

Overview of Performance Optimization on Intel® Xeon Phi[™]

Code Named Knights Landing (KNL)

Intel® Software Development Products

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others

Optimization Notice

The 2nd Generation Intel® Xeon Phi[™] Processor (code named Knights Landing)

Targeted for high performance computing

- High BW
 - Integrated memory on package: 490 measured GB/sec*; up to 16 GB capacity
 - Cache or separate NUMA node
- Cluster Parallelism
 - Integrated fabric on package (Omni-Path)
 - 2x100 Gbps ports
- Thread level Parallelism (TLP)
 - Up to 68 cores X 4 hyper-threads per core = 272 threads (7290 offers 72 cores; premium part)
 - Tiles: 2 cores per tile sharing Cache-Home-Agent for Cache Coherency and 1MB MB L2 cache

- Data-level Parallelism (DLP)
 - Introduces AVX-512 ISA
 - Compatible with previous ISA (AVX, SSE, ...)
- Instruction-level Parallelism (ILP)
 - Out-of-order core
 - Two vector processing units per core
- Power Efficiency
 - 215 Watts TDP (7290 is 245 Watts)
 - 2x145 Watts TDP for Xeon Dual socket BDW E5-2697 (2x18 cores)

Performance:

Vector Peak Performance: 3+TF DP, 6+TF SP Bandwidth: 490 GB/sec Triad Stream Score*

Focus Areas for Optimization

Optimization Focus Areas

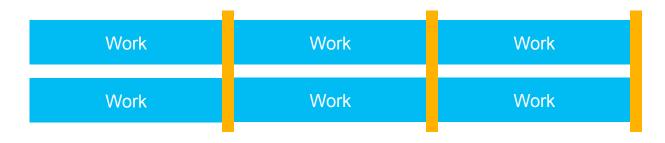
Parallelism

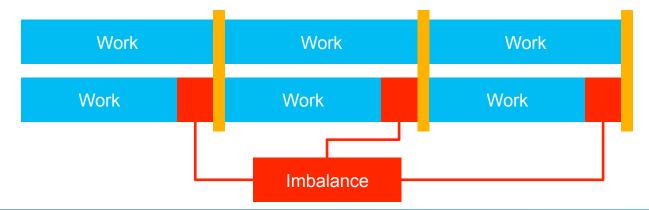
Vectorization

Memory BW

Optimization Notice

Parallelism on KNL


Multiple Threading Options


- Automatic Parallelism in Intel® Compilers
- OpenMP*
- Intel® Threading Building Blocks
- Threading inside of performance libraries

Also, MPI and MPI+Threading

Defining Imbalance in Parallelism

Optimization Notice

Vectorization on KNL

AVX-512 vector lanes

Automatic vectorization in compiler

Sometimes needs help with directives/pragmas

SIMD loops: syntax

#pragma omp simd [clauses]

for-loop

!\$omp simd [clauses]

do-loops

[!\$omp end simd]

Loop has to be in "Canonical loop form"

as do/for worksharing

Optimization Notice

SIMD loop clauses

safelen (length)

- Maximum number of iterations that can run concurrently without breaking a dependence
 - in practice, maximum vector length

linear (list[:linear-step])

- The variable value is in relationship with the iteration number
 - $x_i = x_{orig} + i * linear-step$

aligned (list[:alignment])

- Specifies that the list items have a given alignment
- Default is alignment for the architecture

Optimization Notice

SIMD functions: Syntax

#pragma omp declare simd [clauses]

[#pragma omp declare simd [clauses]]

function definition or declaration

!\$omp declare simd (function-or-procedure-name) [clauses]

Instructs the compiler to

- generate a SIMD-enabled version(s) of a given function
- that a SIMD-enabled version of the function is available to use from a SIMD loop

Optimization Notice

SIMD functions: clauses

simdlen(length)

