
Kenneth Craft

Technical Consulting Engineer

Intel® Corporation

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Compiler Architecture

Profiler

C++

Front End

Interprocedural analysis and optimizations: inlining,

constant prop, whole program detect, mod/ref, points-to

Loop optimizations: data deps, prefetch, vectorizer,

unroll/interchange/fusion/dist, auto-parallel/OpenMP

Global scalar optimizations: partial redundancy elim,

dead store elim, strength reduction, dead code elim

Code generation: vectorization, software pipelining,

global scheduling, register allocation, code generation

FORTRAN

Front End

Disambiguation:

types, array,

pointer, structure,

directives

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Getting Started

Set the environment, e.g.:

• source compilervars.sh intel64 (or .csh) Linux* or OS* X

• compilervars.bat intel64 (or ia32) Windows*

Drivers:

• ifort for Fortran on all OS

• assumes .f90 free format, .f fixed format by default

• icl on Windows

• icc for C, icpc for C++ on Linux

but treats .c as C and .cpp as C++ by default

Linking:

• Simplest: use compiler drivers above

• links Intel-specific libraries, such as optimized math functions

• else use xild (xilink), which invokes ld (link) on Linux (Windows)

Or use the Microsoft* Visual Studio* IDE on Windows.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Supports standards

• Fortran77, Fortan90, Fortran95, Fortran2003, much Fortran 2008

• Up to C99, C++11; Some C++ 14; Minimal C11 (so far)

• -std=c99 -std=c++11 -std=c++14

Intel® Fortran (and C/C++) binary compatible with gcc, gdb, …

• But not binary compatible with gfortran

Supports all instruction sets via vectorization (auto- and explicit)

• Intel® SSE, Intel® AVX, Intel® AVX-512, Intel® MIC Architecture

OpenMP* 4.0 support, some 4.5, no Fortran user-defined reductions

Optimized math libraries

Many advanced optimizations

• With detailed, structured optimization reports

4

General Compiler Features

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-assume buffered_io (/assume:buffered_io)

• Can improve I/O performance by buffering

• Can also enable with export FORT_BUFFERED=true or via OPEN statement

-convert big_endian (/convert:big_endian)

• Converts data from/to big endian format on input/output

-cxxlib

• link to default C++ RTL (for mixed language apps); Linux* only

-fpp (/fpp)

• Preprocess before compilation

• default for .F, .F90 files (Linux), but not for .f, .f90, assumed preprocessed

-mkl (/mkl)

• Link the Math Kernel Library

-traceback (/traceback)

• For low-overhead stack trace in case of runtime failure

5

Some Useful Features of ifort
(that you might not know)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations

• Excludes optimizations tending to increase code size

-O2 default for ifort (except with -g)

• includes auto-vectorization; some loop transformations such as unrolling;
inlining within source file;

• Start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations

• Including cache blocking, loop fusion, loop interchange, …

• May not help all applications; need to test

gfortran, gcc default is less or no optimization

-O3 includes vectorization and most inlining

6

Basic Optimizations with ifort -O…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort (or icc or icpc or icl) -O3

Loop optimizations:

 Automatic vectorization‡ (use of packed SIMD instructions)

 Loop interchange ‡ (for more efficient memory access)

 Loop unrolling‡ (more instruction level parallelism)

 Prefetching (for patterns not recognized by h/w prefetcher)

 Cache blocking (for more reuse of data in cache)

 Loop versioning ‡ (for loop count; data alignment;
runtime dependency tests)

 Memcpy recognition ‡ (call Intel’s fast memcpy, memset)

 Loop splitting ‡ (facilitate vectorization)

 Loop fusion (more efficient vectorization)

 Scalar replacement‡ (reduce array accesses by scalar temps)

 Loop rerolling (enable vectorization)

 Loop peeling ‡ (allow for misalignment)

 Loop reversal (handle dependencies)
 etc.

‡ all or partly enabled at -O2

7

Intel® Compilers: Loop Optimizations

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor-specific Compiler Switches

Intel® processors only Intel and non-Intel (-m also GCC)

-xsse2 -msse2 (default)

-xsse3 -msse3

-xssse3 -mssse3

-xsse4.1 -msse4.1

-xsse4.2 -msse4.2

-xavx -mavx

-xcore-avx2

-xmic-avx512

-xHost -xHost (-march=native)

Intel cpuid check No cpu id check

Runtime message if run on
unsupported processor

Illegal instruction error if run on
unsupported processor

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor Dispatch (fat binaries)

Compiler can generate multiple code paths

• optimized for different processors

• only when likely to help performance

• One default code path, one or more optimized paths

• Optimized paths are for Intel processors only

• Default code path can be modified using switches from preceding slide

Examples:

• -axavx

• default path optimized for Intel® SSE2 (Intel or non-Intel)

• Second path optimized for Intel® AVX (code name Sandy Bridge, etc.)

• -axcore-avx2,avx -xsse4.2

• Default path optimized for Intel® SSE4.2 (code name Nehalem, Westmere)

• Second path optimized for Intel® AVX (code name Sandy Bridge, etc.)

• Third path optimized for Intel® AVX2 (code name Haswell)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

InterProcedural Optimization (IPO)

ifort -ipo

Analysis & Optimization across function and source file boundaries, e.g.

• Function inlining; Interprocedural constant propagation; Alignment analysis;
Disambiguation; Data & Function Layout; etc.

2-step process:

• Compile phase – objects contain intermediate representation

• “Link” phase – compile and optimize over all such objects

• Fairly seamless: the linker automatically detects objects built with -ipo, and their
compile options

• May increase build-time and binary size

• But can be done in parallel with -ipo=n

• Entire program need not be built with IPO/LTO, just hot modules

Particularly effective for apps with many smaller functions

Get report on inlined functions with -qopt-report-phase=ipo

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math Libraries

icc (ifort) comes with optimized math libraries

• libimf (scalar) and libsvml (vector)

• Faster than GNU libm

• Driver links libimf automatically, ahead of libm

• More functionality (replace math.h by mathimf.h for C)

Don’t link to libm explicitly! -lm

• May give you the slower libm functions instead

• Though the Intel driver may try to prevent this

• GCC needs -lm, so it is often found in old makefiles

Low precision option for vectorized math library may be faster, if precision is
sufficient

• For doubles, still more accurate than single precision

• -fimf-precision=low

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® SSE & Intel® AVX-128 Data Types

4x floatsSSE

16x bytes

8x 16-bit shorts

4x 32-bit integers

2x 64-bit integers

1x 128-bit(!) integer

2x doubles

SSE-2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advanced Vector Extensions 2
(Intel® AVX2) Data Types

Intel®

AVX2

8x floats

4x doubles
Intel®

AVX

32x bytes

16x 16-bit shorts

8x 32-bit integers

4x 64-bit integers

2x 128-bit(!) integer

13

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Data Types

16x floats

8x doubles

16x 32-bit integers

(8x 64-bit integers)*

32x 16-bit shorts

64x 8-bit bytes

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD: Single Instruction, Multiple Data

• Scalar mode
– one instruction produces

one result

– E.g. vaddss, (vaddsd)

• Vector (SIMD) mode
– one instruction can produce

multiple results

– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =

x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

SSE
AVX

for (i=0; i<n; i++) z[i] = x[i] + y[i];

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorizable math functions

acos ceil fabs pow

acosh cos floor round

asin cosh fmax sin

asinh erf fmin sinh

atan erfc fmod sqrt

atan2 erfinv log tan

atanh exp log10 tanh

cbrt exp2 log2 trunc

Also float versions and
Fortran equivalents

Uses short vector
math library, libsvml

Entry points such as
Intel® SSE:
__svml_sin2
__svml_sinf4
Intel® AVX:
__svml_pow4
__svml_powf8

Many routines in the libsvml math library are
more highly optimized for Intel
microprocessors than for non-Intel
microprocessors.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile with -xavx (Intel® AVX; Sandy Bridge, Ivy Bridge, etc.)

Compile with -xcore-avx2 (Intel® AVX2; Haswell, Broadwell)

• Intel processors only (-mavx, -march=core-avx2 for non-Intel)

• Vectorization works just as for Intel® SSE, but with longer vectors

• More efficient loads & stores if data are 32 byte aligned

• More loops can be vectorized than with SSE

• Individually masked data elements

• More powerful data rearrangement instructions

-axavx (-axcore-avx2) gives both SSE2 and AVX (AVX2) code paths

• use -x or -m switches to modify the default SSE2 code path

• Eg -axcore-avx2 -xavx to target both Haswell and Sandy Bridge

Math libraries may target AVX and/or AVX2 automatically at runtime

17

Compiling for Intel® AVX (high level)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For Intel® AVX, main speedups are for floating point
• Wider SIMD floating-point instructions  better throughput

• Except double precision division or square root

• Enhanced data rearrangement instructions

• Non-destructive, 3 operand syntax

For Intel® AVX2, main additional speedups come from
• Wider SIMD integer instructions

• Fused multiply-add instructions

• Gather & permute instructions enable more vectorization

• More efficient general 32 byte loads (less split loads)

Applications most likely to benefit

• Spend much time in vectorizable loops

• Are not memory bound

18

Some Benefits of Intel® AVX

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Factors that have Impact on Vectorization

Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

Function calls

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

Unknown/aliased loop iteration count

Indirect memory access

Outer loopsPointer aliasing

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[i][j] += 1;

}

}

void scale(int *a, int *b)

{

for (int i = 0; i < 1000; i++)

b[i] = z * a[i];

}

DO I = 1, N

A(B(i)) = C(i)*D(i)

ENDDO

DO I = 1, N

A(I+1) = A(I) + B(I)

ENDDO

many ……

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Guidelines for Writing Vectorizable Code

Prefer simple “DO” or “for” loops

Write straight line code. Avoid:
 most function or subroutine calls
 branches that can’t be treated as masked assignments.

Avoid dependencies between loop iterations
 Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers or “associate”
 Without help, the compiler often cannot tell whether it is safe to vectorize

code containing pointers.
 Try to use the loop index directly in array subscripts, instead of incrementing

a separate counter for use as an array address.

Use efficient memory accesses
 Favor inner loops with unit stride
 Minimize indirect addressing
 Align your data consistently where possible

– to 32 byte boundaries (for Intel® AVX instructions)
– else to 16 bytes, or at least to “natural” alignment

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (Fortran)

Align array on an “n”-byte boundary (n must be a power of 2)

!dir$ attributes align:n :: array

• Works for dynamic, automatic and static arrays (not in common)

For a 2D array, choose column length to be a multiple of n,
so that consecutive columns have the same alignment (pad if necessary)

-align array32byte compiler tries to align all array types

And tell the compiler…

!dir$ vector aligned OR
!$omp simd aligned(var [,var…]:<n>)

• Asks compiler to vectorize, assuming all array data accessed in loop are
aligned for targeted processor
• May cause fault if data are not aligned

!dir$ assume_aligned array:n [,array2:n2, …]

• Compiler may assume array is aligned to n byte boundary
• Typical use is for dummy arguments

• Extension for allocatable arrays in next compiler version

21

n=16 for Intel® SSE, n=32 for Intel® AVX, n=64 for Intel® AVX-512

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to Align Data (C/C++)

Allocate memory on heap aligned to n byte boundary:
void* _mm_malloc(int size, int n)

int posix_memalign(void **p, size_t n, size_t size)

void* aligned_alloc(size_t alignment, size_t size) (C11)
#include <aligned_new> (C++11)

Alignment for variable declarations:
__attribute__((aligned(n))) var_name or
__declspec(align(n)) var_name

And tell the compiler…
#pragma vector aligned

• Asks compiler to vectorize, overriding cost model, and assuming all array data
accessed in loop are aligned for targeted processor

• May cause fault if data are not aligned

__assume_aligned(array, n)

• Compiler may assume array is aligned to n byte boundary

22

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for Intel® AVX, n=16 for Intel® SSE

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Problems with Pointers

Hard for compiler to know whether arrays or pointers might be aliased
(point to the same memory location)
 Aliases may hide dependencies that make vectorization unsafe
 Bigger problem for C than Fortran (which has TARGET attribute)

– ASSOCIATE (Fortran 2003) can result in aliasing

In simple cases, compiler may generate vectorized and unvectorized
loop versions, and test for aliasing at runtime

Otherwise, compiler may need help:
 -fargument-noalias & similar switches; “restrict” keyword for C
 !dir$ ivdep asserts no potential dependencies

– Compiler still checks for proven dependencies

 !$OMP SIMD asserts no dependencies, period (see later)
 Prefer allocatable arrays to pointers where possible !

