INTEL" MATH KERNEL LIBRARY FDR DEEP

Deep Learning Software Stack for Intel processors

= Microsoft

CNTK 1 %Ol’ch Deep learning and Al ecosystem includes edge and datacenter applications.

UPENVINUTM TOUI_KI Chamer Caffe * Open source frameworks (Tensorflow*, MXNet*, CNTK*, PaddlePaddle*)

* Intel deep learning products (Neon™ framework, BigDL, OpenVINO™

Ig * In-house user applications

P Y T b R C H Intel MKL and Intel MKL-DNN optimize deep learning applications for Intel
d / U) C ﬂ: 5 processors:
mlc 2 Cafte

Intel MKL-DNN is an open source performance library for deep learning
applications (available at https://github.com/intel/mkl-dnn)

» Fast open source implementations for wide range of DNN functions
» Early access to new and experimental functionality
* Open for community contributions

* through the collaboration with framework maintainers to upstream

* through Intel optimized forks (Caffe*, Torch*, Theano*
mxnet Tensor gh el op (Cafter Tor >

Intel MKL is a proprietary performance library for wide range of math and

science applications

changes (Tensorflow*, MXNet*, PaddlePaddle*, CNTK*)
* by partnering to enable proprietary solutions
e m
Distribution: Intel Registration Center, package repositories (apt, yum, conda,

Intel Processors pip)

*Other names and brands may be claimed as the property of others intel" l >

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://github.com/intel/mkl-dnn

Examples of speedups on Intel® Xeon® Scalable Processors

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANGE

TRAINING THROUGHPUT INFERENCE THROUGHPUT

System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28
Socket(s): 2 NUMA node(s): 2 CPU family: 6

Model: 85 Model name: Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz Stepping: 4

HyperThreading: ON Turbo: ON Memory 376GB (12 x
32GB) 24 slots, 12 occupied 2666 MHz Disks Intel
RS3WCO80 x 3 (800GB, 1.6TB, 6TB) BIOS

CCEFE9A 080 AA AT ANAA AT1IIATTAIIE AC Cantnar

Intel-optimized TensorFlow ResNet50 training Intel-optimized TensorFlow InceptionV3 inference PERFO RMANCE GAI Ns REPURTED BY UTH ERs

performance compared to throughput compared to e
default TensorFlow for CPU Default TensorFlow for CPU Intel TensorFlow Scalablllty Results Presented by ‘ Matt Wood @
Google @TF Summit March 30, ‘18

Follow v

Inference and training throughput uses FP32 instructions

oD New optimized TensorFlow build for EC2 C5
(intel = o b
. . MKL-DNN integratior instances (7.4x training performance
Unoptimized TensorFlow may not s Hor improvement over stock TF 1.6) - now
. [r—— H +#+ 1
exploit the best performance from xeon: | [Lese otel® multnode CPU scaling(Taining Resnetso) avsilable an te sAYNE Deep Leafiing AM)
e PEm— Ubuntu, and Amazon Linux:
Intel CPU |
nte S. ResNets0 3x inference speedup on . Throughput (Images/sec)
Broadwell and Skylake
94% efficiency when training 3 30
with 64 nodes cluster §
ResNet-50 ResNet-152 VGG16 InceptionV3
‘if\(PRI S ® Stock Tensorflow 1.6 binaries @ TensorFlow 1.6 on AWS Deep Learning AMI
Faster training with optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 inst...
"By making use of [Intel's] open source library [M KL-DNN], we were able to The AWS Deep Learning AMIs come with latest pip packages of popular deep
achieve a 3x performance benefit and great scaling efficiency on training. This is O PR R e A A
an example of how important it is to have strong collaborations with companies —
like Intel."
Source: TENSORFLOW OPTIMIZED FOR INTEL® XEON™ L | PR

*Other names and brands may be claimed as the property of others intel" l 3

http://aidc.gallery.video/detail/videos/day-2:-sessions/video/5790624640001/tensorflow-optimized-for-intel®-xeon™

TensorFlow with Intel MKL/MKL-DNN

Use Intel Distribution for Python*

= Uses Intel MKL for many NumPy operations thus supports MKL_VERBOSE="1

= Available via Conda, or YUM and APT package managers

Use pre-built Tensorflow* wheels or build TensorFlow* with “bazel build --
config=mkl"

= Building from source required for integration with Intel Vtune™ Amplifier

= Follow the CPU optimization advices including setting affinity and # of intra- and inter- ops threads

= More Intel MKL-DNN-related optimizations are slated for the next version: Use the latest TensorFlow*
master if possible

*Other names and brands may be claimed as the property of others intel" l 4

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-yum-repo
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu

Intel distribution of Caffe

A fork of BVLC Caffe* maintained by Intel

The best-performing CPU framework for CNNs

Supports low-precision inference on Intel Xeon Scalable Processors (formerly
known as Skylake)

