PYTHON FOR HPC: BEST PRACTICES

WILLIAM SCULLIN
Assistant Computational Scientist
Leadership Computing Facility
Argonne National Laboratory

May 4th, 2017
ALCF Computational Performance Workshop
“PEOPLE ARE DOING HIGH PERFORMANCE COMPUTING WITH PYTHON... HOW DO WE STOP THEM?”

- SENIOR PERFORMANCE ENGINEER
WHY THIS TALK?

- Python is popular
- It’s becoming the de facto language for data science
- It’s behind a large number of scientific workflows
- It’s not uncommon for prototyping or even implementing production software
- We tend to make a lot of mistakes
WHY PYTHON?

- If you like a programming paradigm, it’s supported
- Most functions map to what you know already
- Easy to combine with other languages
- Easy to keep code readable and maintainable
- Lets you do just about anything without changing languages
- The price is right - no license management
- Code portability
- Fully Open Source
- Very low learning curve
- Commercial support options are available
- Comes with a highly enthusiastic and helpful community
WHY NOT PYTHON?

- Performance is often a secondary concern for developers and distributions
 - Most developers aren’t in HPC environments
 - Most developers aren’t in science environments
 - Many tools were designed to work best in generic environments

- Language maintainers favor consistency over compatibility
 - Backwards compatibility is seldom guaranteed

- Low learning curve
 - It’s easy to develop a code base that works, but won’t scale
PYTHON 2 OR 3?

Python was originally developed as a system scripting language for the Amoeba distributed operating system and has been developing ever since, with many backwards-incompatible changes made in the name of progress without too much delay on adoption. However, the changes from Python 2 to Python 3 were sufficiently radical that adoption has been slow going. That said:

- Python 3 is the future – and the future is here
- All major libraries now work under Python 3.5+
- Almost all popular tools work with Python 3.5+
- Python 3’s loader and more of the interpreter’s internals are written in Python
 - This makes loading more I/O intensive which presents challenges for scaling
 - It also makes it easier to write alternative interpreters that can be faster than CPython
WHERE DO WE WANT TO SPEND OUR TIME?

Vectorization

MPI, OpenMP, OpenACC, or Threads

MPI

Workflows

Share of execution time
HOW DOES CPYTHON WORK?

Python 2.7.13 (default, Apr 23 2017, 16:50:50)
[GCC 4.2.1 Compatible Apple LLVM 7.3.0 (clang-703.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

```python
>>> def area_circle(r):
...    pi=3.14159
...    area=pi*r**2
...    return area
...
>>> import dis
dis.dis(area_circle.func_code)
  2           0 LOAD_CONST                1 (3.14159)
                3 STORE_FAST                1 (pi)

  3           6 LOAD_FAST                  1 (pi)
              9 LOAD_FAST                  0 (r)
             12 LOAD_CONST                 2 (2)
              15 BINARY_POWER
              16 BINARY_MULTIPLY
             17 STORE_FAST                 2 (area)

  4           20 LOAD_FAST                 2 (area)
             23 RETURN_VALUE
```

```
HOW DOES CPYTHON WORK?

```python
>>> def area_circles(R):
... A=[]
... for r in R:
... A.append(area_circle(r))
... return A
...
>>> dis.dis(area_circles.func_code)
 2 0 BUILD_LIST 0
 3 3 STORE_FAST 1 (A)
 3 6 SETUP_LOOP 33 (to 42)
 3 9 LOAD_FAST 0 (R)
 3 12 GET_ITER
 3 13 FOR_ITER 25 (to 41)
 3 16 STORE_FAST 2 (r)
 4 19 LOAD_FAST 1 (A)
 4 22 LOAD_ATTR 0 (append)
 4 25 LOAD_GLOBAL 1 (area_circle)
 4 28 LOAD_FAST 2 (r)
 4 31 CALL_FUNCTION 1
 4 34 CALL_FUNCTION 1
 4 37 POP_TOP
 4 38 JUMP_ABSOLUTE 13
 5 41 POP_BLOCK
 5 >> 42 LOAD_FAST 1 (A)
 5 >> 45 RETURN_VALUE
```
HOW DOES CPYTHON WORK?