Real, pointer, dimension(:) :: v, w, x, y, z
!dir$ivdep
do i=1, n

z(i) = v(i)*w(i) + x(i)*y(i)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Compilers:
some useful loop optimization pragmas/directives

 IVDEP ignore vector dependency

 LOOP COUNT advise typical iteration count(s)

 UNROLL suggest loop unroll factor

 DISTRIBUTE POINT advise where to split loop

 VECTOR vectorization hints

– Aligned assume data is aligned

– Always override cost model

– Nontemporal advise use of streaming stores

 NOVECTOR do not vectorize

 NOFUSION do not fuse loops

 INLINE/FORCEINLINE invite/require function inlining

 BLOCK_LOOP suggest blocking factor for more efficient use of cache

 UNROLL_AND_JAM increase amount of work per iteration of inner loop

Use where needed to help the compiler,
guided by optimization reports

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LOOP BEGIN at ggFineSpectrum.cc(124,5) inlined into ggFineSpectrum.cc(56,7)

remark #15018: loop was not vectorized: not inner loop

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)

Peeled

remark #25460: Loop was not optimized

LOOP END

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)

remark #15145: vectorization support: unroll factor set to 4

remark #15002: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)

Remainder

remark #15003: REMAINDER LOOP WAS VECTORIZED

LOOP END

LOOP END

25

Hierarchical Loop Optimization Report
Peel loop, remainder loop and kernel

Vectorized
loop kernel

Outer loop of nest

“Peel” loop for
data alignment

Remainder loop

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25231: Loop multiversioned for Data Dependence
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….
remark #25018: Estimate of max trip count of loop=32

LOOP END

LOOP BEGIN at foo.c(4,3)
Multiversioned v2

remark #15006: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END
===

26

Example of New Optimization Report

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c
Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 114
remark #36093: vector loop cost: 55.750
remark #36094: estimated potential speedup: 2.040
remark #36095: lightweight vector operations: 10
remark #36096: medium-overhead vector operations: 1
remark #36098: vectorized math library calls: 1
remark #36103: type converts: 2
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

27

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

(/Qalias-args- on Windows*)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access

remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 111
remark #36093: vector loop cost: 28.000
remark #36094: estimated potential speedup: 3.950
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

28

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx
foo.c

Begin report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 110
remark #36093: vector loop cost: 15.370
remark #36094: estimated potential speedup: 7.120
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=16

LOOP END
===

29

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx
foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(6,3)
remark #15134: vectorization support: reference theta has aligned access

remark #15134: vectorization support: reference sth has aligned access
remark #15002: LOOP WAS VECTORIZED
remark #36064: unmasked aligned unit stride loads: 1
remark #36065: unmasked aligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 110
remark #36093: vector loop cost: 13.620
remark #36094: estimated potential speedup: 8.060
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=16

LOOP END
===

30

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {
int i;
__assume_aligned(theta,32);
__assume_aligned(sth,32);
for (i = 0; i < 128; i++)
sth[i] = sinf(theta[i]+3.1415927f);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -xavx
foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(7,3)
remark #15134: vectorization support: reference theta has aligned access

remark #15134: vectorization support: reference sth has aligned access
remark #15002: LOOP WAS VECTORIZED
remark #36064: unmasked aligned unit stride loads: 1
remark #36065: unmasked aligned unit stride stores: 1
remark #36083: unmasked aligned streaming stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 110
remark #36093: vector loop cost: 13.620
remark #36094: estimated potential speedup: 8.070
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=250000
remark #15158: vectorization support: streaming store was generated for sth

LOOP END
===

31

Optimization Report Example

#include <math.h>
void foo (float * theta, float * sth) {

int i;
__assume_aligned(theta,32);
__assume_aligned(sth,32);

for (i = 0; i < 2000000; i++)
sth[i] = sinf(theta[i]+3.1415927f);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

This small function multiplies a matrix a by a vector b

ifort -c -r8 -O2 -xavx mv.F90 -qopt-report-phase=vec -qopt-report=4
…

LOOP BEGIN at mv.F90(11,6)
remark #15300: LOOP WAS VECTORIZED

 For C, we would need to assert that a did not overlap b or c
• For Fortran, the compiler can assume this unless these are pointer arrays

32

Multi-dimensional Arrays

subroutine matvec(m,n,a,b,c)
integer :: m, n, i, j
real :: a(m,n), b(m), c(n)
do j=1,n

c(j) = 0.
do i=1,m

c(j) = c(j) + a(i,j) * b(i)
enddo

enddo
end subroutine matvec

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort -c -r8 -xavx mv.F90 -qopt-report-phase=vec -qopt-report=4
…

LOOP BEGIN at mv.F90(11,6)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at mv.F90(11,6)
remark #15389: vectorization support: reference a has unaligned access [mv.F90(12,9)]
remark #15388: vectorization support: reference b has aligned access [mv.F90(12,9)]
remark #15305: vectorization support: vector length 4
remark #15300: LOOP WAS VECTORIZED

...

Compiler can adjust (“peel”) at run-time to align accesses to one array (b)
Accesses to a remain unaligned.

If you know that b and a are aligned, you can help the compiler:

To align arrays to 32 bytes (for Intel® AVX):

!dir$ attributes align:32 :: a, b
Or compile with -align array32byte
For Intel® MIC Architecture, align to 64 bytes instead of 32

33

Multi-dimensional Arrays

To align b, because compiler
doesn’t know its alignment

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

!dir$ assume_aligned a:32, b:32

If we add these to the source code,

– the “peel” loop disappears

– b has aligned access

– a still has unaligned access. Why?

The start of the first column of a is aligned. But what about the other columns?

– Only if column length is a multiple of 32 bytes (4 doubles)

– We can assert this to the compiler:

!dir$ assume (mod(m,4).eq.0)

LOOP BEGIN at mv.F90(11,6)
remark #15388: vectorization support: reference a has aligned access [mv.F90(12,9)]
remark #15388: vectorization support: reference b has aligned access [mv.F90(12,9)]
remark #15305: vectorization support: vector length 4
remark #15300: LOOP WAS VECTORIZED

34

Multi-dimensional Arrays - alignment

This tells the compiler that the
starts of the arrays are aligned

Pad the first dimension if necessary
E.g. a(31,31) becomes a(32,31)
See driver.F90

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up
(without padding)

Speed-up
(with padding)

-O1 -xavx 1.0 0.98

-O2 -xavx 2.0 3.2

-O2 -xavx -align array32byte
Assume start of b and a aligned

2.1 3.4

-O2 -xavx -align array32byte
Assume start of b and a aligned
Assume column length is
multiple of 32 bytes
(consecutive columns aligned)

May fail on some
platforms, since

assumption untrue

4.2

35

Multi-dimensional arrays - performance

Performance tests are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may
cause the results to vary.
The results above were obtained on a 2nd Generation Intel® Core™ i7-2600K
system, frequency 3.4 GHz, running Ubuntu Linux* version 10.04.4 and using
the Intel® Fortran Compiler version 16.0 update 1.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Final version of example code:

ifort -r8 -O2 -xavx mv.F90 -qopt-report=4 -qopt-report-phase=vec

(add -qopt-report-file=stderr to get report on stderr instead of mv.optrpt)

36

Multi-dimensional Arrays

subroutine matvec(m,n,a,b,c)
integer :: m, n, i, j
real :: a(m,n), b(m), c(n)

!dir$ assume_aligned a:32, b:32
!dir$ assume (mod(m,4).eq.0)
do j=1,n

c(j) = 0.
do i=1,m

c(j) = c(j) + a(i,j) * b(i)
enddo

enddo
end subroutine matvec

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Do calculation until first negative value of a is encountered:

ifort -c -qopt-report-file=stderr -qopt-report-phase=vec search3.f90
…

remark #15520: loop was not vectorized: loop with multiple exits cannot be
vectorized unless it meets search loop idiom criteria

 Compiler can recognize and vectorize only pristine search loops
– If “search” idiom not recognized, SIMD directives won’t help

37

Search Loops

integer function search(a,b,c,n)
real, dimension(n) :: a, b, c
integer :: n, i

do i=1,n
if(a(i).lt.0.) exit
c(i) = sqrt(a(i)) * b(i)

enddo

search = i-1
end function search

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Need to split into pure search loop and calculational loop:

 Search loop is recognized; both loops get vectorized
– Good speed up provided number of executed iterations is not too small.

38

Search Loops - autovectorized

integer function search(a,b,c,n)
real, dimension(n) :: a, b, c
integer :: n, i, j

do i=1,n
if(a(i).lt.0.) exit

enddo
search = i-1

do j=1,search
c(j) = sqrt(a(j)) * b(j)

enddo

end function search

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

<Multiversioned v1>
remark #25233: Loop multiversioned for stride tests on Assumed shape arrays

One version has unit stride loads, one has gathers.
In more complex cases, may prevent vectorization

If arguments are contiguous, tell the compiler:

Real, contiguous :: a(:), b(:) (or real :: a(*), b(*))

39

Fortran Assumed Shape Array Arguments
may not be contiguous

subroutine func(a, b, n)
real :: a(:), b(:)
integer :: i, n

do i=1,n
b(i) = b(i) + a(i) * 2.

end do
end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Not so long ago, loops such as these would not have been vectorized:

The compiler can issue vector stores for b, but not vector loads for a

Recent compilers can vectorize the rest of the loop, even when issuing
separate loads for a(ind(i))

The following example calculates a net short-range potential by looping
over a list of other particles that are within the range of the potential

40

Indirect addressing

for (i = 0; i < m; i++) {
b[i] = a[ind[i]] + … ;

}

do i=1, m
b(i) = a(ind(i)) + …

enddo

do jnear=1,ni
jpt = ptind(jnear,ipt)
d = (pt(1,ipt) - pt(1,jpt))**2 + (pt(2,ipt) - pt(2,jpt))**2 &

+ (pt(3,ipt) - pt(3,jpt))**2
potl = potl - gsq * exp(-const*sqrt(d))/sqrt(d)

enddo

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort -O2 -xavx -qopt-report=3 -qopt-report-file=stderr -qopt-report-phase= loop,vec -
qopt-report-routine=indirect drive_indirect.F90 indirect.F90; ./a.out

LOOP BEGIN at indirect.F90(29,6)
remark #15300: LOOP WAS VECTORIZED

…

remark #15458: masked indexed (or gather) loads: 3

• The speedup compared to the non-vectorized version is ~2.7 x

• This comes from vectorization of the computation, especially the exponential
function, not from the indirect loads (“gathers”) themselves.

