Computational Engineering of Defects in Soft and Hard Materials for Energy and Quantum Information Applications

PI Name: 
Marco Govoni
PI Email: 
mgovoni@uchicago.edu
Institution: 
University of Chicago and Argonne National Laboratory
Allocation Program: 
ALCC
Allocation Hours at ALCF: 
53.7 Million
Year: 
2016
Research Domain: 
Materials Science

Defects  are  ubiquitous  in  matter.  Defects  are  often  considered  as  imperfections  to  be  avoided  since  they  show  unexpected  and  peculiar  properties,  which  could  degrade  the entire  material’s  performance  even  at  very  small  concentration.  However,  the  unusual  properties of defects can be used to design new functionalities that are not present in their host materials.  

This project supports the study of defects in water and solid materials to understand how the defects impact electronic properties. Specifically, this project supports the application of large-­scale quantum simulation methods to aqueous solutions (ions in water as defects) and solid-­state defect quantum bits (qubits), pertaining to renewable energy applications and  quantum  computation.  The  study  will  employ  ab initio  molecular  dynamics  simulations  to  compute  ensemble  averages  and  thermodynamic  properties  of  the  defects from  atomic  trajectories.  The  study  will  also  use  many  body  perturbation  theory  to  compute accurate spectroscopy signatures of the defects. To enable these calculations, we developed highly scalable codes (Qbox and WEST) that are capable of tackling systems of unprecedented size (several thousands of electrons).  

The specific aims of the project are: (i) to provide knowledge and computational tools to interpret  the  large  body  of  current  experiments  on  solar-­powered  fuel  production  from  aqueous solutions; and (ii) to establish design rules to predict robust defect qubits in solid-­state  environments,  in  which  coherent  qubit  control,  strong  qubit-­lattice  coupling,  and device scalability could be all achieved simultaneously.  

Due  to  the  similarities  in  methodologies  involved  by  defects  in  soft  and  hard  materials,  advances achieved in one system can directly be applied to many other cases, and solving computational and physical challenges that arise will lead to breakthroughs that carry over to other fields of science and engineering.  

The outcome of this proposal will be an improved understanding of the role of defects in hard and soft matter, which is critical for the design of new functional materials.