- generate function to support a given vector length
- uniform(argument-list)
- argument has a constant value between the iterations of a given loop

inbranch

function always called from inside an if statement

notinbranch

function never called from inside an if statement

Optimization Notice

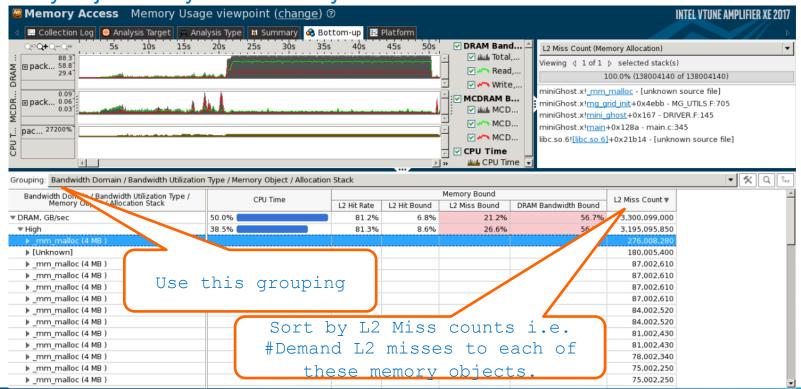
5 Steps to Efficient Vectorization - Vector Advisor

(part of Intel® Advisor, Parallel Studio, Cluster Studio)

1. Compiler diagnostics + Performance Data + SIMD efficiency information						2. Guidance: detect problem and recommend how to fix it							
		; and Loops▲	Time	Time 🔹 🖗 Loop Type	ectorization Why No	Vectorization?	⚠ 2 <u>Is</u> ♀ 8	All or some so	Remainder loop(s) p purce loop iterations are n erations from peeled/rema /ectors	ot executing in the k			
B [loop in runCForallambdal.oops] 0.094s 0.094s □ Scalar vector dependence prevents vector. B [loop in runCForallambdal.oops] 0.149 3.744s □ Scalar inner loop was already vectorized Doop in stde: Complex base colouble.struct C double complex:::				 Recommendation: Align memory access Projected maximum performance gain: High Projection confidence: Medium 									
Pee ⊞[loop i ⊞[loop i	eled looj in std::basi in std::basi	SEF, SSE2 loop processing Float32; p; loop stats were reordered (c_thing <char,thurt <<har="" thicken_thats="">,class (c_thing <char,thurt <<har="" thicken_thats="">,class (c_thing <char,tuckchar,taits <<har="">,class.tdchar,taits <<har, n_put <<har,class.tdchar,taits <<har,<br="">the thing</har,class.tdchar,taits></har, </char,tuckchar,taits></char,thurt></char,thurt>	s std::allo 0.000s ! s std::allo 0.000s !	utiliz	Total 7 3,11 0,44 0,00 0,00	Trip Counts Median ▲ Min Max 1 1 1 1 405 \$ 1 1 1 10051 1 1 1 1 10051 ₹ 1 9 9		ularity	understand & overheads	ry access and t			
		4. Loop-Carr	ied Dep	endency Ar		10si †3 1 5	Site Name		5. Memory A	ccess Patte			is Pattern
	lems a	and Messages					loop_site_20		s runCRawLoops.coc1063		No information ava		
ID	۹	Туре	Site Name	Sources	Modules	State			s runCRawLoops.coc622 N s runCRawLoops.coc925 N	o information available o information available	39% / 36% / 25 100% / 0% / 0%		l strides it strides
P1 P2	0 0	Parallel site information Read after write dependency	site2	dqtest2.cpp	dqtest2 dqtest2	✓ Not a problem New	Memory A	ccess Patterns	Correctness Report				
F2 P3	0	Read after write dependency		dqtest2.cpp dqtest2.cpp	dqtest2	New New	ID 🕲			Туре	Source	Modules	Alignment
P4	0	Write after write dependency		dqtest2.cpp	datest2	New New		0; 0; 1	j2 = (j2 & 64-1)	Unit stride	runCRawLoops.coc637	Icals.exe	
P5	0	Write after write dependency		dqtest2.cpp	dqtest2	New	636 637		p[ip][0] += y[i2+32 p[ip][1] += z[j2+32				
P6	0	Write after read dependency		dqtest2.cpp	dqtest2	New	638 639		i2 += e[i2+32]; j2 += f[j2+32];				
P7	0	Write after read dependency		dqtest2.cpp; idle.h		R New	⊕ P23 🔛 ⊟ P30 👹		-25; -1; 0; 1; 25; 26; 63; 2164801 i1 s= 64-1;	Unit stride Variable stride	runCRawLoops.cxc638 runCRawLoops.cxc628		
							626 627 628		<pre>11 &= 64-1; j1 &= 64-1; p[ip][2] += b[j1][i</pre>	11];			

