
Intel® Vtune™
Amplifier and Intel®
Advisor - hands-on
labs
Carlos Rosales-Fernandez

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Introduction

In this hands-on session you will use a simple n-body code to explore the
capabilities of Intel® Advisor and Intel® VTune™ Amplifier.

As you progress through the exercises you will investigate the code performance,
and use different analysis modes to identify performance issues.

You will not have to modify code directly, all code versions are provided.

The code used is C++, but if you use Fortran in your own work the steps would
be exactly the same.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Implementation Details

NOTE: This additional info is provided for your own reference, but it is not necessary to run the
exercises.

For each particle the position, the velocity, the acceleration and the mass is stored in a C-like structure and for
an N particles case, an array of this structure is allocated. This is the simple data-structure which is very close to
the physical representation of a particle mass. The file Particle.hpp contains the implementation of such data-
structure.

For each particle indexed by i, the acceleration is computed ai = Gmj(ri-rj)/|ri-rj|^3, which value is used to update
the velocity and position using the Euler integration scheme. Furthermore the total energy of the particles' group
is computed. The file GSimulation.cpp contains the implementation of the algorithm.

The demo consists of several directories, which correspond to the different optimization steps to take to enabling
vectorization and OpenMP multi-threading of the code. Each directory has its own makefile to compile and run
the test case. To compiler the code type make and the run the simulation type make run.

As benchmark, the simulation starts with 2000 particles and 500 integration steps. One can change the default
giving the number of particles and the number of integration steps using the command line argument: ./nbody.x <
of particles> < # of integration>

Try to change the number of particles and observe how the performance changes.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Getting Started
https://github.com/fbaru-dev/nbody-demo

This is an example code based on a simple N-body simulation of a distribution of
point masses placed at location r_1,...,r_N with masses m_1,...,m_N. The
position of the particles after a specified time is computed using a finite difference
method.

To get started, copy the files to a directory of your choosing in the /projects area:

 $ tar xzvf /projects/SDL_Workshop/crosales/SDL_2018/
nbody.tar.gz

Then change into the nbody directory:

 $ cd ./nbody

Intel® advisor

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Collect Roofline Data

Start by building version 2 of the code:

 $ cd ver2
 $ make

You can check that the make file contains both appropriate ISA flags for KNL and debug flags.

Now collect both survey and trip counts data using the provided roofline.run script. You should look
inside the script to make sure you understand the configuration and commands used:

 $ qsub ./roofline.run

Once the run is complete you will have a new directory, adv_res, which contains the performance data.
Make sure your collection has completed by checking that the job is done:

 $ qstat -u <username>

[Optional] Generate a portable snapshot if you wish to look at the results in your own machine:
 $ advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \

 --cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody_v2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Analyze Roofline Data

You can choose to do this step from a login node or from your own system if it has Intel® Advisor
installed and you have generated a snapshot. From a login node simply open the collected data
in the GUI:

 $ source /opt/intel/advisor/advixe-vars.sh
 $ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance - look at the
summary, the roofline graph, and the Survey report.

Try to answer the following questions:

§  What is the execution time?

§  What is the vectorization efficiency?

§  Are there expensive operations inhibiting performance? (See the Code Analytics)

§  From the Roofline representation, can you tell what should be the analysis step?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Collect Memory Access Patterns

Using the current nbody build (ver2), submit the provided script, map.run, to perform a
Memory Access Patterns analysis. The commands in this script are:

 $ qsub ./map.run

Note: you will have to have completed the Survey and Trip Counts analysis before
this step
As in the previous case, your output will be stored in the adv_res project directory. Make
sure your collection has completed by checking that the job is done:

 $ qstat -u <username>

[Optional] Generate a portable snapshot if you wish to look at the results in your own machine:

 $ advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \

 --cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody_naive

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Analyze Memory Access Patterns

You can choose to do this step from a login node or form your own system if it has
Intel® Advisor installed. From a login node simply open the collected data in the GUI:

 $ source /opt/intel/advisor/advixe-vars.sh

 $ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the Refinement Reports tab in the GUI.