```python
>>> def area_circles_lc(R):
... return [area_circle(r) for r in R]
...
>>> dis.dis(area_circles_lc.func_code)
2 0 BUILD_LIST 0
3 0 LOAD_FAST 0 (R)
6 0 GET_ITER
>> 7 18 FOR_ITER 18 (to 28)
10 1 STORE_FAST 1 (r)
13 0 LOAD_GLOBAL 0 (area_circle)
16 1 LOAD_FAST 1 (r)
19 1 CALL_FUNCTION 1
22 2 LIST_APPEND 2
25 7 JUMP_ABSOLUTE 7
>> 28 RETURN_VALUE
```
THREADS AND PYTHON: A WORD ON THE GIL

To keep memory coherent, Python only allows a single thread to run in the interpreter's memory space at once. This is enforced by the Global Interpreter Lock, or GIL.

The GIL isn’t all bad. It:
- Is mostly sidestepped for I/O (files and sockets)
- Makes writing modules in C much easier
- Makes maintaining the interpreter much easier
- Makes for any easy topic of conversation
- Encourages the development of other paradigms for parallelism
- Is almost entirely irrelevant in the HPC space as it neither impacts MPI or threading within compiled modules

For the gory details, see David Beazley's talk on the GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU
NUMPY AND SCIPY

NumPy should almost always be your first stop for performance improvement. It provides:

- N-dimensional homogeneous arrays (ndarray)
- Universal functions (ufunc)
- built-in linear algebra, FFT, PRNGs
- Tools for integrating with C/C++/Fortran
- Heavy lifting done by optimized C/Fortran libraries such as Intel’s MKL or IBM’s ESSL

SciPy extends NumPy with common scientific computing tools
- optimization
- additional linear algebra
- integration
- interpolation
- FFT
- signal and image processing
- ODE solvers

Problems arise when NumPy isn’t well built…
NUMPY AND SCIPY

Optimized and built with MKL via Spack

```python
import timeit

sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100,))) for i in range(100)])/100.0
```

119.68859601020813s 499.9269280433655s

The test on a KNL system:

```python
>>> import timeit
>>> sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100,))) for i in range(100)])/100.0
```
A WORD FROM OUR SPONSORS: CANNED PYTHON

At this point in history, there are few reasons for the average user to manually cobble together a Python stack for themselves on an x86_64 system. All options are relatively equivalent with unique advantages and disadvantages to weigh.

We will be making two options available on Theta:
- The Intel Python distribution
- Optimized builds of Python built with LLNL/Spack via modules

You may also wish to consider a commercial distribution:
- Continuum Analytics Anaconda
- Enthought Canopy

Both Intel Python and Continuum Analytics Anaconda build on the Conda package and environment manager. Enthought Canopy relies on virtualenv for environment management.

Think of Conda as being like rpm or deb packages – easy to install binary packages, though managing dependencies becomes potentially problematic.

Think of LLNL/Spack+virtualenv as being like BSD or MacPorts – highly customizable, highly transparent, but potentially a lot of time spent compiling.
WHY MPI?

- It is (still) the HPC paradigm for inter-process communications
  - Supported by every HPC center and vendor on the planet
  - APIs are stable, standardized, and portable across platforms and languages
  - We’ll still be using it in 10 years…

- It makes full use of HPC interconnects and hardware
  - Abstracts aspects of the network that may be very system specific
  - Dask, Spark, Hadoop, and Protocol Buffers use sockets or files!
  - Vendors generally optimize MPI for their hardware and software

- Well-supported tools for development – even for Python
  - Debuggers now handle mixed language applications
  - Profilers are treating Python as a first-class citizen
  - Many parallel solver packages have well-developed Python interfaces

- Folks have been writing Python MPI bindings since at least 1996
  - David Beazley may have started this…
  - Other contenders: Pypar (Ole Nielsen), pyMPI (Patrick Miller, et al), Pydusa (Timothy H. Kaiser), and Boost MPI Python (Andreas Klöckner and Doug Gregor)
  - The community has mostly settled on mpi4py by Lisandro Dalcin
A BOTTLENECK AT THE START: LOADING PYTHON

When working in diskless environments or from shared file systems, keep track of how much time is spent in startup and module file loading. Parallel file systems are generally optimized for large, sequential reads and writes. NFS generally serializes metadata transactions. This load time can have substantial impact on total runtimes.
MPI4PY

- Pythonic wrapping of the system’s native MPI
- provides almost all MPI-1,2 and common MPI-3 features
- very well maintained
- distributed with major Python distributions
- portable and scalable
  - requires only: NumPy, Cython, and an MPI
  - used to run a python application on 786,432 cores
  - capabilities only limited by the system MPI
HOW MPI4PY WORKS...

- mpi4py jobs are launched like other MPI binaries:
  - mpiexec -np ${RANKS} python ${PATH_TO_SCRIPT}
- an independent Python interpreter launches per rank
  - no automatic shared memory, files, or state
  - crashing an interpreter does crash the MPI program
  - it is possible to embed an interpreter in a C/C++ program and launch an interpreter that way
- if you crash or have trouble with simple codes
  - CPython is a C binary and mpi4py is a binding
  - you will likely get core files and mangled stack traces
  - use ld or otool to check which MPI mpi4py is linked against
  - ensure Python, mpi4py, and your code are available on all nodes and libraries and paths are correct
  - try running with a single rank
  - rebuild with debugging symbols
Importing and MPI initialization
- importing mpi4py allows you to set runtime configuration options (e.g. automatic initialization, thread_level) via mpi4py.rc()

- by default importing the MPI submodule calls MPI_Init()
  - calling Init() or Init_thread() more than once violates the MPI standard
  - This will lead to a Python exception or an abort in C/C++
  - use Is_initialized() to test for initialization

- MPI_Finalize() will automatically run at interpreter exit
  - there is generally no need to ever call Finalize()
  - use Is_finalized() to test for finalization if uncertain
  - calling Finalize() more than once exits the interpreter with an error and may crash C/C++/Fortran modules
MPI4PY AND PROGRAM STRUCTURE

Any code, even if after MPI.Init(), unless reserved to a given rank will run on all ranks:

