
Suggested line of text (optional):

WE START WITH YES.

TUNING	MPI	ON	THETA	

SUDHEER	CHUNDURI	
PERFORMANCE	ENGINEERING	GROUP	

ARGONNE	LEADERSHIP	COMPUTING	FACILITY		

ARGONNE	NATIONAL	LABORATORY	

Acknowledgements:		
Krishna	Kandalla,	Cray	Inc	
Peter	Mendygral,	Cray	Inc	

OUTLINE	

§  Cray	XC40	(Theta)	network	architecture	and	soNware	stack	

§ MPI	soNware	stack	on	Theta	(Cray	MPICH)	

§ Baseline	MPI	performance	on	Theta	

§ MPI	tuning	parameters	

–  KNL/MCDRAM	opSmizaSons	

–  OpSmizaSons	for	Hybrid		MPI+OpenMP	applicaSons	

2

INTRODUCTION	TO	CRAY	XC	NETWORK	

THETA	SYSTEM	OVERVIEW		

Compute	Blade:	
4	Nodes/Blade	+	Aries	switch	(connected	
over	16	GB/s	PCIe	interface)	
128GB	SSD	
10.64	TF		64GB	MCDRAM	
768GB	DRAM	

Chassis:		16	Blades,	16	Cards	
64	Nodes,	16	Switches	
170.24	TF		1TB	MCDRAM,	12TB	DRAM	

Cabinet:	3	Chassis,	75kW	liquid/air	cooled	
510.72	TF	

System:	24	Cabinets	
4392	Nodes,	1152	Switches	
Dual-plane,	12	groups,	Dragonfly	~12.14	TB/s	Bi-Sec	
11.69	PF	Peak		

Node:	KNL	Socket	
192	GB	DDR4	(6	channels)	
	2.66	TF,	16GB	MCDRAM		 4

ARIES	DRAGONFLY	NETWORK	
Aries Router:
•  4 Nodes connect to an Aries
•  4 NIC’s connected via PCIe
•  40 Network tiles/links
•  4.7-5.25 GB/s/dir per link

Connections within a group:
•  2 Local all-to-all dimensions

•  16 all-to-all horizontal
•  6 all-to-all vertical

•  384 nodes in local group

Connectivity between groups:
•  Each group connected to

every other group
•  Restricted bandwidth between

groups

hfp://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf	
5

CRAY	XC	NETWORK	
SOFTWARE	STACK	
DMAPP	-	Distributed	Shared	
Memory	ApplicaSon	APIs	
(shared	memory)	
	
GNI	-	Generic	Network	Interface		

(message	passing	based)	
	
uGNI	and	DMAPP	provide	low-level	
communicaSon	services	to	user-
space	soNware		

6

INTRODUCTION	TO	CRAY	MPICH	

BRIEF	INTRODUCTION	TO	CRAY	MPICH	
§  Cray	MPI	compliant	with	MPI	3.1	

–  Cray	MPI	uses	MPICH3	distribuSon	from	Argonne	
–  Merge	to	ANL	MPICH	3.2	–	latest	release	MPT	7.7.0	(Dec	2017)	

§  I/O,	collecSves,	P2P,	and	one-sided	all	opSmized	for	XC	architecture	
–  SMP	aware	collecSves	
–  High	performance	single-copy	on-node	communicaSon	via	xpmem	(not	necessary	to	

program	for	shared		memory)	

§  Highly	tunable	through	environment	variables	
–  Defaults	should	generally	be	best,	but	some	cases	benefit	from	fine	tuning	

§  Integrated	within	the	Cray	Programming	Environment	
–  Compiler	drivers	manage	compile	flags	and	linking	automaScally	
–  Profiling	through	Cray	PerNools	

8

CRAY	MPI	SOFTWARE	STACK	(CH3	DEVICE)				

CollecSves	 RMA	 Pt2Pt	

ApplicaSon	
MPI	Interface	

MPICH	

CH3	Device	

Xpmem	

GNI	NetMod	Interface	

GNI	

Cray	specific		
components	

PM
I	

Nemesis	

Jo
b	

la
un

ch
er
	

ROMIO	
ADIO	

Lus.	 GPFS	 ...	

