

# INTEL® MATH KERNEL LIBRARY 2018 (INTEL® MKL)

Presented at the ALCF Computational Performance Workshop, May 17th 2018

by Michael D'Mello

Intel® Corporation at Argonne National Labs

# Intel® Math Kernel Library Intel® MKL

- Speeds computations for scientific, engineering, financial and machine learning applications
- Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics, deep learning, splines and more
- Included in Intel<sup>®</sup> Parallel Studio XE and Intel<sup>®</sup> System Studio Suites
- Available at no cost and royalty free



- Optimized for single core vectorization and cache utilization
- Automatic parallelism for multicore and many-core
- Scales from cores to clusters
- Great performance with minimal effort



# Intel® MKL Optimized Mathematical Building Blocks

### Linear Algebra

- BLAS
- LAPACK and ScaLAPACK
- Sparse BLAS
- PARDISO\* Direct Sparse Solver
- Parallel Direct Cluster Sparse Solver
- Iterative sparse solvers

#### **Fast Fourier Transforms**

- Multidimensional
- FFTW\* interfaces
- Cluster FFT

#### **Vector Math**

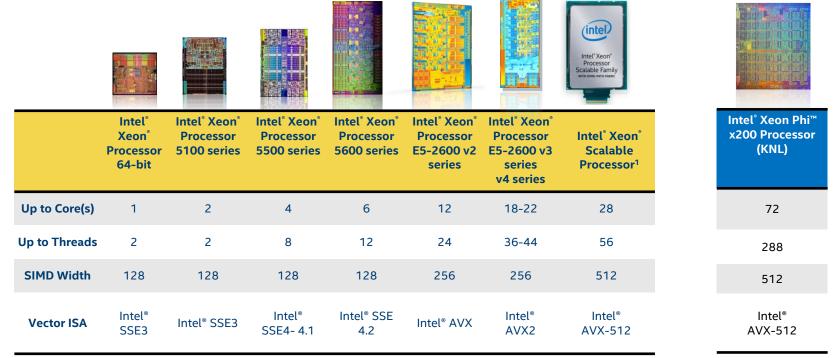
- Trigonometric
- Hyperbolic
- Exponential
- Log
- Power
- Root
- Vector RNGs

### **Deep Neural Networks**

- Convolution
- Pooling
- Normalization
- ReLU
- Inner Product

### **Summary Statistics**

- Kurtosis
- Central moments
- · Variation coefficient
- Order statistics and quantiles
- Min/max
- · Variance-covariance
- Robust estimators


#### **And More**

- Splines
- Interpolation
- Trust Region
- Fast Poisson Solver



## Automatic Dispatching to Tuned ISA-specific Code Paths

## More cores → More Threads → Wider vectors



 $<sup>{\</sup>bf 1.\,Product\,specification\,for\,launched\,and\,shipped\,products\,available\,on\,ark.intel.com.}$ 



## Performance Benefits for the latest Intel Architectures

## DGEMM, SGEMM Optimized by Intel® Math Kernel Library for Intel® Xeon® Platinum Processor (formerly codenamed Skylake Server)



Configuration: intel® Xeon® Platinum 6180, 2x28 cores, 2.5GHz, 38.5MB.L3 cache, 376GB RAM, OS Ubumu 16,04 LTS; Intel® Math Kernel Library (Intel® MKL) 2016. Software and workloads used in performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.Source: Intel Corporation. Optimization Makes intelligence and product are intelligence to the same degree for non-intel microprocessors for optimizations that are not unique to intel microprocessors. These optimizations include SSC2, SSC3, and SSSC3 instruction sets and other optimizations in the does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors on manufactured by Intel. Microprocessors dependent optimizations in this product are intended for use with intel microprocessors in specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information reservation estimation sets overed by this notice. Notice revision #20110804.



