
Presenter: Kenneth Craft

Date: 05-02-2017

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

SIMD Directives

Explicit Vector Programming

Affinity

2

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Directives

Intel Confidential
3

Two main new directives to

 vectorize (“SIMDize”) loops

 create vector-version of a routine (“SIMD enabled function”)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD loops: syntax

#pragma omp simd [clauses]

for-loop

!$omp simd [clauses]

do-loops

[!$omp end simd]

Loop has to be in “Canonical loop form”

 as do/for worksharing

4

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD loop clauses

safelen (length)

 Maximum number of iterations that can run concurrently without breaking a dependence

– in practice, maximum vector length

linear (list[:linear-step])

 The variable value is in relationship with the iteration number

– xi = xorig + i * linear-step

aligned (list[:alignment])

 Specifies that the list items have a given alignment

 Default is alignment for the architecture

private (list)

lastprivate (list)

reduction (operator:list)

collapse (n)

5

Same as existing
clauses

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD functions: Syntax

#pragma omp declare simd [clauses]

[#pragma omp declare simd [clauses]]

function definition or declaration

!$omp declare simd (function-or-procedure-name) [clauses]

Instructs the compiler to

 generate a SIMD-enabled version(s) of a given function

 that a SIMD-enabled version of the function is available to use from a SIMD
loop

6

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD functions: clauses

simdlen(length)

 generate function to support a given vector length

uniform(argument-list)

 argument has a constant value between the iterations of a given loop

inbranch

 function always called from inside an if statement

notinbranch

 function never called from inside an if statement

linear(argument-list[:linear-step])

aligned(argument-list[:alignment])

7

Same as before

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD functions example

#pragma omp declare simd notinbranch

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp declare simd inbranch

float distsq(float x, float y) {

return (x - y) * (x - y);

}

#pragma omp parallel for simd

for (i=0; i<N; i++)

d[i] = min(distsq(a[i], b[i]), c[i]);

8

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD combined Constructs

Worksharing + SIMD

#pragma omp for simd [clauses]

!$omp do simd [clauses]

[!$omp end do simd]

 The iterations are first partitioned, and then the partitions are vectorized.

Parallel + worksharing + SIMD

#pragma omp parallel for simd [clause[[,] clause] ...]

!$omp parallel do simd [clause[[,] clause] ...]

!$omp end parallel do simd

9

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit SIMD (Vector) Programming

Vectorization is so important
 consider explicit vector programming

Modeled on OpenMP* for threading (explicit parallel programming)

• Enables reliable vectorization of complex loops that the compiler can’t
auto-vectorize

• E.g. outer loops

• Directives are commands to the compiler, not hints

• E.g. #pragma omp simd or !$OMP SIMD

• Programmer is responsible for correctness (like OpenMP threading)

• E.g. PRIVATE and REDUCTION clauses

• Overrides all dependencies and cost-benefit analysis

• Now incorporated in OpenMP 4.0  portable

• -qopenmp or -qopenmp-simd to enable

10

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit SIMD (Vector) Programming:

Use !$OMP SIMD or #pragma omp simd with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible
(ignoring dependency or efficiency concerns)

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Minimizes source code changes needed to enforce vectorization

subroutine add(A, N, X)
integer N, X
real A(N)

DO I=X+1, N
A(I) = A(I) + A(I-X)

ENDDO
end

subroutine add(A, N, X)
integer N, X
real A(N)

!$ OMP SIMD
DO I=X+1, N

A(I) = A(I) + A(I-X)
ENDDO

end

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP SIMD directives

The programmer (i.e. you!) is responsible for correctness

 Just like for race conditions in loops with OpenMP* threading

Available clauses:

 PRIVATE

 FIRSTPRIVATE

 LASTPRIVATE like OpenMP for threading

 REDUCTION

 COLLAPSE (for nested loops)

 LINEAR (additional induction variables)

 SAFELEN (max iterations that can be executed concurrently)

 ALIGNED (tells compiler about data alignment)

12

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Outer Loop Vectorization

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer, intent(in) :: n, nd

real, dimension(nd,n), intent(in) :: pt

real, dimension (n), intent(out) :: dis

real, dimension(nd), intent(in) :: ptref

integer :: ipt, j

real :: d

!$omp simd private(d)

do ipt=1,n

d = 0.