• If we compile with -xcore-avx2, hardware gather instructions are generated:

$ ifort -xcore-avx2 -S indirect.F90

$ grep gather indirect.s

vgatherqps %xmm1, (,%ymm15), %xmm2

– But the performance does not change

41

Indirect addressing example

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Whether vectorization is profitable depends on many factors, e.g.:

• Memory access pattern

• Amount of computation relative to memory access

• Whether loads are masked

• Loop trip count

You may sometimes want to override the compiler‘s choice:

!dir$ novector (prevents vectorization of following loop)

!dir$ vector always (overrides compiler’s estimate of profitability)

!dir$ omp simd (overrides everything)

The value of vectorizing gather (and sometimes scatter) operations
is that it allows large loops to vectorize that otherwise would not

• the rest of the loop runs faster than if not vectorized

• The gather (or scatter) itself may not run faster

Scatter loops (b(ind(i)) = a(i) + …) introduce additional issues

• Different values of i may write to same element of b; possible race condition

• Interesting subject; Intel® AVX-512 conflict detection instructions help

42

Indirect addressing

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Avoid manual unrolling in source (common in legacy codes)

• (re)write as simple “for” or “DO” loops

• Easier for the compiler to optimize and align

• Less platform-dependent

• More readable

Make loop induction variables local scalars (including loop limits)

• Compiler knows they can’t be aliased

Beware Fortran pointer and assumed shape array arguments

• Compiler can’t assume they are unit stride

• Declare CONTIGUOUS where appropriate

• Prefer allocatable arrays to pointers where possible

Disambiguate function arguments for C/C++

• E.g. By using -fargument-noalias

43

More General Advice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit SIMD (Vector) Programming

Vectorization is so important
 consider explicit vector programming

Modeled on OpenMP* for threading (explicit parallel programming)

• Enables reliable vectorization of complex loops that the compiler can’t
auto-vectorize

• E.g. outer loops

• Directives are commands to the compiler, not hints

• E.g. #pragma omp simd or !$OMP SIMD

• Programmer is responsible for correctness (like OpenMP threading)

• E.g. PRIVATE and REDUCTION clauses

• Overrides all dependencies and cost-benefit analysis

• Now incorporated in OpenMP 4.0  portable

• -qopenmp or -qopenmp-simd to enable

44

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit SIMD (Vector) Programming:

Use !$OMP SIMD or #pragma omp simd with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible
(ignoring dependency or efficiency concerns)

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Minimizes source code changes needed to enforce vectorization

subroutine add(A, N, X)
integer N, X
real A(N)

DO I=X+1, N
A(I) = A(I) + A(I-X)

ENDDO
end

subroutine add(A, N, X)
integer N, X
real A(N)

!$ OMP SIMD
DO I=X+1, N

A(I) = A(I) + A(I-X)
ENDDO

end

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for OMP SIMD directives

The programmer (i.e. you!) is responsible for correctness

 Just like for race conditions in loops with OpenMP* threading

Available clauses:

 PRIVATE

 FIRSTPRIVATE

 LASTPRIVATE like OpenMP for threading

 REDUCTION

 COLLAPSE (for nested loops)

 LINEAR (additional induction variables)

 SAFELEN (max iterations that can be executed concurrently)

 ALIGNED (tells compiler about data alignment)

46

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Outer Loop Vectorization

subroutine dist(pt, dis, n, nd, ptref)

implicit none

integer, intent(in) :: n, nd

real, dimension(nd,n), intent(in) :: pt

real, dimension (n), intent(out) :: dis

real, dimension(nd), intent(in) :: ptref

integer :: ipt, j

real :: d

!$omp simd private(d)

do ipt=1,n

d = 0.

#ifdef KNOWN_TRIP_COUNT

do j=1,MYDIM ! Defaults to 3

#else

do j=1,nd

#endif

d = d + (pt(j,ipt) - ptref(j))**2

enddo

dis(ipt) = sqrt(d)

enddo

Inner loop with
low trip count

! Calculate distance from data points to reference point

end

Outer loop with
high trip count

47

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Outer Loop Vectorization

ifort -qopt-report-phase=loop,vec -qopt-report-file=stderr -c dist.F90
…
LOOP BEGIN at dist.F90(17,3)

remark #15542: loop was not vectorized: inner loop was already vectorized
…
LOOP BEGIN at dist.F90(24,6)

remark #15300: LOOP WAS VECTORIZED

We can vectorize the outer loop by activating the directive

!$omp simd private(d) using -qopenmp-simd

Each iteration must have its own “private” copy of d.

ifort -qopenmp-simd -qopt-report-phase=loop,vec -qopt-report-file=stderr
-qopt-report-routine=dist -c dist.F90
…
LOOP BEGIN at dist.F90(17,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP BEGIN at dist.F90(24,6)

remark #25460: No loop optimizations reported
LOOP END

48

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Unrolling the Inner Loop

There is still an inner loop.

If the trip count is fixed and the compiler knows it,

the inner loop can be fully unrolled.

ifort -qopenmp-simd -DKNOWN_TRIP_COUNT -qopt-report-phase=loop,vec
-qopt-report-file=stderr -qopt-report-routine=dist drive_dist.F90 dist.F90

…
LOOP BEGIN at dist.F90(17,3)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at dist.F90(22,6)
remark #25436: completely unrolled by 3 (pre-vector)

LOOP END
LOOP END In this case, the outer loop can

be vectorized more efficiently;
SIMD may not be needed.

49

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up What’s going on

-O1 1.0 No vectorization

-O2 1.1 Inner loop
vectorization

-O2 -qopenmp-simd 1.7 Outer loop
vectorization

-O2 -qopenmp-simd
-DKNOWN_TRIP_COUNT

1.9 Inner loop
fully unrolled

-O2 -qopenmp-simd -xcore-avx2
-DKNOWN_TRIP_COUNT

2.4 Intel® AVX2 including
FMA instructions

50

Outer Loop Vectorization - performance

Performance tests are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may
cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790
system, frequency 3.6 GHz, running Red Hat* Enterprise Linux* version 7.0 and
using the Intel® Fortran Compiler version 16.0 beta.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function calls can have side effects that introduce a loop-carried dependency,
preventing vectorization

Possible remedies:

• Inlining
• best for small functions
• Must be in same source file, or else use -ipo

• !$OMP SIMD directive to vectorize remainder of loop, while
preserving scalar calls to function (last resort)

• SIMD-enabled functions

• Good for large, complex functions and in contexts where
inlining is difficult

• Call from regular DO loop

• Adding “ELEMENTAL” keyword allows SIMD-enabled function
to be called with array section argument

51

Loops Containing Function Calls

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Function

Compiler generates SIMD-enabled (vector) version of a scalar function
that can be called from a vectorized loop:

real function func(x,y,xp,yp)

!$omp declare simd (func) uniform(y, xp, yp)

real, intent(in) :: x, y, xp, yp

denom = (x-xp)**2 + (y-yp)**2

func = 1./sqrt(denom)

end

…

!$omp simd private(x) reduction(+:sumx)

do i = 1,nx-1

x = x0 + i*h

sumx = sumx + func(x,y,xp,yp)

enddo

SIMD-enabled function must have explicit interface

!$omp simd may not be needed in simple cases

52

These clauses are required for
correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, xp and yp are constant,
x can be a vector

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for SIMD-enabled Functions

#pragma omp declare simd (C/C++)

!$OMP DECLARE SIMD (fn_name) (Fortran)

• LINEAR (REF|VAL|UVAL) (additional induction variables)
use REF(X) when vector argument
is passed by reference (Fortran default)

• UNIFORM (argument is never vector)

• INBRANCH / NOTINBRANCH (will function be called conditionally?)

• SIMDLEN (vector length)

• ALIGNED (tells compiler about data alignment)

• PROCESSOR (tells compiler which processor to

• core_2nd_gen_avx target. NOT controlled by –x… switch.

• core_4th_gen_avx Intel extension in 17.0 compiler)

• mic_avx512, …

53

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Clauses for SIMD-enabled Functions

#pragma omp declare simd (C/C++)

!$OMP DECLARE SIMD (fn_name) (Fortran)

• LINEAR (REF|VAL|UVAL) (additional induction variables)
use REF(X) when vector argument
is passed by reference (Fortran default)

• UNIFORM (argument is never vector)

• INBRANCH / NOTINBRANCH (will function be called conditionally?)

• SIMDLEN (vector length)

• ALIGNED (tells compiler about data alignment)

• PROCESSOR (tells compiler which processor to

• core_2nd_gen_avx target. NOT controlled by –x… switch.

• core_4th_gen_avx Intel extension.)

• mic_avx512, … (17.0 compiler only)

54

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use PROCESSOR clause to get full benefit on KNL

#pragma omp declare simd uniform(y,z,xp,yp,zp)

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,
unmasked, formal parameter types: (vector,uniform,uniform,uniform)

remark #15347: FUNCTION WAS VECTORIZED with xmm, simdlen=4,
masked, formal parameter types: (vector,uniform,uniform,uniform)

• default ABI requires passing arguments in 128 bit xmm registers

#pragma omp declare simd uniform(y,z,xp,yp,zp), processor(mic-avx512),
notinbranch

remark #15347: FUNCTION WAS VECTORIZED with zmm, simdlen=16,
unmasked, formal parameter types: (vector,uniform,uniform,uniform)

• Passing arguments in zmm registers facilitates 512 bit vectorization

• Independent of -xmic-avx512 switch

• notinbranch means compiler need not generate masked function version

55

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Subroutine

Compiler generates SIMD-enabled (vector) version of a scalar subroutine
that can be called from a vectorized loop:

subroutine test_linear(x, y)

!$omp declare simd (test_linear) linear(ref(x, y))

real(8),intent(in) :: x

real(8),intent(out) :: y

y = 1. + sin(x)**3

end subroutine test_linear

…

Interface

…

do j = 1,n

call test_linear(a(j), b(j))

enddo

SIMD-enabled routine must have explicit interface

!$omp simd not needed in simple cases like this

56

remark #15301: FUNCTION WAS VECTORIZED.

remark #15300: LOOP WAS VECTORIZED.