Try to answer the following questions:

§  What is the stride distribution?

§  What is the recommendation given by Intel® Advisor?

§  Is there an alternative to the current data layout that may help?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Changing the Code

The MAP analysis should have pointed you to a problem with the data structures in
the code. Let’ snow build version 3, which changes the default Array of Sructures
implementation to Structure of Arrays in the hope of improving performance.
You should still be inside the version 2 directory, so move to the version 3 directory
and build the new binary :

 $ cd ../ver3
 $ make

Now collect roofline data (survey and tripcounts) again, since you have a new binary:
 $ qsub roofline.run

As with the previous version, once the collection completes you will see a new
directory called adv_res. Make sure execution is actually complete before moving
forward.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Analyze Roofline Data for Version 3

You can choose to do this step from a login node or from your own system if it has
Intel® Advisor installed and you have generated a snapshot. From a login node simply
open the collected data in the GUI:

 $ source /opt/intel/advisor/advixe-vars.sh
 $ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the summary, the roofline graph, and the Survey report.

Did the new Structure of Arrays implementation improve performance?
§  What is the vectorization efficiency?
§  What is the main performance issue in the current version?

§  From the advisor output, can you tell what should be the analysis step?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Collect Dependencies Data

Well, that was a surprise, wasn’t it?

Looks like we have introduced data dependencies of some type that are
preventing vectorization (or at least the compiler thinks so)

Let’s run a dependencies analysis to see if those dependencies are true or just
assumed:

 $ qsub deps.run

As with the previous version, once the collection completes you will see a new
directory called adv_res. Make sure execution is actually complete before
moving forward.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Analyze Dependencies

You can choose to do this step from a login node or form your own system if it has
Intel® Advisor installed. From a login node simply open the collected data in the GUI:

 $ source /opt/intel/advisor/advixe-vars.sh

 $ advixe-gui ./adv_res

Follow the steps we used in the presentation to investigate the code performance -
look at the Refinement Reports tab in the GUI.

Try to answer the following questions:

§  Are there any true dependencies?

§  What are the dependency types?

§  Can you think of a way to resolve them? (you can see the fixes in version 4)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Performance of the nbody Optimized Version

At this point you should be familiar with the process of using Intel® Advisor.

If you are curious about the performance once the dependencies are fixed, build
version 4 and collect roofline data (survey and tripcounts) again.

If you compare this output to the original version 2 data you should observe the
following traits:

§  Higher vectorization efficiency

§  Better looking roofline representation

§  Significant performance improvements overall

Intel® Vtune™
Amplifier’s application
performance snapshot

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

A Simple APS Report

To run this simple exercise simply go back to the version 2 directory for the nbody test
and submit the aps.run job script:

 $ qsub ./aps.run
Feel free to inspect the submission script, it simply sets up the environment for aps
and uses aprun to launch the data collection.
Once the job has completed (make sure it is not active in the queue) you can process
the data collected in the new aps_res directory:

§  Setup your environment on the login node to be able to use aps:
 $ source /opt/intel/vtune_amplifier/apsvars.sh

§  Produce text and html reports with the following command:

 $ aps -report=./aps_res

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Analysis of the APS Report

Use either HTML or text output from APS to answer the following questions:

§  What is the main performance bottleneck in this code?

§  What percentage of floating point operations a packed instructions (vectorized
instructions)?

§  What would be your next step in order to investigate the performance issue?

Note: While APS offers possible explanations for the low CPU utilization and high
proportion of back-end stalls, it does not pinpoint the cause. Instead, it points us
at VTune™ Amplifier to look into them.

Intel® Vtune™ Amplifier

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Looking Into System Level Performance

In this exercise you will analyze the performance of a new nbody implementation
(version 7), which is an improvement over the previous versions we have considered.

Version 7 uses OpenMP* threads to parallelize the code and get rid of the extremely
low CPU utilization reported by APS.