## Intel® MKL BLAS (Basic Linear Algebra Subprograms)

| De-facto Standard APIs since the 1980s    |                                                                                                                                            |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 100s of Basic Linear<br>Algebra Functions | Level 1 – vector vector operations, $O(N)$<br>Level 2 – matrix vector operations, $O(N^2)$<br>Level 3 – matrix matrix operations, $O(N^3)$ |  |
| Precisions Available                      | Real – Single and Double<br>Complex - Single and Double                                                                                    |  |
| BLAS-like Extensions                      | Direct Call, Batched, Packed and Compact                                                                                                   |  |
| Reference<br>Implementation               | http://netlib.org/blas/                                                                                                                    |  |



# Intel® MKL LAPACK (Linear Algebra PACKage)

## De-facto Standard APIs since the 1990s

1000s of Linear Algebra Functions

Matrix factorizations - LU, Cholesky, QR

Solving systems of linear equations

Condition number estimates

Symmetric and non-symmetric eigenvalue problems

Singular value decomposition

and many more ...

**Precisions Available** 

Real - Single and Double,

Complex - Single and Double

Reference Implementation

http://netlib.org/lapack/

# Intel® MKL Fast Fourier Transforms (FFTs)

| FFTW Interfaces support | C, C++ and FORTRAN source code wrappers provided for FFTW2 and FFTW3. FFTW3 wrappers are already built into the library |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Cluster FFT             | Perform Fast Fourier Transforms on a cluster                                                                            |
|                         | Interface similar to DFTI                                                                                               |
|                         | Multiple MPIs supported                                                                                                 |
| Parallelization         | Thread safe with automatic thread selection                                                                             |
| Storage Formats         | Multiple storage formats such as CCS, PACK and Perm supported                                                           |
| Batch support           | Perform multiple transforms in a single call                                                                            |
| Additional<br>Features  | Perform FFTs on partial images                                                                                          |
|                         | Padding added for better performance                                                                                    |
|                         | Transform combined with transposition                                                                                   |
|                         | mixed-language usage supported                                                                                          |



# Intel® MKL DNN (Deep Neural Network) Functions

| Highly optimized basic building blocks for DNNs |                                                                                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Use cases                                       | Inference and training Image recognition, semantic segmentation, object detection                     |
| Functions                                       | Convolution, Inner Product Activation, Normalization, Pooling, Sum, Split/Concat, Data transformation |
| Applications                                    | Supported in Tensorflow, MXNet, IntelCaffe and more                                                   |
| Open source version                             | https://github.com/01org/mkl-dnn                                                                      |



## Intel® MKL Vector Math

| Example:                  | $y(i) = e^{x(i)} \text{ for } i = 1 \text{ to } n$                                                                                                                                                               |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Broad Function<br>Support | Basic Operations – add, sub, mult, div, sqrt Trigonometric– sin, cos, tan, asin, acos, atan Exponential – exp,, pow, log, log10, log2, Hyperbolic – sinh, cosh, tanh Rounding – ceil, floor, round And many more |
| Precisions Available      | Real – Single and Double<br>Complex - Single and Double                                                                                                                                                          |
| Accuracy Modes            | High - almost correctly rounded<br>Low - last 2 bits in error<br>Enhanced Performance - 1/2 the bits correct                                                                                                     |

## Intel® MKL Vector Statistics

| Random Nu         | mber   |
|-------------------|--------|
| <b>Generators</b> | (RNGs) |

Pseudorandom, quasi-random and non-deterministic random number generators with continuous and discrete distribution

## **Summary Statistics**

Parallelized algorithms to compute basic statistical estimates for single and double precision multidimensional datasets

# Convolution and Correlation

Linear convolution and correlation transforms for single and double precision real and complex data

# Intel<sup>®</sup> MKL Sparse Solvers

| PARDISO - Parallel<br>Direct Sparse<br>Solver    | Factor and solve $Ax = b$ using a parallel shared memory $LU$ , $LDL$ , or $LL^T$ factorization Supports a wide variety of matrix types including real, complex, symmetric, indefinite, Includes out-of-core support for very large matrix sizes |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parallel Direct<br>Sparse Solver<br>for Clusters | Factor and solve $Ax = b$ using a parallel distributed memory $LU$ , $LDL$ , or $LL^T$ factorization Supports a wide variety of matrix types (real, complex, symmetric, indefinite, ) Supports A stored in 3-array CSR3 or BCSR3 formats         |
| DSS – Simplified<br>PARDISO Interface            | An alternative, simplified interface to PARDISO                                                                                                                                                                                                  |
| ISS – Iterative<br>Sparse Solvers                | Conjugate Gradient (CG) solver for symmetric positive definite systems Generalized Minimal Residual (GMRes) for non-symmetric indefinite systems Rely on Reverse Communication Interface (RCI) for matrix vector multiply                        |



