
Performance Optimization I: Single Core/Node Vectorization, Memory - Overview and BG/Q

erhtjhtyhy

Hal Finkel

hfinkel@anl.gov

Leadership Computing Facility

ALCF Computational Performance Workshop – May 2, 2017

Optimizing for HPC

✔ Some trends in HPC architectures

✔ How you can optimize your code for these architectures (specifically

the IBM BG/Q (Mira) and the Intel Xeon Phi (Theta)

You want to know how
to make me compute quickly...

High-Level Optimization Science Problem

Choose Algorithms

Optimize Algorithms

Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

High-Level Optimization Science Problem

Choose Algorithms

Optimize Algorithms

Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

High-Level Optimization

Science Problem

Choose Algorithms
For the Target Architectures

Optimize Algorithms Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms

Trade-offs between:
● Basis functions
● Resolution
● Lagrangian vs. Eulerian representations
● Renormalization and regularization schemes
● Solver techniques
● Evolved vs computed degrees of freedom
● And more…

Cannot be made by a compiler!

Compiling
When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

✔ +mpiwrapper-xl.legacy

✔ +mpiwrapper-xl

✔ +mpiwrapper-bgclang.legacy

✔ +mpiwrapper-bgclang

✔ +mpiwrapper-gcc.legacy

✔ +mpiwrapper-gcc

(generally best performance)

(generally worst performance)

The “legacy” MPI gives the best
performance unless you're using

MPI_THREAD_MULTIPLE

bgclang has better C++ support than
xl and gcc, but has no Fortran support (yet)

Compiling
Basic optimization flags...

✔ -O3 – Generally aggressive optimizations (try this first: it is typically the best tested of all compiler

optimization levels)

✔ -g – Always include debugging symbols (really, always! - when your run crashes at scale after

running for hours, you want the core file to be useful)

✔ -qsmp=omp (xl) -fopenmp (bgclang and gcc) – Enable OpenMP (the pragmas will be ignored

without this)

✔ -qnostrict (xl) -ffast-math (bgclang and gcc) – Enable “fast” math optimizations (most people don't

need strict IEEE floating-point semantics). xl enables this by default at -O3 and above and you

need to pass -qstrict to turn it off.

If you don't use -O<n> to turn on some optimizations,
most of the previous material is irrelevant!

What programs do...

✔ Read data from memory

✔ Compute using that data

✔ Write results back to memory

✔ Communicate with other nodes and the outside world

How fast can you go...

The speed at which you can compute is bounded by:

 (the clock rate of the cores) x (the amount of parallelism you can exploit)

BG/Q: Fixed 1.66 GHz
KNL: 1.30 GHz

(dynamically scaled)

Kepler: 0.8 GHZ
Pascal: 1.30 GHz

Your hard work goes here...

There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/ Not a BG/Q node

Commodity HPC node with four sockets

Has nonuniform memory access (NUMA):
each core has DRAM to which it is closer

(running multiple MPI ranks per node, one per socket, is probably best)

There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

A BG/Q node

A BG/Q node has only one “socket” with one CPU

All memory is equally close:
No NUMA

(running one MPI rank per node works well)

A BG/Q Node has:
✔ 1 PowerPC A2Q CPU
✔ 16 GB DDR3 DRAM

There are 16 cores per node

Commodity HPC CPUs typically
have only 4 - 12 cores

(and the operating system does not
have a dedicated core)

Not a BG/Q core

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

There are 16 cores per node

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

Each BG/Q CPU has 16 cores you can use

The cores are connected by a
cross-bar interconnect

with an aggregate read bandwidth
of 409.6 GB/s

(write bandwidth is half that)

CNK, the lightweight operating system, runs on the 17th core!

There are two pipelines per core

Not a BG/Q core

PowerPC A2 Core:
In commodity HPC cores, instructions are

dispatched to many pipelines after
dynamic rearrangement (out of order).

Probably executes x86-64 (Intel/AMD)
instructions (including some set

of vector extensions).

Multiple choices for
some instruction types.

There are two pipelines per core PowerPC A2 Core:

Only one choice for
any instruction:

no ILP vs. vectorization tradeoffs!

Executes PowerPC instructions
(complying with the
POWER ISA v2.06)

plus QPX vector instructions

On the BG/Q, instruction dispatch feeds
only two pipelines in order

There are four hardware threads per core

Instructions from the four hardware threads
are dispatched round-robin

The four threads share essentially
all resources (except the register file)

The two pipelines can simultaneously start
two instructions, but they must come from

two different threads

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!

Vectorization: The Quad-Processing eXtension (QPX)

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

On commodity HPC
hardware, integer

operations can also be
vectorized, but not on

the BG/Q.

✔ On the BG/Q, only QPX vector instructions are supported!

