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OUTLINE	

§  Cray	XC40	(Theta)	network	architecture	and	soNware	stack	

§ MPI	soNware	stack	on	Theta	(Cray	MPICH)	

§ Baseline	MPI	performance	on	Theta	

§ MPI	tuning	parameters	

–  KNL/MCDRAM	opSmizaSons	

–  OpSmizaSons	for	Hybrid		MPI+OpenMP	applicaSons	
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INTRODUCTION	TO	CRAY	XC	NETWORK	



THETA	SYSTEM	OVERVIEW		

Compute	Blade:	
4	Nodes/Blade	+	Aries	switch	(connected	
over	16	GB/s	PCIe	interface)	
128GB	SSD	
10.64	TF		64GB	MCDRAM	
768GB	DRAM	

Chassis:		16	Blades,	16	Cards	
64	Nodes,	16	Switches	
170.24	TF		1TB	MCDRAM,	12TB	DRAM	

Cabinet:	3	Chassis,	75kW	liquid/air	cooled	
510.72	TF	

System:	24	Cabinets	
4392	Nodes,	1152	Switches	
Dual-plane,	12	groups,	Dragonfly	~12.14	TB/s	Bi-Sec	
11.69	PF	Peak		

Node:	KNL	Socket	
192	GB	DDR4	(6	channels)	
	2.66	TF,	16GB	MCDRAM		 4 



ARIES	DRAGONFLY	NETWORK	
Aries Router: 
•  4 Nodes connect to an Aries 
•  4 NIC’s connected via PCIe 
•  40 Network tiles/links 
•  4.7-5.25 GB/s/dir per link 

Connections within a group: 
•  2 Local all-to-all dimensions 

•  16 all-to-all horizontal 
•  6 all-to-all vertical 

•  384 nodes in local group 

Connectivity between groups: 
•  Each group connected to 

every other group 
•  Restricted bandwidth between 

groups 

hfp://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf	
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CRAY	XC	NETWORK	
SOFTWARE	STACK	
DMAPP	-	Distributed	Shared	
Memory	ApplicaSon	APIs	
(shared	memory)	
	
GNI	-	Generic	Network	Interface		

(message	passing	based)	
	
uGNI	and	DMAPP	provide	low-level	
communicaSon	services	to	user-
space	soNware		
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INTRODUCTION	TO	CRAY	MPICH	



BRIEF	INTRODUCTION	TO	CRAY	MPICH	
§  Cray	MPI	compliant	with	MPI	3.1	

–  Cray	MPI	uses	MPICH3	distribuSon	from	Argonne	
–  Merge	to	ANL	MPICH	3.2	–	latest	release	MPT	7.7.0	(Dec	2017)	

§  I/O,	collecSves,	P2P,	and	one-sided	all	opSmized	for	XC	architecture	
–  SMP	aware	collecSves	
–  High	performance	single-copy	on-node	communicaSon	via	xpmem	(not	necessary	to	

program	for	shared		memory)	

§  Highly	tunable	through	environment	variables	
–  Defaults	should	generally	be	best,	but	some	cases	benefit	from	fine	tuning	

§  Integrated	within	the	Cray	Programming	Environment	
–  Compiler	drivers	manage	compile	flags	and	linking	automaScally	
–  Profiling	through	Cray	PerNools	
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CRAY	MPI	SOFTWARE	STACK	(CH3	DEVICE)				

CollecSves	 RMA	 Pt2Pt	
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MPI	Interface	

MPICH	
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GPUs	
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CRAY	MPI	RESOURCES	
§  Primary	user	resource	for	tuning	and	feature	documentaSon	is	the	manpage	

–  man	intro_mpi	
OR	

–  man	MPI	

§  Standard	funcSon	documentaSon	available	as	well	
–  E.g.,	man	mpi_isend	
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MPI	BASELINE	PERFORMANCE	



MPI	BANDWIDTH	AND	MESSAGING	RATE	
Messaging Rate: 
•  Maximum rate of 21.2 MMPS 

•  At 64 ranks per node, 1 byte, window size 128 
•  Increases generally proportional to core count for small 

message sizes 

Bandwidth: 
•  Peak sustained bandwidth of 11.4 GB/s to nearest neighbor 
•  1 rank (KNL core) capable of only 8 GB/s  
•  For smaller messages more ranks improve aggregate off 

node bandwidth 
 

OSU PtoP MPI Multiple Bandwidth / Message Rate Test on Theta 
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Benchmark Zero Bytes 
(µs) 