Optimization Notice

Memory Bandwidth on KNL


High Bandwidth Memory

- Want to maximize utilization
- Find high use memory objects using Intel® VTune[™] Amplifier
- Allocate high use memory objects into HBM
 - Memkind library http://memkind.github.io/memkind
 - Also includes AutoHBW
 - Use numactl

Identifying high bandwidth memory objects (1/3)

Memory object analysis: DDR only

Optimization Notice

Identifying high bandwidth memory objects (2/3)

Memory object analysis: DDR only

Memory Access Memory Usag	ge viewpoint (<u>a</u>	<u>change</u>) ⑦				l	NTEL VTUNE AMPL	IFIER XE 2017
🖪 🔜 Collection Log 🔮 Analysis Target 🛆 An	alysis Type 🚺 Sumr	nary 🔗 Bottom-up 🔣	Platform					
Q+Q+ 5s 10s 15s	20s 25s	30s 35s 40s	45s 50s	🗹 DRAM Band	L2 Miss Count (Me	mory Allocation)		•
88.3		·····	·····	Intal,	Viewing ∢ 1 of 1	> selected stack(s)		
∑ ⊞ pack 58.8 29.4 0	And Charles	<u> </u>		🗹 🛹 Read,		.00.0% (138004140 c	of 138004140)	
				🗹 🛛 🗹 Write,	miniGhost x1 mm	malloc - [unknown	source file1	
0.09 ₩ pack 0.06			1	MCDRAM B		rid init+0x4ebb - M		
W	MLA	and the second state of th		MCD		phost+0x167 - DRIV	-	
≥ _: pac 27200%				✓ MCD		+0x128a - main.c:34		
						+0x21b14 - [unkno		
CPU				CPU Time	1			
			Þ	» 📠 CPU Time				
Grouping: Bandwidth Domain / Bandwidth Utilization	n Type / Memory Obje	ct / Allocation Stack					\	ج ۹ ۹
Bandwidth Domain / Bandwidth Utilization Type / Memory Object / Allocation Stack	CPU Tim	e L2 Hit Rate	L2 Hit Bound	Memory Bound L2 Miss Bound	width Bound	L2 Miss Count 🔻		*
▼ DRAM, GB/sec	50.0%	81.2%	6.8%	2	56.7%	3,300,099,000		
▼ High	38.5%	81.3%	8.6%		56.7%	3,195,095,850		
_mm_malloc (4 MB)						276,008,280		_
[Unknown]						180,005,400		
▶ _mm_malloc (4 MB)	TT of			i dont i f	tt the	87,002,610		
▶ _mm_malloc (4 MB)	USE	e callsta	JK LO	Taencii	y the	87,002,610		
_mm_malloc (4 MB)		all locat:	ion of	mm ma	1100	87,002,610		
_mm_malloc (4 MB)		ill locat.		ma	I I O C	87,002,610		
_mm_malloc (4 MB)						84,002,520		
 _mm_malloc (4 MB) mm malloc (4 MB) 						84,002,520 81,002,430		
▶ _mm_malloc (4 MB) ▶ mm_malloc (4 MB)						81,002,430		
 mm malloc (4 MB) 						78,002,340		
						1010021040		
mm malloc (4 MB)						75,002,250		

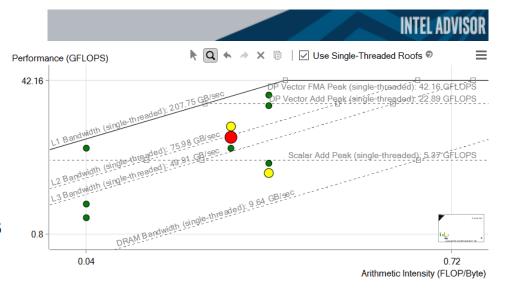
Optimization Notice

Identifying high bandwidth memory objects (3/3)