CH3	Interface	

I/O	Enhancements	

GPUs	

DMAPP	

9

CRAY	MPI	RESOURCES	
§  Primary	user	resource	for	tuning	and	feature	documentaSon	is	the	manpage	

–  man	intro_mpi	
OR	

–  man	MPI	

§  Standard	funcSon	documentaSon	available	as	well	
–  E.g.,	man	mpi_isend	

10

MPI	BASELINE	PERFORMANCE	

MPI	BANDWIDTH	AND	MESSAGING	RATE	
Messaging Rate:
•  Maximum rate of 21.2 MMPS

•  At 64 ranks per node, 1 byte, window size 128
•  Increases generally proportional to core count for small

message sizes

Bandwidth:
•  Peak sustained bandwidth of 11.4 GB/s to nearest neighbor
•  1 rank (KNL core) capable of only 8 GB/s
•  For smaller messages more ranks improve aggregate off

node bandwidth

OSU PtoP MPI Multiple Bandwidth / Message Rate Test on Theta

1 2 4 8 16 32 64 128 25
6 512 1Ki 2K

i
4K

i
8K

i
16K

i
32

Ki
64

Ki
128

Ki
25

6K
i
512

Ki 1M
i

2M
i
4M

i

Message Size (B)

0.0

2.5

5.0

7.5

10.0

Ba
nd

w
id

th
[G

B/
s]

1P
2P
4P
8P
16P
32P
64P

1 2 4 8 16 32 64 128 25
6 512 1Ki 2K

i
4K

i
8K

i
16K

i
32

Ki
64

Ki
128

Ki

Message Size (B)

0

5

10

15

20

M
es

sa
gi

ng
Ra

te
[M

illi
on

s
m

sg
s/

se
c]

1P
2P
4P
8P
16P
32P
64P

12

Benchmark Zero Bytes
(µs)

One Byte
(µs)

Ping Pong ~ 3.07 ~ 3.22
Put ~ 0.61 ~ 2.9
Get ~ 0.61 ~ 4.7

OSU Ping Pong, Put, Get Latency
MPI	LATENCY	

With	each	extra	hop	roughly	100	ns		addiSonal	latency	

13

MPI	ONE	SIDED	(RMA)	
RMA Get
•  ~ 8.1 GB/s using RMA over uGNI
•  Huge pages help
•  uGNI version performs as good as the DMAPP version

RMA Put
•  11.4 GB/s peak bi-directional bandwidth
•  Slight benefit from using huge pages

OSU One Sided MPI Get Bandwidth and Bi-Directional Put Bandwidth

RMA Get RMA Put Bi-directional

64 128 25
6 512 1Ki 2K

i
4K

i
8K

i
16K

i
32

Ki
64

Ki
128

Ki
25

6K
i
512

Ki 1M
i

2M
i

4M
i

Message Size (B)

0

2

4

6

8

Ba
nd

w
id

th
[G

B/
s]

Default
Hugepages-2MB

64 128 25
6 512 1Ki 2K

i
4K

i
8K

i
16K

i
32

Ki
64

Ki
128

Ki
25

6K
i
512

Ki 1M
i

2M
i

4M
i

Message Size (B)

0.0

2.5

5.0

7.5

10.0

Ba
nd

w
id

th
[G

B/
s]

Default
Hugepages-2MB

14

MPI	PERFORMANCE	TUNING		

PROFILING	
MILC	
WITH		
CRAYPAT*	

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. Time | Imb. | Calls | Group

 | | | Time% | | Function

 | | | | | PE=HIDE

 100.0% | 667.935156 | -- | -- | 49,955,946.2 | Total

|--

| 40.0% | 267.180169 | -- | -- | 49,798,359.2 | MPI

||---

|| 24.0% | 160.400193 | 28.907525 | 15.3% | 2,606,756.0 | MPI_Wait

|| 6.4% | 42.897564 | 0.526996 | 1.2% | 157,477.0 | MPI_Allreduce

|| 4.8% | 31.749303 | 3.923541 | 11.0% | 42,853,974.0 | MPI_Comm_rank

|| 3.5% | 23.303805 | 1.774076 | 7.1% | 1,303,378.0 | MPI_Isend

|| 1.1% | 7.658009 | 0.637044 | 7.7% | 1,303,378.0 | MPI_Irecv

||===

| 39.1% | 260.882504 | -- | -- | 2.0 | USER

||---

|| 39.1% | 260.882424 | 17.270557 | 6.2% | 1.0 | main

||===

| 20.9% | 139.872482 | -- | -- | 157,585.0 | MPI_SYNC

||---

|| 20.4% | 136.485384 | 36.223589 | 26.5% | 157,477.0 | MPI_Allreduce(sync)

|==

*note:	other	profiling	tools	
could	as	well	be	used		

module load perftools
<<Build app>>
pat_build -g mpi ./
a.out
<<Run app+pat>>
pat_report PROFILEDIR