*Other names and brands may be claimed as the property of others intel" l 5

https://github.com/intel/caffe
https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training

Intel MKL-DNN overview

» Training (float32) and inference (float32, int8) . (De-)Convolution Compute

= CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU) * Inner Product intensive
* Vanilla RNN, LSTM, GRU operations

» Optimized for Intel processors

Portability: * Pooling AVG/MAX Memory

. . . « Batch Normalization bandwidth

Compilers: Intel C++ compiler/Clang/GCC/MSVC . Local Response limited
= OSes: Linux*, Windows*, Mac* Normalization operations
» Threading: OpenMP*, TBB * Activations
(ReLU, Tanh, Softmax, ...)
Frameworks that use Intel MKL-DNN: « Sum
IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle* Reorder Data
 Concatenation movement

CNTK*, OpenVino, DeepBench*

*Other names and brands may be claimed as the property of others intel" l 6

KEY PERFORMANCE CONSIDERATIONS ON
INTEL PROGESSORS

Memory layouts

Most popular memory layouts for image
recognition are nhwc and nchw

= Challenging for Intel processors either for vectorization or for
memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

= Example: nhwc with channels blocked by 16 — nChw16c

= Convolutions define which layouts are to be used by other
primitives

= Optimized frameworks track memory layouts and perform nChw16c
reorders only when necessary

Fusing computations

Conv

On Intel processors a high % of time is Conv+Sum+Rel U
typically spent in BW-limited ops

" ~40% of ResNet-50, even higher for The FWKs are expected to be able to
inference detect fusion opportunities

The solution is to fuse BW-limited ops

with convolutions or one with another o _ _
to reduce the # of memory accesses Major impact on implementation

= Conv+RelLU+Sum, BatchNorm+ReLU, etc " Allthe impls. must be made aware of the
fusion to get max performance

» |ntelCaffe already supports this

= Done for inference, WIP for training

* |ntel MKL-DNN team is looking for
scalable solutions to this problem

Low-precision inference

Proven only for certain CNNs EP32 model F32 model

by IntelCaffe at the moment

A trained float32 model

quantized to int8

Some operations still run in FP32 FP32 INTS s

float32 to preserve accuracy

Intel MKL-DNN integration levels

Example: inference flow

~Original code

However, topology level performance . _~Naive integration

will depend on Intel MKL-DNN Reord c l Reord R (SN
* Naive integration will have reorder Layout propagation
[]
Layerfusnon ~

* Bestintegration will fuse memory
intensive ones or with each other. \ integrate BN (offline) Y

i@l 11

Intel MKL-DNN is designed for best
performance.

« Better integration will propagate
layouts to reduce reorders.

dduewaouad 191199

INTEL MKL-DNN LIBRARY PHILOSOPHY

Intel MKL-DNN concepts

Descriptor: a structure describing memory and computation properties

Primitive: a handle to a particular compute operation

= Examples: Convolution, ReLU, Batch Normalization, etc.
= Three key operations on primitives: create, execute and destroy

= Separate create and destroy steps help amortize setup costs (memory allocation, code generation, etc.)
across multiple calls to execute

Memory: a handle to data

Stream: a handle to an execution context

Engine: a handle to an execution device

Layout propagation: the steps to create a primitive

1. Create memory descriptors
= These describe the shapes and memory layouts of the tensors the primitive will compute on

= Use the layout ‘any’ as much as possible for every input/output/weights if supported (e.g.
convolution or RNN). Otherwise, use the same layout as the previous layer output.

2. Create primitive descriptor and primitive
3. Create needed input reorders

= Query the primitive for the input/output/weight layout it expects

= Create the needed memory buffers and reorder primitives to accordingly reorder the data to the
appropriate layout

4. Enqueue primitives and reorders in the stream queue for execution

Primitive attributes

Fusing layers through post-ops
1. Create a post_ops structure
2. Append the layers to the post-ops structure (currently supports sum and elementwise operations)

3. Pass the post-op structure to the primitive descriptor creation through attributes

Quantized models support through attributes (more details)

1. Setthe scaling factors and rounding mode in an attribute structure

2. Pass the attribute structure to the primitive descriptor creation

https://intel.github.io/mkl-dnn/ex_int8_simplenet.html

KEY TAKEAWAYS

Key Takeaways

1. Application developers already benefit of Intel MKL-DNN through
integration in popular frameworks

2. Framework developers can get better performance on Intel processors by
integrating Intel MKL-DNN

3. There are different levels of integration, and depending on the level you will
get different performance

4. Profiling can help you identify performance gaps due to
= [ntegration not fully enabling Intel MKL-DNN potential (more on that in the hands-on session).