Important because arguments
passed by reference in Fortran

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Subroutine

The LINEAR(REF) clause is very important

• In C, compiler places consecutive argument values in a vector register

• But Fortran passes arguments by reference

• By default compiler places consecutive addresses in a vector register

• Leads to a gather of the 4 addresses (slow)

• LINEAR(REF(X)) tells the compiler that the addresses are consecutive;
only need to dereference once and copy consecutive values to vector register

• New in compiler version 16.0.1

• Same method could be used for C arguments passed by reference

57

Approx speed-up for double precision array of 1M elements

No DECLARE SIMD 1.0

DECLARE SIMD but no LINEAR(REF) 0.9

DECLARE SIMD with LINEAR(REF) clause 3.6

Performance tests are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on an Intel® Xeon® E7-4850 v3 system, frequency 2.2 GHz, running Red
Hat* Enterprise Linux* version 7.1 and using the Intel® Fortran Compiler version 16.0.1.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop Optimization Summary

The importance of SIMD parallelism is increasing

• Moore’s law leads to wider vectors as well as more cores

• Don’t leave performance “on the table”

• Be ready to help the compiler to vectorize, if necessary

• With compiler directives and hints

• Using information from vectorization and optimization reports

• With explicit vector programming

• Use Intel® Advisor and/or Intel® VTune™ Amplifier XE to find the best
places (hotspots) to focus your efforts

• No need to re-optimize vectorizable code for new processors

• Typically a simple recompilation

58

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Safety

A threadsafe function can be called simultaneously from multiple threads,
and still give correct results

 Potential conflicts must either be protected (synchronized) or avoided (by
privatization)

 Static local data: each thread may access same copy!

 Automatic data: each thread has own copy & stack

ifort defaults:

 Local scalars are automatic

 Local arrays are static

When compiling with -openmp, default changes

 Local arrays become automatic

 Same as compiling with -auto

 This may increase the required stack size

– Beware segmentation faults!

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Making a function thread safe

With the compiler

 Compile with -qopenmp or -recursive

 Compile with -auto

– May have less impact on serial optimization

In source code

 Use AUTOMATIC keyword in declarations

– But doesn’t cover compiler-generated temporaries

 Declare function as RECURSIVE

– Covers whole function, including compiler-generated code

– Best way to make code thread safe if you don’t want to depend on build
options

In either case:

 don’t use -save or SAVE keyword

 Avoid global variables, (C also),

– Or don’t write to them unless synchronized

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Safe Libraries (Linux* Fortran)

The Intel® Math Kernel library is threadsafe

• Sequential version as well as threaded version

The Intel Fortran runtime library for Linux* has two versions

• The default is not threadsafe in compiler versions ≤ 16.0 (libifcore)

• Build with -threads to link to threadsafe version (libifcoremt, libifcoremd)

• If you build with -qopenmp, the threadsafe version is linked by default

• Compile main program with -qopenmp or -threads to ensure the
threadsafe library is initialized in threadsafe mode.

• If no Fortran main program, initialize library with

USE IFCORE

istat = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_THREADED)

• Threadsafe version will be default in version 17.0 compiler

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance considerations

Start with optimized serial code, vectorized inner loops, etc. (-O3 -xavx -ipo …)

Ensure sufficient parallel work (/O3 /Qxavx /Qipo..)

Minimize data sharing between threads

• Unless read-only

Avoid false sharing of cache lines

• Each thread thinks it’s copy of A(i,j)
may have been invalidated

• Reversing subscripts of A improves
data locality for each thread

• Contiguous memory access also
permits vectorization of inner loop

Scheduling options

• Consider DYNAMIC or GUIDED if work is unevenly distributed between loop
iterations

!$OMP parallel do
do i=1,nthreads
do j=1,10000
A(i,j) = A(i,j) + ..

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Timers for threaded apps

The Fortran standard timer CPU_TIME returns “processor time”

 It sums time over all threads/cores

 Like the “User time” in the Linux* “time” command

 So threaded apps don’t seem to run faster than serial ones

The Fortran intrinsic subroutine SYSTEM_CLOCK returns data from the real time
clock

 Does not sum over cores

 Like the “real time” in the Linux “time” command

 Can be used to measure the speedup due to threading

dclock (Intel-specific function) can also be used

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Affinity Interface

Allows OpenMP* threads to be bound to physical or logical cores

• export environment variable OMP_PROC_BIND=

• close assign threads to consecutive cores on same socket until saturated
(eg to benefit from shared cache). May leave unused cores.

• spread share threads between all cores but assign threads to consecutive
cores on same socket where possible
(maximize resources, including bandwidth to memory)

• none (default) threads are not bound to cores

• Helps optimize access to memory or cache

• Particularly important if Hyperthreading is enabled

• else some physical cores may be idle while others run multiple threads

• Older, Intel-specific variable is

• KMP_AFFINITY = compact / scatter / balanced / physical

• See compiler documentation for more detail

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Common problems

Insufficient stack size

 Most frequently reported OpenMP* issue!

 Typical symptom: seg fault during initialization

For whole program (shared + local data):

 Increase shell limits to large value
– (address space, memory allocated only if needed)

 Bash : ulimit -s [value in KB] or [unlimited]

– Can only increase once!

 C shell: limit stacksize 1000000 (for 1 GB)

 Windows*: /F:100000000 (value in bytes)

 Typical OS defaults ~10 MB

For individual thread (thread local data only)

 export OMP_STACKSIZE=[size], default 4m (4 MB)

 Actually allocates memory, so don’t make too large

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Tips for Debugging OpenMP* apps

Build with -qopenmp to generate threaded code

 but run a single thread, OMP_NUM_THREADS=1

 If it works, try Intel® Inspector XE to detect threading errors

 If still fails, excludes race conditions or other synchronization issues as cause

Build with -qopenmp-stubs -auto

 RTL calls are resolved; but no threaded code is generated

 allocates local arrays on the stack, as for OpenMP

 If works, check for missing FIRSTPRIVATE, LASTPRIVATE

 If still fails, eliminates threaded code generation as cause

 If works without -auto, implicates changed memory model

– Perhaps insufficient stack size

– Perhaps values not preserved between successive calls

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Tips for Debugging OpenMP* apps

If debugging with PRINT statements

 print out the thread number with omp_get_thread_num()

 remember to USE OMP_LIB (declares this integer!)

 the internal I/O buffers are threadsafe (with -qopenmp),
but the order of print statements from different threads is undetermined.

Debug with -O0 -qopenmp

 Unlike most other optimizations, OpenMP threading is not disabled at -O0

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Heap or Stack?

If you don’t want to deal with stack size issues, you can ask for automatic and
temporary arrays, including OpenMP* PRIVATE copies, to be allocated on the
heap

-heap-arrays [size]

Arrays [> size KB known at compile time] allocated on heap

ALLOCATE() including inside the parallel region

Downside:

 Heap allocations will be serialized for safety

 Less data locality

 Some cost in performance, especially for high thread counts

68

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
69

Floating Point Programming Objectives (recap)

 Accuracy

– Produce results that are “close” to the correct value

 Performance

– Produce the most efficient code possible

 Reproducibility

– Produce consistent or identical results

– Beyond the inherent uncertainty of floating-point arithmetic

– From one run to the next

– From one set of build options to another (e.g. optimization levels)

– From one compiler to another

– From one platform to another

– Typically for reasons related to QA

These objectives usually conflict!
Compiler options let you control the tradeoffs.

Intel

Confid

ential

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Original Solution: /fp:precise (-fp-model precise)

For consistent results from non-threaded, compiler-generated code

 Based on Microsoft* Visual C++ option

 Introduced in Intel® Compiler version 9.

 Allows value-safe optimizations only. Examples of optimizations disallowed:

– Reassociation

– Includes vectorization of reductions

– Flush-to zero (abrupt underflow)

– Fast, approximate divide and sqrt

– Fast, vectorized math functions

– Constant folding (evaluation at compile time)

– Etc.

70

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

But things got more complicated...

Math libraries gave different results on different microarchitectures

 Including on Intel and non-Intel processors

 Due to internal dispatch inside library at run-time

– Independent of compiler processor-targeting switches

Solution: /Qimf-arch-consistency:true (-fimf-arch-consistency=true)

 Gives same result on all processors of same architecture

– At some cost in performance

71

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

And then there were FMAs …

An FMA may give a different result from separate multiply and add operations

 Normally, more accurate

 Newly important since the arrival of Intel® Xeon Phi™ coprocessors and
processors supporting Intel® AVX2

– Though Intel® Itanium® processors had them, too

 FMA’s (F-P contractions) are not disabled by /fp:precise (-fp-model precise)

– Original decision by Microsoft

– Leads to differences between processors that do or do not support FMAs

 Replacing a multiply and an add by an FMA is an optimization

– At -O1 and above, with -xcore-avx2, -mmic, -xmic-avx512, etc.

– Leads to different results at different optimization levels

– Not covered by language standards; compiler may choose to group operations into
FMAs in different ways

72

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMA: Example and Solution

FMA’s break symmetry, e.g.:

double a, b, c, d, x;

c = -a;

d = b;

x = a*b + c*d;

 Without FMA, should evaluate to zero; with FMA, may not:

x = (a* b + (c*d)) or ((a*b) + c * d)

FMA(a,b,(c*d)) FMA(c,d,(a*b))

– each has different rounding, unspecified which grouping the compiler will generate

Solution for reproducible results is /Qfma- (-no-fma)

 At some cost in performance

– /fp:strict (-fp-model strict) also disables, but has much wider impact…

73

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reproducibility: the bottom line (for Intel64)

/fp:precise /Qfma- /Qimf-arch-consistency:true (Windows*)

-fp-model precise -no-fma -fimf-arch-consistency=true (Linux* or OS X*)

 Recommended for best reproducibility

– Also for IEEE compliance

– And for language standards compliance (C, C++ and Fortran)

 This isn’t very intuitive

– a single switch will do all this in the 17.0 compiler

– -fp-model consistent (/fp:consistent on Windows*)

74

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Submodules from Fortran 2008

Minor, internal changes to a module no longer trigger recompilation of all code
that USEs the module

• Provided interfaces do not change

Interfaces go in parent module

• And any variables that are accessed externally

Implementations go in submodule(s)

SUBMODULE (My_Mod) My_Sub_Mod

• Separate source

• Variables cannot be accessed outside of submodule

• Need not repeat interface if MODULE procedure

New intermediate files *.smod (like .mod file for submodules)

75

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Submodules (F2008) – The Solution

76

module bigmod
…
interface
module subroutine sub1
…
module function func2
…
module subroutine sub47
…
end interface
end module bigmod

submodule (bigmod)
bigmod_submod
contains
module subroutine sub1
… implementation of sub1
module function func2
… implementation of func2
…
module subroutine sub3
… implementation of sub3
end submodule bigmod_submod

Changes in the submodule don’t force
recompilation of uses of the module – as long as
the interface doesn’t change

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Scalar Math Library

Scalar math library now optimized for Intel® AVX2

• libimf on Linux* and OS*X, libm on Windows*

• FMA instructions, in particular, lead to speed up

• Somewhat more for double precision than for single

• tan, sin, cos, exp, pow…

• Intel® AVX2 support detected at run-time and corresponding function version is
selected

• There are no scalar math library special optimizations for Intel® AVX, since the
increased vector width does not directly benefit scalar code.

• The Short Vector Math Library (libsvml) contains vectorized function versions with
their own entry points for different instruction sets, optimized for Intel AVX2 since
compiler version 13.0.

77

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

More New Features in Fortran 16.0

IMPURE ELEMENTAL from Fortran 2008

• ELEMENTAL procedures can have side effects, e.g. I/O, random numbers,

Further C Interoperability from Fortran 2015

• TYPE(*) (assumed type, rather like void* in C)

• DIMENSION(..) (assumed rank)

• Support needs of MPI3

!$OMP TARGET DEPEND (OpenMP* 4.5)

• Facilitates synchronization between offload tasks

!DIR$ BLOCK_LOOP

• Facilitates blocking for better data reuse and cache utilization

-fpp-name option

• Lets you supply your own preprocessor

78

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New Fortran Features of 17.0

Much improved coarray performance

• No more element-by-element transfers

Default RTL is threadsafe at last!