16

===
=====================
 Total

 MPI Msg Bytes% 100.0%
 MPI Msg Bytes 18,052,938,280.0
 MPI Msg Count 1,460,959.0 msgs
 MsgSz <16 Count 157,529.0 msgs
 16<= MsgSz <256 Count 65.0 msgs
 256<= MsgSz <4KiB Count 2,815.0 msgs
 4KiB<= MsgSz <64KiB Count 1,300,511.0 msgs
 64KiB<= MsgSz <1MiB Count 39.0 msgs
===
=====================
 MPI_Isend

 MPI Msg Bytes% 100.0%
 MPI Msg Bytes 18,051,670,432.0
 MPI Msg Count 1,303,378.0 msgs
 MsgSz <16 Count 16.0 msgs
 16<= MsgSz <256 Count 0.0 msgs
 256<= MsgSz <4KiB Count 2,812.0 msgs
 4KiB<= MsgSz <64KiB Count 1,300,511.0 msgs
 64KiB<= MsgSz <1MiB Count 39.0 msgs
===
=====================

PROFILING	
MILC	
WITH		
CRAYPAT	

17

KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH_RANK_REORDER_METHOD	

–  Vary	rank	placement	to	opSmize	communicaSon	
–  Can	be	a	quick,	low-hassle	way	to	improve	performance	
–  Use	Craypat	to	produce	a	specific	MPICH_RANK_ORDER	file	to	maximize	intra-node	

communicaSon	
–  Or,	use	perf_tools	grid_order	command	with	your	applicaSon's	grid	dimensions	to	

layout	MPI	ranks	in	alignment	with	data	grid		
	

–  To	use:			
•  name	your	custom	rank	order	file:		MPICH_RANK_ORDER		
•  export MPICH_RANK_REORDER_METHOD=3

18

KEY	ENVIRONMENT	VARIABLES	FOR	XC	

§ MPICH_RANK_REORDER_METHOD	(cont.)	

–  A	topology	and	placement	aware	reordering	method	is	also	available	
–  OpSmizes	rank	ordering	for	Cartesian	decomposiSons	using	the	layout	of	
nodes	in	the	job	

–  To	use:			
•  export MPICH_RANK_REORDER_METHOD=4
•  export MPICH_RANK_REORDER_OPTS=“—ndims=3 –dims=16,16,8”

§ MILC	shows	around	22%	performance	improvement	(on	average)	with	rank	reordering	

	
19

KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§  Use	HUGEPAGES	

– While	this	is	not	an	MPI	env	variable,	linking	and	running	with	hugepages	
can	offer	a	significant	performance	improvement	for	many	MPI	
communicaSon	sequences,	including	MPI	collec_ves	and	basic	MPI_Send/
MPI_Recv	calls	

– Most	important	for	applicaSons	calling	MPI_Alltoall[v]	or	performing	point	
to	point	operaSons	with	a	similarly	well	connected	pafern	and	large	data	
footprint	

–  To	use	HUGEPAGES:	
•  module load craype-hugepages8M (many	sizes	supported)	
•  <<		compile	your	app		>>	
•  module load craype-hugepages8M
•  <<		run	your	app		>>	 20

KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH_USE_DMAPP_COLL	and	hardware	supported	collecSves	

–  Most	of	MPI's	opSmizaSons	are	enabled	by	default,	but	not	the	DMAPP-opSmized	
features,	because…	

–  Using	DMAPP	may	have	some	disadvantages	
•  May	reduce	resources	MPICH	has	available	(share	with	DMAPP)	
•  Requires	more	memory	(DMAPP	internals)	
•  DMAPP	does	not	handle	transient	network	errors	(GNI’s	small	message	interface	has	an	in-built	re-

transmit	opSon	that	allows	messages	to	be	replayed	in	case	of	failures)	
–  These	are	highly-opSmized	algorithms	which	may	result	in	significant	performance	
gains,	but	user	has	to	request	them	

–  Supported	DMAPP-opSmized	funcSons:	
•  	MPI_Allreduce	(4-8	bytes)	
•  	MPI_Bcast	(4	or	8	bytes)	
•  	MPI_Barrier	

–  To	use	(link	with	libdmapp):	
•  CollecSve	use:	export MPICH_USE_DMAPP_COLL=1 21

KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH	GNI	environment	variables	
	

–  To	opSmize	inter-node	traffic	using	the	Aries	interconnect,	the	following	are	the	most	
significant	env	variables	to	play	with	(avoid	significant	devia6ons	from	the	default	if	possible):	

–  MPICH_GNI_MAX_VSHORT_MSG_SIZE	
•  Controls	max	message	size	for	E0	mailbox	path	(Default:	varies)	

–  MPICH_GNI_MAX_EAGER_MSG_SIZE	
•  Controls	max	message	size	for	E1	Eager	Path	(Default:	8K	bytes)	