One Byte 
(µs) 

Ping Pong ~ 3.07 ~ 3.22 
Put ~ 0.61 ~ 2.9 
Get ~ 0.61 ~ 4.7 

OSU Ping Pong, Put, Get Latency 
MPI	LATENCY	

With	each	extra	hop	roughly	100	ns		addiSonal	latency	
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MPI	ONE	SIDED	(RMA)	
RMA Get 
•  ~ 8.1 GB/s using RMA over uGNI 
•  Huge pages help 
•  uGNI version performs as good as the DMAPP version 

RMA Put 
•  11.4 GB/s peak bi-directional bandwidth  
•  Slight benefit from using huge pages 

OSU One Sided MPI Get Bandwidth and Bi-Directional Put Bandwidth  

RMA Get RMA Put Bi-directional 
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MPI	PERFORMANCE	TUNING		



PROFILING	
MILC	
WITH		
CRAYPAT*	

Table 1:  Profile by Function Group and Function

  Time% |       Time | Imb. Time |  Imb. |        Calls | Group

        |            |           | Time% |              |  Function

        |            |           |       |              |   PE=HIDE   

 100.0% | 667.935156 |        -- |    -- | 49,955,946.2 | Total

|----------------------------------------------------------------------------

|  40.0% | 267.180169 |        -- |    -- | 49,798,359.2 | MPI

||---------------------------------------------------------------------------

||  24.0% | 160.400193 | 28.907525 | 15.3% |  2,606,756.0 | MPI_Wait

||   6.4% |  42.897564 |  0.526996 |  1.2% |    157,477.0 | MPI_Allreduce

||   4.8% |  31.749303 |  3.923541 | 11.0% | 42,853,974.0 | MPI_Comm_rank

||   3.5% |  23.303805 |  1.774076 |  7.1% |  1,303,378.0 | MPI_Isend

||   1.1% |   7.658009 |  0.637044 |  7.7% |  1,303,378.0 | MPI_Irecv

||===========================================================================

|  39.1% | 260.882504 |        -- |    -- |          2.0 | USER

||---------------------------------------------------------------------------

||  39.1% | 260.882424 | 17.270557 |  6.2% |          1.0 | main

||===========================================================================

|  20.9% | 139.872482 |        -- |    -- |    157,585.0 | MPI_SYNC

||---------------------------------------------------------------------------

||  20.4% | 136.485384 | 36.223589 | 26.5% |    157,477.0 | MPI_Allreduce(sync)

|============================================================================

*note:	other	profiling	tools	
could	as	well	be	used		

module load perftools
<<Build app>>
pat_build -g mpi ./
a.out
<<Run app+pat>>
pat_report PROFILEDIR
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=========================================================
=====================
  Total
---------------------------------------------------------
---------------------
  MPI Msg Bytes%                          100.0% 
  MPI Msg Bytes                 18,052,938,280.0 
  MPI Msg Count                      1,460,959.0 msgs
  MsgSz <16 Count                      157,529.0 msgs
  16<= MsgSz <256 Count                     65.0 msgs
  256<= MsgSz <4KiB Count                2,815.0 msgs
  4KiB<= MsgSz <64KiB Count          1,300,511.0 msgs
  64KiB<= MsgSz <1MiB Count                 39.0 msgs
=========================================================
=====================
  MPI_Isend
---------------------------------------------------------
---------------------
  MPI Msg Bytes%                          100.0% 
  MPI Msg Bytes                 18,051,670,432.0 
  MPI Msg Count                      1,303,378.0 msgs
  MsgSz <16 Count                           16.0 msgs
  16<= MsgSz <256 Count                      0.0 msgs
  256<= MsgSz <4KiB Count                2,812.0 msgs
  4KiB<= MsgSz <64KiB Count          1,300,511.0 msgs
  64KiB<= MsgSz <1MiB Count                 39.0 msgs
=========================================================
=====================

PROFILING	
MILC	
WITH		
CRAYPAT	

17 



KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH_RANK_REORDER_METHOD	

–  Vary	rank	placement	to	opSmize	communicaSon	
–  Can	be	a	quick,	low-hassle	way	to	improve	performance	
–  Use	Craypat	to	produce	a	specific	MPICH_RANK_ORDER	file	to	maximize	intra-node	

communicaSon	
–  Or,	use	perf_tools	grid_order	command	with	your	applicaSon's	grid	dimensions	to	

layout	MPI	ranks	in	alignment	with	data	grid		
	

–  To	use:			
•  name	your	custom	rank	order	file:		MPICH_RANK_ORDER		
•  export MPICH_RANK_REORDER_METHOD=3

18 



KEY	ENVIRONMENT	VARIABLES	FOR	XC	

§ MPICH_RANK_REORDER_METHOD	(cont.)	