✔ Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

✔ The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

Fused Multiply Add Instructions (FMA)
There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

qvfmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA1)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA3)×(QRC3)] + (QRB3)

qvfmsub:
QRT0 ← [(QRA0)×(QRC0)] - (QRB0)
QRT1 ← [(QRA1)×(QRC1)] - (QRB1)
QRT2 ← [(QRA2)×(QRC2)] - (QRB2)
QRT3 ← [(QRA3)×(QRC3)] - (QRB3)

qvfxxnpmadd:
 QRT0 ← - ([(QRA1)×(QRC1)] - (QRB0))
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)

 QRT2 ← - ([(QRA3)×(QRC3)] - (QRB2))
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

qvfxmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.

Putting it all together...

You can only achieve the peak FLOP
rate using FMAs

(usually true on commodity hardware too)

You must vectorize to achieve
The peak FLOP rate

(on future machines, this factor
will be even larger)

Note: this is an order of magnitude
(on future machines, it will be nearly

two orders of magnitude)

Remember you must use at least two
hardware threads (or processes)

or else you won't be able to
saturate the floating-point pipeline

in practice

Memory

DDR3 DRAM
(2 controllers)

Commodity HPC cores
often also have an
L3 cache; we don't.

However, they have an L2
cache that is only
hundreds of KB.

L2 cache
(16 slices)

16 MB in total

L1 cache and L1P internal buffer
(per core)

Types of parallelism

✔ Parallelism across nodes (using MPI, etc.)

✔ Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]

✔ Parallelism across cores within each socket

✔ Parallelism across pipelines within each core (i.e. instruction-level parallelism)

✔ Parallelism across vector lanes within each pipeline (i.e. SIMD)

✔ Using instructions that perform multiple operations simultaneously (e.g. FMA)

Hardware threads
tie in here too!

Computer Architecture

Traditional computers are built to:
● Move data
● Make decisions
● Compute polynomials (of relatively-low order)

Computer Architecture
$ cat /tmp/f1.c
double foo(double a0, ..., double x) {
 return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)));
}

t0 = fma(a4, x, a3)
t1 = fma(t0, x, a2)
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)
return t3

But floating-point is complicated,
so each operation cannot be completed

in one clock cycle. ~6 clock
cycles are needed.

Computer Architecture

t0 = fma(a4, x, a3)
Waiting…
Waiting…
Waiting…
Waiting…
Waiting...
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

But this is not good…

A lot of computer architecture revolves around this question:

How do we put useful work here?

Hardware Threads

t0 = fma(a4, x, a3) [thread 0]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

One way is to use hardware threads...

These can be OpenMP threads, pthreads,
or, on a CPU, different processes.

How many threads do we need?
How much latency do we need to hide?

Time Scales in Computing

Latency Numbers Every Programmer Should Know: https://gist.github.com/jboner/2841832

Latency Comparison Numbers

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD
Disk seek 10,000,000 ns 10,000 us 10 ms
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

The IBM BG/Q network is fast...

✔ Each A/B/C/D/E link bandwidth: 4 GB/s

✔ Bisection bandwidth (32 racks): 13.1 TB/s

✔ HW latency

✔ Best: 80 ns (nearest neighbor)

✔ Worst: 3 µs (96-rack 20 PF system, 31 hops)

✔ MPI latency (zero-length, nearest-neighbor): 2.2 µs

MPI does add overhead
which is generally minimal.

If you're sensitive to it, you can
use PAMI (or the SPI interface) directly

Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (int i = 0; i < n; ++i) {
 x = Input[i]
 t0 = fma(a4, x, a3)
 t1 = fma(t0, x, a2)
 t2 = fma(t1, x, a1)
 t3 = fma(t2, x, a0)
 Output[i] = t3
}

for (int i = 0; i < n; i += 2) {
 x = Input[i]
 y = Input[i+1]
 t0 = fma(a4, x, a3)
 u0 = fma(a4, y, a3)
 t1 = fma(t0, x, a2)
 u1 = fma(u0, y, a2)
 t2 = fma(t1, x, a1)
 u2 = fma(u1, y, a1)
 t3 = fma(t2, x, a0)
 u3 = fma(u2, y, a0)
 Output[i] = t3
 Output[i+1] = u3
}

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.

unroll by 2

Showing unroll by 2 so it fits on the slide,
you need to unroll by more to fully

hide FP or L1 latency

I hope these are in cache

Each pair is independent,
so no waiting in between

dispatches00

CPU Registers

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and from
FP pipeline) – you just don't have enough registers!