–  MPICH_GNI_NUM_BUFS	
•  Controls	number	of	32KB	internal	buffers	for	E1	path	(Default:	64)	

–  MPICH_GNI_NDREG_MAXSIZE	
•  Controls	max	message	size	for	R0	Rendezvous	Path	(Default:	4MB)	

–  MPICH_GNI_RDMA_THRESHOLD	
•  Controls	threshold	for	switching	to	BTE	from	FMA*	(Default:	1K	bytes)	

	

§  *See	the	MPI	man	page	for	further	details	

22

KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§  Specific	CollecSve	Algorithm	Tuning	

–  Different	algorithms	may	be	used	for	different	message	sizes	in	collecSves	(e.g.)	
•  Algorithm	A	might	be	used	for	Alltoall	for	messages	<	1K.	
•  Algorithm	B	might	be	used	for	messages	>=	1K.	

–  To	opSmize	a	collecSve,	you	can	modify	the	cutoff	points	when	different	algorithms	
are	used.		This	may	improve	performance.		A	few	important	ones	are:	
•  MPICH_ALLGATHER_VSHORT_MSG
•  MPICH_ALLGATHERV_VSHORT_MSG
•  MPICH_GATHERV_SHORT_MSG
•  MPICH_SCATTERV_SHORT_MSG
•  MPICH_GNI_A2A_BLK_SIZE
•  MPICH_GNI_A2A_BTE_THRESHOLD

§ See	the	MPI	man	page	for	further	details	

23

ROUTING	
§  Aries	provides	three	basic	rouSng	modes	

–  DeterminisSc	(minimal)	
–  Hashed	determinisSc	(minimal,	non-minimal),	hash	on	“address”	
–  AdapSve	

•  0	–	No	bias	(default)	
•  1	–	Increasing	bias	towards	minimal	(as	packet	travels)	

–  	Used	for	MPI	all-to-all	
•  2	–	Straight	minimal	bias	(non-increasing)	
•  3	–	Strong	minimal	bias	(non-increasing)		

§  Non-adapSve	modes	are	more	suscepSble	to	congesSon	unless	the	traffic	is	very	uniform	and	
well-behaved	

§ MPI	
–  MPICH_GNI_ROUTING_MODE environment	variable	
–  Set	to	one	of	ADAPTIVE_[0123],	MIN_HASH,	NMIN_HASH,	IN_ORDER	
–  MPICH_GNI_A2A_ROUTING_MODE also	available	

24

CORE	SPECIALIZATION	
§  Offloads	some	kernel	and	MPI	work	to	unused	Hyper-Thread(s)	
§  OS	noise	events	in	the	order	of	150-200us*	on	KNL	
§  Good	for	large	jobs	and	latency	sensiSve	MPI	collecSves	
§  Highest	numbered	unused	thread	on	node	is	chosen		

–  Usually	the	highest	numbered	HT	on	the	highest	numbered	physical	core	

§  Examples	
–  aprun -r 1 ...
–  aprun -r N ... # use several extra threads

§  Cannot	oversubscribe,	OS	will	catch	
–  Illegal: aprun -r1 -n 256 -N 256 -j 4 a.out
–  Legal: aprun -r1 -n 255 -N 255 -j 4 a.out
–  Legal: aprun –r8 –n 248 –N 248 –j 4 a.out	

	
*for	more	informa6on	refer:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	 25

KNL	OPTIMIZATIONS	

MCDRAM	ON	KNL	
§  KNL	nodes	in	cache	mode	are	a	good	starSng	point	for	many	applicaSons	

–  No	extra	work	for	user	
–  Typically	good	performance	

§  KNL	nodes	in	flat	mode	is	afracSve	when	
–  there	is	benefit	from	extra	memory	of	DDR+MCDRAM	
–  observing	performance	variability	related	to	MCDRAM	direct	map	cache*	

§  EffecSve	use	of	flat	mode	requires	users	understand	more	about	what	memory	in	their	
applicaSon	mafers	and	how	it	is	being	used	
–  All	performance	criScal	memory	should	reside	in	MCDRAM	if	possible	

*for	more	informa6on	refer:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	

	
27

CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL	
§ Cray	MPI	offers	allocaSon	+	hugepage	support	for	MCDRAM	on	KNL	

–  Must	use:		MPI_Alloc_mem()	or	MPI_Win_Allocate()	
–  Dependencies:		memkind,	NUMA	libraries	and	dynamic	linking.		
								module	load	cray-memkind	

§ Feature	controlled	with	env	variables	
–  Users	select:		Affinity,	Policy	and	PageSize	
–  MPICH_ALLOC_MEM_AFFINITY = DDR or MCDRAM