#ifdef KNOWN_TRIP_COUNT

do j=1,MYDIM ! Defaults to 3

#else

do j=1,nd

#endif

d = d + (pt(j,ipt) - ptref(j))**2

enddo

dis(ipt) = sqrt(d)

enddo

Inner loop with
low trip count

! Calculate distance from data points to reference point

end

Outer loop with
high trip count

13

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outer Loop Vectorization

ifort -qopt-report-phase=loop,vec -qopt-report-file=stderr -c dist.F90
…
LOOP BEGIN at dist.F90(17,3)

remark #15542: loop was not vectorized: inner loop was already vectorized
…
LOOP BEGIN at dist.F90(24,6)

remark #15300: LOOP WAS VECTORIZED

We can vectorize the outer loop by activating the directive

!$omp simd private(d) using -qopenmp-simd

Each iteration must have its own “private” copy of d.

ifort -qopenmp-simd -qopt-report-phase=loop,vec -qopt-report-file=stderr
-qopt-report-routine=dist -c dist.F90
…
LOOP BEGIN at dist.F90(17,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP BEGIN at dist.F90(24,6)

remark #25460: No loop optimizations reported
LOOP END

14

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Unrolling the Inner Loop

There is still an inner loop.

If the trip count is fixed and the compiler knows it,

the inner loop can be fully unrolled.

ifort -qopenmp-simd -DKNOWN_TRIP_COUNT -qopt-report-phase=loop,vec
-qopt-report-file=stderr -qopt-report-routine=dist drive_dist.F90 dist.F90

…
LOOP BEGIN at dist.F90(17,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at dist.F90(22,6)
remark #25436: completely unrolled by 3 (pre-vector)

LOOP END
LOOP END In this case, the outer loop can

be vectorized more efficiently;
SIMD may not be needed.

15

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up What’s going on

-O1 1.0 No vectorization

-O2 1.1 Inner loop
vectorization

-O2 -qopenmp-simd 1.7 Outer loop
vectorization

-O2 -qopenmp-simd
-DKNOWN_TRIP_COUNT

1.9 Inner loop
fully unrolled

-O2 -qopenmp-simd -xcore-avx2
-DKNOWN_TRIP_COUNT

2.4 Intel® AVX2 including
FMA instructions

16

Outer Loop Vectorization - performance

Performance tests are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may
cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790
system, frequency 3.6 GHz, running Red Hat* Enterprise Linux* version 7.0 and
using the Intel® Fortran Compiler version 16.0 beta.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function calls can have side effects that introduce a loop-carried dependency,
preventing vectorization

Possible remedies:

• Inlining
• best for small functions
• Must be in same source file, or else use -ipo

• !$OMP SIMD directive to vectorize remainder of loop, while
preserving scalar calls to function (last resort)

• SIMD-enabled functions

• Good for large, complex functions and in contexts where
inlining is difficult

• Call from regular DO loop

• Adding “ELEMENTAL” keyword allows SIMD-enabled function
to be called with array section argument

17

Loops Containing Function Calls

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Function

Compiler generates SIMD-enabled (vector) version of a scalar function
that can be called from a vectorized loop:

real function func(x,y,xp,yp)

!$omp declare simd (func) uniform(y, xp, yp)

real, intent(in) :: x, y, xp, yp

denom = (x-xp)**2 + (y-yp)**2

func = 1./sqrt(denom)

end

…

!$omp simd private(x) reduction(+:sumx)

do i = 1,nx-1

x = x0 + i*h

sumx = sumx + func(x,y,xp,yp)

enddo

SIMD-enabled function must have explicit interface

!$omp simd may not be needed in simple cases

18

These clauses are required for
correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, xp and yp are constant,
x can be a vector

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for SIMD-enabled Functions

#pragma omp declare simd (C/C++)

!$OMP DECLARE SIMD (fn_name) (Fortran)

• LINEAR (REF|VAL|UVAL) (additional induction variables)
use REF(X) when vector argument
is passed by reference (Fortran default)

• UNIFORM (argument is never vector)

• INBRANCH / NOTINBRANCH (will function be called conditionally?)