To get started move into the ver7 directory:

 $ cd ../ver7

And compile this version of the code to get a new nbody.x executable:

 $ make

Feel free to open the source code and explore the changes, although that is not
strictly necessary for this exercise.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Analysis of OpenMP* Version (ver7)

For the next step you will submit a job that analyzes the execution of nbody.x using 64 threads and a much
larger workload than the default.

This is to avoid a trivial bottleneck due to synchronization issues if the workload is too small.

You can inspect the submission script vtune.run for details. To run simply execute the usual command:

 $ qsub ./vtune.run

This will perform and hpc-performance analysis, which contains data regarding CPU microarchitecture,
memory subsystem, and OpenMP* synchronization.

Results will be saved to the vtune_hpc directory. Make sure your job is no longer in the queue before you try to
open the results!

[Optional] Archive the data and copy it over to your own system (requires a working installation of VTune™
Amplifier):

 $ amplxe-cl -r ./vtune_hpc -archive
 $ cp ./*.cpp ./*.hpp ./vtune_hpc
 $ zip -r ./vtune_hpc.zip ./vtune_hpc

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Analysis of OpenMP* Version (ver7)

Setup the environment for VTune™ Amplifier on the login node:

 $ source /opt/intel/vtune_amplifier/amplxe-vars.sh

Open the result using the GUI :

 $ amplxe-gui ./vtune_hpc

Look first at the summary, then click on the top time consuming function. This will
take you to the bottom-up view, where you can review its characteristics.

Can you tell what the main bottleneck for this part of the code is from the
provided statistics (you may have to scroll to the right to see all the columns)?

Proceed to the next slide for some answers.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

CPU utilization is 24%, but this is
OK

§  We used only 64 out or 256
logical CPUs

§  The effective average usage is
actually 62 / 64 (or 97%)

Code is heavily back-End bound

§  80% of pipeline slots are stalled
§  No significant DRAM/MCDRAM

usage.

Click on the top time-consuming
function to se the bottom-up view
presented on the next slide.

Analysis of OpenMP* Version (ver7)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Analysis of OpenMP* Version (ver7)

Code is running reasonably well, but there is a significant number of L2 cache misses that are probably
causing the pipeline stalls.

Blocking for L2 would improve reuse and reduce this misses. This is implemented on version 8 of the
code (next).

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Analysis of OpenMP* Version (ver8)

You can verify what improvement can be achieved by blocking this code using version 8. To get started move
into the ver8 directory:

 $ cd ../ver8

You can inspect the submission script vtune.run for details, it is exactly the same you just used for version 7. To
run simply execute the usual command:

 $ qsub ./vtune.run

Results will be saved to the vtune_hpc directory. Make sure your job is no longer in the queue before you try to
open the results!

[Optional] Archive the data and copy it over to your own system (requires a working installation of VTune™
Amplifier):

 $ amplxe-cl -r ./vtune_hpc -archive
 $ cp ./*.cpp ./*.hpp ./vtune_hpc
 $ zip -r ./vtune_hpc.zip ./vtune_hpc

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Analysis of OpenMP* Version (ver8)

Open the result using the GUI :

 $ amplxe-gui ./vtune_hpc

Look first at the summary, then click on the top time consuming function. This will
take you to the bottom-up view, where you can review its characteristics.

Answer the following questions:

§  What is the speedup of the code compared to the previous version?

§  Has the fraction of pipeline stalls gone down as expected?

§  Has the fraction of L2 cache misses gone down as expected?

Proceed to the next slide for some answers.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

The new codes should
speedup by a factor 3x-4x

Code is now much less
back-end bound

§  40% of pipeline slots are
stalled

§  Still no significant DRAM/
MCDRAM usage.

Click on the top time-
consuming function to se the
bottom-up view presented on
the next slide.

Analysis of OpenMP* Version (ver8)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Analysis of OpenMP* Version (ver8)

L2 Miss Bound column has gone down by a factor 2-3X, while Hit bound has
increased by a similar factor.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

28

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and
workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in
the U.S. and other countries.