•  DDR	=	allocate	memory	on	DDR	(default)	
•  MCDRAM	=	allocate	memory	on	MDCRAM	

–  MPICH_ALLOC_MEM_POLICY = M/ P/ I
•  M	=	Mandatory:	fatal	error	if	allocaSon	fails	
•  P	=	Preferred:	fall	back	to	using	DDR	memory		(default)	
•  I	=	Interleaved:	Set	memory	affinity	to	interleave	across	MCDRAM	NUMA	nodes	(For	SNC*	cases)	

–  MPICH_ALLOC_MEM_PG_SZ
•  4K,	2M,	4M,	8M,	16M,	32M,	64M,	128M,	256M,	512M		(default	4K)	

28

§ When	the	enSre	data	set	fits	within	MCDRAM,	on	KNL	nodes	in	flat	mode:	

					aprun –Nx –ny numactl –membind=1 ./a.out
–  Easiest	way	to	uSlize	hugepages		on	MCDRAM	
–  craype-hugepage	module	is	honored.			
–  AllocaSons	(malloc,	memalign)	on	MCDRAM	will	be	backed	by	hugepages	
–  However,	all	memory	allocated	on	MCDRAM	(including	MPI’s	internal	memory)	
–  Memory	available	per	node	limited	to	%	of	MCDRAM	configured	as	FLAT	memory	

§ MPICH_INTERNAL_MEM_AFFINITY=DDR		
–  forces	shared-memory	and	mail-box	memory(internal	memory	regions	allocated	by	the	MPI	library)	to	DDR	

§  MPICH_MEMORY_REPORT	

§ Alternate	soluSons	needed	to	uSlize	hugepage	memory	on	MCDRAM,	when	the	data	set	
per	node	exceeds	16G	

–  Necessary	to	idenSfy	performance	criScal	buffers	
–  Replace	memory	allocaSon	calls	with	MPI_Alloc_mem()	or	MPI_Win_allocate()		
–  Use	Cray	MPI	env.	vars	to	control	page	size,	memory	policy	and	memory	affinity	for	allocaSons	

CRAY	MPI	support	for	MCDRAM	on	KNL	
TYPICAL	USE	CASES	

29

CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL:	
TYPICAL	USER	CASES	(DATASET	SIZE	>	16GB)	
§  Flat	mode,	without	numactl	opSons:	

–  malloc(),	memalign()	will	use	DDR	first	
–  Can	access	MCDRAM	via	hbw_*	or	compiler	direcSves.	
–  craype-hugepages	module		honored	only	on	DDR	
–  hbw_malloc	will		return		memory		backed	by	basepages	
–  Memkind	can	be	used	to	get	2M	hugepages	on	MCDRAM	(but	not	larger)	

§ Users	need	to	idenSfy	criScal	buffers	and	use	MPI_Alloc_mem()	to	allocate	hugepages	with	
larger	page	sizes,	and	set	affinity		to	MCDRAM	

§ Use	following	env.	vars:	
					 	MPICH_ALLOC_MEM_AFFINITY=M (or MCDRAM)
 MPICH_ALLOC_MEM_PG_SZ = 16M (16M hugepages)

 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

30

CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL:	
TYPICAL	USE	CASES	(DATASET	SIZE	>	16GB)	
§  Flat	mode,	with	numactl --membind=1

–  Malloc(),memalign()	will	use	MCDRAM	
–  Hugepage	allocaSons	via	the	craype-hugepages	module	now	possible	on	MCDRAM	
–  But,	MCDRAM	space	is	limited.	Memory	scaling	issues	

§ Users	can	idenSfy	buffers	not	criScal	to	applicaSon		performance	and	use	
MPI_Alloc_mem()	to	set	affinity	to	DDR	

§ Use	following	env.	vars:	
							MPICH_ALLOC_MEM_AFFINITY=D (or	DDR)	
							MPICH_ALLOC_MEM_PG_SZ = <as needed, defaults to 4KB base pages>
 MPICH_ALLOC_MEM_POLICY = P (or Preferred)

31

MULTI-THREADED	MPI	SUPPORT	AND	
OPTIMIZATIONS	

MPI	THREAD	MULTIPLE	SUPPORT	IN	CRAY	MPI	
§  Thread	mulSple	support	for	

–  point	to	point	operaSons	(opSmized	global	lock	–	instead	of	a	pthread_mutex())	
–  CollecSves	(opSmized	global	lock)	
–  MPI-RMA	(thread	hot)	

	
§ All	supported	in	default	library	
	

§ export MPICH_MAX_THREAD_SAFETY=multiple	
	

§ Global	lock	opSmizaSon	on	by	default	(N/A	for	MPI-RMA)	
–  50%	befer	8B	latency	than	pthread_mutex()	(OSU	latency_mt,	32	threads	per	

node,	Broadwell)	
–  export MPICH_OPT_THREAD_SYNC=0	falls	back	to	pthread_mutex()	