–  A	topology	and	placement	aware	reordering	method	is	also	available	
–  OpSmizes	rank	ordering	for	Cartesian	decomposiSons	using	the	layout	of	
nodes	in	the	job	

–  To	use:			
•  export MPICH_RANK_REORDER_METHOD=4
•  export MPICH_RANK_REORDER_OPTS=“—ndims=3 –dims=16,16,8”

§ MILC	shows	around	22%	performance	improvement	(on	average)	with	rank	reordering	
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KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§  Use	HUGEPAGES	

– While	this	is	not	an	MPI	env	variable,	linking	and	running	with	hugepages	
can	offer	a	significant	performance	improvement	for	many	MPI	
communicaSon	sequences,	including	MPI	collec_ves	and	basic	MPI_Send/
MPI_Recv	calls	

– Most	important	for	applicaSons	calling	MPI_Alltoall[v]	or	performing	point	
to	point	operaSons	with	a	similarly	well	connected	pafern	and	large	data	
footprint	

–  To	use	HUGEPAGES:	
•  module load craype-hugepages8M (many	sizes	supported)	
•  <<		compile	your	app		>>	
•  module load craype-hugepages8M
•  <<		run	your	app		>>	 20 



KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH_USE_DMAPP_COLL	and	hardware	supported	collecSves	

–  Most	of	MPI's	opSmizaSons	are	enabled	by	default,	but	not	the	DMAPP-opSmized	
features,	because…	

–  Using	DMAPP	may	have	some	disadvantages	
•  May	reduce	resources	MPICH	has	available	(share	with	DMAPP)	
•  Requires	more	memory	(DMAPP	internals)	
•  DMAPP	does	not	handle	transient	network	errors	(GNI’s	small	message	interface	has	an	in-built	re-

transmit	opSon	that	allows	messages	to	be	replayed	in	case	of	failures)	
–  These	are	highly-opSmized	algorithms	which	may	result	in	significant	performance	
gains,	but	user	has	to	request	them	

–  Supported	DMAPP-opSmized	funcSons:	
•  	MPI_Allreduce	(4-8	bytes)	
•  	MPI_Bcast	(4	or	8	bytes)	
•  	MPI_Barrier	

–  To	use	(link	with	libdmapp):	
•  CollecSve	use:	export MPICH_USE_DMAPP_COLL=1 21 



KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§ MPICH	GNI	environment	variables	
	

–  To	opSmize	inter-node	traffic	using	the	Aries	interconnect,	the	following	are	the	most	
significant	env	variables	to	play	with	(avoid	significant	devia6ons	from	the	default	if	possible):	

–  MPICH_GNI_MAX_VSHORT_MSG_SIZE	
•  Controls	max	message	size	for	E0	mailbox	path	(Default:	varies)	

–  MPICH_GNI_MAX_EAGER_MSG_SIZE	
•  Controls	max	message	size	for	E1	Eager	Path	(Default:	8K	bytes)	

–  MPICH_GNI_NUM_BUFS	
•  Controls	number	of	32KB	internal	buffers	for	E1	path	(Default:	64)	

–  MPICH_GNI_NDREG_MAXSIZE	
•  Controls	max	message	size	for	R0	Rendezvous	Path	(Default:	4MB)	

–  MPICH_GNI_RDMA_THRESHOLD	
•  Controls	threshold	for	switching	to	BTE	from	FMA*	(Default:	1K	bytes)	

	

§  *See	the	MPI	man	page	for	further	details	
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KEY	ENVIRONMENT	VARIABLES	FOR	XC	
§  Specific	CollecSve	Algorithm	Tuning	

–  Different	algorithms	may	be	used	for	different	message	sizes	in	collecSves	(e.g.)	
•  Algorithm	A	might	be	used	for	Alltoall	for	messages	<	1K.	
•  Algorithm	B	might	be	used	for	messages	>=	1K.	