• -reentrancy=threaded

Assert alignment of allocatable arrays (and pointer arrays)

• Didn’t work before 17.0

• Compiler can’t know lower bound at compile time

• !dir$ assume_aligned ARRAY(-4):64

• Must specify which element is aligned!

Less temporary array copies:

• CONTIGUOUS keyword may require temporary copy to ensure contiguity

• Without CONTIGUOUS, assumed shape arrays result in gathers

• 17.0 compiler recognizes more contiguous arrays at compile time

• CQ409519 – allocatable components of derived types

• tests for contiguity at run-time. (CQ380398)

• %re, %im for real & imaginary parts of complex number

79

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New OpenMP Features of 17.0

LINEAR(REF()) clause for SIMD functions

• Avoids gathers for pass-by-reference => better performance

• Particularly important for Fortran, where pass by reference is default

PROCESSOR clause for SIMD functions

• Else ABI requires arguments passed in 128 bit xmm registers, even on KNL

• !$OMP DECLARE SIMD (my_func) PROCESSOR (mic_avx512) (or #pragma)

TASKLOOP

• Somewhat similar to cilk_for; thread a loop using OpenMP tasks

80

subroutine test_linear(x, y)

!$omp declare simd (test_linear) linear(ref(x, y))

real(8),intent(in) :: x

real(8),intent(out) :: y

y = 1. + sin(x)**3

end subroutine test_linear

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New C/C++ Features of 17.0

• SIMD Data Layout Template to facilitate vectorization for your C++ code

• Write code as AoS, let compiler convert to SoA for optimization

• Improved code alignment for loops and functions

• -falign-loops[=n], /Qalign-loops[:n]

• support for most of the latest C11 and C++14 standards

• C11 keywords _Alignas, _Alignof, _Static_assert, _Thread_local, _Noreturn, _Generic

• C++14: Generic Lambdas, Generalized lambda captures, Digit Separators,
[[deprecated]] attribute

• Virtual Vector Functions: Set of versions inherited and cannot be altered in
overrides

• Vector Function Pointers: -simd-function-pointers, -Qsimd-function-pointers

• SVRNG (Short Vector Random Number Generator): SIMD intrinsics for high
quality random number generators from the C++ standard and/or Intel® MKL

• rand0, rand, mcg31m1, mcg59, mt19937

• Enables vectorization of loops with scalar calls to these functions

81

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Self- or leveraged-boot

• But expect most customers to prefer self-boot (no more offload!)

• Intel® AVX-512 instruction set

• Slightly different from future Intel® Xeon architecture

Binary incompatible with KNC (mostly source compatible)

• Intel® SSE, AVX, AVX2 instruction sets

• Apps built for HSW and earlier can run on KNL without recompilation

• More cores than KNC, higher frequency

• Silvermont-based, better scalar performance

• New, on-package high bandwidth memory (MCDRAM)

• Lots of regular memory (100’s of GB DDR4)

• Run much larger HPC workloads than KNC

82

KNL Overview

Changes for SW development resulting from new Intel® AVX-512 ISA

83

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 - Greatly increased Register File

XMM0-15

16- bytes

YMM0-15

32 bytes

ZMM0-31

64 bytes

SSE
AVX2

AVX-512

0

15

31

Vector
Registers

IA32
(32bit)

Intel64
(64bit)

SSE
(1999)

8 x 128bit 16 x
128bit

AVX and
AVX-2
(2011 / 2013)

8 x 256bit 16 x
256bit

AVX-512
(2014 – KNL)

8 x 512bit 32 x
512bit

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Intel® AVX-512 Subsets [1]

 Comprehensive vector extension for HPC and enterprise

 All the key AVX-512 features: masking, broadcast…

 32-bit and 64-bit integer and floating-point instructions

 Promotion of many AVX and AVX2 instructions to AVX-512

 Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit Foundation instructions common between MIC and Xeon

 Allow vectorization of loops with possible address conflict

 Will show up on Xeon

AVX-512 CD (Conflict Detection instructions)

 fast (28 bit) instructions for exponential and reciprocal (as well as RSQRT)

 New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 extensions for exponential and prefetch operations

AVX-512 F

AVX-512CD

AVX-512ER

AVX-512PR

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Intel® AVX-512 Subsets [2] (not KNL !)

 All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide

 Close 64bit gaps like VPMULLQ : packed 64x64  64

 Extend mask architecture to word and byte (to handle vectors)

 Packed/Scalar converts of signed/unsigned to SP/DP

AVX-512 Double and Quad word instructions

 Extend packed (vector) instructions to byte and word (16 and 8 bit) data types

MMX/SSE2/AVX2 re-promoted to AVX512 semantics

 Mask operations extended to 32/64 bits to adapt to number of objects in
512bit

 Permute architecture extended to words (VPERMW, VPERMI2W, …)

AVX-512 Byte and Word instructions

 Vector length orthogonality

Support for 128 and 256 bits instead of full 512 bit

 Not a new instruction set but an attribute of existing 512bit instructions

AVX-512 Vector Length extensions

AVX-512DQ

AVX-512BW

AVX-512VL

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Other New Instructions (not KNL!)

Set of instructions to implement checking a pointer against its bounds

Pointer Checker support in HW (today a SW only solution of e.g. Intel
Compilers)

Debug and security features

Intel® MPX – Intel Memory Protection Extension

 Fast implementation of cryptographic hashing algorithm as defined by NIST
FIPS PUB 180

Intel® SHA – Intel Secure Hash Algorithm

 needed for future memory technologies

Single Instruction – Flush a cache line

MPX

SHA

CLFLUSHOPT

Save and restore extended processor state XSAVE{S,C}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 – KNL and future Xeon

 KNL and future Intel® Xeon
architecture share a large set
of instructions

– but sets are not identical

 Subsets are represented by
individual feature flags
(CPUID)

Future Xeon
Phi (KNL)

SSE*

AVX

AVX2*

AVX-512F

Future Xeon

SSE*

AVX

AVX2

AVX-512F

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
89

Intel® Compiler Switches Targeting Intel® AVX-512

Switch Description

-xmic-avx512 KNL only

-xcore-avx512 Future Xeon only

-xcommon-avx512 AVX-512 subset common to both.
Not a fat binary.

-m, -march, /arch Not yet !

-axmic-avx512 etc. Fat binaries. Allows to target KNL
and other Intel® Xeon® processors

-qoffload-arch=mic-avx512 Offload to KNL coprocessor

Don’t use -mmic with KNL !

All supported in 16.0 and 17.0 compilers

Binaries built for earlier Intel® Xeon® processors will run unchanged on KNL
Binaries built for Intel® Xeon Phi™ coprocessors will not.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Consider Cross-Compiling

KNL is suited to highly parallel applications

• It’s scalar processor is less powerful than that of a “large core” Intel® Xeon®
processor

The Intel® Compiler is a mostly serial application

• Compilation is likely to be faster on an Intel Xeon processor

• For parallelism, try make -j

90

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report

subroutine test1(a, b ,c, d)
integer, parameter :: len=1024
complex(8), dimension(len) :: a, b, c
real(4), dimension(len) :: d

do i=1,len
c(i) = exp(d(i)) + a(i)/b(i)

enddo

End

$ ifort -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr
-qopt-report-phase=loop,vec,cg -qopt-report-embed test_rpt.f90

• 1 vector iteration comprises
• 16 floats in a single AVX-512 register (d)
• 16 double complex in 4 AVX-512 registers per variable (a, b, c)

• Replace exp(d(i)) by d(i) and the compiler will choose a vector length of 4
• More efficient to convert d immediately to double complex

91

From assembly listing:

VECTOR LENGTH 16
MAIN VECTOR TYPE: 32-bits floating point

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Optimization Report

Compiler options: -c -S -xmic-avx512 -O3 -qopt-report=4 -qopt-report-file=stderr
-qopt-report-phase=loop,vec,cg -qopt-report-embed

…

remark #15305: vectorization support: vector length 16

remark #15309: vectorization support: normalized vectorization overhead 0.087

remark #15417: vectorization support: number of FP up converts: single
precision to double precision 1 [test_rpt.f90(7,6)]

remark #15300: LOOP WAS VECTORIZED

remark #15482: vectorized math library calls: 1

remark #15486: divides: 1

remark #15487: type converts: 1

…

• New features include the code generation (CG) / register allocation report

• Includes temporaries; stack variables; spills to/from memory

92

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization works as for other targets

• 512, 256 and 128 bit instructions available

• 64 byte alignment is best, like for KNC

• New instructions can help

Vectorization of compress/expand loops:

• Uses vcompress/vexpand on KNL

Convert certain gathers to vector loads

Can auto-generate Conflict Detection instructions (AVX512CD)

93

Optimization Improvements

for (int i; i <N; i++) {

if (a[i] > 0) {

b[j++] = a[i]; //

compress

c[i] = a[k++]; //

expand

}

}
• Cross-iteration

dependencies

by j and k

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, does not auto-vectorize

• And vectorizing with SIMD would be too inefficient

ifort -c -xcore-avx2 -qopt-report-file=stderr -qopt-report=3 -qopt-report-phase=vec compress.f90

…
LOOP BEGIN at compress.f90(11,3)

remark #15344: loop was not vectorized: vector dependence prevents vectorization.
First dependence is shown below. Use level 5 report for details

remark #15346: vector dependence: assumed ANTI dependence between line 13 and line 13

LOOP END

• C code behaves the same

94

Compress/Expand Loops with Intel® AVX-512

nb = 0
do ia=1, na ! line 11
if(a(ia) > 0.) then
nb = nb + 1
b(nb) = a(ia)

endif
enddo

for (int i; i <N; i++) {

if (a[i] > 0) {

b[j++] = a[i]; // compress

// c[i] = a[k++]; // expand

}

}
• Cross-iteration dependencies by j and

k

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile for KNL:

ifort -c -qopt-report-file=stderr -qopt-report=3 -qopt-report-phase=vec -xmic-avx512 compress.f90
…
LOOP BEGIN at compress.f90(11,3)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15457: masked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 14.040
remark #15497: vector compress: 1

LOOP END

grep vcompress compress.s
vcompressps %zmm4, -4(%rsi,%rdx,4){%k1} #14.7 c7 stall 1
vcompressps %zmm1, -4(%rsi,%r12,4){%k1} #14.7 c5
vcompressps %zmm1, -4(%rsi,%r12,4){%k1} #14.7 c5
vcompressps %zmm4, -4(%rsi,%rdi,4){%k1} #14.7 c7 stall 1

Observed speed-up is substantial but depends on problem size, data layout, etc.

95

Compress Loop

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
96

Adjacent Gather Optimizations

Or “Neighborhood Gather Optimizations”

do j=1,n
y(j) = x(1,j) + x(2,j) + x(3,j) + x(4,j) ….

• Elements of x are adjacent in memory, but vector index is in other
dimension

• Compiler generates simd loads and shuffles for x instead of gathers

• Before AVX-512: gather of x(1,1), x(1,2), x(1,3), x(1,4)

• With AVX-512: SIMD loads of x(1,1), x(2,1), x(3,1), x(4,1) etc.,
followed by permutes to get back to x(1,1), x(1,2), x(1,3), x(1,4) etc.