• SIMDLEN (vector length)

• ALIGNED (tells compiler about data alignment)

• PROCESSOR (tells compiler which processor to

• core_2nd_gen_avx target. NOT controlled by –x… switch.

• core_4th_gen_avx Intel extension in 17.0 compiler)

• mic_avx512, …

19

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for SIMD-enabled Functions

#pragma omp declare simd (C/C++)

!$OMP DECLARE SIMD (fn_name) (Fortran)

• LINEAR (REF|VAL|UVAL) (additional induction variables)
use REF(X) when vector argument
is passed by reference (Fortran default)

• UNIFORM (argument is never vector)

• INBRANCH / NOTINBRANCH (will function be called conditionally?)

• SIMDLEN (vector length)

• ALIGNED (tells compiler about data alignment)

• PROCESSOR (tells compiler which processor to

• core_2nd_gen_avx target. NOT controlled by –x… switch.

• core_4th_gen_avx Intel extension.)

• mic_avx512, … (17.0 compiler only)

20

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use PROCESSOR clause to get full benefit on KNL

#pragma omp declare simd uniform(y,z,xp,yp,zp)

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,
unmasked, formal parameter types: (vector,uniform,uniform,uniform)

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,
masked, formal parameter types: (vector,uniform,uniform,uniform)

• default ABI requires passing arguments in 128 bit xmm registers

#pragma omp declare simd uniform(y,z,xp,yp,zp), processor(mic-avx512),
notinbranch

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16,
unmasked, formal parameter types: (vector,uniform,uniform,uniform)

• Passing arguments in zmm registers facilitates 512 bit vectorization

• Independent of -xmic-avx512 switch

• notinbranch means compiler need not generate masked function version

21

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Subroutine

Compiler generates SIMD-enabled (vector) version of a scalar subroutine
that can be called from a vectorized loop:

subroutine test_linear(x, y)

!$omp declare simd (test_linear) linear(ref(x, y))

real(8),intent(in) :: x

real(8),intent(out) :: y

y = 1. + sin(x)**3

end subroutine test_linear

…

Interface

…

do j = 1,n

call test_linear(a(j), b(j))

enddo

SIMD-enabled routine must have explicit interface

!$omp simd not needed in simple cases like this

22

remark #15301: FUNCTION WAS VECTORIZED.

remark #15300: LOOP WAS VECTORIZED.

Important because arguments
passed by reference in Fortran

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Subroutine

The LINEAR(REF) clause is very important

• In C, compiler places consecutive argument values in a vector register

• But Fortran passes arguments by reference

• By default compiler places consecutive addresses in a vector register

• Leads to a gather of the 4 addresses (slow)

• LINEAR(REF(X)) tells the compiler that the addresses are consecutive;
only need to dereference once and copy consecutive values to vector register

• New in compiler version 16.0.1

• Same method could be used for C arguments passed by reference

23

Approx speed-up for double precision array of 1M elements

No DECLARE SIMD 1.0

DECLARE SIMD but no LINEAR(REF) 0.9

DECLARE SIMD with LINEAR(REF) clause 3.6

Performance tests are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on an Intel® Xeon® E7-4850 v3 system, frequency 2.2 GHz, running Red
Hat* Enterprise Linux* version 7.1 and using the Intel® Fortran Compiler version 16.0.1.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop Optimization Summary

The importance of SIMD parallelism is increasing

• Moore’s law leads to wider vectors as well as more cores

• Don’t leave performance “on the table”

• Be ready to help the compiler to vectorize, if necessary

• With compiler directives and hints

• Using information from vectorization and optimization reports

• With explicit vector programming

• Use Intel® Advisor and/or Intel® VTune™ Amplifier XE to find the best
places (hotspots) to focus your efforts

• No need to re-optimize vectorizable code for new processors

• Typically a simple recompilation

24

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Affinity / Placement

25

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP Affinity

Additional clause for parallel regions: proc_bind(affinity-type)

Environment variables control the affinity settings:

 OMP_PROC_BIND
e.g., export OMP_PROC_BIND=“master, close ,spread”

 OMP_PLACES
e.g., export OMP_PLACES=“{0,1,2,3},{4,5,6,7},{8:4},{12:4}”

OMP_PLACES=threads| cores | sockets

• threads: place hardware*thread*

• cores: place core (may have multiple threads)

• sockets: place socket (may have multiple cores)

e.g. export OMP_PLACES=“cores (4)”

Places are system-specific and are not defined by OpenMP

26

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For best data locality

– select OpenMP threads in the same place as the master

Examples

– master 2

– master 4

– master 8

Examples: master

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For data locality, load-balancing, and more dedicated-resources

– select OpenMP threads near the place of the master

– wrap around once each place has received one OpenMP thread

Examples

– close 2

– close 4

– close 16

Example: close

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice master worker partition

For load balancing, most dedicated hardware resources

– spread OpenMP threads as evenly as possible among places

– create sub-partition of the place list

– subsequent threads will only be allocated within sub-partition

Examples

– spread 2

– spread 4

– spread 8

– spread 16

Example: spread

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Taskgroup

Allows to logically group tasks together for

 Synchronization

 Cancellation

Solves long standing complaint of not being able to wait for a task nest

30

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Taskgroup syntax

#pragma omp taskgroup

structured-block

!$omp taskgroup

structured-block

!$omp end taskgroup

Implies a wait at the end of the region on

 all child tasks created in the taskgroup

 their descendants

Remember: taskwait only waits for children of the current task

31

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Task Dependencies

32

Allows a more unstructured way of expressing task parallelism

Potentially allows to remove more expensive synchronizations

“Create flow graphs of computations”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Task Dependencies: syntax

New clause to task construct:

depend(dependence-type : list)

dependence-type being one of:

 in

 out/inout

Dependences are constructed in serial order based on the specified data
relationships

 in waits for previous out

 out/inout wait for previous out/inout and all previous in

 no real constraint on what the task does

 only between sibling tasks

33

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Task Dependencies

void blocked_cholesky(int NB, float *A[NB][NB]) {

int i, j, k;

for (k=0; k<NB; k++) {

#pragma omp task depend(inout:A[k][k])

spotrf (A[k][k]) ;

for (i=k+1; i<NB; i++)

#pragma omp task depend(in:A[k][k]) depend(inout:A[k][i])

strsm (A[k][k], A[k][i]);

// update trailing submatrix

for (i=k+1; i<NB; i++) {

for (j=k+1; j<i; j++)

#pragma omp task depend(in:A[k][i],A[k][j]) depend(inout:A[j][i])

sgemm(A[k][i], A[k][j], A[j][i]);

#pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])

ssyrk (A[k][i], A[i][i]);

}

}

}

* image from BSC

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Task Cancellation

35

Allows a more unstructured way of expressing task parallelism

Potentially allows to remove more expensive synchronizations

“Create flow graphs of computations”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cancellation Constructs

Parallel execution cannot be aborted in OpenMP 3.1

 Code regions must always run to completion

 (or not start at all)

Cancellation in OpenMP 4.0 provides a best-effort approach to terminate OpenMP
regions

 Best-effort: not guaranteed to trigger termination immediately

 Triggered “as soon as” possible

Two constructs:

 Cancellation request: #pragma omp cancel

 Cancellation points: #pragma omp cancellation point

36

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

cancel Construct

Syntax:
#pragma omp cancel construct-type-clause [[,]if-clause]
!$omp cancel construct-type-clause [[,]if-clause]

Clauses:

parallel

sections

for (C/C++)

do (Fortran)

taskgroup

if (scalar-expression)

Semantics

 Requests cancellation of the inner-most OpenMP region of the type specified

 Lets the encountering thread/task proceed to the region

37

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

cancellation point Construct

Syntax:
#pragma omp cancellation point construct-type-clause
!$omp cancellation point construct-type-clause

Clauses:

parallel

sections

for (C/C++)

do (Fortran)

taskgroup

Semantics

 Introduces a user-defined cancellation point

 Pre-defined cancellation points:

– implicit/explicit barriers regions

– cancel regions

38

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cancellation Example

39

subroutine example(n, dim)
integer, intent(in) :: n, dim(n)
integer :: i, s, err
real, allocatable :: B(:)

err = 0

!$omp parallel shared(err)
...