MG_UTILS.F

685	CALL MG_INIT_GRID (GRID38, IERR)
686	END IF
687	
688	IF (NUM_VARS > 38) THEN
689	ALLOCATE ($GRID39(0:NX+1, 0:NY+1, 0:NZ+1)$, $STAT = IERR$)
690	CALL MG_ASSERT (IERR, 'GRID_INIT: ALLOCATE (GRID39)', (NX+2)*(NY+2)*(NZ+2))
691	CALL MG_INIT_GRID (GRID39, IERR)
692	END IF
693	
694	IF (NUM_VARS > 39) THEN
695	ALLOCATE ($GRID40(0:NX+1, 0:NY+1, 0:NZ+1)$, $STAT = IERR$)
696	CALL MG_ASSERT (IERR, 'GRID_INIT: ALLOCATE (GRID40)', (NX+2)*(NY+2)*(NZ+2))
697	CALL MG_INIT_GRID (GRID40, IERR)
698	END IF High BW memory object
699	
700	IF (NUM_VARS > 40) THEN identified is work
701	IERR = -1
702	CALL MG_ASSERT (IERR, 'CD TOO MANY VARS', NUM_VARS)
703	END IF
704	
705	ALLOCATE (WORK ($0:NX+1$, $0:NY+1$, $0:NZ+1$), STAT = IERR)
706	CALL MG_ASSERT (IERR, 'GRID_INIT: ALLOCATE (WORK)', (NX+2)*(NY+2)*(NZ+2))
707	
708	RETURN
709	
710	END SUBROUTINE MG_GRID_INIT
711	
712 !	
713	

Optimization Notice


Roofline Analysis Using Intel® Advisor

Find Effective Optimization Strategies

Intel® Advisor: Cache-aware roofline analysis

Roofline Performance Insights

- Highlights poor performing loops
- Shows performance "headroom" for each loop
 - Which can be improved
 - Which are worth improving
- Shows likely causes of bottlenecks
- Suggests next optimization steps



Find Effective Optimization Strategies

Intel® Advisor: Cache-aware roofline analysis

- Roofs Show Platform Limits
- Memory, cache & compute limits
 Dots Are Loops
- Bigger, red dots take more time so optimization has a bigger impact
- Dots farther from a roof have more room for improvement
- Higher Dot = Higher GFLOPs/sec
- Optimization moves dots up
- Algorithmic changes move dots horizontally

Which loops should we optimize?

- A and G are the best candidates
- B has room to improve, but will have less impact
- E, C, D, and H are poor candidates

Create Faster HPC, Cloud, and AI Software

What's New in Intel® Parallel Studio XE 2018 Beta

Get More Performance from New Hardware

- Use fast AVX-512 instructions on Intel® Xeon® and Xeon Phi[™] processors
- Accelerate MPI applications with Intel® Omni-Path Architecture support

Discover Untapped Performance Faster

- Intel® Advisor Use Roofline analysis to find high impact, but under optimized loops
- Application Snapshot Get quick answers: Does my hybrid code need optimization?
- Intel® VTune™ Amplifier Profile private clouds with Docker* containers, Java* daemons

Boost Machine Learning Application Performance

- Intel® Data Analytics Acceleration Library Speed machine learning with new optimized algorithms
- Intel® Distribution for Python* Accelerate Python code using fast NumPy/SciPy and scikit-learn packages

Latest Standards and IDEs

- C++2017 draft parallelizes and vectorizes C++ easily using Parallel STL*
- Full Fortran* 2008, Fortran 2015 draft
- OpenMP* 5.0 draft, Microsoft Visual Studio* 2017

And much more*...

Register for Beta at: http://intel.ly/intel-parallel-studio-xe-2018-beta

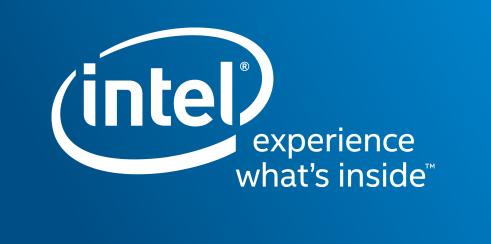
Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. * See Release Notes for the full list with further updates and new features.

20

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.


Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

