  You have a small series of short tasks that can run on the same hardware,

and want to minimize boot time
§ Ensemble Jobs

–  You want to run multiple simultaneous tasks on smaller blocks within a larger
allocation

–  You want to change block size between tasks

5

THE BEST TOOL FOR THE JOB
§ Subblock Jobs

–  Runjob feature provided by IBM
–  You have a number of small tasks to run
–  All tasks are smaller than the smallest block size on the system
–  More advanced topic

§ None of these are MPMD
§ Ensemble Jobs and Subblock Jobs are not either-or

–  Advanced topic covered at Ensemble Job videoconference

6

CHOOSING THE RIGHT TYPE OF SUBMISSION

7

Basic	 submission	 Simple	 Script	

Ensemble	 Script	 Subblock	 Script	

Ensemble	 Script	
With	 Subblocks	

Workload	 to	 Run	

Single	
task	

	 Larger	
than	

Midplane	
	

Staging	
Required	

More	 Than	
Can	 Fit	 on	 a	
Midplane	

Yes

No No

No No

Yes

Yes Yes

SETTING UP SCRIPT JOBS
§ Submit with --mode script on your qsub line
§ Script can be anything executable on a front end node
§ Allocated block will be booted before the start of the script
§ Use Cobalt-provided variables when possible: $COBALT_JOBID,

$COBALT_PARTNAME, $COBALT_PARTSIZE, etc.
§  Invoke runjob from your script. You may run multiple tasks on the same block

multiple times in series
§ You may have to use the boot-block --reboot command between runs if:

–  partlist shows your block as having a “SoftwareFailure”
–  Your program exited with a non-zero exit status

§  If using BG_PERSISTMEMSIZE, remember that contents will not persist past
reboots.

8

EXAMPLES OF ENSEMBLE JOBS

9

1024	 2048	 512	

4K	

Mul,-‐block	 job	 (one	 runjob	 per	 block)	

For	 jobs	 with	 the	 same	 characterisAcs:	 higher	 job	 size	 =	 faster	 score	 increase	 	

Sub-‐block	 runjobs	 512	 nodes	

4	 x	 128	 nodes	

SUBBLOCK ENSEMBLE JOBS
§ Subblock jobs may be used within any script job
§ Requires the use of the --corner and --shape flags to runjob
§ Corner must be a hardware location

–  Can obtain this from a coordinate from /soft/cobalt/bgq_hardware_mapper/
coord2hardware

–  Use the first 5-tuple of the block name for the origin
–  Groups of corners may be obtained by passing the block name and shape

to /soft/cobalt/bgq_hardware_mapper/get-corners.py
§ Shape are the lengths of each dimension

–  man runjob has a list of common shapes for valid subblock sizes

10

SUBBLOCK ENSEMBLE JOBS
§ Must target booted blocks of 512 nodes or smaller

–  Can run down to the single-node level
§ Recommended that these be use on the smallest block size for a machine

–  Mira = 512, Cetus = 128, Vesta = 32
§ A compute block going into error does not kill previously running jobs

–  Will prevent future jobs from starting
§ Watch out for overloading IO nodes

11

SUBBLOCK ENSEMBLE JOBS
§  If a sub-block runjob exits abnormally, the block it was in may go into an error

state
–  May not kill other current sub-block runjobs

•  Other jobs only stay up if a software failure
–  Will prevent subsequent jobs from starting on that block
–  Clear error by rebooting block

§ Avoid
–  Starting runjobs too quickly

•  Must use a "sleep 3" after starting each one in background
–  Too many runjobs in total

•  Each runjob uses non-scalable resources that stress the system
•  Maximum of 512 runjobs in all your running jobs

12

MULTI-BLOCK JOBS
§ The Cobalt job's allocated block either must start off unbooted or be freed at the

start of the job
–  qsub option (or #COBALT) --disable_preboot

§ Boot smaller “child” blocks of the main allocated block
–  Cannot be smaller than the smallest bootable partition
–  May be subject to torus wiring restrictions

13

MULTI-BLOCK JOBS
§ get-bootable-blocks will return all child blocks currently available to boot in a

main block
–  Can constrain to particular sizes and geometries
–  Booting one child may block others, they will no longer be available

§ boot-block can boot, free, or reboot a partition
–  After booting or rebooting, the block is ready for use
–  nonzero exit status means a problem occurred

§ Runjob works in the normal way, just using one child block per invocation

14

MULTI-BLOCK JOBS
§ Some block sizes may have issues running next to each other

–  Use partial mesh 1024 and 4096 node blocks
–  Incremental approach: after booting one block, repeat call to get-bootable-

blocks
§ Booting a block may fail

–  boot-block will automatically re-try 3 times before giving up
–  Software errors can be cleared by rebooting
–  partlist will show an error as blocked(SoftwareFailure)

§ Can mix block sizes and change sizes
–  To change, free children then boot a new set
–  If using persistent CNK ramdisk (/dev/persist), contents will be erased

§ Some blocks share I/O resources
–  check ALCF system documentation

15

GENERAL ADVICE FOR MIRA
§ Using Partial-mesh 1024 node and 4096 node blocks

–  1024: MIR-XXXXX-YYYYY-1-1024
–  4096: MIR-XXXXX-YYYYY-2-4096 (Not in normal queues)

§  If using mesh blocks to pack, all blocks of that size must be mesh.
§ Certain other size blocks may have alternate shapes defined