!$omp do private(s, B)
do i=1, n

allocate(B(dim(i)), stat=s)

!$omp cancellation point

if (s .gt. 0) then
!$omp atomic write

err = s

!$omp cancel do
endif

...

! ... example continued

! deallocate private array B in
! normal condition

deallocate(B)
enddo

! deallocate any private array
that
! has already been allocated
if (err .gt. 0) then
if (allocated(B)) then
deallocate(B)

endif
endif

!$omp end parallel
end subroutine

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Semantics

 The ordered with simd clause construct specifies a structured block in the simd loop or SIMD function that will
be executed in the order of the loop iterations or sequence of call to SIMD functions.

Rules

 #pragma omp ordered simd is only allowed inside a SIMD loop or SIMD-enabled function.
 #pragma omp ordered simd region must be a single-entry and single-exit code block

 The strict ordered execution is only guaranteed for the block itself
– Execution remains weakly ordered w.r.t. to outside of the block or other ordered blocks

– Data dependencies between statements of the same block will be correctly resolved
– Other non-vector dependencies originating in ordered block still lead to undefined behavior

40

Ordered blocks in SIMD contexts

C++
#pragma omp ordered simd

structured code block

Fortran
!$omp ordered simd

structured code block

!$omp end ordered

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Monotonic keyword for ordered

C++
#pragma omp ordered simd monotonic([var:step]s)

structured code block

Fortran
!$omp ordered simd monotonic([var:step]s)

Semantics
 Same as for ‘omp ordered simd’ with a hint that vars inside the structured block are monotonically changed with respect to

execution.

Why
 With this hint compiler can generate better vector code if CPU supports compress or expand instructions.

Rules
 Explicit single* self-update for vars. *Single part can be relaxed later
 [var:step]s have similar restrictions as ‘linear’ clause of #pragma omp simd
 vars shouldn’t be used outside of an ordered block

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Overlap keyword for ordered

C++
#pragma omp ordered simd overlap(overlap_index)

structured code block

Fortran
!$omp ordered simd overlap(overlap_index)

Semantics
 Same as for ‘omp ordered simd’ with a hint that overlap_index has equal values in different lanes during vector execution. Compiler will

do resolving for indirect accesses w.r.t. this overlap_index.

Why
 With this hint compiler can generate better vector code if CPU supports vconflict instruction. For example, CPU has support of AVX512CD.

Rules
 Single overlap_index.

Limitations

 Bail out to ordered if mixed sizes of data types is used inside structed code block

 Compiler generates general algorithm to resolve conflicts, i.e. O(N) complexity. This will be changed, so compiler will be able to generate

O(logN) algorithm for some cases.

 O(logN) algorithm is generated if it’s safe to do reassociation for conflict statement

 O(N) algorithm is generated in all other cases.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

44

Adapting software to make best use of KNL MCDRAM

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

API is open-sourced (BSD licenses)
 https://github.com/memkind ; also part of XPPSL at

https://software.intel.com/articles/xeon-phi-software

 User jemalloc API underneath
 http://www.canonware.com/jemalloc/
 https://www.facebook.com/notes/facebook-engineering/scalable-

memory-allocation-using-jemalloc/480222803919

malloc replacement:

47

High Bandwidth On-Package Memory API

#include <memkind.h>

hbw_check_available()

hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)

hbw_free()

hbw_posix_memalign(), _posix_memalign_psize()

hbw_get_policy(), _set_policy()

ld … -ljemalloc –lnuma –lmemkind –lpthread

https://github.com/memkind
https://software.intel.com/articles/xeon-phi-software
http://www.canonware.com/jemalloc/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fortran:

!DIR$ ATTRIBUTES FASTMEM :: data_object1,
 Flat or hybrid mode only
 More Fortran data types may be supported eventually

 Global, local, stack or heap;
 Currently just allocatable arrays (16.0) and pointers (17.0)
 OpenMP private copies: preview in 17.0 update 1
 Must remember to link with libmemkind !