• Message in optimization report:

remark #34029: adjacent sparse (indexed) loads optimized for speed

• Arrays of short vectors or structs are very common

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Motivation for Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to race
conditions

Consider the “scatter” or “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Problem if two vector lanes try to increment the same histogram bin

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-
op-scatter with vector of indexes that contain conflicts

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Conflict Detection Instructions in AVX-512

VPCONFLICT instruction detects elements with
previous conflicts in a vector of indexes

 Allows to generate a mask with a subset of
elements that are guaranteed to be conflict free

 The computation loop can be re-executed with the
remaining elements until all the indexes have been
operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

VCONFLICT instr.
VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

With Intel® AVX2, this does not vectorize

• Store to h is a scatter

• ih can have the same value for different values of i

• Vectorization with a SIMD directive would cause incorrect results

ifort -c -xcore-avx2 histo2.f90 -qopt-report-file=stderr -qopt-report-phase=vec

LOOP BEGIN at histo2.f90(11,4)

remark #15344: loop was not vectorized: vector dependence prevents vectorization.
First dependence is shown below. Use level 5 report for details

remark #15346: vector dependence: assumed FLOW dependence between line 15 and line 15

LOOP END

99

Histogramming with Intel® AVX2

! Accumulate histogram of sin(x) in h
do i=1,n

y = sin(x(i)*twopi)
ih = ceiling((y-bot)*invbinw)
ih = min(nbin,max(1,ih))
h(ih) = h(ih) + 1 ! line 15

enddo

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compile for KNL using Intel® AVX-512CD:

ifort -c -xmic-avx512 histo2.f90 -qopt-report-file=stderr -qopt-report=3 –S
…
LOOP BEGIN at histo2.f90(11,4)

remark #15300: LOOP WAS VECTORIZED
remark #15458: masked indexed (or gather) loads: 1
remark #15459: masked indexed (or scatter) stores: 1
remark #15478: estimated potential speedup: 13.930
remark #15499: histogram: 2

LOOP END

vpminsd %zmm5, %zmm21, %zmm3 #14.7 c19
vpconflictd %zmm3, %zmm1 #15.7 c21
vpgatherdd -4(%rsi,%zmm3,4), %zmm6{%k1} #15.15 c21
vptestmd %zmm18, %zmm1, %k0 #15.7 c23
kmovw %k0, %r10d #15.7 c27 stall 1
vpaddd %zmm19, %zmm6, %zmm2 #15.7 c27
testl %r10d, %r10d
…
vpscatterdd %zmm2, -4(%rsi,%zmm3,4){%k1} #15.7 c3

100

Histogramming with Intel® AVX-512

Some remarks
omitted

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Observed speed-up between AVX2 (non-vectorized) and AVX512
(vectorized) can be large, but depends on problem details

• Comes mostly from vectorization of other heavy computation in the loop

• Not from the scatter itself

• Speed-up may be (much) less if there are many conflicts

• E.g. histograms with a singularity or narrow spike

Other problems map to this

• E.g. energy deposition in cells in particle transport Monte Carlos

101

Histogramming with Intel® AVX-512

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

Hardware prefetcher is more effective than for KNC

Software (compiler-generated) prefetching is off by default

• Like for Intel® Xeon® processors

• Enable by -qopt-prefetch=[1-5]

KNL has gather/scatter prefetch

• Enable auto-generation to L2 with -qopt-prefetch=5

• Along with all other types of prefetch, in addition to h/w prefetcher – careful.

• Or hint for specific prefetches

• !DIR$ PREFETCH var_name [: type : distance]

• Needs at least -qopt-prefetch=2

• Or call intrinsic
• _mm_prefetch((char *) &a[i], hint);

• MM_PREFETCH(A, hint)

102

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching for KNL

void foo(int n, int* A, int *B, int *C) {
// pragma_prefetch var:hint:distance

#pragma prefetch A:1:3
#pragma vector aligned
#pragma simd
for(int i=0; i<n; i++)
C[i] = A[B[i]];

}
icc -O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S emre5.cpp

remark #25033: Number of indirect prefetches=1, dist=2
remark #25035: Number of pointer data prefetches=2, dist=8
remark #25150: Using directive-based hint=1, distance=3 for indirect memory reference [emre5.cpp(…
remark #25540: Using gather/scatter prefetch for indirect memory reference, dist=3 [emre5.cpp(9,12)]
remark #25143: Inserting bound-check around lfetches for loop

% grep gatherpf emre5.s
vgatherpf1dps (%rsi,%zmm0){%k1} #9.12 c7 stall 2

% grep prefetch emre5.s
mark_description "-O3 -xmic-avx512 -qopt-prefetch=3 -qopt-report=4 -qopt-report-file=stderr -c -S -g";

prefetcht0 512(%r9,%rcx) #9.14 c1
prefetcht0 512(%r9,%r8) #9.5 c7

103

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Software Development Emulator (SDE)

104

Intel Compilers Already Recognize Intel® AVX-512 and Will Generate KNL Code

Use Intel® Software Development Emulator (SDE) to Test Code

 Will test instruction mix, not performance

 Does not emulate hardware (e.g. memory hierarchy) only ISA

Use the SDE to Answer

 Is my compiler generating Intel® AVX-512/KNL-ready code?

 How do I restructure my code so that Intel® AVX-512 code is generated?

Visit Intel Xeon Phi Coprocessor code named “Knights Landing” - Application

Readiness

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-code-named-knights-landing-application-readiness

Adapting SW to make best use of KNL MCDRAM

105

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• API is open-sourced (BSD licenses)

• https://github.com/memkind ; also part of XPPSL at
https://software.intel.com/articles/xeon-phi-software

• User jemalloc API underneath

• http://www.canonware.com/jemalloc/

• https://www.facebook.com/notes/facebook-engineering/scalable-memory-
allocation-using-jemalloc/480222803919

malloc replacement:

106

High Bandwidth On-Package Memory API

#include <memkind.h>

hbw_check_available()

hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)

hbw_free()

hbw_posix_memalign(), _posix_memalign_psize()

hbw_get_policy(), _set_policy()

ld … -ljemalloc –lnuma –lmemkind –lpthread

https://github.com/memkind
https://software.intel.com/articles/xeon-phi-software
http://www.canonware.com/jemalloc/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fortran:

!DIR$ ATTRIBUTES FASTMEM :: data_object1, data_object2 (15.0, 16.0, 17.0)

• Flat or hybrid mode only

• More Fortran data types may be supported eventually

• Global, local, stack or heap; OpenMP private copies;

• Currently just allocatable arrays (16.0) and pointers (17.0)

• Must remember to link with libmemkind !

Possible addition in a 17.0 compiler:

• Placing FASTMEM directive before ALLOCATE statement

• Instead of ALLOCATABLE declaration

C++: can pass hbw_malloc() etc.

standard allocator replacement for e.g. STL like

#include <hbw_allocator.h>

std::vector<int, hbw::allocator::allocate>

Available already, working on documentation

107

HBW API for Fortran, C++

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Fortran 2003 C-interoperability features to call memkind API

interface
function hbw_check_available() result(avail) bind(C,name='hbw_check_available')

use iso_c_binding
implicit none
integer(C_INT) :: avail

end function hbw_check_available
end interface

integer :: istat
istat = hbw_check_available()
if (istat == 0) then

print *, HBM available'
else

print *, 'ERROR, HBM not available, return code=', istat
end if

108

HBW APIs (Fortran)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <memkind.h>

int hbw_get_size(int partition, size_t * total, size_t * free) { // partition=1 for HBM
memkind_t kind;

int stat = memkind_get_kind_by_partition(partition, &kind);
if(stat==0) stat = memkind_get_size(kind, total, free);
return stat;

}

Fortran interface:
interface

function hbw_get_size(partition, total, free) result(istat) bind(C, name='hbw_get_size')
use iso_c_binding
implicit none
integer(C_INT) :: istat
integer(C_INT), value :: partition
integer(C_SIZE_T) :: total, free

end function hbw_get_size
end interface

HBM doesn’t show as “used” until first access after allocation

109

How much HBM is left?

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Happens if HBW Memory is Unavailable?
(Fortran)

In 16.0: silently default over to regular memory

New Fortran intrinsic in module IFCORE in 17.0:

integer(4) FOR_GET_HBW_AVAILABILITY()

Return values:

• FOR_K_HBW_NOT_INITIALIZED (= 0)

• Automatically triggers initialization of internal variables

• In this case, call a second time to determine availability

• FOR_K_HBW_AVAILABLE (= 1)

• FOR_K_HBW_NO_ROUTINES (= 2) e.g. because libmemkind not linked

• FOR_K_HBW_NOT_AVAILABLE (= 3)

• does not distinguish between HBW memory not present; too little HBW available;
and failure to set MEMKIND_HBW_NODES

New RTL diagnostics when ALLOCATE to fast memory cannot be honored:
183/4 warning/error libmemkind not linked
185/6 warning/error HBW memory not available
Severe errors 184, 186 may be returned in STAT field of ALLOCATE statement

110

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Controlling What Happens if HBM is Unavailable
(Fortran)

In 16.0: you can’t

New Fortran intrinsic in module IFCORE in 17.0:

integer(4) FOR_SET_FASTMEM_POLICY(new_policy)

input arguments:

• FOR_FASTMEM_INFO (= 0) return current policy unchanged

• FOR_FASTMEM_NORETRY (= 1) error if unavailable (default)

• FOR_FASTMEM_RETRY_WARN (= 2) warn if unavailable, use default memory

• FOR_FASTMEM_RETRY (= 3) if unavailable, silently use default memory

• returns previous HBW policy

Environment variables (to be set before program execution):

• FOR_FASTMEM_NORETRY =T/F default False

• FOR_FASTMEM_RETRY =T/F default False

• FOR_FASTMEM_RETRY_WARM=T/F default False

111

Dealing with FP consistency when moving from Intel® MIC or Intel Xeon to KNL

112

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Floating-Point Reproducibility

-fp-model precise disables most value-unsafe optimizations
(especially reassociations)

• The primary way to get consistency between different platforms
(including KNL) or different optimization levels

• Does not prevent differences due to:

• Different implementations of math functions

• Use of fused multiply-add instructions (FMAs)

• Floating-point results on Intel® Xeon Phi™ coprocessors may not be
bit-for-bit identical to results obtained on Intel® Xeon® processors or
on KNL

113

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization of loops containing transcendental functions

Fast, approximate division and square roots

Flush-to-zero of denormals

Vectorization of reduction loops

Other reassociations

(including hoisting invariant expressions out of loops)

Evaluation of constant expressions at compile time

…

114

Disabled by -fp-model precise

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional Resources (Optimization)

Webinars:
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-
new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-
webinar-code-samples
https://software.intel.com/videos/from-serial-to-awesome-part-2-advanced-code-
vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops

Vectorization Guide (C): https://software.intel.com/articles/a-guide-to-auto-
vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Initially written for Intel® Xeon Phi™ coprocessors, but also applicable elsewhere:
https://software.intel.com/articles/vectorization-essential

https://software.intel.com/articles/fortran-array-data-and-arguments-and-
vectorization

Compiler User Forums at http://software.intel.com/forums

115

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/new-vectorization-features-of-the-intel-compiler
https://software.intel.com/articles/further-vectorization-features-of-the-intel-compiler-webinar-code-samples
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization
https://software.intel.com/videos/data-alignment-padding-and-peel-remainder-loops
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
http://software.intel.com/forums

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Some Reproducibility References

“Consistency of Floating-Point Results using the Intel® Compiler”
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-
using-the-intel-compiler/

“Differences in Floating-Point Arithmetic between Intel® Xeon® Processors and
the Intel® Xeon Phi™ Coprocessor”
http://software.intel.com/sites/default/files/article/326703/floating-point-
differences-sept11.pdf

“Run-to-Run Reproducibility of Floating-Point Calculations for Applications on
Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors)”
https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-
floating-point-calculations-for-applications-on-intel-xeon

Intel® Compiler User and Reference Guides:
https://software.intel.com/intel-cplusplus-compiler-16.0-user-and-reference-guide
https://software.intel.com/intel-fortran-compiler-16.0-user-and-reference-guide

“Floating Point Operations”

116

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/
http://software.intel.com/sites/default/files/article/326703/floating-point-differences-sept11.pdf
https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon
https://software.intel.com/intel-cplusplus-compiler-16.0-user-and-reference-guide
https://software.intel.com/intel-fortran-compiler-16.0-user-and-reference-guide

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary

Intel provides a powerful, optimizing compiler for x86 architecture and for
Intel® MIC architecture

• Best performance on Intel architecture, and competitive performance on
non-Intel systems

• More optimizations in the pipeline

Our focus is on

• Performance

• Comprehensive coverage of parallelism

• Ease of use

• Compatibility and software investment protection

• Customer Support

117

Visit http://software.intel.com/developer-tools-technical-enterprise

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Questions?