–  To	opSmize	a	collecSve,	you	can	modify	the	cutoff	points	when	different	algorithms	
are	used.		This	may	improve	performance.		A	few	important	ones	are:	
•  MPICH_ALLGATHER_VSHORT_MSG
•  MPICH_ALLGATHERV_VSHORT_MSG
•  MPICH_GATHERV_SHORT_MSG
•  MPICH_SCATTERV_SHORT_MSG
•  MPICH_GNI_A2A_BLK_SIZE
•  MPICH_GNI_A2A_BTE_THRESHOLD

§ See	the	MPI	man	page	for	further	details	
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ROUTING	
§  Aries	provides	three	basic	rouSng	modes	

–  DeterminisSc	(minimal)	
–  Hashed	determinisSc	(minimal,	non-minimal),	hash	on	“address”	
–  AdapSve	

•  0	–	No	bias	(default)	
•  1	–	Increasing	bias	towards	minimal	(as	packet	travels)	

–  	Used	for	MPI	all-to-all	
•  2	–	Straight	minimal	bias	(non-increasing)	
•  3	–	Strong	minimal	bias	(non-increasing)		

§  Non-adapSve	modes	are	more	suscepSble	to	congesSon	unless	the	traffic	is	very	uniform	and	
well-behaved	

§ MPI	
–  MPICH_GNI_ROUTING_MODE environment	variable	
–  Set	to	one	of	ADAPTIVE_[0123],	MIN_HASH,	NMIN_HASH,	IN_ORDER	
–  MPICH_GNI_A2A_ROUTING_MODE also	available	

24 



CORE	SPECIALIZATION	
§  Offloads	some	kernel	and	MPI	work	to	unused	Hyper-Thread(s)	
§  OS	noise	events	in	the	order	of	150-200us*	on	KNL	
§  Good	for	large	jobs	and	latency	sensiSve	MPI	collecSves	
§  Highest	numbered	unused	thread	on	node	is	chosen		

–  Usually	the	highest	numbered	HT	on	the	highest	numbered	physical	core	

§  Examples	
–  aprun -r 1 ...
–  aprun -r N ...   # use several extra threads

§  Cannot	oversubscribe,	OS	will	catch	
–  Illegal: aprun -r1 -n 256 -N 256 -j 4 a.out
–  Legal: aprun -r1 -n 255 -N 255 -j 4 a.out
–  Legal: aprun –r8 –n 248 –N 248 –j 4 a.out	

	
*for	more	informa6on	refer:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	 25 



KNL	OPTIMIZATIONS	



MCDRAM	ON	KNL	
§  KNL	nodes	in	cache	mode	are	a	good	starSng	point	for	many	applicaSons	

–  No	extra	work	for	user	
–  Typically	good	performance	

§  KNL	nodes	in	flat	mode	is	afracSve	when	
–  there	is	benefit	from	extra	memory	of	DDR+MCDRAM	
–  observing	performance	variability	related	to	MCDRAM	direct	map	cache*	

§  EffecSve	use	of	flat	mode	requires	users	understand	more	about	what	memory	in	their	
applicaSon	mafers	and	how	it	is	being	used	
–  All	performance	criScal	memory	should	reside	in	MCDRAM	if	possible	

*for	more	informa6on	refer:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	
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CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL	
§ Cray	MPI	offers	allocaSon	+	hugepage	support	for	MCDRAM	on	KNL	

–  Must	use:		MPI_Alloc_mem()	or	MPI_Win_Allocate()	
–  Dependencies:		memkind,	NUMA	libraries	and	dynamic	linking.		
								module	load	cray-memkind	

§ Feature	controlled	with	env	variables	
–  Users	select:		Affinity,	Policy	and	PageSize	
–  MPICH_ALLOC_MEM_AFFINITY =  DDR or MCDRAM

•  DDR	=	allocate	memory	on	DDR	(default)	
•  MCDRAM	=	allocate	memory	on	MDCRAM	

–  MPICH_ALLOC_MEM_POLICY  =  M/ P/ I
•  M	=	Mandatory:	fatal	error	if	allocaSon	fails	
•  P	=	Preferred:	fall	back	to	using	DDR	memory		(default)	
•  I	=	Interleaved:	Set	memory	affinity	to	interleave	across	MCDRAM	NUMA	nodes	(For	SNC*	cases)	