33

PERFORMANCE	VARIABILITY	

NETWORK-LEVEL	VARIABILITY	

§  Cray	XC	Dragonfly	topology	
–  PotenSal	links	sharing	between	the	user	jobs	
–  High	chances	for	inter-job	contenSon	

§  Sources	of	variability	->	Inter-job	contenSon	
–  Size	of	the	job,	Node	placement	,	Workload	characterisScs	,	Co-located	job	mix	

35

NETWORK-LEVEL	VARIABILITY	
MPI	Collec_ves	
•  MPI_Allreduce	using	64	processes	with	8	MB	
message		

•  Repeated	100	Smes	within	a	job	
•  Measured	on	several	days	

-  Changes	in	node	placement	and	Job	mix	
•  Isolated	system	run:		

-  <	1%	variability		
-  Best	observed	

36

NETWORK-LEVEL	VARIABILITY	
MPI	Collec_ves	
•  MPI_Allreduce	using	64	processes	with	8	MB	
message		

•  Repeated	100	Smes	within	a	job	
•  Measured	on	several	days	

-  Changes	in	node	placement	and	Job	mix	
•  Isolated	system	run:		

-  <	1%	variability		
-  Best	observed	

•  Variability	is	around	35%	
-  Much	higher	variability	with	smaller	message	

sizes	(not	shown	here)	
•  Each	box	shows	the	median,	IQR	(Inter-QuarSle	
Range)	and	the	outliers	

128	nodes	Allreduce	8MB	64	PPN	

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●
●
●

●●

●

0.32

0.36

0.40

Defa
ult

Date

La
te

nc
y

(s
)

variable
Ideal

02−01−13

02−03−20

02−05−00

02−05−17

02−07−01

02−07−15

02−08−21

02−09−21

02−10−13

02−11−13

02−12−13

02−13−16

02−14−22

02−15−20

02−16−17

02−17−04

02−17−13

02−17−17

02−18−15

02−20−03

02−21−02

02−21−17

02−22−15

02−23−17

02−24−21

02−25−17

02−26−17

03−02−04

name
−10%

−5%

+%5

+10%

MoM

128−Allreduce−64−1048576

La
te
nc
y(
s)
	

Best
observed

MoM

Different	jobs	

	“system-configuraSon”	fix	was	applied	to	Theta	
in	Jan	2018	that	should	potenSally	resolve	this	
to	some	extent.	

37

SUMMARY	
§  OpSmizaSons	were	done	in	Cray	MPI	to	improve	pt2pt	and	collecSve	latency	on	KNL	
§  Enhancements	in	Cray	MPI	to	enable	users	best	uSlize	the	MCDRAM	technology	on	KNL	
§  Using	Hugepages	on	MCDRAM	can	improve	large	message	communicaSon	performance	
§ MPI-only	works	quite	well	on	KNL;	Threading	can	be	helpful,	but	unless	SPMD	with	“thread-hot”	
MPI	is	used	scaling	to	more	than	2-8	threads	not	recommended	

§  Necessary	to	use	-r1	(core	spec)	to	reduce	performance	variability	due	to	OS	noise	
§  Owing	to	network	design	choices	(cost	vs.	performance	tradeoffs),	Dragonfly	is	prone	to	congesSon	
compared	to	a	Torus	network	–	useful	to	be	aware	of.	

	

	

References:	

§  Cray	XC	series	Network:	h;ps://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf	

§  Cray	MPI	for	KNL:	h;ps://www.alcf.anl.gov/files/ANL_MPI_on_KNL.pdf	

§  Low-overhead	MPI	profiling	tool	(Autoperf):	h;ps://www.alcf.anl.gov/user-guides/automa6c-performance-collec6on-autoperf	

§  Variability:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	 38

www.anl.gov

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

QUESTIONS?

EVOLUTION	OF	TOP	10	SYSTEMS	IN	TOP500	LIST	

0.1

1

10

2012 2013 2014 2015 2016 2017

5.62x

0.17x

1x

Im
pr
ov
em
en
t
re
la
tiv
e
to
20
12

(a
ve
ra
ge
of
to
p
10
sy
st
em
s)

Node compute power (FLOPs)
Node bandwidth (bit/s)
Byte-per-fop-ratio

EvoluSon	of	top	10	systems	average	node	computer	
power,	node	bandwidth,	and	resulSng	byte/flop	raSo	
(normalized	to	top500-June	rankings).	