● x86_64 has 16 general-purpose registers (GPRs) – for
scalar integer data, pointers, etc. – and 16 floating-
point/vector registers

● With AVX-512 (e.g. with Knights Landing) there are 32
floating-point/vector registers

● AVX-512 also adds 8 operation mask registers
● PowerPC has 32 GPRs, 32 scalar floating-point registers

and 32 vector registers (modern cores with VSX
effectively combine these into 64 floating-point/vector
registers)

OOO Execution and Loops
● CPUs, including Intel's Knights Landing, use out-of-order

(OOO) execution to hide latency
● So to say that there are only 16 GPRs, for example, isn't the

whole story: there are just 16 GPRs that the compiler can
name for (int i = 0; i < n; ++i) {

 x = Input[i]
 t0 = fma(a4, x, a3)
 t1 = fma(t0, x, a2)
 t2 = fma(t1, x, a1)
 t3 = fma(t2, x, a0)
 Output[i] = t3
}

Processor can predict this will be true,
and can start issuing instructions
for multiple iterations at a time!

OOO Execution

● Importing to exploiting instruction-level parallelism (ILP)
– each core's multiple pipelines

● Combined with branch prediction, can effectively provide
a kind of dynamic loop unrolling

● Limited by the number of “rename buffer entries” (72 on
Knights Landing)

● Limited by the number of “reorder buffer entries” (72 on
Knights Landing)

● Mispredicted branches can lead to wasted work!

KNL Pipeline

2 FP/vector operations,
2 memory operations,

and 2 scalar integer operations
per cycle!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

Fetch/decode 16 bytes per cycle
(i.e. two instructions per cycle)

Careful: AVX-512 instructions can
be up to 12 bytes each if they have

non-compressed displacements!

Vectorization: The Quad-Processing eXtension (QPX)

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

32 QPX registers
(and 32 general purpose

registers) per thread

Arbitrary permutations
complete in

only two cycles.

The first vector element in each
vector register is the corresponding

scalar FP register.

FP arithmetic completes in six cycles
(and is fully pipelined).

Loads/stores execute in the
XU pipeline (same as all other

load/stores).

(This is for the IBM BG/Q, but the picture is fairly generic)

SIMD: What does it mean?

Autovectorization (or manual vectorization)

https://software.intel.com/en-us/articles/ticker-tape-part-2

Vectors Have Many Types

● A 512-bit vector can hold 8 double-precision numbers, 16
single-precision numbers, etc.

● Different assembly instructions have different assumptions
about the data types

● Except on the IBM BG/Q (where only FP is supported), both
integer and FP types are supported

The same vector register
can be divided in different

ways

(This diagram is from the IBM POWER ISA manual, showing the 128-bit VSX registers)

AOS vs. SOA

https://software.intel.com/en-us/articles/ticker-tape-part-2

struct Particles {
 float *x;
 float *y;
 float *z;
 float *w;
};

struct Particle {
 float x;
 float y;
 float z;
 float w;
};

struct Particle *Particles;

Easy to vectorize; uses lots of prefetching streams!

Better cache locality; fewer prefetcher streams
with scatter/gather support, maybe vectorization is not so bad!

MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear
algebra, FFTs, and more).

✔ MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for

NVIDIA GPUs

✔ For FFTs, there is often an optional FFTW-compatible interface.

ESSL

IBM provides ESSL: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

✔ ESSL is installed in /soft/libraries/essl/current

✔ You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)

ESSL is on IBM PowerPC systems
what MKL is on Intel systems.

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

✔ Memory

✔ Sending data between ranks on the same node often involves “unnecessary” copying (unless

using MPI-3 shared memory windows)

✔ Similarly, your application may need to manage “unnecessary” ghost regions

✔ MPI (and underlying components) have data structures that grow linearly (at best) with the total

number of ranks

✔ And Memory

✔ When threads can work together they can share resources instead of competing (cache,

memory bandwidth, etc.)

✔ Each process only gets a modest amount of memory per core

✔ And parallelism

✔ You'll likely see the best overall results from the scheme that exposes the most parallelism

Avoid central coordinators

Central Coordinator
to hand out work

Worker ... Worker

Worker
Worker

A scheme like this is highly unlikely to scale!

Load Balancing

● Keep "work units" being distributed between ranks as large as possible, but try hard to

keep everything load balanced.

● Think about load balancing early in your application design: it is the largest impediment to

scaling on large systems.

Rank 0 Rank 1

This is not good; rank 0 has much more work.

schedule(dynamic) can be your friend...

#pragma omp parallel for schedule(dynamic)
 for (i = 0; i < n; i++) {
 unknown_amount_of_work(i);
 }

https://software.intel.com/en-us/articles/load-balance-and-parallel-performance

You can use schedule(dynamic, <n>)
to distribute in chunks of size n.

#pragma omp simd
Starting with OpenMP 4.0, OpenMP also supports explicit vectorization...

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

char foo(char *A, int n) {
 int i;
 char x = 0;
#pragma omp simd reduction(+:x)
 for (i=0; i<n; i++){
 x = x + A[i];
 }
 return x;
}

Can combine with threading...

char foo(char *A, int n) {
 int i;
 char x = 0;
#pragma omp parallel for simd reduction(+:x)
 for (i=0; i<n; i++){
 x = x + A[i];
 }
 return x;
}

Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ? Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