–  MPICH_ALLOC_MEM_PG_SZ
•  4K,	2M,	4M,	8M,	16M,	32M,	64M,	128M,	256M,	512M		(default	4K)	

28 



§ When	the	enSre	data	set	fits	within	MCDRAM,	on	KNL	nodes	in	flat	mode:	

					aprun –Nx –ny numactl –membind=1 ./a.out
–  Easiest	way	to	uSlize	hugepages		on	MCDRAM	
–  craype-hugepage	module	is	honored.			
–  AllocaSons	(malloc,	memalign)	on	MCDRAM	will	be	backed	by	hugepages	
–  However,	all	memory	allocated	on	MCDRAM	(including	MPI’s	internal	memory)	
–  Memory	available	per	node	limited	to	%	of	MCDRAM	configured	as	FLAT	memory	

§ MPICH_INTERNAL_MEM_AFFINITY=DDR		
–  forces	shared-memory	and	mail-box	memory(internal	memory	regions	allocated	by	the	MPI	library)	to	DDR	

§  MPICH_MEMORY_REPORT	

§ Alternate	soluSons	needed	to	uSlize	hugepage	memory	on	MCDRAM,	when	the	data	set	
per	node	exceeds	16G	

–  Necessary	to	idenSfy	performance	criScal	buffers	
–  Replace	memory	allocaSon	calls	with	MPI_Alloc_mem()	or	MPI_Win_allocate()		
–  Use	Cray	MPI	env.	vars	to	control	page	size,	memory	policy	and	memory	affinity	for	allocaSons	

CRAY	MPI	support	for	MCDRAM	on	KNL	
TYPICAL	USE	CASES	
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CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL:	
TYPICAL	USER	CASES	(DATASET	SIZE	>	16GB)	
§  Flat	mode,	without	numactl	opSons:	

–  malloc(),	memalign()	will	use	DDR	first	
–  Can	access	MCDRAM	via	hbw_*	or	compiler	direcSves.	
–  craype-hugepages	module		honored	only	on	DDR	
–  hbw_malloc	will		return		memory		backed	by	basepages	
–  Memkind	can	be	used	to	get	2M	hugepages	on	MCDRAM	(but	not	larger)	

§ Users	need	to	idenSfy	criScal	buffers	and	use	MPI_Alloc_mem()	to	allocate	hugepages	with	
larger	page	sizes,	and	set	affinity		to	MCDRAM	

§ Use	following	env.	vars:	
					 	MPICH_ALLOC_MEM_AFFINITY=M (or MCDRAM)
  MPICH_ALLOC_MEM_PG_SZ = 16M (16M hugepages) 

  MPICH_ALLOC_MEM_POLICY = P (or Preferred)
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CRAY	MPI	SUPPORT	FOR	MCDRAM	ON	KNL:	
TYPICAL	USE	CASES	(DATASET	SIZE	>	16GB)	
§  Flat	mode,	with	numactl --membind=1

–  Malloc(),memalign()	will	use	MCDRAM	
–  Hugepage	allocaSons	via	the	craype-hugepages	module	now	possible	on	MCDRAM	
–  But,	MCDRAM	space	is	limited.	Memory	scaling	issues	

§ Users	can	idenSfy	buffers	not	criScal	to	applicaSon		performance	and	use	
MPI_Alloc_mem()	to	set	affinity	to	DDR	

§ Use	following	env.	vars:	
							MPICH_ALLOC_MEM_AFFINITY=D (or	DDR)	
							MPICH_ALLOC_MEM_PG_SZ = <as needed, defaults to 4KB base pages>
   MPICH_ALLOC_MEM_POLICY = P (or Preferred)
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MULTI-THREADED	MPI	SUPPORT	AND	
OPTIMIZATIONS	



MPI	THREAD	MULTIPLE	SUPPORT	IN	CRAY	MPI	
§  Thread	mulSple	support	for	

–  point	to	point	operaSons	(opSmized	global	lock	–	instead	of	a	pthread_mutex())	
–  CollecSves	(opSmized	global	lock)	
–  MPI-RMA	(thread	hot)	

	
§ All	supported	in	default	library	
	

§ export MPICH_MAX_THREAD_SAFETY=multiple	
	

§ Global	lock	opSmizaSon	on	by	default	(N/A	for	MPI-RMA)	
–  50%	befer	8B	latency	than	pthread_mutex()	(OSU	latency_mt,	32	threads	per	

node,	Broadwell)	
–  export MPICH_OPT_THREAD_SYNC=0	falls	back	to	pthread_mutex()	
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PERFORMANCE	VARIABILITY	