Possible addition in a future compiler:
 Placing FASTMEM directive before ALLOCATE statement

 Instead of ALLOCATABLE declaration

C++: can pass hbw_malloc() etc.

standard allocator replacement for e.g. STL like
#include <hbw_allocator.h>
std::vector<int, hbw::allocator::allocate>

Available already, working on documentation

48

HBW API for Fortran, C++

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Fortran 2003 C-interoperability features to call memkind API

interface
function hbw_check_available() result(avail) bind(C,name='hbw_check_available')
use iso_c_binding
implicit none
integer(C_INT) :: avail

end function hbw_check_available
end interface

integer :: istat
istat = hbw_check_available()
if (istat == 0) then

print *, HBM available'
else
print *, 'ERROR, HBM not available, return code=', istat

end if

49

HBW APIs (Fortran)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <memkind.h>

int hbw_get_size(int partition, size_t * total, size_t * free) { // partition=1 for HBM
memkind_t kind;

int stat = memkind_get_kind_by_partition(partition, &kind);
if(stat==0) stat = memkind_get_size(kind, total, free);
return stat;

}

Fortran interface:
interface

function hbw_get_size(partition, total, free) result(istat) bind(C, name='hbw_get_size')
use iso_c_binding
implicit none
integer(C_INT) :: istat
integer(C_INT), value :: partition
integer(C_SIZE_T) :: total, free

end function hbw_get_size
end interface

HBM doesn’t show as “used” until first access after allocation

50

How much HBM is left?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Happens if HBW Memory is Unavailable? (Fortran)

In 16.0: silently default over to regular memory

New Fortran intrinsic in module IFCORE in 17.0:

integer(4) FOR_GET_HBW_AVAILABILITY() returns values:

 FOR_K_HBW_NOT_INITIALIZED(= 0)
 Automatically triggers initialization of internal variables
 In this case, call a second time to determine availability

 FOR_K_HBW_AVAILABLE (= 1)

 FOR_K_HBW_NO_ROUTINES (= 2) e.g. because libmemkind not linked

 FOR_K_HBW_NOT_AVAILABLE (= 3)

 does not distinguish between HBW memory not present; too little HBW available;
and failure to set MEMKIND_HBW_NODES

New RTL diagnostics when ALLOCATE to fast memory cannot be honored:
183/4 warning/error libmemkind not linked
185/6 warning/error HBW memory not available
Severe errors 184, 186 may be returned in STAT field of ALLOCATE statement

51

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Controlling What Happens if HBM is Unavailable (Fortran)

In 16.0: you can’t

New Fortran intrinsic in module IFCORE in 17.0:
integer(4) FOR_SET_FASTMEM_POLICY(new_policy)

input arguments:

 FOR_FASTMEM_INFO (= 0) return current policy unchanged

 FOR_FASTMEM_NORETRY (= 1) error if unavailable (default)

 FOR_FASTMEM_RETRY_WARN (= 2) warn if unavailable, use default memory

 FOR_FASTMEM_RETRY (= 3) if unavailable, silently use default memory

 returns previous HBW policy

Environment variables (to be set before program execution):

 FOR_FASTMEM_NORETRY =T/F default False
 FOR_FASTMEM_RETRY =T/F default False
 FOR_FASTMEM_RETRY_WARN =T/F default False

52

Getting consistent floating-point results when moving to the Intel® Xeon Phi™ x200

processor family from Intel® Xeon® processors or from Intel® Xeon Phi™ x100

Coprocessors

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Floating-Point Reproducibility

-fp-model precise disables most value-unsafe optimizations
(especially reassociations)

 The primary way to get consistency between different platforms (including KNL)
or different optimization levels

 Does not prevent differences due to:

 Different implementations of math functions

 Use of fused multiply-add instructions (FMAs)

 Floating-point results on Intel® Xeon Phi™ x100 coprocessors may not be
bit-for-bit identical to results obtained on Intel® Xeon® processors or on KNL

54

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization of loops containing transcendental functions

Fast, approximate division and square roots

Flush-to-zero of denormals

Vectorization of reduction loops

Other reassociations

(including hoisting invariant expressions out of loops)