# Some other Intel® MKL Components

| Sparse BLAS                       | NIST-like and inspector execute interfaces                                                                                                       |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Fitting                      | 1D linear, quadratic, cubic, step-wise and user-defined splines, spline-based interpolation and extrapolation                                    |
| Partial Differential<br>Equations | Helmholtz, Poisson, and Laplace equations                                                                                                        |
| Optimization                      | Trust-region solvers for nonlinear least square problems with and without constraints                                                            |
| Service Functions                 | Threading controls (MKL_NUM_THREADS, for example) Memory management (mkl_allocate, for example) Numerical reproducibility (MKL_CBWR for example) |



# Compiling & Linking with Intel® MKL

- Intel® MKL is supported with gcc
  - Include "mkl.h"
- On Intel® systems, with icc & ifort, use the –mkl switch (for compiling and linking)
  - -mkl=sequential for sequential function execution in a parallel (or serial) program
  - -mkl=parallel for threaded Intel® MKL in a parallel (or serial) program
  - -mkl=cluster for Scalapack for example
- On Theta similar principles apply within the PrgEnv-intel environment
  - The Cray cc, CC, or ftn wrappers accept –mkl
    - Can be as simple as: ftn –mkl code.f
  - For Scalapack use the Intel® MKL Link Line Advisor for guidance



# Compiling & Linking with Intel® MKL

Intel® Math Kernel Library (Intel® MKL) Link Line Advisor v4.7 Reset Select Intel® product: Intel(R) MKL 2018.0 Select OS: Linux\* Select usage model of Intel® Xeon None • Phi™ Coprocessor: Select compiler: Intel(R) Fortran Select architecture: Intel(R) 64 Select dynamic or static linking: Dvnamic • Select interface layer: 64-bit integer Select threading laver: OpenMP threading ▼ Select OpenMP library: Intel(R) (libiomp5) ▼ Select cluster library: Cluster PARDISO (BLACS required) ✓ CDFT (BLACS required) Scalapack (Blacs required) BLACS Select MPI library: Intel(R) MPI ▼ Select the Fortran 95 interfaces: ■ BLAS95 ✓ LAPACK95 Link with Intel® MKL libraries explicitly:

# Compiling & Linking with Intel® MKL

#### Use this link line:

```
${MKLROOT}/lib/intel64/libmkl_blas95_ilp64.a
${MKLROOT}/lib/intel64/libmkl_lapack95_ilp64.a -L${MKLROOT}/lib/intel64 -
lmkl_cdft_core -lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -
lmkl_blacs_intelmpi_ilp64 -liomp5 -lpthread -lm -ldl
```

#### Compiler options:

-i8 -I\${MKLROOT}/include/intel64/ilp64 -I\${MKLROOT}/include



# Memory related considerations

- Use mkl\_malloc and mkl\_free for allocating and freeing aligned memory
- For Apps that require high memory BW, allocate memory in MCDRAM
  - numactl
  - Install memkind library
- More details can be found in the developer guide for Intel® MKL

## Intel® MKL Resources

| Intel® MKL Website             | https://software.intel.com/en-us/intel-mkl                            |
|--------------------------------|-----------------------------------------------------------------------|
| Intel® MKL Forum               | https://software.intel.com/en-us/forums/intel-math-kernel-library     |
| Intel® MKL<br>Benchmarks       | https://software.intel.com/en-us/intel-mkl/benchmarks#                |
| Intel®MKL Link<br>Line Advisor | http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/ |

# Intel® MKL Summary

Boosts application performance with minimal effort

feature set is robust and growing

provides scaling from the core, to multicore, to manycore, and to clusters

automatic dispatching matches the executed code to the underlying processor

future processor optimizations included well before processors ship

Showcases the world's fastest supercomputers<sup>1</sup>

Intel® Distribution for LINPACK\* Benchmark

Intel® Optimized High Performance Conjugate Gradient Benchmark

1http://www.top500.org

# Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

#### **Optimization Notice**

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