NETWORK-LEVEL	VARIABILITY	

§  Cray	XC	Dragonfly	topology	
–  PotenSal	links	sharing	between	the	user	jobs	
–  High	chances	for	inter-job	contenSon	

§  Sources	of	variability	->	Inter-job	contenSon	
–  Size	of	the	job,	Node	placement	,	Workload	characterisScs	,	Co-located	job	mix	
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NETWORK-LEVEL	VARIABILITY	
MPI	Collec_ves	
•  MPI_Allreduce	using	64	processes	with	8	MB	
message		

•  Repeated	100	Smes	within	a	job	
•  Measured	on	several	days	

-  Changes	in	node	placement	and	Job	mix	
•  Isolated	system	run:		

-  <	1%	variability		
-  Best	observed	
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NETWORK-LEVEL	VARIABILITY	
MPI	Collec_ves	
•  MPI_Allreduce	using	64	processes	with	8	MB	
message		

•  Repeated	100	Smes	within	a	job	
•  Measured	on	several	days	

-  Changes	in	node	placement	and	Job	mix	
•  Isolated	system	run:		

-  <	1%	variability		
-  Best	observed	

•  Variability	is	around	35%	
-  Much	higher	variability	with	smaller	message	

sizes	(not	shown	here)	
•  Each	box	shows	the	median,	IQR	(Inter-QuarSle	
Range)	and	the	outliers	

128	nodes	Allreduce	8MB	64	PPN	
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Different	jobs	

	“system-configuraSon”	fix	was	applied	to	Theta	
in	Jan	2018	that	should	potenSally	resolve	this	
to	some	extent.	
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SUMMARY	
§  OpSmizaSons	were	done	in	Cray	MPI	to	improve	pt2pt	and	collecSve	latency	on	KNL	
§  Enhancements	in	Cray	MPI	to	enable	users	best	uSlize	the	MCDRAM	technology	on	KNL	
§  Using	Hugepages	on	MCDRAM	can	improve	large	message	communicaSon	performance	
§ MPI-only	works	quite	well	on	KNL;	Threading	can	be	helpful,	but	unless	SPMD	with	“thread-hot”	
MPI	is	used	scaling	to	more	than	2-8	threads	not	recommended	

§  Necessary	to	use	-r1	(core	spec)	to	reduce	performance	variability	due	to	OS	noise	
§  Owing	to	network	design	choices	(cost	vs.	performance	tradeoffs),	Dragonfly	is	prone	to	congesSon	
compared	to	a	Torus	network	–	useful	to	be	aware	of.	

	

	

References:	

§  Cray	XC	series	Network:	h;ps://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf	

§  Cray	MPI	for	KNL:	h;ps://www.alcf.anl.gov/files/ANL_MPI_on_KNL.pdf	

§  Low-overhead	MPI	profiling	tool	(Autoperf):	h;ps://www.alcf.anl.gov/user-guides/automa6c-performance-collec6on-autoperf	

§  Variability:	h;ps://dl.acm.org/cita6on.cfm?id=3126908.3126926	 38 
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EVOLUTION	OF	TOP	10	SYSTEMS	IN	TOP500	LIST	
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EvoluSon	of	top	10	systems	average	node	computer	
power,	node	bandwidth,	and	resulSng	byte/flop	raSo	
(normalized	to	top500-June	rankings).	

Node	network	injecSon	bandwidth	
is	staying	relaSvely	constant.	
	
Byte/flop	aspect	raSo	is	
decreasing.	
	
	
Need	for	befer	network	designs,	
ways	to	op_mize	the	use	of	the	
network	(job	scheduling	policies,	
rou_ng	schemes,	topology	specific	
op_miza_ons)	
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§ MPI_Alloc_mem:	not	restricted	to	be	used	only	for	communicaSon	buffers,	or	MPI’s	
internal	buffers.	