–  May need to filter output of get_bootable_blocks
§ When packing, work from largest size to smallest
§ No more than 512 simultaneous runjob invocations

–  More in series is fine
–  Limitation of control system resources

16

CRAY - THETA

SCRIPTING FOR THETA
§ All jobs on Theta are either “script” mode jobs or interactive jobs
§ Nodes are not normally rebooted between jobs
§ Aprun blocks until job completion

–  Background for simultaneous runs
§ Cobalt provides the overall allocation of nodes for a run

–  $COBALT_PARTLIST provides a list of nodes.
–  Same list format as used for “--attrs location” as well as Cray commands

§ Aprun provides subsetting
–  See documentation on “-l”, “-n” and “-N” flags

18

SCRIPTING FOR THETA: LIMITATIONS
§ When running simultaneous apruns, a maximum of 1000 per cobalt job

–  System limit to prevent front-end resource starvation
§ When starting multiple apruns, include a short sleep (<1 second)
§ You may end up on any “mom” node for your run
§ Apruns may be backgrounded but must not be paused (SIGSTOP)

–  Disrupts communication to the aprun front-end and will kill the aprun
§ Memory mode changes (Coming Soon)

–  Jobs may request memory modes by the “mcdram” and “numa” attributes
–  If this causes a mode switch at startup, can take up to 45 minutes to

complete
–  Mode changes are not currently permitted during a job

19

GENERAL SCRIPT ADVICE
§ Scripts may be any file executable on a front-end node

–  Shell scripts and python are common
§ The job is charged for the set of allocated compute resources for the entire

runtime.
–  Do not run expensive operations like compiles if you can help it.

§ Check Exit and Block Statuses between runs.
§ Do not delete Cobalt-generated files as a part of the script.

§ This includes the .cobaltlog, and .error files.

20

ERROR HANDLING
§ Always check exit statuses

–  Non-zero usually indicates a failure
–  Some codes do not follow this convention!

§ Overall script exit status if usually the last command that completes
–  Save important status/statuses and use in an explicit exit
–  Masked exit statuses will impact job dependencies

§ Consider using the ‘-e’ flag if using a shell script.
§ When possible test script mechanics on a debug queue/resource

21

USEFUL RESOURCES
§ Example scripts may be found on ALCF systems at:

–  /soft/cobalt/examples
§ Cobalt Manpages may be found on all ALCF systems and on:

–  https://trac.mcs.anl.gov/projects/cobalt/wiki/CommandReference
§ Advanced Bash Scripting reference:

–  http://www.tldp.org/LDP/abs/html/

22

www.anl.gov

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

QUESTIONS?

24

PARTITION DIMENSIONS: MIRA
Nodes A B C D E

 512 4 4 4 4 2

 1024 4 4 4 8 2

 2048 4 4 4 16 2

 4096 4/8 4 8/4 16 2

 8192 4 4 16 16 2

 12288 8 4 12 16 2

 16384 4/8 8/4 16 16 2

 24576 4 12 16 16 2

 32768 8 8 16 16 2

 49152 8 12 16 16 2

Command: partlist

http://www.alcf.anl.gov/user-guides/machine-partitions

25

PARTITION DIMENSIONS: CETUS AND VESTA

Nodes A B C D E
 128 2 2 4 4 2
 256 4 2 4 4 2
 512 4 4 4 4 2
 1024 4 4 4 8 2

2048 4/8 4 4/8 4/8 2

Cetus Vesta

Nodes A B C D E
 32 2 2 2 2 2
 64 2 2 4 2 2
 128 2 2 4 4 2
 256 4 2 4 4 2
 512 4 4 4 4 2
 1024 4 4 4/8 8/4 2
 2048 4 4 8 8 2

Command: partlist
http://www.alcf.anl.gov/user-guides/machine-partitions

MINIMUM BGQ PARTITION SIZES

26

512 nodes = minimum partition size on
Mira

128 nodes = minimum partition size on Cetus 32 nodes = minimum partition size on Vesta

27

Bash function for waiting for exit statuses
. /soft/cobalt/examples/ensemble/script/wait-all
pids=""
for B in $BLOCKS ; do
 boot-block –block $B &
 pids+=" $!"
done
wait-all "boot" $pids # bash function from above
[$? –ne 0] && exit 1 # quit if any of the boots fail
Can use the same method for any backgrounded commands
E.g. runjob

ERROR CHECKING: EXAMPLE

ARRAY OF ARGUMENTS: EXAMPLE
rootdir=`pwd`
dir[0]=$rootdir/subdir_a
dir[1]=$rootdir/subdir_b
...
cmd[0]="-p 1 --np 16 : a.out"
cmd[1]="-p 16 --np 256 : b.out"
...
i=0
for B in $BLOCKS ; do
 cd ${dir[$i]}
 runjob –-block $B ${cmd[$i]} >LOG.output 2>LOG.error &
 sleep 3
 ((i++))
done
wait

28

BLOCK NAME TRANSLATION
§  /soft/cobalt/bgq_hardware_mapper contains basic helper scripts
§ hardware2coord -- take a hardware location and translate to ABCDE
§  coord2hardware -- take an ABCDE location and translate to a hardware location
§ get-corners.py experimental -- given a block name and a shape, generate every

valid --corner argument for that shape on that block.
–  Must be used on a block of 512 nodes or smaller

29