Node	network	injecSon	bandwidth	
is	staying	relaSvely	constant.	
	
Byte/flop	aspect	raSo	is	
decreasing.	
	
	
Need	for	befer	network	designs,	
ways	to	op_mize	the	use	of	the	
network	(job	scheduling	policies,	
rou_ng	schemes,	topology	specific	
op_miza_ons)	

40

§ MPI_Alloc_mem:	not	restricted	to	be	used	only	for	communicaSon	buffers,	or	MPI’s	
internal	buffers.	

–  Can	also	be	used	to	allocate	applicaSon’s	data	buffers	
	

§  Cray	MPI	does	not	register	the	memory	returned	by	Alloc_mem	
	

§  Cray	MPI	also	does	not	“touch”	memory	allocated	via	Alloc_mem()	
–  NUMA	Affinity	resolved	when	the	memory	pages	are	first	touched	by	the	process/threads.	
–  Not	ideal	from	a	NUMA	perspecSve	to	have	the	master	thread	alone	touch	the	enSre	buffer	

right	aNer	allocaSon	

§ MPI_Alloc_mem	returns	page-aligned	memory	for	all	page	sizes		

Cray MPI support for MCDRAM on KNL

41

0	
100	
200	
300	
400	
500	
600	

128 256 512 1024

GF
lo
ps
	

Number	of	MPI	Processes	(32	processes	per	KNL	node)	

Default	 16HP_Module(DDR)	
Alloc_mem_16HP_MCDRAM	 16HP_Module_membind_1(MCDRAM)	

MCDRAM Experiments with a 3DFFT Kernel

3DFFT Weak scaling (Data Grid: 1024, 1024, 1024)
MPI_Alloc_mem with hugepages offers same performance as using membind=1
Hugepages on MCDRAM performs better than DDR with the same hugepage size
Using MPI_Alloc_mem can help cases where the entire data set does not fit within MCDRAM

~10%

~10%

42

MPI-3	DYNAMIC	PROCESS	MANAGEMENT	(DPM)	SUPPORT	

§  Cray	MPT	supports	DPM.		
§  Available	in	the	non-default	DPM	library	
					“-craympich-dpm”	linker	flag	to	use	this	feature.		
§  Users	are	recommended	to	set	MPICH_DPM_DIR	(if	home	dir	not	mounted)						
§  Only	ALPS	is	supported	right	now.	Server/Client	should	be	launched	by	the	same	user.	
§  Cray	MPT	June	‘18	release	will	have	full	DRC	Support	(SLURM)	
					Users	need	to	set:		PMI_USE_DRC	=	1	
§  Cray	MPT	also	supports	MPIX_Comm_rankpool()	(Feedback?)	
§  Verifying	the	library	version:		
					(MPICH_VERSION_DISPLAY=1)	
						BUILD	INFO	:	Built	Date	Time	Year	(git	hash	commit)	MT-G	DPM	

43
Copyright 2018 Cray Inc.

MPI-3	DYNAMIC	PROCESS	MANAGEMENT	(DPM)	SUPPORT	
WITHOUT	DRC	

1.  DPM.sh
#!/bin/bash
dpmdir="./dpmdir"
cc -craympich-dpm -o
 accept accept.c
cc -craympich-dpm -o
 connect connect.c
mkdir -p $dpmdir
apmgr pdomain –c
my_pdomain

qsub dpm_accept.sh
sleep 5
qsub dpm_connect.sh
apmgr pdomain –r
my_pdomain

2. dpm_accept.sh
#!/bin/bash
#PBS -l nodes=2:ppn=1
#PBS -l walltime=00:05:00
#PBS -j oe
#PBS -N dpm
#PBS -V

cd $PBS_O_WORKDIR

export MPICH_DPM_DIR="`pwd`/
dpmdir"

aprun -p my_pdomain -n 1 -N 1 ./
accept

3. dpm_connect.sh

#!/bin/bash

#PBS -l nodes=2:ppn=1
#PBS -l walltime=00:05:00
#PBS -j oe
#PBS -N dpm
#PBS -V

cd $PBS_O_WORKDIR

export MPICH_DPM_DIR="`pwd`/
dpmdir"

aprun -p my_pdomain -n 1 -N 1 ./
connect

44
Copyright 2018 Cray Inc.

SUPPORT	FOR	LARGER	MPI	TAGS	IN	CRAY	MPI	
§  In	response	to	MPI_TAG_UB	requests	from	users.		
				The	DPM	feature	steals	yet	another	bit	from	the	tag	space.		
§  Cray	MPT	now	offers	larger	tag	spaces	and	an	opSmized	message	matching	
implementaSon.		