Evaluation of constant expressions at compile time

…

55

Disabled by -fp-model precise

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math functions

Implementation of math functions may differ between different processors

 For consistency of math functions between KNL and Intel® Xeon® processors, use

-fimf-arch-consistency=true for both

 Not available for KNC

 -fp-model precise (or -fimf-precision=high) should get you close

 These options come at a cost in performance

56

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

The most common cause of differences between Intel® Xeon® processors
and Intel® Xeon Phi™ x100 coprocessors or KNL

 Not disabled by -fp-model precise

 Can disable for testing with -no-fma

 Or by function-wide pragma or directive:

#pragma float_control(fma,off)

!dir$ nofma

 With some impact on performance

 -fp-model strict disables FMAs, amongst other things

 But on KNC, results in non-vectorizable x87 code

 The fma() intrinsic in C should always give a result with a single rounding,
even on processors with no FMA instruction

57

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMAs

Can cause issues even when both platforms support them
(e.g. Haswell and KNL)

 Optimizer may not generate them in the same places

 No language rules

 FMAs may break the symmetry of an expression:

c = a; d = -b;
result = a*b + c*d; (= 0 if no FMAs)

If FMAs are supported, the compiler may convert to either

result = fma(c, d, (a*b)) or result = fma(a, b, (c*d))

Because of the different roundings, these may give results that are non-zero
and/or different from each other.

58

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reproducibility: the bottom line (for Intel64)

/fp:precise /Qfma- /Qimf-arch-consistency:true (Windows*)

-fp-model precise -no-fma -fimf-arch-consistency=true (Linux* or OS X*)

 Recommended for best reproducibility

– Also for IEEE compliance

– And for language standards compliance (C, C++ and Fortran)

 This isn’t very intuitive

– a single switch will do all this in the 17.0 compiler

– -fp-model consistent (/fp:consistent on Windows*)

59Intel Confidential

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

Hardware prefetcher is more effective than for KNC

Software (compiler-generated) prefetching is off by default
 Like for Intel® Xeon® processors

 Enable by -qopt-prefetch=[1-5]

KNL has gather/scatter prefetch

 Enable auto-generation to L2 with -qopt-prefetch=5
 Along with all other types of prefetch, in addition to h/w prefetcher – careful.

 Or hint for specific prefetches
 !DIR$ PREFETCH var_name [: type : distance]
 Needs at least -qopt-prefetch=2

 Or call intrinsic
 _mm_prefetch((char *) &a[i], hint); C
 MM_PREFETCH(A, hint) Fortran

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Gather Prefetch Example

void foo(int n, int* A, int *B, int *C) {
// pragma_prefetch var:hint:distance

#pragma prefetch A:1:3 // prefetch to L2 cache 3 iterations ahead
#pragma vector aligned
#pragma simd
for(int i=0; i<n; i++)
C[i] = A[B[i]];

}
icc -O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S emre5.cpp

remark #25033: Number of indirect prefetches=1, dist=2
remark #25035: Number of pointer data prefetches=2, dist=8
remark #25150: Using directive-based hint=1, distance=3 for indirect memory reference [emre5.cpp(…
remark #25540: Using gather/scatter prefetch for indirect memory reference, dist=3 [emre5.cpp(9,12)]
remark #25143: Inserting bound-check around lfetches for loop

% grep gatherpf emre5.s
vgatherpf1dps (%rsi,%zmm0){%k1} #9.12 c7 stall 2

% grep prefetch emre5.s
mark_description "-O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S -g";

prefetcht0 512(%r9,%rcx) #9.14 c1
prefetcht0 512(%r9,%r8) #9.5 c7

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Resources (Optimization)

Webinars:
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-
new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-
webinar-code-samples
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-
vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops

Vectorization Guide (C): https://software.intel.com/articles/a-guide-to-auto-
vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:
https://software.intel.com/articles/vectorization-essential

https://software.intel.com/articles/fortran-array-data-and-arguments-and-
vectorization

Compiler User Forums at http://software.intel.com/forums

62

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-webinar-code-samples
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
http://software.intel.com/forums

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

64