= Performance sensitive function not enabled with Intel MKL-DNN (make requests on Github*)

= Performance issue in Intel MKL-DNN (raise the issue on Github*)

https://github.com/intel/mkl-dnn/issues
https://github.com/intel/mkl-dnn/issues)

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, Atom, OpenVINO, neon, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

BACKUP

Primitives and their implementations

Separate implementations for GEMM
JIT Winograd SSE4.2, AVX2 and AVX512F+ (Intel MKL: all
Convolutions fp32 (AVX512 ISA, JIT: Reference
SKX/KNL only) 1x1 JIT non-1x1 non-1x1 non-1x1 AVX512F+
JWFWD JITBWD D JITBWD W only)
Intel MKL - - :
(Sl T\ R JIT (AVX512BW) G(\I/EVI\I/IPI\)/I Reference Fgg}:ﬂ'rgeli gggvhlgglé'i;fc_) S glﬁ)c.port diff.

| et (e JT Intel MKL oy = Conv 1x1 - special vectorization and
nnerProduct fp (AVX512F+ only) GEMM eference blocking
BatchNorm fp32 JIT (any ISA) Reference - gogv non-1x1 — better support for 3x3,
X9, etc
LRN fp32 JIT (any ISA) Reference o
» GEMM - support for dilation (hard to

SR P WA JIT (any ISA) J;Tm(,”ICShA")" Reference implement in direct JIT)

= Winograd is only for 3x3; only the (special)
JIT (any ISA) GEMM part is JIT-ed

Reorders JIT (AVX2 Reference

PROFILING

Integration with Intel VTune Amplifier

F u l l a p p l i Cat i O n a n alys i S Grouping: Frame Domain / Frame [Function / Call Stack
Frame Domain / Frame / Function / Call Stack A
INST RETIRED ANY ‘ CPU CLK UNHALTED.THREAD ‘ CPU CLK UNHALTED.REF TSC |
R t t . » _INTERNAL_25 src_kmp_hi 0 0 0
e p O r y p e S . » apic_timer_interrupt 0 0 0
390,000,585 144,000,216 168,000,252
» mkidnn::impl:cpu::_jit_avx512_comm 2,000,003 0 0
H H p FW_id011_Convolution_res2b_branch2c 1,290,001,935 1,220,001,830 1,342,002,013
. - — p— -
C P U u tl llzat I O n » FW_id012_Split_res2b_res2b_relu_0_sp
v FW_id013_Pooling_res2b_res2b_relu_0 54,000,081 458,000,687 450,000,675
vl 54,000,081 458,000,687 450,000,675
] 1 1 11 » kmp join barrier 0 0 0
Parallellzatlon effICIenCy » INTERNAL 25 src_kmp_b; 0 8,000,012 0
» jit_uni_pool kemel 32 36,000,054 442,000,663 446,000,669
. » ktime get 0 0 0
u M emo ry traff' C » mkldnn::impl::cpu:jit_uni_pooling_fwc 18,000,027 8,000,012 4,000,006
A R = L ——
Profiling of run-time generated code | O Veder Tl 0 .
g g OMP Worker Thread #2 (TID.... Frame
must be enabled at compile time P e s L
p & FP_ARITH_INST RETIRED.5... || Frame Domain: FW_id0
e hAAAAAALL Ll ol dd doa d da da b amod bk sdosose i Frame Duration Type: Fa
5| NST_RETIRED.ANY AAARAL b A b b oh bk b hk A omkok ke a JFrame Rate: 144,605

$ # building Intel MKL-DNN using cmake
$ cmake -DVTUNEROOT=/opt/intel/vtune_amplifier_ 2018 .. && make install

$ # an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/1lib64 -1ljitprofiling" bazel build

i@l 23

Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool: Outputincludes:

» The marker, state and primitive kind
= Similar to Intel MKL verbose

Implementation details (e.g. jit:avx2)

= Enabled via environment variable or
function call

Primitive parameters

Creation or execution time (in ms)

= Qutputisin CSV format Example below (details here)

$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn verbose"

mkldnn_verbose,exec,reorder, sundef,in:f32 oihw out:f32 Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise, ,forward training,fdata:nChw8c,alg:eltwise relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn, ,forward training,fdata:nChw8c,alg:1lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder, sundef,in:f32 nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805

passed

i@l 24

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

Performance gaps causes

Functional gaps: your hotspot is a commonly/widely used primitive and is not
enabled in Intel MKL-DNN

Integration gaps: your hotspot uses Intel MKL-DNN but runs much faster in a
standalone benchmark (more details in the hands-on session)

Intel MKL-DNN performance issue: your hotspot uses Intel MKL-DNN but is
very slow given its parameters

In any of these cases, feel free to contact the Intel MKL-DNN team through the
Github* page issues section.

*Other names and brands may be claimed as the property of others intel" l 25

https://github.com/intel/mkl-dnn/issues