§ Available	in	the	non-default	Cray	MPICH	DPM	library	
§ MPI_TAG_UB	
					Default	Cray	MPT														2^21		
					CrayMPICH-DPM															2^29		
§ New	Message	Matching	algorithm	follows	a	“Binning”	approach	to	opSmize	message	
matching	overheads	

45
Copyright 2018 Cray Inc.

MPI-RMA	THREAD	HOT	COMMUNICATION	IN	
CRAY	MPI	
§  “Thread hot” means high performance thread multiple support

§  Design Objectives
–  Contention free progress and completion
–  High bandwidth and high message rate
–  Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted

progress
–  Dynamic mapping between threads and network resources
–  Locks needed only if the number of threads exceed the number of network resources

§  MPI-3 RMA
–  Epoch	calls	(Win_complete,	Win_fence)	are	thread-safe,	but	not	intended	to	be	thread	hot	
–  All	other	RMA	calls	(including	request-based	opera_ons)	are	thread	hot	
–  Mul_ple	threads	doing	Passive	Synchroniza_on	opera_ons	likely	to	perform	best

46

MULTI-THREADING	APPROACHES	WITH	CRAY	MPI	
§  Easy	way	to	hit	the	ground	running	on	a	KNL	–	MPI	only	mode	

–  Works	quite	well	in	our	experience	
–  Scaling	to	more	than	2-8	threads	most	likely	requires	a	different	applicaSon	design	approach	

	

§  “Bofom-Up”	OpenMP	development	approach	is	very	common	
–  Likely	will	not	offer	best	performance	and	thread	scaling	

	

§  “Top-Down”	SPMD	model	is	more	appealing	for	KNL	
–  Increases	the	scope	of	code	executed	by	OpenMP	
–  Allows	for	befer	load	balancing	and	overall	compute	scaling	on	KNL	
–  Leads	to	mulSple	threads	calling	MPI	concurrently	
–  In	this	model,	performance	is	limited	by	the		level	of	support	offered	by	MPI	for	mulS-threaded	

communicaSon	
–  MPI	implementaSons	must	offer	“thread	hot”	communicaSon	capabiliSes	to	improve	communicaSon	

performance	for	highly	threaded	use	cases	on	KNL	

47

MPI+OPENMP	MODELS	

48

“SPMD”

! Move OpenMP near the top of the call stack

!#OMP PARALLEL
DO WHILE (t .LT. tend)

 !#OMP DO
 DO patch = 1, npatches

 CALL update_patch()

 …CALL MPI…

 END DO

END DO

“bottom up”

! Keep OpenMP within a “compute” loop

DO WHILE (t .LT. tend)

 DO patch = 1, npatches

 CALL update_patch()

 …CALL MPI…

 END DO

END DO

SUBROUTINE update_patch()

 !$OMP PARALLEL DO
 DO i = 1, nx
 …do work…
 END DO

END SUBROUTINE

HIGH-LEVEL	OPENMP	
§  Benefits	of	high-level	SPMD	OpenMP	

–  ApplicaSon	more	closely	mimics	completely	independent	processes	
•  Less	likely	to	be	in	the	same	porSon	of	code	at	the	same	Sme	
•  Bandwidth	compeSSon	may	decrease	
•  Amdahl's	law	

–  Threads	are	less	coupled	=>	infrequent	thread	synchronizaSon	
–  Less	likely	to	have	issues	with	memory	conflicts	between	threads	
–  PotenSally	simpler	to	implement	

•  Large	reducSon	in	the	amount	of	OpenMP	direcSves	
•  Very	lifle	variable	scoping	needed	as	most	everything	is	shared	=>	reduced	memory	footprint	

–  Easier	to	make	use	of	all	cores	on	node	(e.g.,	68)	that	can	be	hard	to	use	for	domain	decomposiSon	reasons	
–  EffecSve	way	to	manage	hardware	induced	imbalance	and	algorithmic	load	imbalance	

49

HIGH-LEVEL	OPENMP	
§  Challenges	for	high-level	SPMD	OpenMP	

–  Requires	full	understanding	of	data	dependencies	and	potenSal	for	race	condiSons	

–  Best	performance	requires	new	approach	to	MPI	
•  Goal	should	be	to	remove	any	thread	synchronizaSon	you	can	
•  Serializing	MPI	will	limit	the	benefit	and	scalability	of	SPMD	

–  SPMD	is	a	data	centric	model	
•  Present	work	as	independent	units	
•  Let	threads	work	on	that	set	in	any	order	with	a	non-staSc	schedule	

–  MPI	work	should	be	treated	the	same	as	compute	if	possible	
•  Independent	units	of	communicaSon	to	be	worked	on	in	any	order	with	non-staSc	
schedule	

50