118

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and
the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804

119

Including C versions of some Fortran slides and Fortran versions of some C slides

Also vectorization of STL vectors and valarrays

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Linux*:

Intel® C and C++ are binary compatible with gcc, g++, gdb, …

• Substantially source and command line compatible

Intel® Fortran is also binary compatible with gcc, gdb, …

• But not binary compatible with gfortran

• Facilitated by Fortran 2003 C interoperability features

GCC compatibility and interoperability: see the 16.0 user guide

• https://software.intel.com/node/583823

122

Compatibility

https://software.intel.com/en-us/node/583823

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Windows*:

Intel® C and C++ are binary compatible with Microsoft* Visual C++

• Highly source and command line compatible

Intel® Fortran is also binary compatible with Microsoft* Visual C++

• Also supports a variety of Windows APIs

• Compiler doesn’t support C# directly

• But C++ and Fortran DLLs can be called from C# (example)

• Passing strings to/from Fortran can be tricky (see user guide)

• See :mixed language programming” in the Fortran user guide

Which Microsoft* Visual Studio* versions can I use with Intel® Compilers ?

• https://software.intel.com/intel-parallel-studio-xe-compilers-required-
microsoft-visual-studio

• https://software.intel.com/articles/troubleshooting-fortran-integration-
issues-with-visual-studio

123

Compatibility

https://software.intel.com/articles/troubleshooting-fortran-integration-issues-with-visual-studio
https://software.intel.com/articles/troubleshooting-fortran-integration-issues-with-visual-studio

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Overview

The days of easy performance improvements from steadily increasing clock
speed are long gone

Moore’s law provides instead increased parallelism

• More cores (later)

• Wider SIMD registers

• New instructions

• …

But software needs to keep up with the hardware

• Tools can help

You might have heard this before 

124

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Will it vectorize effectively?

Assume a, b and x are known to be independent.

for (j=1; j<MAX; j++) a[j]=a[j-n]+b[j];

for (int i=0; i<SIZE; i+=2) b[i] += a[i] * x[i];

for (int j=0; j<SIZE; j++) {

for (int i=0; i<SIZE; i++) b[i] += a[i][j] * x[j];

for (int i=0; i<SIZE; i++) b[i] += a[i] * x[index[i]];

for (j=1; j<MAX; j++) sum = sum + a[j]*b[j]

for (int i=0; i<length; i++) {

float s = b[i]*b[i] - 4.f*a[i]*c[i];

if (s >= 0) x2[i] = (-b[i]+sqrt(s))/(2.*a[i]);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Will it vectorize effectively? Answers

1)Vectorizes if n  0; doesn’t vectorize if n > 0 and small; may vectorize if n 
number of elements in a vector register

2)Unlikely to vectorize because of non-unit stride (inefficient)

3)Doesn’t vectorize because of non-unit stride, unless compiler can first
interchange the order of the loops. (Here, it can)

4)Doesn’t vectorize because of indirect addressing (non-unit stride), would be
inefficient. If x[index[i]] appeared on the LHS, this would also introduce potential
dependency (index[i] might have the same value for different values of i)

5)Reductions such as this will vectorize. The compiler accumulates a number of
partial sums (equal to the number of elements in a vector register), and adds
them together at the end of the loop. gcc needs -ffast-math in addition.

6)This will vectorize. Neither “if” masks nor most simple math intrinsic functions
prevent vectorization. But with Intel® SSE, the sqrt is evaluated speculatively. If
floating-point exceptions are unmasked, this may trap if s<0, despite the “if”
clause. With Intel® AVX, there is a real hardware mask, so the sqrt will never be
evaluated if s<0, and no exception will be trapped.

126

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Problems with Pointers

Hard for compiler to know whether arrays or pointers might be aliased
(point to the same memory location)
 Aliases may hide dependencies that make vectorization unsafe
 Bigger problem for C than Fortran (which has TARGET attribute)

In simple cases, compiler may generate vectorized and unvectorized
loop versions, and test for aliasing at runtime

Otherwise, compiler may need help:
 -fargument-noalias & similar switches
 __restrict__ or “restrict” keyword with -restrict or -std=c99 or by inlining
 #pragma ivdep asserts no potential dependencies

– Compiler still checks for proven dependencies

 #pragma omp simd asserts no dependencies, period

void saxpy (float *x, float *y, float*restrict z, float *a, int n) {
#pragma ivdep
for (int i=0; i<n; i++) z[i] = *a*x[i] + y[i];

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

ifort -c -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=3 func1.f90

LOOP BEGIN at func1.f90(9,25)
<Multiversioned v1>

remark #25233: Loop multiversioned for stride tests on Assumed shape arrays
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 3.080

…
LOOP END

LOOP BEGIN at func1.f90(9,25)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
remark #15460: masked strided loads: 2
remark #15462: unmasked indexed (or gather) loads: 1

…
remark #15478: estimated potential speedup: 2.330

…
LOOP END
…

Assumed shape array arguments may not be contiguous

128

Example of New Optimization Report

subroutine func(theta, sth)
integer, parameter :: fp=8
real(fp), parameter :: pi=acos(-1._fp)
real(fp), parameter :: d180=180._fp
real :: theta(:), sth(:)
integer :: i

do i=1,128
sth(i) = sth(i) + (theta(i) * pi / d180)

end do
end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Convert to assumed size arguments (theta(*), sth(*)), or inline, or

use CONTIGUOUS keyword

Compiler knows arrays are contiguous,  only one loop version

ifort -c -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=4 func2.f90
…

remark #15305: vectorization support: vector length 4
remark #15399: vectorization support: unroll factor set to 8

…
LOOP BEGIN at func2.f90(9,25)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1

….
remark #15478: estimated potential speedup: 3.080

…
remark #15487: type converts: 3
remark #25015: Estimate of max trip count of loop=4

LOOP END

Don’t take speedup estimates too seriously!!
• There’s a lot the compiler doesn’t know

129

Optimization Report Example

subroutine func(theta, sth)
integer, parameter :: fp=8
real(fp), parameter :: pi=acos(-1._fp)
real(fp), parameter :: d180=180._fp
real, contiguous :: theta(:), sth(:)
integer :: i

do i=1,128
sth(i) = sth(i) + (theta(i) * pi / d180)

end do
end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Keep all variables at the same precision
• Avoid unnecessary conversions
• Use full width of vector register

$ ifort -c -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=4 func3.f90
…

remark #15305: vectorization support: vector length 8
remark #15399: vectorization support: unroll factor set to 8

…
LOOP BEGIN at func3.f90(9,25)

remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 2
remark #15451: unmasked unaligned unit stride stores: 1

…
remark #15478: estimated potential speedup: 4.560

…
remark #25015: Estimate of max trip count of loop=4

LOOP END

Don’t take speedup estimates too seriously!!
• There’s a lot the compiler doesn’t know

130

Optimization Report Example

subroutine func(theta, sth)
integer, parameter :: fp=4
real(fp), parameter :: pi=acos(-1._fp)
real(fp), parameter :: d180=180._fp
real, contiguous :: theta(:), sth(:)
integer :: i

do i=1,128
sth(i) = sth(i) + (theta(i) * pi / d180)

end do
end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Aligned loads and stores are more efficient than unaligned
Compiler doesn’t know alignment for dummy arguments

 If you know the data are aligned, tell the compiler

$ ifort -c -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=3 func4.f90
…
LOOP BEGIN at func4.f90(8,3)

remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 34
remark #15477: vector loop cost: 39.000
remark #15478: estimated potential speedup: 6.970
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=4

LOOP END

Don’t take speedup estimates too seriously!!
• There’s a lot the compiler doesn’t know

See webinar for more detail and explanation of optimization reports

131

Optimization Report Example

subroutine func(theta, sth)
integer, parameter :: fp=4
real(fp), parameter :: pi=acos(-1._fp)
real(fp), parameter :: d180=180._fp
real, contiguous :: theta(:), sth(:)
integer :: i

!dir$ assume_aligned theta:32,sth:32
do i=1,128

sth(i) = sth(i) + (theta(i) * pi / d180)
end do

end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

From the Old Days, recap…

Requirements for Auto-Vectorization

Innermost loop of nest
Straight-line code

Avoid:
• Function/subroutine calls
• Loop carried data dependencies
• Non-contiguous data (indirect addressing; non-unit stride)
• Inconsistently aligned data

See http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

Still good advice, but no longer absolute requirements

132

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Explicit Vector Programming:

Use #pragma omp simd or !$OMP SIMD with -qopenmp-simd

• Use when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible
(ignoring dependency or efficiency concerns)

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Minimizes source code changes needed to enforce vectorization

void addit(double* a, double* b,
int m, int n, int x)
{

for (int i = m; i < m+n; i++) {
a[i] = b[i] + a[i-x];

}
}

void addit(double* a, double * b,
int m, int n, int x)
{
#pragma omp simd // I know x<0

for (int i = m; i < m+n; i++) {
a[i] = b[i] + a[i-x];

}
}

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

https://software.intel.com/en-us/articles/requirements-for-vectorizing-loops-with-pragma-simd/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD-enabled Function

Compiler generates vector version of a scalar function that can be called
from a vectorized loop:

#pragma omp declare simd (uniform(y,z,xp,yp,zp))

float func(float x, float y, float z, float xp, float yp, float zp)

{

float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp) + (z-zp)*(z-zp);

denom = 1./sqrtf(denom);

return denom;

}

….