–  Can	also	be	used	to	allocate	applicaSon’s	data	buffers	
	

§  Cray	MPI	does	not	register	the	memory	returned	by	Alloc_mem	
	

§  Cray	MPI	also	does	not	“touch”	memory	allocated	via	Alloc_mem()	
–  NUMA	Affinity	resolved	when	the	memory	pages	are	first	touched	by	the	process/threads.	
–  Not	ideal	from	a	NUMA	perspecSve	to	have	the	master	thread	alone	touch	the	enSre	buffer	

right	aNer	allocaSon	

§ MPI_Alloc_mem	returns	page-aligned	memory	for	all	page	sizes		

Cray MPI support for MCDRAM on KNL 

41 



0	
100	
200	
300	
400	
500	
600	

128 256 512 1024 

GF
lo
ps
	

Number	of	MPI	Processes	(32	processes	per	KNL	node)	

Default	 16HP_Module(DDR)	
Alloc_mem_16HP_MCDRAM	 16HP_Module_membind_1(MCDRAM)	

MCDRAM Experiments with a 3DFFT Kernel 

3DFFT Weak scaling (Data Grid: 1024, 1024, 1024) 
MPI_Alloc_mem with hugepages offers same performance as using membind=1 
Hugepages on MCDRAM performs better than DDR with the same hugepage size 
Using MPI_Alloc_mem can help cases where the entire data set does not fit within MCDRAM  

~10% 

~10% 
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MPI-3	DYNAMIC	PROCESS	MANAGEMENT	(DPM)	SUPPORT	

§  Cray	MPT	supports	DPM.		
§  Available	in	the	non-default	DPM	library	
					“-craympich-dpm”	linker	flag	to	use	this	feature.		
§  Users	are	recommended	to	set	MPICH_DPM_DIR	(if	home	dir	not	mounted)						
§  Only	ALPS	is	supported	right	now.	Server/Client	should	be	launched	by	the	same	user.	
§  Cray	MPT	June	‘18	release	will	have	full	DRC	Support	(SLURM)	
					Users	need	to	set:		PMI_USE_DRC	=	1	
§  Cray	MPT	also	supports	MPIX_Comm_rankpool()	(Feedback?)	
§  Verifying	the	library	version:		
					(MPICH_VERSION_DISPLAY=1)	
						BUILD	INFO	:	Built	Date	Time	Year	(git	hash	commit)	MT-G	DPM	
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MPI-3	DYNAMIC	PROCESS	MANAGEMENT	(DPM)	SUPPORT	
WITHOUT	DRC	

1.  DPM.sh 
#!/bin/bash 
dpmdir="./dpmdir" 
cc -craympich-dpm -o  
         accept accept.c 
cc -craympich-dpm -o  
        connect connect.c 
mkdir -p $dpmdir 
apmgr pdomain –c 
my_pdomain 
 
qsub dpm_accept.sh 
sleep 5 
qsub dpm_connect.sh 
apmgr pdomain –r 
my_pdomain 

2. dpm_accept.sh 
#!/bin/bash 
#PBS -l nodes=2:ppn=1 
#PBS -l walltime=00:05:00 
#PBS -j oe 
#PBS -N dpm 
#PBS -V 
 
cd $PBS_O_WORKDIR 
 
export MPICH_DPM_DIR="`pwd`/
dpmdir" 
 
aprun -p my_pdomain -n 1 -N 1 ./
accept 
 

3. dpm_connect.sh 
 
#!/bin/bash 
# 
#PBS -l nodes=2:ppn=1 
#PBS -l walltime=00:05:00 
#PBS -j oe 
#PBS -N dpm 
#PBS -V 
 
cd $PBS_O_WORKDIR 
 
export MPICH_DPM_DIR="`pwd`/
dpmdir" 
 
aprun -p my_pdomain -n 1 -N 1 ./
connect 
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SUPPORT	FOR	LARGER	MPI	TAGS	IN	CRAY	MPI	
§  In	response	to	MPI_TAG_UB	requests	from	users.		
				The	DPM	feature	steals	yet	another	bit	from	the	tag	space.		
§  Cray	MPT	now	offers	larger	tag	spaces	and	an	opSmized	message	matching	
implementaSon.		

