Molecular Engineering of Solar-Powered Windows

Jacqueline Cole

Cavendish Laboratory, University of Cambridge, UK

ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, UK

Argonne National Laboratory, USA

Molecular Engineering of Solar-powered Windows

Jacqueline M. Cole

Cavendish Laboratory, University of Cambridge, UK ISIS Neutron Facility, Rutherford Appleton Laboratory, UK Argonne National Laboratory, USA

Synopsis

- Scientific background and motivation
- Materials discovery using existing databases: pre-ADSP
- Auto-generating Custom Databases: ChemDataExtractor
- Materials discovery "Take #2" The ADSP project
- Next Steps

Background and Motivation

Types of Solar Cells

Silicon

Thin-film Si

Quantum Dot

Organic PV

Perovskite PV

			1000	
100				
1	-	-	No.	

Dye-Sensitized Solar Cell (DSC)

Solar-powered Windows

40% Total energy drain in the USA comes from buildings

DSCs in real-world action ...

0 0 - 0·

Swiss Tech Convention Centre

Graz Science Tower (Sep 17)

Dye-sensitized solar cell

Economics: Price-to-Performance Ratio (and color options)

Materials Discovery pre-ADSP

Materials Discovery of DSC dyes

'Top-down' approach: Cole et al, PCCP, 16 (2014) 26684

'Bottom-up' approach: Cole et al, AEM 5 (2015) 1401728

Overarching Data-Mining Strategy

Creating molecular design rules

Overarching Data-Mining Strategy

Auto-sorting a set of chemical space

A representative set of organic chemical space #1 Apply D-π-A charge-separation criterion

Calculate μ for all 118,465 molecules

Set threshold: $\mu > 5 D$

Semi-empirical PM7 in MOPAC

#2 Apply D- π -A charge-conjugation criterion

Encode bond-length Alternation calculation

Overarching Data-Mining Strategy

Encoding D-\pi-A Bond-length Alternation

Illustration of the BLA calculation of all bonds, n, in the red fragment of the example compound.

The donor, D, is pre-selected from Hammett constants; here, D is the nitrogen on the N-Me2 substituent.

The electron acceptor group begins at A, as identified by the individual BLA that first exceeds the BLA threshold, 0.04 Å, as bonds emanate from D. In this molecule, this BLA (0.069 Å) lies between bond 8 and 9.

The overall BLA for the D- π -A molecular fragment is 0.0308 Å, *i.e.* significantly less than the threshold, BLA < 0.04 Å. Thus, this molecule passes the charge-delocalization criteria in the filtering algorithm.

Overarching Data-Mining Strategy

Experimental Validation

DSC Device Testing

Molecular Building Blocks of DSC Dyes

MK-44 [PV eff: 1.8%]

Materials discovery of DSC dyes

Molecular building blocks of predicted new classes of DSC dyes $\rightarrow 1/3$ world's best performance DSC dye in experimental validation

→ Far from a null result - Prediction strategy works!
(and should improve with further refinement of data-mining method)

No significant dye aggregation effects observed in 1 or 2

1 and 2 exhibit unusually high melting points

What next?

Use custom-made material databases?

Database Auto-generation tools

www.chemdataextractor.org

M. C. Swain, J. M. Cole J. Chem. Inf. Model. 56 (2016) 1894-1904

solvent

temperature

full property records

apparatus

$$precision = \frac{TP}{TP + FP}$$
$$recall = \frac{TP}{TP + FN}$$
$$F-score = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

	precision	recall	F-score
chemical names	97.4%	96.3%	96.8%
alphanumeric labels	99.3%	97.3%	98.3%
full chemical identifier reco	ords 94.1%	92.7%	93.4%
	precision	recall	F-score
spectrum type	99.9%	96.7%	98.4%
chemical subject	93.4%	90.3%	91.8%
peak values	98.6%	95.4%	96.9%
solvent	99.5%	96.7%	98.1%
temperature	100%	87.5%	93.3%
apparatus	96.9%	91.0%	93.8%
full spectrum records	88.3%	85.4%	86.8%
		11	
	precision	recall	F-score
property value	100%	95.9%	97.9%
property units	100%	94.8%	97.4%
chemical subject	93.5%	89.6%	91.5%

100%

100%

100%

93.5%

94.4%

88.9%

87.5%

89.6%

97.1%

94.1%

93.3%

91.5%

	precision	recall	F-score
chemical identifier records	94.1%	92.7%	93.4%
spectrum records	88.3%	85.4%	86.8%
chemical property records	93.5%	89.6%	91.5%

Materials discovery of new DSC dyes

Large database of UV/vis absorption spectra

Materials Discovery 'Take #2' - The ADSP project

Step 1: Data Extraction

- Negotiating publisher agreements
 - Royal Society of Chemistry
 - Elsevier
 - Wiley
 - Springer

- Parallelization of ChemDataExtractor code for Mira and Theta
- MongoDB for storing data

Stage 2: Enriching Data with Machine Learning and Quantum-Chemical Calculations

High-throughput Computation

So far...

- •18,309 lambda max values from experiments
- •9,094 compounds.
- •4,519 computed with DFT and sTDA/sTDDFT.
- •(sTDXX is an approximation to TDDFT)

•917 possible candidates to be computed with Linear Response Coupled Cluster

Step 3: Design materials prediction

Cole, Vázquez-Mayagoitia et al, ACS Appl. Mater. & Interfaces, 9 (2017) 25952-25961.

Step 3: Prediction workflows

Step 3: Prediction workflows

Next Steps

- More Data: New Data Extraction capabilities:
- ••• FigureDataExtractor

- More Theta/Mira calculations
- Computation versus Experiment
- Data enrichment: Machine Learning

- Algorithm Design for Structure-Function relationships:
 - Case studies using DFT and MD
- Experimental Validation (CNM)

Acknowledgements

Alvaro Vázquez-Mayagoitia, Ganesh Sivaraman, Samuel Flender, Yasi Ghadar, Elise Jennings,

Venkat Vishwanath, Paul Coffman, Pragneshkumar Balvantbhai Patel, Misha Salim, User Support (ALCF)

Petra Rudolf, Giota Stathi (Zernike Institute of Advanced Materials, Netherlands)

Hiroaki Ozoe, K. Fuji, C.Kitamura, Takeshi Kawase (Uni. of Hyogo, Japan)

Hiroyuki Kurata (University of Osaka, Japan)

Chris Cooper, Kian Sing Low, Martin Blood-Forsythe, Yun Gong, Ed Beard, Matt Swain, Hao Chen

References:

Data-mining led DSC dye-discovery: Cole et al, *PCCP*, 16 (2014) 26684

Text- and table mining:

Swain & Cole J. Chem. Inf. Model. 56 (2016) 1894-1904 ChemDataExtractor www.chemdataextractor.org