```python
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()

if rank%2 == 0:
 print("Hello from an even rank: \%d\%(rank))

comm.Barrier()

print("Goodbye from rank \%d\%(rank))
```
MPI4PY AND DATATYPES

- Python objects, unless they conform to a C data type, are pickled
  - pickling and unpickling have significant compute overhead
  - overhead impacts both senders and receivers
  - pickling may also increase the memory size of an object
  - use the lowercase methods, eg: `recv()`, `send()`
- Picklable Python objects include:
  - `None`, `True`, and `False`
  - integers, long integers, floating point numbers, complex numbers
  - normal and Unicode strings
  - tuples, lists, sets, and dictionaries containing only picklable objects
  - functions defined at the top level of a module
  - built-in functions and classes defined at the top level of a module
  - instances of such classes whose `__dict__()` or the result of calling `__getstate__()` is picklable
MPI4PY AND DATATYPES

- Buffers, MPI datatypes, and NumPy objects aren't pickled
  - transmitted near the speed of C/C++
  - NumPy datatypes are autoconverted to MPI datatypes
  - buffers may need to be described as a 2/3-list/tuple
    - [data, MPI.DOUBLE] for a single double
    - [data, count, MPI.INT] for an array of integers
  - custom MPI datatypes are still possible
  - use the capitalized methods, eg:Recv(), Send()
- When in doubt, ask if what is being processed can be represented as memory buffer or only as PyObject
Collectives operating on Python objects are naive
For the most part collective reduction operations on Python objects are serial
Casing convention applies to methods:
- lowercased methods will work for general Python objects (albeit slowly)
- uppercase methods will work for NumPy/MPI data types at near C speed
MPI4PY: PARALLEL I/O

- All 30-something MPI-2 methods are supported
  - conventional Python I/O is not MPI safe!
    - safe to read files, though there might be locking issues
    - write a separate file per rank if you must use Python I/O
  - h5py 2.2.0 and later support parallel I/O
    - hdf5 must be built with parallel support
      - make sure your hdf5 matches your MPI
    - h5pcc must be present
      - check things with: h5pcc --showconfig
    - hdf5 and h5py from Anaconda are serial!
  - anything which modifies the structure or metadata of a file must be done collectively
  - Generally as simple as:
    ```py
 f = h5py.File('parallel_test.hdf5', 'w',
 driver='mpio', comm=MPI.COMM_WORLD)
    ```
1. Benchmark as you develop
2. Profile
3. Ask if you can do an operation with NumPy or SciPy
4. Never mix forking and threading – ie: Python multiprocessing
5. Check the build configurations of your important Python modules
6. Beware of thread affinity:
   aprun -n ... -N ... -e KMP_AFFINITY=none -d ... -j ...
7. Watch your data types
8. Avoid Python threading
9. Watch startup times carefully
10. Google – someone else has likely already implemented the solution you seek
11. Python distutils is always the wrong answer
<table>
<thead>
<tr>
<th>Script</th>
<th>CPython</th>
<th>Pypy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serial / 1 Rank</td>
<td>Serial / 1 Rank</td>
</tr>
<tr>
<td></td>
<td>8 Ranks</td>
<td>8 Ranks</td>
</tr>
<tr>
<td>builtins_mpi_pi</td>
<td>3.677074</td>
<td>0.313690</td>
</tr>
<tr>
<td></td>
<td>1.065756</td>
<td>0.127450</td>
</tr>
<tr>
<td>builtins_pyobj_mpi_pi</td>
<td>4.016020</td>
<td>0.304663</td>
</tr>
<tr>
<td></td>
<td>1.092005</td>
<td>0.110477</td>
</tr>
<tr>
<td>numba_mpi_pi</td>
<td>0.416354</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>0.424889</td>
<td>n/a</td>
</tr>
<tr>
<td>numpy_mpi_pi</td>
<td>0.666984</td>
<td>1.962236</td>
</tr>
<tr>
<td></td>
<td>0.154728</td>
<td>0.556384</td>
</tr>
<tr>
<td>threads</td>
<td>7.450568</td>
<td>0.344480</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>