§ Available	in	the	non-default	Cray	MPICH	DPM	library	
§ MPI_TAG_UB	
					Default	Cray	MPT														2^21		
					CrayMPICH-DPM															2^29		
§ New	Message	Matching	algorithm	follows	a	“Binning”	approach	to	opSmize	message	
matching	overheads	
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MPI-RMA	THREAD	HOT	COMMUNICATION	IN	
CRAY	MPI	
§  “Thread hot” means high performance thread multiple support 

§  Design Objectives 
–  Contention free progress and completion 
–  High bandwidth and high message rate  
–  Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted 

progress 
–  Dynamic mapping between threads and network resources 
–  Locks needed only if the number of threads exceed the number of network resources 

 

§  MPI-3 RMA  
–  Epoch	calls	(Win_complete,	Win_fence)	are	thread-safe,	but	not	intended	to	be	thread	hot	
–  All	other	RMA	calls	(including	request-based	opera_ons)	are	thread	hot	
–  Mul_ple	threads	doing	Passive	Synchroniza_on	opera_ons	likely	to	perform	best 
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MULTI-THREADING	APPROACHES	WITH	CRAY	MPI	
§  Easy	way	to	hit	the	ground	running	on	a	KNL	–	MPI	only	mode	

–  Works	quite	well	in	our	experience	
–  Scaling	to	more	than	2-8	threads	most	likely	requires	a	different	applicaSon	design	approach	

	

§  “Bofom-Up”	OpenMP	development	approach	is	very	common	
–  Likely	will	not	offer	best	performance	and	thread	scaling	

	

§  “Top-Down”	SPMD	model	is	more	appealing	for	KNL	
–  Increases	the	scope	of	code	executed	by	OpenMP	
–  Allows	for	befer	load	balancing	and	overall	compute	scaling	on	KNL	
–  Leads	to	mulSple	threads	calling	MPI	concurrently	
–  In	this	model,	performance	is	limited	by	the		level	of	support	offered	by	MPI	for	mulS-threaded	

communicaSon	
–  MPI	implementaSons	must	offer	“thread	hot”	communicaSon	capabiliSes	to	improve	communicaSon	

performance	for	highly	threaded	use	cases	on	KNL	
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MPI+OPENMP	MODELS	

48 

“SPMD” 
 
! Move OpenMP near the top of the call stack 
 
!#OMP PARALLEL 
DO WHILE (t .LT. tend) 
 
    !#OMP DO 
    DO patch = 1, npatches 
 
        CALL update_patch() 
 
        …CALL MPI… 
 
    END DO 
 
END DO 

“bottom up” 
 
! Keep OpenMP within a “compute” loop 
 
DO WHILE (t .LT. tend) 
 
    DO patch = 1, npatches 
 
        CALL update_patch() 
 
        …CALL MPI… 
 
    END DO 
 
END DO 
 
SUBROUTINE update_patch() 
 
    !$OMP PARALLEL DO 
    DO i = 1, nx 
    …do work… 
    END DO 
 
END SUBROUTINE 



HIGH-LEVEL	OPENMP	
§  Benefits	of	high-level	SPMD	OpenMP	

–  ApplicaSon	more	closely	mimics	completely	independent	processes	
•  Less	likely	to	be	in	the	same	porSon	of	code	at	the	same	Sme	
•  Bandwidth	compeSSon	may	decrease	
•  Amdahl's	law	

–  Threads	are	less	coupled	=>	infrequent	thread	synchronizaSon	
–  Less	likely	to	have	issues	with	memory	conflicts	between	threads	
–  PotenSally	simpler	to	implement	

•  Large	reducSon	in	the	amount	of	OpenMP	direcSves	
•  Very	lifle	variable	scoping	needed	as	most	everything	is	shared	=>	reduced	memory	footprint	

–  Easier	to	make	use	of	all	cores	on	node	(e.g.,	68)	that	can	be	hard	to	use	for	domain	decomposiSon	reasons	
–  EffecSve	way	to	manage	hardware	induced	imbalance	and	algorithmic	load	imbalance	
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HIGH-LEVEL	OPENMP	
§  Challenges	for	high-level	SPMD	OpenMP	

–  Requires	full	understanding	of	data	dependencies	and	potenSal	for	race	condiSons	

–  Best	performance	requires	new	approach	to	MPI	
•  Goal	should	be	to	remove	any	thread	synchronizaSon	you	can	
•  Serializing	MPI	will	limit	the	benefit	and	scalability	of	SPMD	

–  SPMD	is	a	data	centric	model	
•  Present	work	as	independent	units	
•  Let	threads	work	on	that	set	in	any	order	with	a	non-staSc	schedule	

–  MPI	work	should	be	treated	the	same	as	compute	if	possible	
•  Independent	units	of	communicaSon	to	be	worked	on	in	any	order	with	non-staSc	
schedule	
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