#pragma omp simd private(x) reduction(+:sumx)

for (i=1;i<nx;i++) {

x = x0 + (float)i*h;

sumx = sumx + func(x,y,z,xp,yp,zp);

}

134

These clauses are
required for correctness,
just like for OpenMP*

FUNCTION WAS VECTORIZED with…

SIMD LOOP WAS VECTORIZED

y, z, xp, yp and zp
are constant,
x can be a vector

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching - automatic

Compiler prefetching is very important for the Intel® Xeon Phi™
coprocessor; not so important for Intel® Xeon processors

• Knights Landing is somewhere in between

• Can be very important for apps with many L2 cache misses

-qopt-prefetch=n (4 = most aggressive) to control globally

-qopt-prefetch=0 or -qno-opt-prefetch to disable

-qopt-prefetch-distance =<n1> [,<n2>] to tune how far ahead to prefetch

• n1 is for prefetch to L2; n2 is for (second level) prefetch to L1 from L2

• Units are loop iterations

Use the compiler reporting options to see detailed diagnostics of
prefetching per loop

-qopt-report-phase=loop -qopt-report=3 e.g.

Total number of lines prefetched=2
Using noloc distance 8 for prefetching unconditional memory reference [fun.F90(42,27)]
Using second-level distance 2 for prefetching unconditional memory reference [fun.F90(42,27)]

135

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Prefetching - manual

Use intrinsics
_mm_prefetch((char *) &a[i], hint);

See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)

MM_PREFETCH(A, hint) for Fortran

• But you have to figure out and code how far ahead to prefetch
• Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler

user guide, e.g. _mm512_prefetch_i32gather_ps

Use a pragma / directive (easier):

#pragma prefetch a [:hint[:distance]]

!DIR$ PREFETCH A, B, …

• You specify what to prefetch, but can choose to let compiler figure out
how far ahead to do it.

!DIR$ PREFETCH * to prefetch all arrays in loop

Hardware prefetching is also enabled by default

• On Intel® Xeon, beware of too much software prefetching

136

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Traditional programming with arrays:

icpc -c -qopt-report-phase=vec -qopt-report=3 no_stl.cpp
…
LOOP BEGIN at no_stl.cpp(5,2)

remark #15300: LOOP WAS VECTORIZED
…

remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 1

…

grep cos no_stl.s

call __svml_sincos2

137

Auto-vectorization and report

#include <math.h>

double no_stl (double * x, int n) {
double sum{ 0.0 };
for (int i=0; i<n; i++)

sum += sqrt(sin(x[i])*sin(x[i]) + cos(x[i])*cos(x[i]));
return sum;

}

Optimization report goes to no_stl.optrpt
(or use -qopt-report-file=stderr to see directly)

Call to sincos is “heavy overhead” (takes a long time),
so a good candidate for speed-up by being vectorized

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

STL containers are a popular and portable programming method.

 The loop is written using iterators over the vector class
 No need to pass the vector size explicitly

icpc -c -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=2 stl_vec.cpp
…

LOOP BEGIN at stl_vec.cpp(6,53)
remark #15300: LOOP WAS VECTORIZED

Performance is closely similar to that with arrays

138

STL vectors - do they vectorize?

#include <vector>
#include <math.h>

double stl_vec(std::vector<double>& x) {
double sum{ 0.0 };

for (std::vector<double>::iterator ix=x.begin(); ix!=x.end(); ix++)
sum += sqrt(sin(*ix)*sin(*ix) + cos(*ix)*cos(*ix));

return sum;
}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

C++11 introduced two convenient new features:

 The auto keyword
 Range-based for loops

icpc -c -std=c++11 -qopt-report-phase=vec -qopt-report=3 stl_vec_11.cpp
…

LOOP BEGIN at stl_vec.cpp(6,53)
remark #15300: LOOP WAS VECTORIZED

Both the type and the values of the loop parameters are taken from the class

139

STL vectors - using C++11

#include <vector>
#include <math.h>

double stl_vec_11 (std::vector<double>& x) {
double sum{ 0.0 };

for (auto ix : x)
sum += sqrt(sin(ix)*sin(ix) + cos(ix)*cos(ix));

return sum;
}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Aligned data accesses are more efficient.

So can we align our data? (to 32 byte boundaries for Intel® AVX)

typedef vector<double> dvec;
__attribute__((align(32))) My_dvec x(SIZE,0.6);

or
dvec *xx = new(_mm_malloc(sizeof(dvec(SIZE)), 32)) dvec(SIZE, 0.6);

 No! This aligns the vector class, not the data member (see test program)

– Compile with -DALIGN_CLASS (optionally with -DDYNAMIC) to test

 boost 1.56 or later provides an aligned allocator that can be used to align the
data member:

#include <boost/align/aligned_allocator.hpp>

typedef std::vector<double, boost::alignment::aligned_allocator<double, 32> > dvec;

– This aligns data member but not the class itself

– Compile with -DBOOST_ALIGN (optionally with -DDYNAMIC) to test

– Add #pragma vector aligned to tell the compiler

140

STL vectors - alignment

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

See the source file sumsq.cpp

Start with

typedef vector<double> My_dvec;
My_dvec x(SIZE,0.6);
My_dvec y(SIZE,0.8);

Or
My_dvec *xx = new My_dvec(SIZE, 0.6);
My_dvec *yy = new My_dvec(SIZE, 0.8);

Build and run with
icpc -O2 -std=c++11 -I$BOOST/boost_1_56 sumsq.cpp timer.cpp; ./a.out

Prints out alignment of the class and the first element of the vector
Sums the squares of the elements of the vectors
Prints the execution time

141

An executable example

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Want 32 byte alignment for Intel® AVX2. Compile and run example with:

icpc -O2 -xcore-avx2 -std=c++11 -I$BOOST/boost_1_56 sumsq.cpp timer.cpp; ./a.out

alignment of x y preprocessor macro run time

vector alignment: 16 0

class alignment: 0 24

vector alignment: 16 0 -DALIGN_CLASS 0.60 s

class alignment: 0 0

vector alignment: 0 0 -DBOOST_ALIGN 0.55 s

class alignment: 16 8

vector alignment: 16 0 -DDYNAMIC 0.60 s

class alignment: 16 0

vector alignment: 0 0 -DDYNAMIC -DBOOST_ALIGN 0.55 s

class alignment: 16 16

similar behavior for static or dynamic allocation. “0” means 32 byte aligned.

142

Align the vector data member, not the class itself

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Look at more detail:

icpc -c -std=c++11 -xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=loop,vec
-qopt-report3 -qopt-report-routine=main sumsq.cpp

…

LOOP BEGIN at sumsq.cpp(95,31) inlined into sumsq.cpp(73,43)
<Peeled>
LOOP END

LOOP BEGIN at sumsq.cpp(95,31) inlined into sumsq.cpp(73,43)
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads:

LOOP END
…

Add -DBOOST_ALIGN and this becomes:

LOOP BEGIN at sumsq.cpp(95,31) inlined into sumsq.cpp(73,43)
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked aligned unit stride loads: 2

“Peel” loop is only generated when compiler doesn’t know alignment
Accesses to data known to be aligned are (modestly) faster than to unaligned data
For more about peel and remainder loops, see https://software.intel.com/videos/getting-
the-most-out-of-the-intel-compiler-with-new-optimization-reports

143

STL vectors - performance

sumsq () inlined
into main

Peel loop: compiler can align accesses to one
array dynamically at run-time, but not to two.

Vectorized
loop kernel

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Options Speed-up What’s going on

-O0 0.014 no inlining

-O1 0.66 some inlining
restrictions

-O2 -no-vec 1.0 no vectorization

-O2 1.9 vectorization

-O2 -xavx 3.2 wider vectors

-O2 -xcore-avx2 4.2 Fused multiply-add

-O2 -xcore-avx2 -DALIGN_CLASS 4.2 Class aligned

-O2 -xcore-avx2 -DBOOST_ALIGN 4.5 Data member aligned

144

STL vectors - performance

Performance tests are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may
cause the results to vary.
The results above were obtained on a 4th Generation Intel® Core™ i7-4790
system, frequency 3.6 GHz, running Red Hat* Enterprise Linux* version 7.0.
Boost* version 1.56 and the Intel® C++ Compiler version 16.0 beta were used.

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Computations on Arrays

#define SIZE 10000
#define NTIMES 10000
void test(std::array<float,SIZE> &vi, std::array<float,SIZE> &va)
{

for(int i = 0; i < SIZE; i++)
vi[i] = 2.f*sin(va[i]);

}

int main()
{

std::array<float,SIZE> vi;
std::array<float,SIZE> va;
float mysum;
int i,j, size1, ntimes;
double execTime = 0.0;
double startTime, endTime;
size1=SIZE;
ntimes=NTIMES;
for (int i=0; i<SIZE; i++) {

vi[i] = (float) i;
va[i] = (float)(i+10);

}
startTime = clock_it();
for (j=0; j<ntimes; j++) {

test(vi, va);
}
endTime = clock_it();

..

..
}

•Every scientific computing application deals with really
huge arrays of either floats or doubles.

•Code snippet computes the sine value of every element
in “va” array multiplied by 2 and stores it in
corresponding “vi” array location.

$ icpc driver1.cc test1.cc -xavx -std=c++11 -o test2
$./test2
sum= -4.012442 -1.088042 -0.227893
time = 271 ms

145

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Converting the program to use Valarray

#define SIZE 10000
#define NTIMES 10000
void test(std::valarray<float> &vi, std::valarray<float> &va)
{

vi = 2.f*sin(va);
}

int main()
{

std::valarray<float> vi(SIZE);
std::valarray<float> va(SIZE);
float mysum;
int i,j, size1, ntimes;
double execTime = 0.0;
double startTime, endTime;
size1=SIZE;
ntimes=NTIMES;
for (int i=0; i<SIZE; i++) {

vi[i] = (float) i;
va[i] = (float)(i+10);

}
startTime = clock_it();
for (j=0; j<ntimes; j++) {

test(vi, va);
}
endTime = clock_it();

..

..
}

• Valarray is part of standard C++ library provided by
both GNU C++ and Microsoft.

• Valarray provides operator overloaded functions for
basic operators and math functions.

• Unlike the previous case, the function test() doesn’t
need a “for loop” to iterate through the individual
elements.

• Introduced mainly to help with huge array based
computations in High Performance Computing space.

$ icpc driver.cc test.cc -xavx -o test1
$./test1
sum= -4.012444 -1.088042 -0.227893
time = 136 ms
Speedup w.r.t array version ~ 2x

146

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Intel® Integrated Performance Primitives
version of Valarray

•Intel® Integrated Performance Primitives provides a more optimal optimization.

•valarray header is provided by Intel® C++ Compiler : <install_dir>/perf_headers

•Intel® C++ Compiler by default uses valarray header provided by GNU compiler on Linux* and
Microsoft Compiler on Windows*.

•To use the Intel optimized header (ippvalarray), use the compiler option -use-intel-optimized-
headers

$ icpc driver.cc test.cc -xavx -o test3 -std=c++11 -use-intel-optimized-headers
$./test3
sum= -4.012444 -1.088042 -0.227893
time = 94 ms
Speedup w.r.t previous valarray version = 1.46x
Speedup w.r.t array version = 2.91x

147

System Specifications:

Processor: Intel(R) Core(TM) i5-4670T CPU @ 2.30GHz
RAM: 8GB
Operating System: Ubuntu* 12.04 (Linux* kernel - 3.8.0-29-
generic)
GCC Compatibility mode : 4.6.3
Intel® Compiler Version: 16.0

Article URL: https://software.intel.com/en-us/articles/using-
improved-stdvalarray-with-intelr-c-compiler

https://software.intel.com/en-us/articles/using-improved-stdvalarray-with-intelr-c-compiler

